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Abstract

We give general definitions of logical frameworks and logics. Examples include the logical
frameworks LF and Isabelle and the logics represented in them. We apply this to give general
definitions for equivalence of logics, translation between logics, and combination of logics. We
also establish general criteria for the soundness and completeness of these.

Our key messages are that the syntax and proof systems of logics are theories; that both
semantics and translations are theory morphisms; and that combinations are colimits.

Our approach is based on the Mmt language, which lets us combine formalist declarative
representations (and thus the associated tool support) with abstract categorical conceptualiza-
tions.

1 Introduction

Universal logic is the field of logic that investigates the common features of logics. Even though
the field has arguably existed for decades, no single conceptualization has become dominant. In
fact, some of the most fundamental questions (quoted in this paper’s title) have served as contest
problems in the series of World Congresses on Universal Logic1. The present author’s research has
provided possible answers to these questions (never in time for submission to the contests though),
and this paper coherently presents them in a very general setting.

Our approach is formalist in nature, i.e., we use type theories to define the grammars and
inference systems of formal languages. This has two motivations. Firstly, it is part of a general trend
towards formalizing and mechanically verifying theorems in proof assistants. These are growingly
used to verify software (e.g., [KAE+10]), mathematics (e.g., [GAA+13]), and to a lesser extent
logics. When applied to logics, this approach requires a formal meta-language, in which logics are
defined, usually called the logical framework [Pfe01]. Therefore, we begin by investigating the
common features of logical frameworks (Sect. 2) including the dependent type theory LF [HHP93]
and the higher-order logic underlying Isabelle [Pau94]. Our main result here is a simple and general
definition of the notion of logical framework.

Secondly, the formalist approach enables complementing universal logical concepts with generic
tool support. This lets researchers build new logics by combining reusable components. And generic
tools provide rapid prototyping where, e.g., parser, checker, module system, and user interface are
provided uniformly at low cost. Thus, researchers can apply and evaluate logics easily and at large
scales.

In the later sections, we assume a fixed, arbitrary logical framework and give general definitions
for logics (Sect. 3), translations (Sect. 4), and combinations (Sect. 5). First we define the syntax
and proof theory of a logic as theories of the logical framework. A major achievement is that
we can then uniformly represent semantics and translations as theory morphisms. Indeed,
both are inductive functions that interpret one formal system in another one; the only difference
is that the codomain of semantics is usually a rich mathematical language such as axiomatic set
theory. Central results in these sections are criteria for soundness and completeness of logics and
translations. Finally, we show how we can build theories modularly. This lets us define logic

1http://www.uni-log.org/, 2005, 2007, 2010, 2013
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combinations as colimits in the logical framework. We conclude in Sect. 7 after reviewing
related work in Sect. 6.

Our central contribution is to integrate several independent lines of research into a coherent
framework. This required so many generalizations and simplifications that most of our results are
novel.
• We use Mmt [RK13] as the universal representation language. But where [RK13] represented

logical frameworks as black boxes, we develop a novel definition that represents them both
categorically and declaratively. This permits in particular proving the preservation of judg-
ments along theory morphisms, which is well-known for individual languages, in appropriate
generality.

• We use the ideas of [Rab13a] to give formalist representations of logics and model theory in LF.
But we generalize them to arbitrary logical frameworks and greatly reduce their complexity.
This yields more general and deeper results than [Rab13a]. For example, we can give a
Henkin-style model construction and a completeness criterion for arbitrary logics. We also
introduce the paradigm of representing semantics as a chain of refinements and show when
and how semantics is preserved by refinement steps.

• In [RS13], we already sketched an example for using logical relations in LF to reason about
logic translations. Here, we state the method systematically for arbitrary logical frameworks
and develop the soundness and completeness criteria as well as a novel notion of equivalence
between logics.

Finally, while this paper deals solely with the theoretical aspects, our framework is maturely imple-
mented [Rab13b] and has been applied to the formalization of a large library of logics [CHK+11,
KMR09]. The present paper aligns the theoretical background with the implementation and library,
which have evolved for several years.

2 What is a Logical Framework?

Our approach is independent of the specific logical framework. Therefore, we first give a general def-
inition of logical framework. Incidentally, this definition is relatively simple because we can abstract
from most of the type theoretical technicalities usually needed to define individual frameworks.

Our definition couples abstract categorical and concrete declarative aspects. The former are
described in Sect. 2.1, the latter in Sect. 2.2, and we combine the two in Sect. 2.3. These definitions
are inspired by Mmt, which was introduced as a Module system for Mathematical Theories in
[RK13].

2.1 Logical Frameworks as Categories

Categorically, we can see logical frameworks as categories of theories and theory morphisms. Here
we specify the common features that we have observed about these categories.

Definition 2.1 (Category with Inclusions). A category with inclusions consists of a category
together with a broad subcategory that is a partial order.

We write A ↪→ B for the morphisms of the subcategory, and if f : B → C, we write f |A for
the restriction f ◦ (A ↪→ B) : A→ C.

Our categories with inclusions are reminiscent of inclusion systems [DGS93, CR97] but weaker
in that there is no unique factorization of morphisms into the composition of an inclusion and an
epimorphism.

We call the objects in these categories theories and the morphisms theory morphisms. We
call the morphisms A ↪→ B inclusions and say that B is an extension of A.

The distinguished subcategory simply means that we can read A ↪→ B as a partial order on the
theories.
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Definition 2.2 (Pushouts of Inclusions). A category with pushouts of inclusions consists of
a category with inclusions and two partial operators that define for a morphism m : A→ B and
an inclusion A ↪→ X
• an object m(X) that includes B
• a morphism mX : X → m(X)

such that the left diagram below is a pushout.

A B

X m(X)

m

mX

A

X

B

m(X)

m

mX

X ′ m(X ′)
mX′

f m(f)

In that case, given a morphism f : X → X ′ such that f |A = idA, we write m(f) for the universal
morphism m(X)→ m(X ′) induced by the pushout as shown on the right.

Remark 2.3 (Partiality of Pushouts). Our use of partial a partial pushout operator may appear
surprising because there are many categories that naturally admit total pushout operators. Our
choice is motivated by the observation that it is difficult (we conjecture: impossible) to combine
totality with two other desirable properties, one of them being coherence as in Def. 2.4. We will
discuss this further in Rem. 2.28.

We would like to use m(−) like a functor that maps extensions of A to extensions of B. However,
in general, the functoriality laws only hold up to isomorphism. Therefore, we define:

Definition 2.4 (Coherent Pushouts). We say that pushouts of inclusions are coherent if they
commute with identifies and composition in the sense that

idA(X) = X and idXA = idX
m(A) = B and mA = m

(n ◦m)(X) = n(m(X)) and (n ◦m)X = nm(X) ◦mX

m(Y ) = mX(Y ) and mY = (mX)Y for X ↪→ Y

and such that the left-hand sides of the above equations are defined whenever the respective
right-hand side is.

Here the equations on the right are between morphisms and imply the ones between their
codomains on the left. The diagrams below give the commutative diagrams for the cases regarding
composition:

A B C

X m(X) (n ◦m)(X)

m n

mX nm(X)

(n ◦m)X

A

X

Y

B

m(X)

mX(Y )

m

mX

(mX)Y

mY

Coherence is crucial for implementations, where we want to give the pushout as an algorithm
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that computes m(X) from X. That requires making a canonical choice among all the isomorphic
pushouts. And if this choice is not made coherently, the implementation becomes awfully complex.

Definition 2.5 (Judgments). Let JUDG be the category of sets with subsets, i.e.,
• J UDG-objects are pairs (a,A) where a ⊆ A.
• J UDG-morphisms f : (a,A) → (b, B) are maps f : A → B that preserve the subset, i.e., if
x ∈ a then f(x) ∈ b.
JUDG has inclusion morphisms (a,A) ↪→ (b, B) for a ⊆ b and A ⊆ B.

Definition 2.6 (Abstract Mmt Language). An abstract MMT Language is a pair (Th,Jd)
where
• Th is a category with inclusions and coherent pushouts of inclusions,
• Jd is a functor Th→ JUDG that preserves inclusions.

If Jd(X) = (a,A), we call the elements of A X-judgments and the elements of a the true
judgments. With that intuition, the morphisms of JUDG preserve the truth of judgments.

2.2 Logical Frameworks as Declarative Languages

Intuitively, Mmt is a declarative language whose set of theories and judgments is large enough to
subsume those of specific frameworks. Thus, we can define specific frameworks simply by picking
the theories we need.

Fig. 1 gives an overview of the concepts we will introduce. We first define Mmt theories
Σ, Σ-expressions E, and the judgments about these expressions in Sect. 2.2.1. Expressions are
formed from the identifiers declared in Σ and a set C of fixed identifiers provided by the logical
framework. Correspondingly, the true judgments are defined by derivations, which are formed from
the declarations in Σ and a set R of fixed rules of the logical framework.

Then we define theory morphisms σ : Σ→ Σ′ in Sect. 2.2.2. Using the homomorphic extension
and pushout, we translate Σ-objects to Σ′-objects and show that they preserve the true judgments.

logical framework: sets C and R of fixed identifiers and rules

Theory Σ Morphism σ : Σ→ Σ′

set of typed identifier declarations c : E assignments c 7→ E′

Σ-expressions E formed from C and Σ-identifiers mapped to Σ′ by homomorphic extension
Σ-extensions inclusions Σ ↪→ Σ,Γ mapped to Σ′ by pushout
Σ-judgments derived from R and Σ-declarations preserved along σ

Figure 1: Overview of Mmt Concepts

2.2.1 Theories and Expressions

Identifiers We will use Mmt URIs [RK13] as identifiers. For our purposes, the following defini-
tion is sufficient:

Definition 2.7 (Identifiers). An identifier is either of the form T?x (global identifier) or of the
form x (local identifier), where T is a URI and x a string.

Mmt does not have any built-in identifiers. Therefore, a set of identifiers must be provided to
get off the ground:
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Definition 2.8 (Urtheory). An urtheory is a fixed set of global identifiers.

For the remainder of this section, we will assume a fixed urtheory C.

Theories An Mmt theory Σ consists of declarations c : E of typed identifiers, where the type E
is a Σ-expression as defined in Def. 2.12. Mmt declarations and expressions are very general: ex-
pressions subsume terms, types, formulas, proofs, etc., and declarations subsume type declarations,
function symbols, axioms, rules, etc.

In order to capture an acyclic dependency between declarations, we use a strict order between
them:

Definition 2.9 (Theories). An Mmt theory Σ consists of
• a well-founded strictly ordered set (dom(Σ), <) of identifiers, called the domain,
• a mapping that maps every c ∈ dom(Σ) to a Σc-expression Σ(c), which is called the type

of c.
Here Σc is the restriction of Σ to the set {d ∈ dom(Σ) | d < c}.

Intuitively, Σc is the subtheory of Σ containing the declarations before c. The well-foundedness
guarantees that every declaration depends on only finitely many preceding declarations.

Remark 2.10 (Infinite Theories). Mmt as defined in [RK13] describes theories using a grammar
and an inference system. That is also our primary interest for logical frameworks.

However, it can be useful to consider infinite theories as well, especially when defining models.
Therefore, we word all definitions and theorems in such a way that they apply to the infinite case
as well.

Notation 2.11 (Theories). We write Σ,Γ for the theory arising by appending the declarations of
Γ to Σ. Here “append” means that c < x whenever c ∈ dom(Σ) and x ∈ dom(Γ).

Moreover, we usually write finite theories Σ as Σ = c1 : Σ(c1), . . . , cn : Σ(cn).

Expressions Now we define the judgments and the true judgments over an Mmt theory. Judg-
ments will be predicates about expressions, and the true judgments will be defined by an inference
system. Therefore, most of the work lies in defining the expressions and the rules of the inference
system.

The expressions over an Mmt theory Σ are similar to S-expressions [McC60] whose leaves are
the identifiers c ∈ dom(Σ). However, we generalize S-expressions to permit variable binding, which
yields a definition similar to OpenMath objects [BCC+04].

Definition 2.12 (Expressions). Consider an Mmt-theory Σ. Then a Σ-expression is:
• an identifier c declared in Σ, or
• of the form C(Γ;A1, . . . , An) where

– C ∈ C, called the constructor,
– Γ = . . . , xi : Ti, . . . is a list of declarations of local identifiers, called the bound vari-

ables, such that Σ,Γ is a theory,
– the Ai are Σ,Γ-expressions, called the arguments.

Example 2.13 (λ-calculus). To give an urtheory for the simply-typed λ-calculus in Mmt, we use
4 constructors C = {type,→, λ,@}. Alternatively, we can add constructors kind and Π to obtain
an urtheory for the dependently-typed λ-calculus.

We introduce the usual notations for them as follows:
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Constructor Abstract Mmt expression Concrete notation
universe of types type(·; ·) type

function types → (·;A,B) A→ B
abstraction λ(x : A; t) λx : A.t
application @(·; f, t) f t
universe of kinds kind(·; ·) kind

dependent function types Π(x : A; t) Πx : A.t

Notation 2.14 (Free Variables). To regain the usual notations for free variables, we allow writing
E[x1, . . . , xn] to emphasize that E is an expression over a theory Σ, x1 : A1, . . . , xn : An. In that
case, we write E[t1, . . . , tn] for the result of substitution of ti for xi.

Using Def. 2.24, we can define this as an abbreviation for idΣ, x1 7→ t1, . . . , xn 7→ tn(E).

Inference System Mmt does not define a specific typing relation between expressions. Instead,
individual languages supply their own typing relation. Here, we give a novel formulation that
improves upon the one used in [RK13] by using a generic inference system consisting of judgments
and rules:

Definition 2.15 (Judgments). Given a theory Σ, the Mmt judgments are

`Σ E : T expresses “E has type T”
`Σ : T expresses “T may occur as the type of an identifier”

where E and T are Σ-expressions. Moreover, we use `Σ T as abbreviation for “there is an E such
that `Σ E : T”.

