How to Interpret Noninvasive Vascular Testing and Diagnose Peripheral Vascular Disease

David Campbell, MA FRCS FACS.

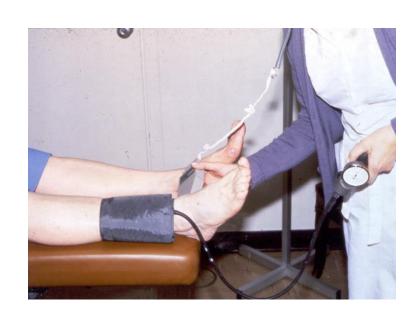
Vascular Surgeon, Beth Israel Deaconess Medical Center
Associate Professor of Surgery
Harvard Medical School

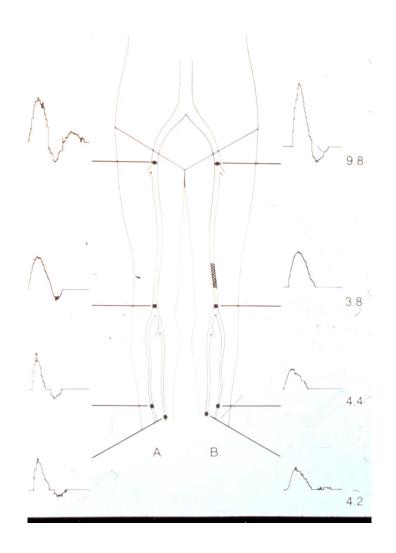
Clinical Diagnosis

- Claudication versus Spinal Stenosis
- Ischemic Rest Pain versus Neuropathic Pain
- Location of foot lesions –ischemic versus neuropathic
- Absence of symptoms does not rule out significant ischemia

Signs of PVD

- Pulse examination. Frequently inaccurate due to calcified vessels.
- Inflow versus outflow disease
- Autonomic neuropathy
- Dependent Rubor





Non Invasive Studies in PVD

- Many sophisticated tests available eg Ankle Brachial Indices, Segmental pulse volume recordings, Duplex ultrasound, Transcutaneous oxygen, Xenon flow studies.
- Most useful and cost effective is a hand held Doppler to assess wave form

Hand Held Doppler

Interpreting the Ankle-Brachial Index

ABI	Interpretation
0.90 - 1.30	Normal
0.70 – 0.89	Mild
0.40 - 0.69	Moderate
≤0.40	Severe
>1.30	Noncompressible
	vessels

Adapted from Hirsch AT. Family Practice Recertification. 2000;22:6-12.

INDIRECT TESTING COMPONENTS: Reliable & Inexpensive

ABI (Ankle - Brachial Index)

Multiple Level Segmental Pressures Using Doppler / Pneumatic Cuffs

Multiple / Single Level Pulse Volume Plethsymography (PVR)

Digital Pressures / Plesthythmography (PPG)

TBI (Toe - Brachial Index) or DBI (Digital - Brachial Index)

Maneuver Measurements

Transthoracic Outlet Examination Cold Immersion Testing

INDIRECT TESTING: ABI

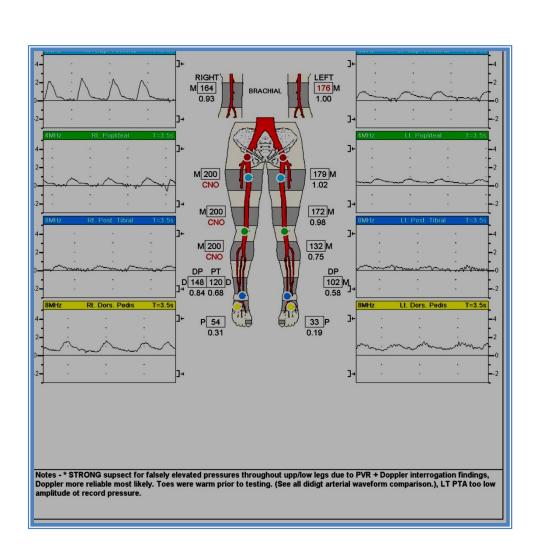
Some Considerations: False Elevation Of Values / ABI:

Arterial Wall (Medial) Calcification:

Common In Diabetics / Renal Failure Pt's, Chronic Anticoagulation

Index 1.4 Usually / Greater Than 250-300 mmHg

Use Toe Pressure(s) → More True Vascular Status If False Elevation Suspected


Does Not Affect Doppler / PVR Measurements

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: ABI

FALSE ELEVATION AT

.84

TOE Index Revealing

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: ABI

Variable Criteria #1

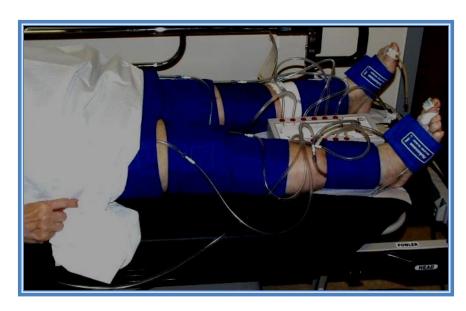
 $ABI = .9 \rightarrow 1.0$

Symptomatic Patients With Borderline Or Normal Resting Values Compare Pre / Post Exercise Values

ABI = .6 → .9

Suspected Claudication Symptoms

Compare Pre / Post Exercise Values


ABI = < .5
Exercise Testing Not Necessary
Most Likely Rest Pain

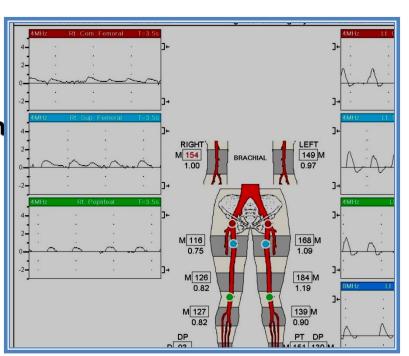
Always Compliment ABI With Doppler Waveform Morphology

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: SEGMENTAL PRESSURES

- Can Localize Segment / Location Of Disease
- Vertical Pressure Comparisons
- Horizontal Pressure Comparisons
- Artifacts To Consider
- 4 Cuff Or 2 Cuff Method

INDIRECT TESTING: SEGMENTAL Pressures


Some Common Values Stratifying Disease: Levels Of Disease

AORTOILIAC:

- Thigh / Brachial index .8 1.2 Stenosis
- Thigh / Brachial index < 0.8 Iliac occlusion

Reduced high thigh pressure may also result from combination of:

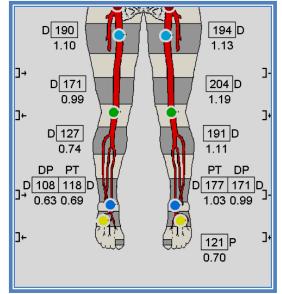
CFA Occlusion / Stenosis SFA occlusion / Stenosis PFA Occlusion / Stenosis

[•]Applications of Noninvasive Vascular Techniques: Gelock, Guianani, Krebs; Saunders, 1988: Ch. 17, 299-322.

[•]Segmental Pressures and Doppler Velocity Waveforms in the Evaluation of Peripheral Arterial Occlusive Disease: C. Burnham,

BSN,RN,RVT.The Journal of Vascular Technology 18[5] 249-255, 1994.

INDIRECT TESTING: SEGMENTAL Pressures


Some Common Values Stratifying Disease: Levels Of Disease

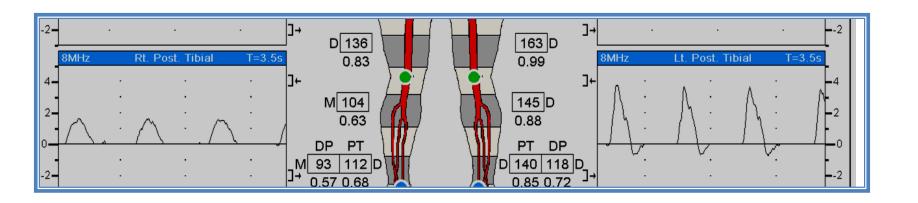
SFA DISEASE:

> 30 mmHg gradient between high thigh pressure and above knee pressure.

> 25 mmHg gradient between above knee pressure and

contra lateral above knee pressure.