We also write `Σ J for an arbitrary judgment and 6`Σ J for the corresponding negated judg-
ments.

Remark 2.16 (Equality). It is possible (and reasonable) to generalize Def. 2.15 to also include an
equality judgment `Σ E = E′. We avoid this here only for brevity and occasionally remark on
the adaptations necessary to add equality.

Definition 2.17 (Rules). A C-rule is an inference rule of the form

for all S, e1, . . . , en
. . . `S,Γi

Ji . . .

`S J0

Here S is a meta-variable for an arbitrary theory S, and the ei are meta-variables for arbitrary
expressions. The theories Γi and the expressions in Ji may use the identifiers in Γi, the constructors
in C, the meta-variables ei, and substitution.

As usual, we will omit the list S, e1, . . . , en of meta-variables when giving rules.

Concrete Languages Finally, individual languages are obtained by fixing the constructors and
rules:

Definition 2.18 (Concrete Mmt Language). A concrete MMT language consists of an ur-
theory C and a set R of C-rules.

As defined in Def. 2.12, expressions and thus the judgments are generated from the identifiers
in C. Similarly, the derivations and thus the true judgments are generated from the C-rules and
one fixed additional rule provided by Mmt:
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Definition 2.19 (Well-Formedness). Given a concrete Mmt language (C,R), the true judgments
are defined by the inference system consisting of the C-rules in R and the rule

S well-formed

`S c : S(c)

A theory Σ is well-formed if `Σc : Σ(c) for all c ∈ dom(Σ).

Intuitively, a theory is well-formed if for every declaration c : E, the previous declarations can
prove that E may occur as the type of an identifier.

Example 2.20 (Simply-Typed λ-Calculus). To obtain a concrete Mmt language for the simply-
typed λ-calculus, we extend Ex. 2.13 with the well-known typing rules

`S A : type `S B : type

`S A→ B : type

`S A→ B : type `S,x:A t : B

`S λx : A.t : A→ B

`S f : A→ B `S t : A

`S f t : B

and the rules
`S A : type

`S : A `S : type

The latter two rules make theories well-formed iff they contain only typed constant declarations
c : A for a type A or type declarations a : type.

If, following Rem. 2.16, we use an equality judgment, we also add the rules for β and η-equality.

Example 2.21 (Dependently-Typed λ-Calculus). For the dependent λ-calculus, we extend Ex. 2.13
with

`S A : type `S,x:A B : type

`S Πx : A.B : type

`S Πx : A.B : type `S,x:A t : B

`S λx : A.t : Πx : A.B

`S f : Πx : A.B `S t : A

`S f t : B[t]

and the corresponding triplet of rules for kind-level λ-abstraction as well as the rules

`S type : kind

`S A : type

`S : A

`S K : kind

`S : K

The latter two rules differ from their simply-typed counterparts by allowing kinded declarations
c : K for any kind K : kind.

Equality is treated as in Ex. 2.20.

2.2.2 Category Structure

Theory Morphisms Theory morphisms σ : Σ→ Σ′ map all identifiers of Σ to Σ′-expressions:

Definition 2.22 (Morphism). An Mmt theory morphism σ from Σ to Σ′ is a mapping of
identifiers c ∈ dom(Σ) to Σ′-expressions σ(c).

Notation 2.23 (Morphisms). Like in Not. 2.11, we write σ, γ for the morphism that appends the
cases of γ to the ones of σ.

Accordingly, we write morphisms out of a finite theory as σ = c1 7→ σ(c1), . . . , cn 7→ σ(cn).
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Homomorphic Extension A theory morphism σ : Σ → Σ′ is extended homomorphically to a
mapping σ of Σ-expressions to Σ′-expressions:

Definition 2.24 (Homomorphic Extension). Consider a theory morphism σ : Σ→ Σ′. Then the
mapping σ(−) from Σ-expressions to Σ′-expressions is defined by:

σ(c) = σ(c)

σ(C(Γ; . . . , Ai, . . .) = C(σ(Γ); . . . , σΓ(Ai), . . .)

where σΓ extends σ with x 7→ x for all x ∈ dom(Γ), and σ(Γ) is as in Def. 2.26.

Pushouts The Mmt theories and morphisms form a category with inclusions in the following
way:

Definition 2.25 (Category Structure). For a theory Σ, we define the identity morphism as

idΣ : c 7→ c for c ∈ dom(Σ)

And given σ : Σ→ Σ′ and σ′ : Σ′ → Σ′′, we define the composition as

σ′ ◦ σ : c 7→ σ′(σ(c)) for c ∈ dom(Σ).

An inclusion morphism Σ ↪→ Σ′ exists whenever Σ is a restriction of Σ′ to some subset of
dom(Σ′) and is defined by c 7→ c for c ∈ dom(Σ). Therefore, we will occasionally use the notation
idΣ : Σ ↪→ Σ′.

We can also define coherent pushouts of inclusions:

Definition 2.26 (Pushouts). Consider σ : Σ→ Σ′ and Σ ↪→ Σ,Γ such that dom(Σ′)∩ dom(Γ) =
∅. Then the pushouts in Mmt are defined by:

dom(σ(Σ,Γ)) = dom(Σ′) ∪ dom(Γ)

σ(Σ,Γ)(c) =

{
Σ′(c) if c ∈ dom(Σ′)

σΣ,Γ(Γ(c)) if c ∈ dom(Γ)
σΣ,Γ : c 7→

{
σ(c) if c ∈ dom(Σ)

c if c ∈ dom(Γ)

Consider morphisms ϕ : Σ,Γ → Φ and ϕ′ : Σ′ → Φ such that ϕ|Σ = ϕ′ ◦ σ. Then ϕ must be
of the form ϕ|Σ, γ, and we obtain the universal morphism u : σ(Σ,Γ)→ Φ as ϕ′, γ.

The uniqueness of the universal morphism is immediate. The coherence properties can be
verified directly.

Σ

Σ,Γ

Σ′

σ(Σ,Γ)

σ

σΣ,Γ

Φϕ

ϕ′

u

u = ϕ|Σ, γ

Notation 2.27 (Pushouts). The notations σ(Σ,Γ) and σΣ,Γ are rather unwieldy.
Therefore, we write σΓ instead of σΣ,Γ. And we write σ(Γ) for the fragment of σ(Σ,Γ) that is

appended to Σ′, i.e., we have
σ(Σ,Γ) = Σ′, σ(Γ)
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With this notation, Mmt pushouts σ(Γ) can be seen as the homomorphic extension of σ to theory
fragments Γ. In particular, we have σ(Γ, x : T ) = σ(Γ), x : σΓ(T ).

Remark 2.28 (Totality, Coherence, and Natural Identifiers). Our abstract and concrete definitions
of pushout are motivated by three desirable properties: the totality of the pushout operators, their
coherence, and the use of natural identifiers.

Here by “natural identifiers”, we mean that the identifiers in σ(Γ) are obtained naturally from
those of Γ. Def. 2.26 is an extreme example of a pushout with natural identifiers by using the
same identifiers in the two theories.

We conjecture that it is not possible to define pushouts in a way that realizes all three properties
at once.

We can obtain coherent total pushouts if we sacrifice natural identifiers. For example, we can
use de-Bruijn-indices instead of identifiers, which quotients out the choice of identifiers. We can
also obtain total pushouts with natural identifiers if we sacrifice coherence. For example, we can
prefix all identifiers in σ(Γ) with some p 6∈ dom(Σ′). But both options would make the pushouts
highly impractical to work with.

Therefore, our approach sacrifices totality instead. This has the drawback that we have to
check applicability of pushout every time. But both in theory and in practice, we can work around
that relatively easily and effectively by using namespaces as described in Not. 2.29.

The following convention helps us construct pushouts in Mmt without bothering about the
partiality:

Notation 2.29 (Namespace Convention). Whenever we work with a theory whose name consists
of Latin letters we assume that all identifiers declared in that theory are global. Moreover, we
assume that the declarations in theories with different names use different URIs. We always omit
those URIs from the notation though.

Whenever, we work with a theory fragment whose name consists of Greek letters, we assume
that all identifiers declared in that theory are local.

For example, in Thm. 2.31, we will use a morphism σ : S → S′ and theories S,Γ. Not. 2.29
guarantees that dom(Γ) is disjoint from both dom(S) and dom(S′).

Well-Formedness Intuitively, a theory morphism is well-formed if it preserves the type of every
identifier:

Definition 2.30 (Well-Formed Morphisms). A theory morphism σ : Σ → Σ′ is well-formed if
`Σ′ σ(c) : σ(Σ(c)) for all c ∈ dom(Σ).

Concrete Mmt languages provide an extremely general setting in which we can prove that
well-formed theory morphisms in fact preserve all judgments:

Theorem 2.31 (Preservation of Judgments). Consider a concrete Mmt language, well-formed
theories S and S′, and a well-formed morphism σ : S → S′. Let σ(J) be the result of applying
σ(−) to the expressions in J .

Then
if `S J then `S′ σ(J)

Moreover, if S,Γ is well-formed, so are S′, σ(Γ) and σΓ : S,Γ→ S′, σ(Γ).

Proof. It is sufficient to prove the statement for finite Γ: Because all expressions and derivations
can only refer to finitely many identifiers of Γ, any counter-example for an infinite Γ would give
rise to a counter-example for a finite Γ.

Then we prove all claims by mutual induction on the derivation D of `S J and the finite set of
derivations establishing the well-formedness of S,Γ relative to the well-formedness of S.
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If D consists only of the rule for constants from Def. 2.19, the needed property follows immedi-
ately from the well-formedness of σ.

Otherwise, D is of the form
. . . Di

`S,Γi
Ji

. . .

`S J
r

for some derivations Di. Here r ∈ R, the meta-variable S of r is instantiated with S, and the
meta-variables ei of r are instantiated with some expressions Ei.

Applying the induction hypothesis to the Di using the morphisms σΓi : S,Γi → S′, σ(Γi) yields
derivations

D′i

`S′,σ(Γi) σ
Γi(Ji)

Then we obtain the needed derivation by applying r to the D′i. This time we instantiate S with S′

and each ei with σ(Ei).

For each of the remaining two well-formedness claims, we have to establish one S′-judgment
for each identifier in dom(S,Γ). For the identifiers in dom(S), these follow immediately from the
assumptions. For an identifier x ∈ dom(Γ), they follow from the corresponding S-judgment by
applying the induction hypotheses to S,Γx.

Remark 2.32 (Equality Rules). If, following Rem. 2.16, we add an equality judgment we have
to adapt Def. 2.19 by adding rules for equality. These are α-conversion (renaming of bound
variables), reflexivity, symmetry, transitivity, and congruence.

The congruence rules guarantee that all operations preserve equality. There is one congruence
rule for each primitive judgment

`S E = E′ `S T = T ′ `S E : T

`S E′ : T ′
`S T = T ′ `S : T

`S : T ′

and one congruence rule scheme for composed expressions of any arity

. . . `S,Γxi Ti = T ′i . . . `S,Γ Ej = E′j . . .

`S C(. . . , xi : Ti, . . .︸ ︷︷ ︸
Γ

; . . . , Ej , . . . , ) = C(. . . , xi : T ′i , . . . ; . . . , E
′
j , . . . , )

Thm. 2.31 can be extended to the equality judgment in a straightforward way.
The above rules have the effect that Mmt languages must admit subject reduction (i.e., if E : T

and E = E′, then E′ : T ) because it is subsumed by the congruence of typing. Similarly, Mmt
languages for λ-calculi must admit the ξ-rule (i.e., if E[x] = E′[x], then λx : T.E[x] = λx : T.E′[x])
because it is subsumed by the congruence of expression formation.

Notation 2.33. From now on, we simply write σ(E) instead of σ(E).

2.3 A Logical Framework is an MMT Language

Finally, we have:

Theorem 2.34. Every concrete Mmt language induces an abstract Mmt language.

Proof. The category of theories consists of the well-formed Mmt-theories and the well-formed
theory morphisms between them. Inclusions and pushouts are as defined above. It is straightforward
to show that all constructions (identity, composition, inclusion, pushouts) preserve well-formedness.

The (true) Σ-judgments are the ones of Mmt. Thm. 2.31 shows the well-definedness.
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Then we can finally make the main definition of this section:

Definition 2.35 (Logical Framework). A logical framework is a concrete Mmt language with
distinguished constructors type and prop. We call expressions E : type and E : prop types and
propositions, respectively.

A logical framework has hypothetical reasoning if it provides identifiers Π,→, λ,@ and
rules

`S A : prop `S B : prop

`S A→ B : prop

`S A : type `S,x:A B : prop

`S Πx : A.B : prop

as well as the corresponding rules for λ-abstraction and application @ akin to Ex. 2.21.

Remark 2.36 (Hypothetical Reasoning). Hypothetical reasoning corresponds to the rules
(prop, prop) and (type, prop) of pure type systems [Bar92]. The former provides implication,
the latter universal quantification over typed variables.

Example 2.37 (LF). LF [HHP93] is the language given in Ex. 2.21. LF follows the judgments-as-
types paradigm and is a logical framework via type = prop.

LF has hypothetical reasoning. The type/proposition representing implication is the simple
function type F → G. The type/proposition representing universal quantification is the dependent
function type Πx : A.F (x).

In the sequel we use LF for the running examples of this paper.

Example 2.38 (Isabelle). The intuitionistic higher-order logic Pure, which underlies Isabelle
[Pau94], is also a logical framework in our sense. More precisely, we obtain Pure by extend-
ing Ex. 2.20 with
• constructors for a base type prop, implication =⇒, and universal quantification ∀,
• one constructor for the name of each proof rule so that each proof can be written as an

expression,
• appropriate typing and proof rules such that in particular `Σ p : F holds whenever p is a

proof of `Σ F : prop.
Pure also has hypothetical reasoning via =⇒ and ∀, and we use the usual notations F =⇒ G

and ∀x : A.F (x).

From now on, we assume an arbitrary fixed logical framework with hypothetical reasoning.
Unless mentioned otherwise, all theories, morphisms, and expressions are well-formed with respect
to this framework.

3 What is a Logic?

3.1 Syntax is a Theory

Fig. 2 summarizes the basic intuitions that we will use in this section to formalize a logic L in a
given logical framework. The syntax and inference system of L are represented as a theory Syn
(which declares the logical symbols) and L-theories as extensions Σ of Syn (which extend Syn with
declarations of non-logical symbols).

We follow the Curry-Howard representation so that both logical symbols and axioms are repre-
sented as declarations, and both formulas and proofs are represented as expressions. In particular,
axioms asserting F are just declarations of the form a : thm F .

Definition 3.1 (Logical Theories). A logical theory consists of
• a theory Syn, which we call the syntax,
• a distinguished type `Syn o : type, which we call the type of sentences,
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Concept Representation
syntax theory Syn of the logical framework
signatures/theories theories Σ that extend Syn
formulas Σ-expressions of a certain fixed type o

Figure 2: Intuitions behind our Representation of Syntax

• a distinguished proposition `Syn,F :o thm[F ] : prop, which we call the truth judgment for
the formula F .

such that `Syn : o and `Syn,F :o : thm[F ].

We think of expressions F : o as sentences and of derivations of `Σ thm [F ] as proofs of F .

Notation 3.2 (Truth Judgment). In Def. 3.1, we demand that thm is a proposition with a free
variable F . In practice, this is almost always achieved by declaring an identifier thm ′ : o→ prop,
in which case thm[F ] = thm ′ F . For example, in Isabelle thm ′ is usually called Trueprop; in LF,
it is often called nd or true. Therefore, we will often simply write thm F instead of thm[F ].

Example 3.3 (Propositional and First-Order Logic). Using the logical framework LF from Ex. 2.37,
we define propositional logic PL as the following logical theory:

o : type

thm : o→ type

> : o
⊥ : o
¬ : o→ o
∧ : o→ o→ o
∨ : o→ o→ o
⇒ : o→ o→ o

where o and thm x are the distinguished expressions.
We obtain first-order logic FOL by adding

i : type
.
= : i→ i→ o
∀ : (i→ o)→ o
∃ : (i→ o)→ o

These use currying to represent the connectives: Using the notations from Ex. 2.13, the ex-
pression (∧F )G represents the sentence F ∧G. Similarly, they use higher-order abstract syntax
to represent the binders: the expression ∀(λx : i.F (x)) represents the sentence ∀x.F (x). In fu-
ture examples, we will use the usual notations instead of the ones technically prescribed by our
encoding in LF.

For the remainder of this section, we fix a logical theory L = (Syn, o, thm). Relative to L, we
give generic definitions of the syntax of a logic.

Definition 3.4 (Non-Logical Theories). L-theories are well-formed extensions Syn ↪→ Syn,Σ
of Syn.

The L-theory morphisms between L-theories are the morphisms σ : Syn,Σ → Syn,Σ′

satisfying σ|Syn = idSyn.

While logical theories L represent logics, the non-logical L-theories Σ represent the theories of
these logics. It is customary to call the identifiers in Syn logical and the ones in Σ non-logical.
Therefore, we use the according terminology to speak of logical and non-logical theories, which
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declare the logical and non-logical symbols, respectively. The phrase “non-logical theory” is not
ideal but yields a very clear terminology in the sequel.

A typical example of non-logical theories are the algebraic theories of first-order logic:

Example 3.5 (Monoids). The FOL-theory of monoids contains the following non-logical declara-
tions

◦ : i→ i→ i
e : i
leftNeutral : thm [∀x.e ◦ x .

= x]
rightNeutral : thm [∀x.x ◦ e .

= x]
associative : thm [∀x.∀y.∀z.(x ◦ y) ◦ z .

= x ◦ (y ◦ z)]

We use the usual infix notation for ◦.
Note that there is no need to distinguish between FOL-signatures and FOL-theories: Axioms

have the same status as the declarations of function symbols.

Remark 3.6 (Logical and Non-Logical Identifiers). Note that every L-theory Σ is itself a logical
theory. Thus, the distinction between logical and non-logical identifiers is sometimes blurred.
This corresponds to a blurred distinction in practice. For example, in first-order logic, equality is
sometimes considered as a logical and sometimes as a non-logical identifier.

The difference becomes relevant only when we consider L-theory morphisms, which must keep
the logical identifiers fixed.

Remark 3.7 (Restricting the Non-Logical Theories). Def. 3.4 defines any extension of Syn to be
an L-theory. If we use, e.g., plain LF as the logical framework, this usually yields more non-logical
theories than desirable. For example, the PL-theories should only declare propositional variables
p : o and axioms a : thm F . Similarly, the FOL-theories should only declare function symbols
p : i→ . . .→ i→ i, predicate symbols f : i→ . . .→ i→ o, and axioms.

However, this limitation only affects our example frameworks. Other logical frameworks can
use modified rules for the judgment `Σ : T in order to make only certain L-theories well-formed.
For example, we can define a variant of LF along the lines of [HKR12].

The only requirement Def. 3.1 makes is that o and thm F may occur as types, i.e., that we are
at least able to declare propositional variables p : o and axioms a : thm F . That is a very mild
condition that will help in several proofs below.

Theorem 3.8 (Category of L-Theories). The L-theories and L-theory morphisms form a category
that inherits inclusions and (where defined) pushouts from Mmt.

Proof. This is straightforward. In particular, if dom(Γ) and dom(Σ′) are disjoint, the pushout
of the L-inclusion Σ ↪→ Σ,Γ (which is an inclusion Syn,Σ ↪→ Syn,Σ,Γ of Mmt theories) along
σ : Σ→ Σ′ is the same as the Mmt pushout (idSyn, σ)(Γ).

Definition 3.9 (Sentences). Given an L-theory Σ, the Σ-sentences are the expressions F such
that `Σ F : o.

Remark 3.10 (Syntax modulo Equality). If, following Rem. 2.16, we also use an equality judg-
ment, Def. 3.4 and 3.9 are adapted by taking the quotient modulo the equality judgment. Thus,
expressions are identified up to equality, and consequently theories and morphisms are identified
up to equality of the expressions occurring in them.

If the logical framework admits a canonical form theorem, we can alternatively restrict our
attention to canonical expressions.
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Concept Representation
syntax theory Syn of the logical framework
signatures/theories theories Σ that extend Syn
formulas Σ-expressions of a certain fixed type o
Constructive, proof theoretical semantics
proofs of formula F Σ-expressions of type thm F
theorems formulas for which there is a proof
Denotational, model theoretical semantics
semantics theory morphism sem out of Syn
models theory morphisms M out of Σ that extend sem
truth of F in M existence of an expression of type M(thm F )
theorems formulas that are true in all models

Figure 3: Intuitions behind our Representation of Semantics

3.2 Semantics is a Theory Morphism

We give two abstract definitions of semantics as summarized in Fig. 3. Firstly, constructive seman-
tics is inspired by proof theory: It is absolute in the sense that there either is a proof for a sentence
or not. A sentence is constructively valid if it has a proof. More precisely, we use thm F as the
type of proofs of F so that proofs are represented as Σ-expressions of type thm F and validity as
the non-emptiness of this type.

Secondly, the denotational semantics is inspired by model theory: It is relative in the sense
that the truth of a sentence depends on the model, which interprets the theory. A sentence is
denotationally valid if it is true in all models. More precisely, theory morphisms M out of Σ
represent Σ-models, and the non-emptiness of the type M(thm F ) represents the truth of F in M .

For both definitions, we proceed in two steps. First, we give deliberately simple definitions in
Sect. 3.2.1. These capture the key intuitions and are already sufficient to establish some far-reaching
theorems as we see in Sect. 3.2.2.

Then we introduce logical morphisms in Sect. 3.2.3 and use them to generalize the semantics
in Sect. 3.2.4. Most importantly, Sect. 3.2.4 will split the morphisms M into two parts. Firstly, a
fixed theory morphism sem maps the logical symbols of Syn to their fixed interpretation. Secondly,
models M extend sem with interpretations for the non-logical symbols of Σ. The definitions of
Sect. 3.2.1 will be recovered as the special case where sem = idSyn.

3.2.1 Proofs and Models

Definition 3.11 (Constructive Semantics). Consider an L-theory Σ and a Σ-sentence F . Then:
1. A Σ-proof of F is an expression p such that `Syn,Σ p : thm F .
2. A Σ-disproof of F is an expression p[a, g] such that `Syn,Σ,a:thm F,g:o p[a, g] : thm g.
3. F is constructively valid if there is a proof of F .

Remark 3.12 (Disproofs). Our notion of disproofs is not common but straightforward. A disproof
is a witness p[a, g], which proves any formula g under an assumption a that F is true. Intuitively,
this means that F is a contradiction.

If we had a negation connective ¬, we could simply define disproofs of F as proofs of ¬F . Our
definition has the same effect but avoids assuming a distinguished negation connective.

Definition 3.13 (Denotational Semantics). Consider an L-theory Σ and a Σ-sentence F . Let
M : Syn,Σ→ Syn,Γ be an L-theory morphism. Then:

1. F is true in M if there is a Γ-proof of M(F ).
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2. F is false in M if there is a Γ-disproof of M(F ).
3. M is a Σ-model if every Σ-sentence is either true or false in M .
4. F is denotationally valid if it is true in all models.

We use L-theory morphisms M : Syn,Σ→ Syn,Γ as models. Intuitively, Γ defines the universe(s)
of the model, and M maps every Σ-symbol to its denotation. Then the homomorphic extension of
M represents the inductively defined interpretation function that interprets all Σ-expressions in Γ.
This idea goes back to the models-as-functors perspective of Lawvere [Law63].

Remark 3.14 (Models and Falsity). Usually, models and truth are defined first, and falsity is just
the opposite of truth. We proceed differently and define falsity first and use it to define models.
This has the same effect but is more convenient in our setting.

Example 3.15 (Propositional Models). Let L = PL from Ex. 3.3. Then boolean-valued models of
propositional logic can be written as theory morphisms into an empty Γ. Given the PL-theory
Σ = p1 : o, . . . , pn : o, a model M : PL,Σ→ PL maps M(pi) = > or M(pi) = ⊥.

However, at this point, these are not technically models because we cannot show that every
sentence is either true or false. In fact, no sentence is true and no sentence is false because the
types thm F are always empty. We have two options to finish the example: We can add proof
rules to PL or use a codomain Γ that adds computation rules for the booleans. We will get back
to that in Sect. 3.2.4.

Example 3.16 (Algebraic Presentations). Consider FOL and Monoid from Ex. 3.3 and 3.5. Models
are often given as presentations, e.g., 〈x|xn = e〉 for the cyclic monoid of n elements.

We can define it as the inclusion morphism

FOL,Group ↪→ FOL,Group,Γ

where
Γ = x : i, a1 : thm ¬C1, . . . , an−1 : thm ¬Cn−1, an : thm Cn

and
Cn = x ◦ . . . ◦ x︸ ︷︷ ︸

n

.
= e.

Just like in Ex. 3.15, we are still missing the rules that make sure all sentences are true or
false in these models.

Remark 3.17 (More Complex Models). Usually, L-theory morphisms cannot express all interesting
models elegantly because L lacks the syntactic material to build them. For example, to give the
monoid of real numbers under addition, we would have to add one constant for every real number
and axioms that define the sum of any two of these constants. Our definitions technically cover
this by allowing infinite theories, but obviously this is not always desirable. A better way is to
use, e.g., set theory to define the set of real numbers. The more general definition of Sect. 3.2.4
will permit exactly that.

Example 3.18 (Natural Numbers). Let L = FOL be first-order logic and Succ = 0 : i, succ : i→ i
be a FOL-theory for the natural numbers. Then the morphism FOL,Succ ↪→ FOL,Succ,PAx
where PAx are the Peano axioms is a model of the standard natural numbers. (Note that it is
straightforward to write the axiom schema for induction in LF.)

Due to Gödel’s first incompleteness theorem, we know that standard models for the theory

Arith = Succ, + : i→ i→ i, · : i→ i→ i

must have a non-recursively enumerable codomain. Using a recursively enumerable codomain, we
can only approximate it using, e.g., the theory morphism FOL,Arith ↪→ FOL,Arith,PAr where
PAr contains the axioms of Peano arithmetic. This morphism is not a model because there are
sentences that are neither true nor false.
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Remark 3.19 (Theory Morphisms vs. Models). Not every theory morphisms is a model. In
Ex. 3.15 and 3.16, we already pointed out that we have to add rules to ensure every sentence is
true or false. In general, there may be sentences that are
• undetermined, i.e., that are neither true nor false,
• over-determined, i.e., that are both true and false.
Both are well-known problems of logic and usually undecidable. Even showing that a single

theory morphism really is a model can be very hard. For example, consider a logic based on set
theory with a single non-logical identifier p : o, and a model M : p 7→ P . To show that p is not
undetermined, we have to show that set theory can prove or disprove P , i.e., we have to prove that
P is not independent of the axioms of set theory. Similarly, to show that p is not over-determined,
we have to show set theory extended with an axiom P is consistent.

When defining denotational models, we usually avoid this problem by assuming a platonic
universe of objects in which the truth/falsity of all properties is determined (although possibly
unknown). This amounts to assuming a fixed model of set theory.

Below we will see that many results that we want to state about models can already be stated
for theory morphisms. Moreover, for finite theory morphisms, well-formedness is decidable if type-
checking in the logical framework is. Therefore, we will formulate definitions for theory morphisms
instead of models whenever possible.

Remark 3.20 (Theory Morphisms vs. Theories). An advantage of using theory morphisms is that
every L-theory Σ can itself be seen as a theory morphism via the identity morphism idΣ. Thus,
the concept of theory morphisms unifies theories and models, and we can state many definitions
for theory morphisms in order to apply them to both theories and models.

For example, the sentences that are true in idΣ are just the Σ-theorems, and the sentences
that are false in idΣ are just the Σ-contradictions. Similarly, the notion of (in)consistent theory
morphisms in Def. 3.23 specializes to the usual definition of (in)consistent theories.

For an L-theory Σ, the morphism idΣ is usually not a model. Therefore, we define:

Definition 3.21. A theory Σ is called maximal if idΣ is a Σ-model.

A maximal theory determines the truth/falsity of every sentence so that all models satisfy the
same sentences. An example is the FOL-theory of unbounded dense total orders (an example model
being the rational numbers). Such theories are occasionally called maximally consistent or complete
theories.

3.2.2 Relating Constructive and Denotational Validity

Consistency We can define (in)consistent theories generically, but we need one definition first:

Definition 3.22 (Degenerate Cases). An L-theory Σ is non-trivial if there is a Σ-sentence.
An L-theory morphism M is proper if some sentence is true in M and some sentence is false

in M .

It is easy to make sure that all L-theories are non-trivial and that all L-theory morphisms are
proper, e.g., by having a provable sentence > and a disprovable sentence ⊥ in L. But in some logics,
trivial theories or improper theory morphisms exist, and these occasionally have to be excluded.
Consistency is one of those occasions:

Definition 3.23 (Consistency). An L-theory morphism M : Syn,Σ→ Syn,Γ is inconsistent if
there is a sentence that is both true and false in M .
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Theorem 3.24 (Consistency). Consider an L-theory morphism M : Syn,Σ→ Syn,Γ.
If Σ is non-trivial, M is inconsistent iff Γ is.
Moreover, if M is proper, the following are equivalent:

1. M is inconsistent.
2. We have `Syn,Γ,F :o thm F .
3. All sentences are true in M .
4. All sentences are false in M .

Proof. We prove the second statement first. Assume M is proper. Then there are a true sentence
F+ and a false sentence F−. We prove:
• (1) implies (2): Let p+ and p−[a, g] be the witnesses of the truth and falsity of one sentence.

Then, for F : o, we can use substitution to obtain a witness p−[p+,M(F )] of the truth of F .
• (2) implies (3): Immediate.
• (2) implies (4): Immediate.
• (3) implies (1): Choose F−.
• (4) implies (1): Choose F+

To prove the first statement, assume M is inconsistent, i.e., some Σ-sentence F is both true and
false in M . Then M(F ) is both true and false in Γ (seen as the theory morphism idSyn,Γ), and thus
Γ is inconsistent. Conversely, assume Γ is inconsistent. Then Γ is proper, and every Σ-sentence is
both true and false in M . Because Σ is non-trivial, M is inconsistent.

Remark 3.25 (Degenerate Cases). The requirement of Σ being non-trivial in Thm. 3.24 is nec-
essary: Every morphism out of a trivial theory is consistent (a model even), independently of
whether the codomain is consistent.

Similarly, the requirement of M being proper is necessary. For example, consider the logical
theory o : type, p : o, over which p is the only sentence. Then we can give an improper model
interpreting p as true (false), in which property 3 (4) holds but not property (1).

Classical Logic We can give a general definition of when a logic is classical:

Definition 3.26 (Classical Logic). Let us write ∀ and =⇒ for the hypothetical reasoning of the
logical framework. Then we define for any logical theory L:

 = ∀F : o.thm F

A = A =⇒  

And we say that L is classical if for all Σ and all `Σ F : o

`Σ thm F iff `Σ thm F

Intuitively,  is the proposition of contradiction, which is provable iff a logical theory is incon-
sistent. And A is negation in the logical framework: Logical theories usually introduce negation
in such a way that thm F is equivalent to thm (¬F ). Thus, our classicality captures the double-
negation elimination property. Note that the right-to-left implication in Def. 3.26 always holds,
and only the left-to-right implication is special for classical logics.

Example 3.27 (Intuitionistic and Classical Propositional Logic). We continue Ex. 3.3 by adding
proof rules to PL. Such encodings have been extensively studied (see, e.g., [HR11]), and we only
give the rules for negation and disjunction as examples:

¬I : ΠA : o.(thm A→  )→ thm [¬A]
¬E : ΠA : o.thm [¬A]→ thm A→  
∨Il : ΠA,B : o.thm A→ thm [A ∨B]
∨Ir : ΠA,B : o.thm B → thm [A ∨B]
∨E : ΠA,B,C : o.thm [A ∨B]→ (thm A→ thm C)→ (thm B → thm C)→ thm C
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The proof rules of intuitionistic propositional logic IPL differ from those of classical proposi-
tional logc CPL in only one declaration: CPL additionally has the axiom schema for tertium non
datur:

tnd : ΠF : o.thm [F ∨ ¬F ]

Using the above proof rules, we see that `IPL ΠF : o.thm (F ∨ ¬F ) is indeed equivalent to

`IPL ΠF : o.thm F → thm F .

Remark 3.28. The last observation of Ex. 3.27 prompted us to change the definition of classical
logic in the LATIN logic atlas [CHK+11] from tnd : ΠF : o.thm (F ∨ ¬F ) to classical : ΠF :

o.thm F → thm F . The latter has the advantage that it does not depend on any connective and
can thus be combined with any logic. This fits in well with the modular development in LATIN,
where every logical feature is formalized individually. tnd remains as a theorem that is proved in
all classical logics that import disjunction and negation.

Model Existence We can now state the common theorem about extending consistent theories
to maximal theories in an extremely general form. First we establish:

Theorem 3.29. Assume a consistent theory Σ and a sentence F . Then:
1. if 6`Σ thm F , then Σ, a : thm F is consistent,
2. if L is classical:

if 6`Σ thm F , then Σ, a : thm F is consistent.
Here a 6∈ dom(Σ) is an arbitrary fresh identifier.

Proof. First note that inconsistency implies (by applying λ-abstraction to the second property in
Thm. 3.24) the existence of a term p of type  . Then we prove both claims indirectly:

1. If we had `Σ,a:thm F p :  , we could form `Σ λa : thm F.p : (thm F ) =⇒  , from which we
would get `Σ thm F .

2. If we had `Σ,a:thm F p :  , we could form `Σ λa : thm F .p : thm F =⇒  , from which we

would get `Σ thm F . Then classicality would yield `Σ thm F .

Remark 3.30. The assumption of L being classical in Thm. 3.29 (2) is necessary in the following
sense: If the statement holds for all Σ, then L is classical.

Now we can iterate Thm. 3.29 to extend a consistent theory until it is maximal:

Theorem 3.31. Every countable consistent theory can be extended to a maximal theory.

Proof. We start with a consistent theory X := Σ and iteratively extend X to a maximal theory by
adding declarations. We enumerate all the sentences and for each sentence F ,
• if `X thm F or `X thm F , we do nothing
• otherwise, we replace X with X, a : thm F (for some fresh identifier a).

The resulting theory X is the limit over these countably many iterations. Clearly X extends Σ.
Now assume X were inconsistent, i.e., there is a term `X p :  . p can only use finitely many

identifiers of X, so there must be an inconsistent fragment of X obtained after finitely many
iterations. But every iteration preserves consistency due to Thm. 3.29. Therefore, X is consistent
if Σ is.

To show that idX is a model, we have to show that X is consistent (which we did above) and
that every sentence F is determined in X. The latter holds because F must have occurred in the
iteration, and therefore `X thm F (i.e., F is true) or `X thm F (in which case F is false).
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Recall that theories can be seen as theory morphisms and maximal theories as models. Thus,
this corresponds to the model existence theorem well-known from Henkin-style completeness proofs
[Hen49].

Remark 3.32. The restriction to countable theories in Thm. 3.31 is a simplification to avoid
cardinality issues because the size of our Mmt theories is not restricted. In practice, theories are
countable anyway.

The above theorems lead up to the main theorem about semantics:

Theorem 3.33 (Semantics). Consider a theory Σ and a Σ-sentence F . Then:
1. If F is constructively valid, then F is denotationally valid.
2. If L is classical:

if F is denotationally valid, then F is constructively valid.

Proof. 1. Every model M maps the proof p of F to an expression witnessing the truth of F .
2. If Σ is inconsistent, then F is anyway constructively valid. So assume it is consistent. We pro-

ceed indirectly and assume that 6`Σ thm F . Then Σ, a : thm F is consistent due to Thm. 3.29
and has a maximal extension X due to Thm. 3.31. But by construction, F is false in X,
which violates the assumption that X is denotationally valid.

Example 3.34 (First-Order Logic). Let L = FOL be first-order logic. The maximal theories
constructed by Thm. 3.31 are the usual ones known for FOL. They form a system of representatives
for model classes modulo elementary equivalence.

We obtain the same maximal theories independent of whether we use intuitionistic or classical
FOL. Thus, the sentence p ∨ ¬p is denotationally valid in both cases. But it is constructively
valid only in the classical case.

3.2.3 Logical Morphisms

We now supplement logical theories with a notion of morphism:

Definition 3.35. Given L = (Syn, o, thm) and L′ = (Syn′, o′, thm ′), a logical morphism
l : L → L′ consists of a morphism l : Syn → Syn′ such that l(thm[x]) = thm ′[k[x]] for some
expression `Syn′,x:l(o) k[x] : o′.

k is uniquely determined if it exists so that it can be omitted from the notation.

Every L-theory morphism is logical with k[x] = x and therefore l(o) = o and l(thm) = thm.
More complex logical morphisms arise if k[x] 6= x:

Example 3.36 (Model Theory as a Logical Morphism). Using LF, we sketch a logical morphism
from first-order logic Syn = FOL to a logical theory ZF for axiomatic set theory.

ZF is a FOL-theory that declares the binary predicate ∈: i → i → o and adds the axioms of
set theory. Besides the usual set theoretical operations, ZF defines in particular the 2-element set
bool : i of Booleans. Moreover, we add a type constructor Elem : i → type such that essentially
`ZF a : Elem A holds if `ZF thm[a ∈ A]. The complete definition of ZF can be found in [IR11].

Let ∆ = univ : i,nonempty : thm [∃x.x ∈ univ ]. Then we define FOLZF : FOL→ ZF ,∆ by
• FOLZF (i) = Elem univ , i.e., univ is an arbitrary non-empty set representing the universe

of the model and terms are interpreted as elements of univ ,
• FOLZF (o) = Elem bool , i.e., every formula is interpreted as a boolean truth value,
• FOLZF (thm) = λx : Elem bool .thm[x

.
= 1], i.e., thm F is interpreted as FOLZF (F ) being

equal to the boolean truth value 1.
Here, we have k[x] = x

.
= 1.
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Example 3.37 (Logic Translation as a Logical Morphism). Using LF, we give a logical morphism
from modal logic Syn = ML to FOL.

The syntax of modal logic ML extends PL from Ex. 3.3 with � : o→ o and � : o→ o.
Let ∆ = acc : i→ i→ o. We define MLFOL : ML→ FOL,∆ by
• MLFOL(o) = i → o, i.e., every modal formula is interpreted as a unary predicate on FOL-

terms, which represent the worlds of a Kripke model,
• MLFOL(¬) = λf : i→ o.λx : o.¬(f x), i.e., negation is interpreted world-wise,
• the other PL-connectives are translated accordingly,
• MLFOL(�) = λf : i → o.λx : o.∀y.acc(x, y) ⇒ f(y), i.e., MLFOL(�F ) holds in x if

MLFOL(F ) holds in all y that are accessible from x,
• MLFOL(�) is defined accordingly,
• MLFOL(thm) = λf : i → o.thm ∀x.f x, i.e., the truth of a modal formula is interpreted as

the truth in all worlds.
Here, we have k[f ] = ∀x.f x.

This leads naturally to a category structure:

Theorem 3.38. Logical theories and logical morphisms form a category that inherits inclusions
and pushouts from Mmt.

Proof. Identity and composition are as for Mmt. The inclusions are the morphisms (Σ, o, thm) ↪→
(Σ,Γ, o, thm). If dom(Γ) and dom(Σ′) are disjoint, the pushout of such an inclusion along l :
(Σ, o, thm)→ (Σ′, o′, thm ′) is (Σ′, l(Γ), o′, thm ′).

We only have to show that all involved morphisms are logical. To make this precise, we write
K(l)[x] for the term k[x] that is uniquely determined by a logical morphism l:
• The identity morphisms and inclusions are logical with K(id (Σ,o,thm))[x] = x.
• Given two morphisms l1 and l2 with K(li) = ki, the composition l2 ◦ l1 is logical with
K(l2 ◦ l1)[x] = k2[l2(k1[x])].

• lΣ is logical with K(lΣ) = K(l).
• Consider the diagram in Def. 2.26, seen as a diagram of logical theories. If all involved

morphisms other than the unique factorization u are logical, then so is u with K(u) = K(ϕ′).

It is of particular interest whether a logical morphism is conservative – we will later relate this
property to the completeness of a logic. In our framework, we can give two alternative definitions,
one based on proofs and one based on models:

Definition 3.39 (Conservativity). Consider a logical morphism l : L → L′.
We say l is proof-conservative if for all L-theories Σ and Σ-sentences F :

if there is a l(Σ)-(dis)proof of k[lΣ(F )],
then there is a Σ-(dis)proof of F

We say l is model-conservative if for all L-theories Σ and L-theory morphisms M : Syn,Σ →
Syn,Γ:

if M is a Σ-model, then every k[lΣ(F )] is either true or false in l(M).

Syn

Syn,Σ

Syn′

Syn′, l(Σ)

l

lΣ

Syn,Γ Syn′, l(Γ)
lΓ

M l(M)
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Thus, proof-conservativity means to reflect (dis)proofs. (Like all well-formed morphisms, logical
morphisms preserve (dis)proofs in any case.) Model-conservativity is a bit more complicated:

Remark 3.40 (Model-Conservativity). Intuitively, model-conservativity means to preserve models.
Therefore, one might expect the following simpler definition: if M is a Σ-model, then l(M) is a
l(Σ)-model. That condition would be stronger than the one we chose: It requires every l(Σ)-
sentence to be determined in l(M). Our condition only requires it for those sentences that are in
the image of k[lΣ(−)].

The distinction is important because logical morphisms that do not map sentences surjectively
are very common, e.g., the ones from Ex. 3.36 and Ex. 3.37. Intuitively, the l(Σ)-sentences that
are not in the image are irrelevant from the perspective of L. Therefore, our definition ignores
them.

We have the following analogon to Thm. 3.33:

Theorem 3.41 (Conservativity). In the situation of Def. 3.39:
1. If l is proof-conservative, then l is model-conservative.
2. If L is classical:

if l is model-conservative, then l is proof-conservative.

Proof. Consider an L-theory Σ.
1. Assume proof-conservativity and consider a model M . In general, every Σ-(dis)proof gives

rise to a l(Σ)-(dis)proof. Therefore, we only have to show that no k[lΣ(F )] is over-determined
in l(M). If some sentence were over-determined, then by proof-conservativity there would
also be an F that is over-determined in M . That would violate the assumption that M is a
model.

2. Assume model-conservativity and consider a proof p of lΣ(F ) (∗). If Σ is inconsistent, `Σ

thm F holds anyway. So we can assume Σ is consistent. Proceeding indirectly, we assume
6`Σ thm F . Then Σ, a : thm F is consistent by Thm. 3.29 (using the classicality of L) and
by Thm. 3.31 has a model X, in which F is false. By restricting X, we obtain a model
M : Syn,Σ ↪→ Syn,Γ, in which F is false.
Then k[lΣ(F )] is also false in l(M); but by (∗) and Thm. 3.33, it must be true in l(M). That
contradicts model-conservativity.
The case of disproofs proceeds analogously, except for not requiring classicality.

And we have the following important criterion for model-conservativity:

Theorem 3.42 (Consistency Preservation). l is model-conservative iff it preserves non-trivial
consistency (i.e., l(Σ) is consistent if Σ is non-trivial and consistent).

Proof. Left-to-right: Assume l is model-conservative and Σ is non-trivial and consistent.
• Σ can be extended to a maximal theory X by Thm. 3.31. Syn,Σ ↪→ Syn,X is a model and

by model-conservativity l(X) does not over-determine any sentence of the form k[lΣ(F )] (∗).
• Next we show indirectly that l(X) is consistent. If l(X) is inconsistent, it is also proper and

by Thm. 3.24 all sentences are over-determined. Because Σ is non-trivial, this includes a
sentence of the form k[lΣ(F )], which contradicts (∗).

• Finally, l(Σ) is a subtheory of l(X) and therefore also consistent.

Right-to-left: Assume l preserves non-trivial consistency and M : Syn,Σ → Syn,Γ is a model. It
suffices to show that no k[lΣ(F )] is over-determined in l(M) : Syn′, l(Σ)→ Syn′, l(Γ).
• If Σ is trivial, this holds vacuously.
• So assume Σ is non-trivial. It suffices to show that l(M) is consistent. M is consistent;

therefore by Thm. 3.24 also Γ; therefore by consistency-preservation also l(Γ); therefore by
Thm. 3.24 also l(M).
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Example 3.43 (Intuitionistic and Classical Logic). The inclusion from IPL to CPL from Ex. 3.27
is not proof-conservative. If Σ = p : o, we have `CPL,Σ thm (p ∨ ¬p) but not `IPL,Σ thm (p ∨ ¬p).

But the inclusion is model-conservative. Indeed, it is well-known that the logical morphism
IPL ↪→ CPL preserves consistency: `CPL,Σ thm ⊥ is equivalent to `IPL,Σ thm [¬¬⊥] and thus to
`IPL,Σ thm ⊥.

Remark 3.44 (Non-Trivial Consistency). The restriction to non-trivial Σ in Thm. 3.42 is necessary.
For example, consider a logical theory L with an axiom incon : thm  but without any sentences.
Then all non-trivial L-theories are inconsistent and have no models.

Consequently, every logical morphism l out of L is model-conservative and preserves the con-
sistency of non-trivial theories (independently of the codomain of l). But l can preserve the
consistency of trivial theories only if its codomain is consistent.

3.2.4 Semantics through Logical Morphisms

Def. 3.11 and 3.13 are simpler than needed in practice, and we will now build on them to develop
more expressive definitions. To motivate our definitions, we first consider the two reasons why they
are too simple.

Firstly, the constructive semantics must be allowed to depend on an inference system. We
already discussed in Ex. 3.15 that we need inference rules to ensure all sentences are true or
false. It is often very reasonable to simply assume the inference system to be a part of Syn. But
occasionally, we do not want to do that, e.g., in order to use two different inference systems for the
same syntax (e.g., classical and intuitionistic logic).

Secondly, we already discussed in Rem. 3.17 that it is not enough to consider only theory
morphisms Syn,Σ → Syn,Γ. Instead, the denotational semantics must be allowed to use a rich
language to define the models. In mathematics, this language is usually an implicitly assumed
variant of axiomatic set theory. In formalized mathematics, more specific languages are used such
as Tarski-Grothendieck set theory in Mizar [TB85], higher-order logic [NPW02, Gor88, Har96], or
the calculus of constructions in Coq [Coq14]. It could also be a programming language.

Both problems have a similar flavor: without an inference system, we do not have as many
proofs as we want (possibly none); without a rich language for the models, we do not have as many
models as we want (possibly none).

We can remedy both problems uniformly by using a logical morphism sem : Syn → Sem,∆,
where Sem is a logical theory Sem and ∆ is a Sem-theory. Intuitively, Sem is a fixed, named
language (e.g., FOL or ZF ) and ∆ provides some additional material needed for a specific sem.

Constructively, Sem extends Syn with an inference system, and sem is (typically) an inclusion.
Then we can define proofs by using the expressions over Sem instead of Syn. ∆ can provide
additional rules or axioms that create variants of the inference system.

Denotationally, Sem defines the rich language in which to describe models, and ∆ describes
the common properties of all models. Then sem translates Syn into Sem,∆, and we represent
the interpretation function of a Σ-model as a morphism Syn,Σ → Sem,Γ. The restriction of this
morphism to Syn is the fixed interpretation of the logical identifiers in the semantic language Sem,
and the model adds the interpretation of the non-logical identifiers in Σ.

This leads us to the following refinements of Def. 3.11 and 3.13:

Definition 3.45 (Refined Constructive Semantics). Consider a logical morphism sem : Syn →
Sem,∆ for a Sem-theory ∆, an L-theory Σ, and a Σ-sentence F . Then:

1. A Σ-(dis)proof of F via sem is a sem(Σ)-(dis)proof of k[semΣ(F )].
2. F is constructively valid via sem if there is a proof of F via sem.
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Definition 3.46 (Refined Denotational Semantics). Consider a logical morphism sem : Syn →
Sem,∆ for a Sem-theory ∆, an L-theory Σ, and a Σ-sentence F . Then:

1. A Σ-premodel via sem is a Sem-theory morphism M : Sem,∆, sem(Σ) → Sem,Γ such
that M |Sem = idSem .

2. F is true (false) in a premodel M via sem if k[semΣ(F )] is true (false) in M .
3. M is a model via sem if every Σ-sentence is either true or false in M .
4. F is denotationally valid via sem if it is true in all models via sem.

Syn

Syn,Σ

SemSem,∆

Sem,ΓSem,∆, sem(Σ)

sem

semΣ M

Notation 3.47 (Namespaces). When giving logical morphisms sem : Syn → Sem,∆, we usually
find that sem, Syn, and Sem are named theories/morphisms, whereas ∆ is an anonymous list
of declarations. Moreover, ∆ is usually given together with sem. This can be seen very well in
Ex. 3.36 and 3.37.

Therefore, we can assume that all identifiers in ∆ are implicitly global and reside in the
namespace of sem. That ensures that the pushout of Σ along sem, as used in Def. 3.46, is defined.

Theorem 3.48. In the situation of Def. 3.45 and 3.46:
1. F is constructively valid via sem iff k[semΣ(F )] is constructively valid.
2. F is denotationally valid via sem iff k[semΣ(F )] is denotationally valid.

Here, k[semΣ(F )] is a sentence of the Sem-theory ∆, sem(Σ).

Proof. 1. This is just a reformulation of the definition.
2. Left-to-right: This follows after observing that, by definition, a model of the Sem-theory

∆, sem(Σ) is also a model of Σ via sem.
Right-to-left: A model M of Σ via sem is not necessarily a model of ∆, sem(Σ) because
sentences that are not in the image of k[semΣ(−)] may be over-determined or undetermined
in M .
Over-determination is not problematic because it would make M inconsistent. If Σ is non-
trivial, that contradicts the assumption that M is a model of Σ via sem. If Σ is trivial, the
theorem holds vacuously anyway.
But it is possible that M is consistent and leaves sentences undetermined. In that case, we
extend M to a model M ′ of ∆, sem(Σ) by Thm. 3.31. Then the implication is easy to prove.

Example 3.49 (Refined Constructive Semantics). Consider Ex. 3.37 and assume that the definition
of ML contains only the syntax and FOL also contains declarations of proof rules. Then ML has
no constructive theorems because it has no proofs.

The morphism MLFOL : ML→ FOL,∆ refines the constructive semantics of ML by using the
proof system of FOL to define a proof system for ML. Note how the FOL-theory ∆ sets up the
accessibility relation needed to express the translation.

Example 3.50 (Refined Denotational Semantics). Consider Ex. 3.36 and let Σ be the FOL-theory of
monoids from Ex. 3.5. A modelM of Σ via FOLZF is a ZF -morphism ZF ,∆,FOLZF (Σ)→ ZF ,Γ.

Note that M is a Sem-theory morphisms and not a Sem,∆-theory morphism. Thus, M must
provide cases for univ and nonempty declared in ∆ and for ◦, e, etc. declared in FOLZF (Σ).
This corresponds exactly to the usual FOL-models given as a pair of a non-empty set and an
interpretation function that satisfies the axioms.
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Note that we recover Def. 3.11 and 3.13 as the special cases of Def. 3.45 and 3.46 where sem =
idSyn, in which case the premodels are simply the L-theory morphisms. The case sem = idSyn can
be seen as the initial semantics. (Categorically, it is indeed an initial object in the slice category of
morphisms out of Syn.)

Therefore, in the sequel, we only consider Def. 3.45 and 3.46. Moreover, we drop the qualifier
“via sem” if sem is clear from the context.

The intuition of being an initial semantics is fortified by the following theorem:

Theorem 3.51 (Preservation of Proofs and Truth). Consider logical morphisms sem : Syn →
Sem,∆ and sem ′ = r∆ ◦ sem for some r : Sem → Sem ′,∆′. Then:

1. If there is a Σ-(dis)proof of F via sem, there is a Σ-(dis)proof of F via sem ′.
2. If F is true (false) in a Σ-premodel M via sem, then F is true (false) in the Σ-premodel

r(M) via sem ′.

Proof. 1. If p is the (dis)proof via sem, then rsem(Σ)(p) is a (dis)proof via sem ′.
2. For M : Sem,∆, sem(Σ) → Sem,Γ, the premodel r(M) is the universal morphism out of

the pushout Sem ′,∆′, r(∆, sem(Σ)) as in the diagram below. Note that in this diagram all
rectangles are pushouts, and the diagram commutes because the pushouts are coherent. The
preservation of truth and falsity follows by moving the witnesses along the arrows of the
diagram.

Syn Sem,∆ Sem ′,∆′, r(∆)

Sem Sem ′,∆′

Syn,Σ Sem,∆, sem(Σ) Sem ′,∆′, r(∆, sem(Σ)) = Sem ′,∆′, r(∆), sem ′(Σ)

sem

semΣ

r

r∆

r∆,sem(Σ)

sem ′

sem ′Σ

Sem,Γ Sem ′,∆′, r(Γ)
rΓ

M r(M)

At this point the proof is complete, but it is worth pointing out that the codomain of
r(M) always contains ∆′ whereas an arbitrary Σ-premodel via sem ′ is a morphism M ′ :
Sem ′,∆′, r(∆), sem ′(Σ) → Sem ′,Γ′ for some Γ′. If we call those M ′ that factor through
r(M) the refinements of M , then truth (falsity) in M implies truth (falsity) in any refinement
of M .

The preservation of proofs means that constructive validity is preserved by refinements r. Sim-
ilarly, the preservation of truth/falsity means that counter-examples are preserved so that denota-
tional validity is reflected. The latter statement has one caveat though: If we refine too much, i.e.,
if the codomain becomes too strong, we may map a model M to an inconsistent premodel r(M),
i.e., truth/falsity is preserved, but not necessarily the property of being a model. The following
theorem makes this precise:

Theorem 3.52 (Preservation/Reflection of Semantics). Consider the situation of Thm. 3.51.
1. If F is constructively valid via sem, then F is constructively valid via sem ′.
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2. If r is model-conservative:
(a) If M is a model via sem, then r(M) is a model via sem ′ and makes true the same

sentences as M .
(b) If F is denotationally valid via sem ′, then F is denotationally valid via sem.

Proof. 1. This follows immediately from Thm. 3.51.
2. Assume r is model-conservative:

(a) Assume a model M via sem. By Thm. 3.51, every sentence that is true (false) in M is
also true (false) in r(M). We only have to show that no Σ-sentence is both true and false
in r(M). That follows from the consistency of M , which permits applying Thm. 3.31 to
extend M to a model of ∆, sem(Σ), and the model-conservativity of r.

(b) This is proved indirectly: If there were a model via sem that makes F false, then by
(2a) there would also be one via sem ′.

3.3 Logics are Pairs of Syntax and Semantics

We can finally define logics for some fixed logical framework:

Definition 3.53 (Logic). A logic consists of a logical theory L = (Syn, o, thm) and a logical
morphism sem : Syn→ Sem,∆.

We think of Syn as providing the syntax and of sem as providing the semantics. In the following,
we describe three different perspectives within this general intuition. All three are reasonable, but
they are arranged to lead towards the last one, which we will subscribe to in the following sections.

Logics as Pairs of Proof and Model Theory If we want to work with a constructive and a
denotational semantics at the same time, we can use a span of two logical morphisms:

Definition 3.54 (Bilogic). A bilogic consists of a logical theory L and two logical morphisms
pf : Syn → Pf and mod : Syn → Mod ,∆. We call Syn the syntax, Pf the proof theory, and
Mod ,∆ the model theory.

Here, we use an Mod -theory ∆ for the model theory, but assume the analogous Pf -theory to be
empty.

Syn

Pf

Mod ,∆

pf

mod

Definition 3.55 (Soundess/Completeness). We say that a bilogic is sound if for all theories Σ
and all sentences F : if F is constructively valid via pf , then it is denotationally valid via mod .
And we say it is complete if the opposite implication holds.

This has the appeal that proof theory and model theory are treated symmetrically. Thus, the
same syntax can be combined with a diverse set of model and proof theories.

We can now derive general criteria for soundness and completeness:

Theorem 3.56 (Soundness/Completeness). In the situation of Def. 3.54, consider a morphism
r : Pf → Mod ,∆ such that r ◦ pf = mod. Then:

1. (Syn, pf ,mod) is sound,
2. if Pf is classical and r is model-conservative, then (Syn, pf ,mod) is complete.
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Proof. Both results follow by combining the respective cases of Thm. 3.52, Thm. 3.48, and Thm. 3.33.

Syn

Pf

Mod ,∆

pf

r

mod

Example 3.57 (First-Order Logic). We can combine Ex. 3.3, 3.27 (enriched with appropriate proof
rules for the quantifiers and equality), and 3.36 to obtain first-order logic as a bilogic.

This is essentially the representation developed in [HR11], which also gives a morphism r that
witnesses the soundness according to Thm. 3.56.

If we use the classical variant of the FOL proof theory, then we see from Thm. 3.41, and 3.56
that the completeness of FOL is reduced to r being proof-conservative.

Proof Theory as Initial Semantics In a bilogic, pf : Syn → Pf is typically an inclusion
morphism, and declarative logical frameworks are very good at representing Syn and Pf together.
Moreover, inductive arguments often treat syntax and proof theory similarly. Therefore, it is
possible to couple Syn and Pf more tightly than Syn and Mod .

Concretely, we can assume that the inference system is already a part of the theory Syn so that
Pf is not needed. Then we can simply think of logics (L, sem : Syn→ Sem,∆) as follows:
• Syn defines both the syntax and the proof theory,
• the semantics via idSyn is the initial semantics, i.e., it defines the proofs and premodels that

are present irrespective of the model theory,
• Sem defines the rich language in which models are formulated, e.g., a more expressive logic

or set theory,
• ∆ is a Sem-theory that specifies the structure of models,
• sem interprets the syntax and proves soundness at the same time.

Syn

Syn,Σ

SemSem,∆

Sem,ΓSem,∆, sem(Σ)

sem

semΣ M

This asymmetric perspective in which the proof theory is primary was strongly influenced by
[ML96] and [And86]. It is closely related to the following asymmetry: Soundness is usually easier
and more important than completeness. Concretely, we have:

Definition 3.58 (Soundness/Completeness). We say that a logic (L, sem) is sound/complete
if the bilogic (L, idSyn, sem) is.

Theorem 3.59 (Soundness/Completeness). Every logic (L, sem : Syn → Sem) is sound in the
sense of Def. 3.58. If Syn is classical and sem is model-conservative, it is also complete.

Proof. This is a special case of Thm. 3.56.

Semantics as a Chain of Refinements Expanding on the idea that proof theory is the initial
semantics, we can consider different model theories and refinements between them. For example, we
can give chains of logical morphism semi : Semi−1 → Semi (with Sem0 = Syn) that interpret the
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syntax in increasingly richer languages Semi. Along a chain of logical morphisms, the distinction
between syntax and semantics can become blurry because every Semi is a language that interprets
Semi−1 and is itself interpreted by Semi+1.

Example 3.60. Higher-order logic HOL is sufficient to define the model theory of first-order logic
FOL. The semantics of HOL itself can be defined by a logical morphism HOL→ ZF . Set theory
itself is actually a family of increasingly richer languages including, e.g., refinements of ZF to ZF
with choice or to ZF with large cardinals:

FOL HOL ZF

ZF + Ch

ZF + LC

sem1 sem2

We give such logical morphisms FOL → HOL → ZF in [HR11] using the logical framework
LF. Corresponding developments can be done in Isabelle, where Isabelle/HOL [NPW02] is usually
used to describe models of a logic and is translated to Isabelle/ZF in [KS10].

We hold that this perspective adequately captures the mathematical practice of choosing for-
mal languages. Instead of fixing one syntax and one semantics, we have a multi-graph of formal
languages at different degrees of expressivity.

The formalization of a non-logical theory should always be done relative to the weakest possible
logical theory in this multi-graph. Then pushouts can be used to move the non-logical theory along
refinements.

Finally, the usual model theory defined in terms of an implicit platonic universe can be un-
derstood as the hypothetical colimit of an underspecified infinite multi-graph. Using countable
theories, the platonic universe itself can only be formalized approximately. But we can refine our
approximate formalizations as needed until, in the hypothetical colimit, we obtain the universe.

4 What is a Logic Translation?

4.1 Translations are Theory Morphisms

Translations We now define translations between logics as defined in Def. 3.53. Throughout this
section, we assume two logics L = (L, sem : Syn→ Sem,∆) and L′ = (L′, sem ′ : Syn′ → Sem,∆′).
We follow the asymmetric perspective from Sect. 3.3, i.e., the inference system (if any) is already
part of the syntax.

It is reasonable to use the same Sem for L and L′ because Sem is usually assumed as a fixed
background language. The differences between the models of L and L′ are captured by the Sem-
theories ∆ and ∆′.

The main idea is that translations are logical morphisms:

Definition 4.1 (Translations). A syntax translation T is a logical morphism Syn→ Syn′. In
that case, we abbreviate sem∗ = sem ′ ◦ T .

A semantics translation (T, t) additionally provides a family t of Sem-morphisms tΣ :
Sem,∆, sem(Σ) → Sem,∆′, sem∗(Σ) indexed by L-theories Σ such that for every Syn-theory
morphisms σ : Σ1 → Σ2, we have tΣ2 ◦ sem(σ) = sem∗(σ) ◦ tΣ1 .

The situation of Def. 4.1 leads to the following diagram where ∅ refers to the empty L-theory.
Here, the four trapezoids and the triangle commute, but not necessarily the central and outer
rectangle.
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Sem

Syn

Sem,∆

Syn′

Sem,∆′

sem

T

sem ′

Syn,Σ

Sem,∆, sem(Σ)

Syn′, T (Σ)

Sem,∆′, sem∗(Σ)

semΣ

TΣ

sem ′T (Σ)

t∅

tΣ

Remark 4.2 (Categorical Interpretation). We can think of a logical morphism l : A → B as
inducing a functor from A-theories to B-theories. Then sem and sem∗ induce functors from
Syn-theories to Sem-theories, and t induces a natural transformation between them.

Let us now fix a translation (T, t) : L→ L′ as in Def. 4.1. The homomorphic extension TΣ(−)
translates L-Σ-sentences and proofs to L′-T (Σ)-sentences and proofs. Similarly, precomposition
with tΣ translates L′-T (Σ)-models via sem ′ to L-Σ-models via sem.

Definition 4.3. (T, t) is called sound if for all L-theories Σ and Σ-sentences F , if F is denota-
tionally valid via sem∗, then it is denotationally valid via sem. (T, t) is called complete if the
opposite implication holds.

A translation is particularly very well-behaved if the above diagram commutes. Then, for
example, it is sufficient to give T and t∅ because the requirement of commutativity determines the
remaining tΣ as universal morphisms out of the pushout sem(Σ). Moreover, we immediately obtain
completeness because each model via sem∗ induces a model via sem.

However, such commuting translations occur rarely. The most important examples are inclusion
morphisms T : Syn ↪→ Syn′ with sem = sem ′|Syn, e.g., if T : PL ↪→ FOL and sem ′ = FOLZF .

In general, commutativity is not necessary for sound and complete translations, and many
interesting translations do not satisfy it. Therefore, we establish stronger criteria in the following.
The basic idea is to relate the judgments `sem(Σ) semΣ(thm F ) and `sem∗(Σ) sem∗Σ(thm F ) for
arbitrary `Σ F : o. If one of them implies the other, we can leverage that to obtain soundness or
completeness. But establishing such an implication usually requires a difficult induction on not just
F but on all Σ-expressions. Formalizing the recipe of these inductions leads us to logical relations.

Logical Relations The method of logical relations picks the right induction hypothesis and takes
care of the bureaucracy of certain inductive arguments.

A logical relation r is similar to a theory morphism in that it maps Σ-identifiers to Σ′-expressions
and is extended compositionally to a map r of all Σ-expressions. In particular, if Σ is finite, so
is r. Moreover if type-checking in Σ′ is decidable, so is the property of r being a logical relation.
However, contrary to theory morphisms, r cannot be defined generically for arbitrary expressions:
For every constructor C, a separate insight is needed to define r(C(Γ;A1, . . . , An)).

Therefore, it is difficult to define r even for a single logical framework, and we currently do
not know how to define it for an arbitrary one. For example, [RS13] is concerned exclusively with
formulating logical relations for LF. Here we briefly define the main concepts abstractly in order to
state our criteria.

Definition 4.4 (Logical Relations). Given two Mmt theory morphisms l,m : Σ→ Σ′, a relation
r between l and m maps every identifier c ∈ dom(Σ) to a Σ′-expression r(c).
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A logical framework has relations if it defines for every r an extension r that maps all Σ-
expressions to Σ′-expressions.

A relation r is called a logical relation if

c : T in Σ implies `Σ′ r(c) : r(T ) [l(c), m(c)].

A logical framework has logical relations if all logical relations satisfy that

`Σ E : T implies `Σ′ r(E) : r(T ) [l(E), m(E)].

Having logical relations means to admit a certain induction principle. The expressions r(c)
correspond to the cases of the inductive argument. And the preservation property of Def. 4.4
corresponds to the induction hypothesis. Therefore, we can use logical relations to formalize many
inductive proofs about logics.

Example 4.5 (Logical Relations for LF). [RS13] defines r for LF. We only give the most important
case, which captures the essence of logical relations:

r(Πx : A.B)[f, g] = Πx : l(A), y : m(A).Πq : r(A)[x, y].(r(B)x y q) [f x, g y]

Intuitively, two functions f and g are related if they map related arguments x and y to related
results f x and g y.

Example 4.6 (Logical Relations for Pure). We can define logical relations for Pure from Ex. 2.38
in essentially the same way as for LF. In particular:

r(A→ B)[f, g] = ∀x : l(A), y : m(A).r(A)[x, y] =⇒ r(B)[f x, g y]

Again two functions f and g are related at A→ B if they map A-related arguments to B-related
results.

Verifying Translations Using Logical Relations We can now get back to our original goal.
Using LF as the logical framework, we plan to give a family of logical relations rΣ between l =
tΣ ◦ semΣ and m = sem∗Σ = sem ′T (Σ) ◦ TΣ. The property of logical relations guarantees that if
`Σ F : o, then rΣ(F ) is a proof that rΣ(o) holds about l(F ) and m(F ).

Thus, depending on how we define the base case rΣ(o), we can use r to show different properties:

Theorem 4.7 (Completeness). Assume each rΣ is a logical relation such that

rΣ(o)[x, y] = (tΣ ◦ semΣ)(thm)x =⇒ sem∗Σ(thm) y

Then (T, t) is complete.

Proof. Assume Σ and f such that f is denotationally valid via sem. Assume a model M ′ :
Sem,∆, sem∗(Σ) → Sem,Γ via sem∗. Then M = M ′ ◦ tΣ is a Σ-model via sem. By assump-
tion, f is true in M , i.e., `Sem,Γ M ′(tΣ(semΣ(thm f)).

Applying M ′ to the logical relation at f yields

`Sem,Γ M ′(rΣ(f)) : (M ′ ◦ tΣ ◦ semΣ)(thm f) =⇒ (M ′ ◦ sem∗Σ)(thm f)

Therefore, `Sem,Γ M ′(sem∗Σ(thm f)), i.e., f is true in M ′. Thus, f is denotationally valid via
sem∗.
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Theorem 4.8 (Soundness). Assume each rΣ is a logical relation such that

rΣ(o)[x, y] = sem∗Σ(thm) y =⇒ (tΣ ◦ semΣ)(thm)x

If L′ is complete and every tΣ is proof-conservative, then (T, t) is sound.

Proof. Assume a Syn-theory Σ and a Σ-sentence f such that f is denotationally valid via sem∗. Let
thm ′ f ′ = TΣ(thm f) and Thm F = sem∗Σ(thm f), i.e., f ′ is the T (Σ)-sentence and F the sem∗(Σ)-
sentence that arise by translating f along T and sem∗, respectively. Because every T (Σ)-model via
sem ′ is also a Σ-model via sem∗, f ′ is denotationally valid via sem ′.

Because L′ is complete, we have `Syn′,T (Σ) thm ′ f ′. Thus, by applying sem ′T (Σ), we ob-
tain `Sem,∆′,sem∗(Σ) Thm F . By applying the logical relation at f , we obtain `Sem,∆′,sem∗(Σ)

tΣ(semΣ(thm f)).
Thus, by the proof-conservativity of tΣ, also `Sem,∆,sem(Σ) semΣ(thm f). Therefore, f is true

in every Σ-model via sem, i.e., f is denotationally valid via sem.

The proof of Thm. 4.8 would be easier if we assumed T to be proof-conservative instead of the
tΣ. But that is impractically strong: It fails if we do not have any proof system for Syn at all, or if
Syn and Syn′ are too different to reflect the proofs. Essentially, showing the proof-conservativity
of T is as hard as showing the soundness without using Thm. 4.8. But proving proof-conservativity
of the tΣ can be very feasible because Sem,∆ and Sem,∆′ are often much more similar than Syn
and Syn′.

For example, [Soj10] studies the morphism T = MLFOL from Ex. 3.37. Even if we add an
inference system to ML, which is not always desirable or easy, the proof-conservativity of MLFOL
is very hard to show. But the resulting tΣ are rather simple, and their proof-conservativity can be
shown by giving morphisms in the opposite direction.

Remark 4.9 (Future Work). In [RS13], we also show how the Twelf tool [PS99] can mechanically
verify logical relations. This is important because the involved inductions grow difficult very
quickly if the complexity of L increases. However, to apply it to our criteria, we still need a way
to obtain each rΣ uniformly from a single logical relation between t∅ ◦ sem and sem∗.

Similarly, we need a finitary way to give the families tΣ by induction on Σ and verify their
proof-conservativity uniformly.

4.2 Semantics and Translations are the Same Thing

We have now unified the semantics of a logic and logic translations out of it – both are special
cases of logical morphisms. Specifically, Def. 3.53 defines semantics in terms of logical morphisms
sem : Syn → Sem, and Def. 4.1 defines syntax and semantics translations in terms of logical
morphisms T : Syn→ Syn′ for translations.

Thus, the difference between them becomes a matter of pragmatics: If we think of the codomain
of a morphism out of Syn as a logic, we speak of translations; otherwise, we speak of semantics.

Example 4.10 (Kripke Models for Intuitionistic Logic). Let Preord be the FOL-theory of preorders
using a relation ≤: i→ i→ o.

We formalize the semantics of IPL from Ex. 3.27 in terms of Kripke models by giving a
morphism IPLFOL : IPL→ FOL,Preord . IPLFOL is similar to MLFOL, and we also put

IPLFOL(o) = i→ o and IPLFOL(thm) = λf : i→ o.thm[∀x.f x]

Now some connectives are interpreted world-wise, e.g., the conjunction f ∧ g is true at world w if
f and g are:

IPLFOL(∧) = λf, g : i→ o.λw : i.(f w) ∧ (g w)
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Others quantify over the future of the current world, e.g., the negation ¬f is true at w if it is true
at all worlds above w:

IPLFOL(¬) = λf : i→ o.λw : i.∀x.w ≤ x⇒ ¬(f x)

This defines the semantics of IPL in terms of FOL. Thus, IPLFOL combines features of a
syntax translation and of semantics.

One might prefer, by the way, to give a morphism into set theory instead. For example,
continuing Ex. 3.36, one might want to have a morphism IPLKrZF : IPL→ ZF ,FOLZF (Preord).
But note that IPLFOL is much easier to define than IPLKrZF (because formal reasoning in FOL
is easier than reasoning in ZF ). Moreover, we can define IPLKrZF from IPLFOL but not the
other way round: IPLKrZF = FOLZFPreord ◦ IPLFOL.

IPL FOL ZF

FOL,Preord ZF ,FOLZF (Preord)
IPLFOL

FOLZF

FOLZFPreord

4.3 Identity is Isomorphism up to Extensionality

Once we have defined translations between logics, it is straightforward to define identity/equivalence
of logics as isomorphism. However, this requirement is too strong because intensional logical frame-
works like LF make very few logical theories isomorphic.

Example 4.11 (Intensionally Non-Isomorphic). Consider two variants CPL∨¬ and CPL∧¬ of
classical propositional logic from Ex. 3.27 that only use the indicated connectives. Intu-
itively, these are isomorphic via the de Morgan identities. Formally, we give logical morphisms
d1 : CPL∨¬ → CPL∧¬ and d2 : CPL∧¬ → CPL∨¬, which map in particular d1(o) = o and
d2(o) = o, d1(thm) = thm and d2(thm) = thm, as well as

d1(∨) = λx, y.¬(¬x ∧ ¬y) and d2(∧) = λx, y.¬(¬x ∨ ¬y).

Defining d1 and d2 for the proof rules is straightforward.
However, even after β-reduction in LF, we obtain d2(d1(∨)) = λx, y.¬¬(¬¬x∨¬¬y), which is

equivalent but not equal to ∨ over CPL∨¬.

Therefore, we use a more general definition that permits quotienting out an extensional equality.
Let us assume a logical framework with logical relations. Then, as indicated for LF in [RS13], we
can represent extensional equality as a logical relation on the identity morphism:

Definition 4.12 (Extensionality). An extensional equality for a logical theory Syn is a logical
relation ≡ on idSyn and idSyn such that ≡A is an equivalence relation for all types A.

We will write x ≡A y for ≡A [x, y].
Given extensional equalities ≡ for Syn and ≡′ for Syn′, a logical morphism l : Syn → Syn′

preserves extensionality if `Syn E1 ≡A E2 implies `Syn′ l(E1) ≡′l(A) l(E2).

We do not have to require the closure of ≡ under substitution because it is inherited from the
properties of logical relations. Moreover, for many cases, in particular LF and Pure, it is enough
to show that ≡a is an equivalence for all atomic types a. This implies the equivalence properties
for all types A.

Example 4.13 (Extensionality for PL, FOL, ZF ). To define extensionality for PL from Ex. 3.3,
we put in particular

x ≡o y = thm[x⇒ y ∧ y ⇒ x] and p ≡thm F q = thm >
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This identifies formulas up to provable equivalence and identifies all proofs.
For FOL, we use additionally

x ≡i y = thm[x
.
= y]

which identifies terms up to provable equality.
Clearly, all three are equivalence relations. For composed types A, we obtain equivalence

relations ≡A from LF.
We also have to define ≡c for the remaining identifiers c. That amounts to proving that all

operations of FOL preserve ≡. That is also straightforward.
The usual FOL-theories never add new base types so that the above also yields extensional

equality for every FOL-theory. In particular, we obtain the usual notion of extensional equality
for ZF from Ex. 3.36: Sets are extensionally equal if they are provably equal using the rules of
FOL and the axioms of set theory.

It is now straightforward to define extensional equality of morphisms:

Definition 4.14 (Extensional Isomorphism). Assume we have fixed extensional equalities ≡ and
≡′ for Syn and Syn′.

Two morphisms f, g : Syn → Syn′ are extensionally equal if `Syn′ f(c) ≡′f(T ) g(c) for all
declarations c : T in Syn.

Syn and Syn′ are extensionally isomorphic if there are extensionality-preserving morphisms
f : Syn → Syn′ and g : Syn′ → Syn such that g ◦ f and idSyn as well as f ◦ g and idSyn′ are
extensionally equal.

Extensional equality implies `Syn′ f(E) ≡′f(T ) g(E′) whenever `Syn E : T due to the properties
of logical relations.

Definition 4.15 (Equivalence of Logics). Assume we have fixed extensional equalities for Syn,
Syn′, and Sem (in a way that induces extensional equality for all Sem-theories). Consider two
logics (L, sem : Syn→ Sem,∆) and (L′, sem ′ : Syn′ → Sem,∆′) such that sem and sem ′ preserve
extensionality.

Then L and L′ are equivalent if there are extensionality-preserving f, g, F,G such that the
following diagram commutes up to extensional equality. In particular, both Syn and Syn′ as well
as Sem,∆ and Sem,∆′ are extensionally isomorphic.

Syn Syn′

Sem

Sem,∆ Sem,∆′

sem sem ′
f

F

g

G

Example 4.16 (Extensionally Isomorphic). We continue Ex. 4.11 and show that the two logics are
equivalent in the sense of Def. 4.15.

We use the respective extensional equalities from Ex. 4.13 for Syn = CPL∨¬ and Syn′ =
CPL∧¬. We show that f = d1 and g = d2 are a pair of extensional isomorphisms. Firstly,
because both morphisms map o and thm to themselves, it is straightforward to show that both
preserve extensionality. Secondly, we have to show that d2 ◦ d1 ≡ idCPL∨¬ . The crucial case is
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to show `CPL∨¬ ∨ ≡o→o→o d2(d1(∨). This means to show that if x ≡o x′ and y ≡o y′, then
x ∨ y ≡o ¬¬(¬¬x′ ∨ ¬¬y′), which is straightforward. We show d1 ◦ d2 ≡ idCPL∧¬ accordingly.

We use the extensional equality from Ex. 4.13 for Sem = ZF , and put F = G = idZF . Let
sem = CPLZF∨¬ : CPL∨¬ → ZF and sem ′ = CPLZF∧¬ : CPL∧¬ → ZF be the appropriate
restrictions of FOLZF (i.e., ∆ = ∆′ = ·). Both preserve extensionality: We only have to show
that they map provably equivalent sentences to provably equal ZF -booleans.

Finally, we check that CPLZF∧¬ ◦ d1 and CPLZF∨¬ are extensionally equal. The crucial
case is to show `ZF | ≡Elem bool→Elem bool→Elem bool λx, y. ∼ (∼ x& ∼ y), where |, &, and ∼ are
appropriately defined operations on ZF -booleans. This follows easily because ≡Elem bool is defined
as provable equality. Accordingly, we check that CPLZF∨¬ ◦ d1 and CPLZF∧¬ are extensionally
equal.

Thus, the two logics are equivalent.

5 What is a Logic Combination?

[RK13] also develops a module system for Mmt theories. The key idea is that the concepts regarding
modularity can be captured by the abstract categorical properties of Mmt. In particular, we have
the following correspondence:

Modularity Mmt
inheritance inclusion
refinement morphism
instantiation pushout

This induces a module system for all logical frameworks. We can apply this to define the
abstract notion of combining logics and to build concrete combinations declaratively.

5.1 Combinations of Syntax are Colimits

We have defined syntax of a logic as a logical theory, and following the perspective of Sect. 3.3,
we assume these theories include the inference systems as well. Thm. 3.38 shows that the logical
theories and morphisms form a category so that we can use colimits as a natural and general way
of combining them.

While logical frameworks do not necessarily admit all colimits, we can define several important
constructions for an arbitrary logical framework.

Definition 5.1 (Union). Two Mmt theories Syn and Syn′ are compatible if whenever c ∈
dom(Syn) ∩ dom(Syn′) then Syn(c) = Syn′(c). In that case, the union Syn ∪ Syn′ arises from
Syn, Syn′ by removing all Syn′-declarations that are also in Syn.

Example 5.2 (Propositional Logic). Let Base be the fragment of PL from Ex. 3.3 that only declares
o and thm. Accordingly, let IPL¬, . . . , IPL∨ be the fragments of IPL that extend Base with the
respective connective and its proof rules. Finally, let Classical be the theory that extends Base
with the classicality rule from Ex. 3.27.

Then we have the following diagram in which IPL and CPL arise as colimits formed by taking
the respective unions:
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Base

IPL¬ . . . IPL∨ Classical

IPL

CPL

A comprehensive version can be found in [HR11].

Definition 5.3 (Instantiation). Consider an Mmt theory inclusion I ↪→ Syn′ and a theory
morphism i : I → Syn.

If dom(Syn′) \ dom(I) and dom(Syn) are disjoint, the instantiation of Syn′ with i is the
pushout i(Syn′).

I Syn′

Syn i(Syn′)

i iSyn
′

We can think of the theory I as the interface of Syn′ and of the morphism i as providing values
for the parameters declared in the interface. Thus, Syn′ behaves like an SML-style functor to which
we pass named arguments i.

Definition 5.4 (Renaming). Consider a theory Syn and a list ρ = c1  c′1, . . . , cn  c′n where
the ci ∈ dom(Syn) are pairwise distinct and the c′i 6∈ dom(Syn) are pairwise distinct. Then Syn[ρ]
arises from Syn by replacing every identifier ci with c′i.

For an identifier s, we write s.Syn for the theory Syn[. . . , c  s.c, . . .] where c runs over all
elements of dom(Syn).

Clearly, Syn[ρ] and s.Syn are isomorphic to Syn. But renaming can be important to avoid
name clashes that make the pushout undefined. In particular, if no identifier in dom(Syn) starts
with s, then Syn and s.Syn′ always have disjoint domains.

Remark 5.5 (Renaming vs. Instantiation). Def. 5.4 introduces the notation c c′ for the situation
where renaming creates a new theory in which c is replaced by a new identifier c′. Def. 5.3 includes
a different form of renaming as a special case, namely if i consists of cases c 7→ c′. Here c is renamed
to an identifier c′ in an existing theory.

The latter is more general and allows in particular non-injective renamings. But it is not
enough by itself: We need both forms for our main combination operator in Def. 5.6.

We can now recover the structure declarations used in [RK13] as follows:

Definition 5.6 (Generative Pushout). Let r be the isomorphism Syn→ s.Syn. Given I ↪→ Syn
and i : I → Σ, we abbreviate i′ = i ◦ r|−1

I and define

Σ, s : Syn{i} = i′(s.Syn)

In that case, we write s for the morphism i′s.Syn ◦ r.
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s.I s.Syn

Σ Σ, s : Syn{i}

I Syn

r|−1
I

r

i s

The intuition behind s : Syn{i} is that of a generative functor application. s is the name of an
import that extends Σ with modified copies of the declarations in Syn. Name clashes are avoided
because all imported identifiers c ∈ dom(Syn) are renamed to s.c. Moreover, some identifiers
c ∈ dom(Syn) are instantiated by mapping them to Σ-expressions i(c).

If we think of s : Syn{i} as a special declaration (as done in [RK13]), we can build generative
pushouts declaratively.

Example 5.7 (Combining Intuitionistic and Classical Logic). We can use the colimit of the fol-
lowing diagram to combine the syntaxes of intuitionistic and classical propositional logic from
Ex. 3.3:

o : type

PL PL

Note that this colimit is not the union PL ∪ PL = PL. But we can construct a colimit using
generative pushouts:

L = a : type, int : PL{o 7→ a}, cl : PL{o 7→ a}

Here we import PL twice using different qualifiers int and cl. The morphisms o 7→ a have the
effect that the two copies of PL share the type a of sentences. This yields the syntax of a logic
with two sets of propositional connectives, e.g., we have sentences (p int.∧ q) cl.⇒ r.

If we construct the analogous pushout of IPL and CPL, we can also combine the inference
systems of intuitionistic and classical logic from Ex. 3.27. However, note that there are multiple
reasonable ways to combine these inference systems so that we cannot expect the logical framework
to pick the right combination for us by itself. For example, the theory

ICPL = a : type, int : IPL{o 7→ a}, cl : CPL{o 7→ a}

is not very interesting because the two truth judgments int.thm and cl.thm remain unrelated. A
more interesting choice might be the logical theory

ICPL, intcl : ΠF :a. int.thm F → cl.thm F

which adds a rule that derives classical from intuitionistic truth.

5.2 Combinations of Semantics are Universal Morphisms

We can build combinations of morphisms accordingly by constructing the universal morphism out
of a colimit.

Definition 5.8 (Union). Given compatible theories Syn and Syn′, two morphisms sem : Syn→
Sem and sem ′ : Syn′ → Sem are compatible if whenever c ∈ dom(Syn) ∩ dom(Syn′) then
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sem(c) = sem ′(c). In that case, the union sem ∪ sem ′ : Syn ∪ Syn′ → Sem arises by mapping
every identifier according to Syn or Syn′.

Example 5.9 (Propositional Logic). We can continue Ex. 5.2 by constructing the semantics of the
combined theory IPL. Let CPLZF , CPLZF¬, . . . , CPLZF∨ be the restrictions of FOLZF from
Ex. 3.36 to CPL, CPL¬, . . . , CPL∨.

Then CPLZF |IPL arises as the universal morphism u out of the colimit IPL.

Base

IPL¬ . . . IPL∨

IPL

ZF

CPLZF¬ CPLZF∨u

We can obtain CPLZF and FOLZF as combinations of little morphisms accordingly. The full
example is developed in [HR11].

We can construct the universal morphisms out of instantiations and generative pushouts accord-
ingly. However, universal morphisms can only combine compatible semantics. This often means
that some ingenuity is required to combine very different semantics. This is not surprising: Just
like there is not always a canonical combination of the proof theories, we cannot expect a canonical
combination of the model theories.

Example 5.10 (Combining Intuitionistic and Classical Logic). We might try to continue Ex. 5.7 by
combining the morphisms CPLZF and IPLKrZF from Ex. 4.10. However, the left diagram below
does not commute so that we do not obtain a universal morphism out of ICPL. The problem is
that IPLKrZF (o) = Elem univ → Elem bool but CPLZF (o) = Elem bool .

o : type

IPL CPL

ICPL

ZF ,FOLZF (Preord)

IPLKrZF CPLZF

o : type

IPL CPL

ICPL

ZF ,FOLZF (Preord), m : thm [∀v.∃w.v ≤ w ∧max (w)]

IPLKrZF CPLKrZF
u

For the sake of example, we give an interesting possibility for the semantics of the combined logic.
In the right diagram above, we define a new morphism CPLKrZF that interprets CPL in a

Kripke model. Because we put CPLKrZF (o) = Elem univ → Elem bool , the diagram commutes.
The basic idea of CPLKrZF is to interpret the classical truth judgment as truth in all ≤-maximal
worlds. Thus, e.g., the classical negation of F is interpreted as 1 at world v if F is interpreted as
0 at all maximal worlds w with v ≤ w.

To formalize this, we abbreviate max (w) = ¬∃x.w ≤ x ∧ ¬x .
= w and add an axiom m to the

codomain that makes sure there is a maximal world above every world. Then we put

CPLKrZF (thm) = λf : Elem bool . thm [∀w.max (w)⇒ f w
.
= 1]
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CPLKrZF (¬) = λf : Elem univ → Elem bool . λv : Elem univ .

if
(
∀w.v ≤ w ∧max (w)⇒ f w

.
= 0
)

1 else 0

where we assume we have already defined in ZF an if-then-else operator of type o→ Elem bool →
Elem bool → Elem bool . The cases for the other connectives are defined accordingly.

Now we obtain a universal morphism u out of ICPL that combines IPLKrZF and CPLKrZF .
To complete the logic definition, we extend u with one case that maps the additional rule intcl
from Ex. 5.7 to the easy ZF -proof that intuitionistic truth (interpreted as 1 in all worlds) implies
classical truth (interpreted as 1 in all maximal worlds).

Note that our point in Ex. 5.10 was to exemplify how logics can be combined. We have not yet
studied the usefulness of that particular combination of intuitionistic and classical logic. Indeed,
it is an open problem how to design a good combination. An example is given in [LM13], which
inspired our morphism CPLKrZF .

Remark 5.11 (Future Work). Is is inherent in our approach that the combination of sound logics
is sound again. But it is not clear to us at this point whether similar theorems can be obtained
for completeness.

6 Related Work

We divide related work into formalist and abstract approaches. Roughly speaking, the former
explicitly represent the syntax and proof theory, whereas the latter assume abstract sets of sentences
and consequence relations. For propositional logics, this difference is not essential because the
syntax is so simple. However, for logics with binders, the approaches diverge substantially.

Formalist Approaches There are relatively few formalist approaches along our lines. Research
on logical frameworks has generally focused on representing individual logics and translations and
to develop best practices for doing so. Logic representations are commonly done ad hoc but could
be formulated systematically as logical theories.

Isabelle and LF are the most commonly-used frameworks. Due to our general definition of logical
framework, both can be used interchangeably to formulate our examples. The main strength of
Isabelle [Pau94] is the tool support for theorem proving within logical theories. The main strength
of LF implementations like Twelf [PS99] is the tool support for proving meta-theorems about logical
theories. Other type theories that are not primarily designed as logical frameworks are also used
as such occasionally. Examples include encodings of modal logic in higher-order logic [BP13].

Similarly, translations of logics are usually represented individually. The deepest examples are
a HOL-Nuprl translation [SS04] in Twelf and a HOL-ZF translation [KS10] in Isabelle. Both are
formulated ad hoc but could be written as logical morphisms.

The LATIN project [CHK+11] systematically represented logic graphs in Twelf using logical
theories and logical morphisms. It also used an Mmt-style module system for Twelf [RS09] to
combine logics and morphisms. The most comprehensive case studies can be found in [HR11, IR11].

In [Rab13a], the present author gave a theoretical framework for LF-based logical theories and
morphisms. A first approach towards generalizing this framework to arbitrary logical frameworks
was presented in [CHK+12]. Both followed the logics-as-spans perspective described in Sect. 3.3.
This made them much more complex than the present approach and therefore prevented establishing
deeper theorems such as completeness criteria.

In parallel, the present author developed the Mmt language [RK13]. Mmt has no direct con-
nection to logic and only provides a formalist framework for representing the syntax of declarative
languages. A major contribution of the present work is to apply Mmt to logical frameworks. This
was crucial to permit the abstract definition of logical framework we give in Sect. 2, in particular the
combination of declarative and categorical properties. This required several novel developments:
Our declarative definitions of Sect. 2.2 are a complete reformulation of the relevant fragment of
Mmt, and our categorical definitions of Sect. 2.1 are a novel abstraction from Mmt.
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The idea of representing logics as LF theories and combining them via colimits was first presented
in [HST94]. It uses a combination language with union, translation, and hiding based on ASL
[SW83]. The Mmt module system [RK13] we use here is equivalent to using union and translation
[CHK+10].

Abstract Approaches A widely used abstract approach works with pairs (S,`) where S is the
set of sentences and ` ⊆ P(S)× S is the consequence relation. ` must satisfy axioms that induce
a closure operator. Such pairs are used, for example, as entailment systems in [FS87, Mes89], or
logical systems in [CG05].

Given a logical framework with hypothetical reasoning, we can define one such pair for every
non-logical theory Σ: S is the set of Σ-sentences and {F1, . . . , Fn} ` F is given by our judgment
`Σ thm F1 =⇒ . . . =⇒ thm Fn =⇒ thm F .

[CG05] defines an equivalence relation between logical systems called equipollence. It can be
seen as a special case of our notion of extensional isomorphism between logical theories. [MDT09]
defines (conservative) morphisms between entailment relations to compare the strength of logics.
These correspond to our (proof-conservative) logical morphisms.

The consequence relation ` is often defined in terms of an abstract model theory or (less fre-
quently) proof theory. Most closely related to our definitions is the abstract model theory formu-
lated by institutions [GB92]. Each of our logics (L, sem : Syn → Sem,∆) gives rise naturally to
an institution. The signatures are the L-theories, and the signature morphisms are the L-theory
morphisms. The sentences are like ours, and sentence translation is homomorphic extension. The
Σ-models are our Σ-models via sem, and model reduction along σ is given by precomposition with
sem(σ). Satisfaction is given by our truth in a model, and proving the satisfaction condition is
straightforward. More generally, we can obtain a logic in the sense of [MGDT05] or [Rab13a] by
adding our proofs.

Similarly, logic translations (T, t) can induce an institution comorphism [GB92], or more gen-
erally a logic comorphism in the sense of [Rab13a]. Sentences and proofs are translated by homo-
morphic extension along T and models by precomposition with tΣ. However, our logic translations
do not in general yield the satisfaction condition (SC). We moved the analogue of SC to a different
definition because it is often hard to establish for translations. For example, SC holds if the dia-
gram of Def. 4.1 commutes for all Σ, but this is often too restrictive in practice. More generally,
SC follows from the existence of the two logical relations used in Thm. 4.7 and 4.8. The additional
assumptions made in Thm. 4.8 have a similar role as the model expansion property of institution
comorphisms (e.g., [CM97]). Thus, our soundness and completeness together correspond to SC and
model expansion.

Logic multi-graphs can be studied abstractly as diagrams in the category of institutions and can
be integrated into a single institution called the Grothendieck institution [Dia02]. The Hets system
[MML07] implements this construction, using a programming language to define the elements of
the institution multi-graph.

Parchments [GB86] are similar to institutions but add an explicit representation of the syntax,
which brings them closer to formalist approaches. [MTP97] generalizes and applies parchments to
combine logics using limits (corresponding to our colimits because their morphisms go the other
way). While the definitions and notations are very different, the basic idea is very similar to using
sorted first-order logic as a logical framework in our sense.

Fibring [SSC99] corresponds to using first-order logic as a logical framework for combining
propositional logics. Unconstrained and constrained fibring correspond to our unions and pushouts.

7 Conclusion

We presented a framework in which we answer fundamental questions about the nature of logics.
These include how to define and identify, translate and compare, and combine and modularize
logics.
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A major achievement is that our framework spans the range from declarative logical frameworks
based on type theory to abstract definitions based on sets and categories. Roughly speaking, the
former are great for local methods such as an induction on the inference system of a logic, and
the latter are great for global methods such as diagrams in a category of logical theories. The
key insight to get both benefits while keeping the logical framework flexible was to use Mmt as a
universal representation layer.

Additionally, via Mmt, our work is connected to a mature tool [Rab13b] for developing and
working with concrete logical frameworks. This includes tool support for type-checking logic def-
initions, verifying logic translations, and combining logics using a module system. Thus, we can
treat logics as data, which can be machine-processed and distributed.

A second major achievement is to provide a theoretical foundation for formalist logic multi-
graphs. Here each node defines the syntax and proof theory of a formal systems such as first-order
logic, higher-order logic, or axiomatic set theory. And each edge interprets one system in another,
which subsumes both logic translations and model theoretical semantics.

Using the logical framework LF, the LATIN project [CHK+11] has already build such a logic
graph, which includes dozens of reusable modules for individual language features of logics. The
present work provides the theoretical framework for this approach and establishes general correct-
ness criteria.
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A. Poigné, and D. Rydeheard, editors, Workshop on Category Theory and Computer
Programming, pages 313–333. Springer, 1986.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39(1):95–146,
1992.

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In G. Birtwistle
and P. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages
73–128. Kluwer-Academic Publishers, 1988.

[Har96] J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the First Inter-
national Conference on Formal Methods in Computer-Aided Design, pages 265–269.
Springer, 1996.

[Hen49] L. Henkin. The completeness of the first-order functional calculus. Journal of Symbolic
Logic, 14:159–166, 1949.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, 1993.

[HKR12] F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the Statement
Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and
M. Wenzel, editors, Intelligent Computer Mathematics, pages 64–79. Springer, 2012.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical
Framework. Theoretical Computer Science, 412(37):4919–4945, 2011.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic represen-
tations. Annals of Pure and Applied Logic, 67:113–160, 1994.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathematical Struc-
tures in Computer Science, 21(4):883–911, 2011.

[KAE+10] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: for-
mal verification of an operating-system kernel. Communications of the ACM, 53(6):107–
115, 2010.

40



[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. see https:

//trac.omdoc.org/LATIN/.

[KS10] A. Krauss and A. Schropp. A Mechanized Translation from Higher-Order Logic to Set
Theory. In M. Kaufmann and L. Paulson, editors, Interactive Theorem Proving, pages
323–338. Springer, 2010.

[Law63] F. Lawvere. Functional Semantics of Algebraic Theories. PhD thesis, Columbia Uni-
versity, 1963.

[LM13] C. Liang and D. Miller. Kripke semantics and proof systems for combining intuitionistic
logic and classical logic. Annals of Pure and Applied Logic, 164(2):86–111, 2013.

[McC60] J. McCarthy. Recursive Functions of Symbolic Expressions and their Computation by
Machine, Part I. Communications of the ACM, 3:184–195, 1960.

[MDT09] T. Mossakowski, R. Diaconescu, and A. Tarlecki. What is a Logic Translation? Logica
Universalis, 3(1):95–124, 2009.

[Mes89] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic
Colloquium, 1987, pages 275–329. North-Holland, 1989.

[MGDT05] T. Mossakowski, J. Goguen, R. Diaconescu, and A. Tarlecki. What is a logic? In
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