[•]Applications of Noninvasive Vascular Techniques: Gelock, Guianani, Krebs; Saunders, 1988: Ch. 17, 299-322.


[•]Segmental Pressures and Doppler Velocity Waveforms in the Evaluation of Peripheral Arterial Occlusive Disease: C. Burnham,

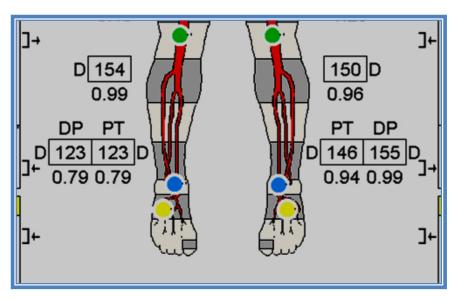
INDIRECT TESTING: SEGMENTAL Pressures

Some Common Values Stratifying Disease: Levels Of Disease

POPLITEAL DISEASE:

- > 30 mmHg gradient between above knee & below knee
- > 15 mmHg gradient between below knee & contra lateral below knee

[•]Applications of Noninvasive Vascular Techniques: Gelock, Guianani, Krebs; Saunders, 1988: Ch. 17, 299-322.


[•]Segmental Pressures and Doppler Velocity Waveforms in the Evaluation of Peripheral Arterial Occlusive Disease: C. Burnham,

INDIRECT TESTING: SEGMENTAL Pressures

Some Common Values Stratifying Disease: Levels Of Disease

TIBIOPERONEAL DISEASE:

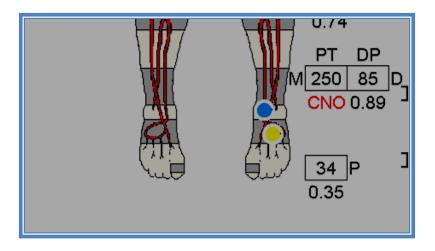
- > 30mmHg gradient between below knee & ankle
- > 15 mmHg gradient between ankle pressure & contra lateral ankle

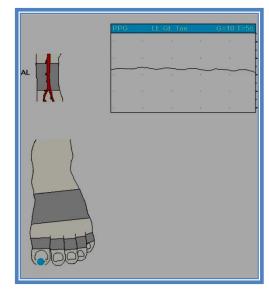
[•]Applications of Noninvasive Vascular Techniques: Gelock, Guianani, Krebs; Saunders, 1988: Ch. 17, 299-322.

[•]Segmental Pressures and Doppler Velocity Waveforms in the Evaluation of Peripheral Arterial Occlusive Disease: C. Burnham,

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: SEGMENTAL Pressures

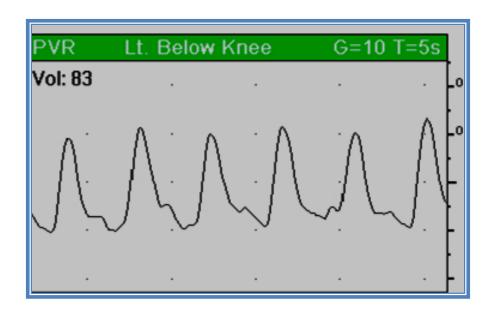

Some Common Values Stratifying Disease: <u>Levels Of Disease</u>


DIGITAL ARTERY DISEASE:

- Digital pressure < 60% of ankle pressure
- Toe / Brachial index < 0.7
- Toe systolic pressure < 30 mmHg Indicates a probable non-healing lesion

Digit pressures < 80% of the brachial pressure indicate proximal

disease


Applications of Noninvasive Vascular Techniques: Gelock, Guianani, Krebs; Saunders, 1988: Ch. 17, 299-322.

[•]Segmental Pressures and Doppler Velocity Waveforms in the Evaluation of Peripheral Arterial Occlusive Disease: C. Burnham,

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING:

PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

TO RECORD THE CURVE OF FILLING – Greek Origination

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

What Does It Do?

Measures Changes In Pressure Within The Cuff

Pressure Changes In The Volume Of The Cuff Or Bladder

Relates To

Pressure Changes Within Limb Volume Detected

- Cuffs At Various Levels Compare Volume Changes Between Horizontal + Vertical Levels
- Typically Inflated To 65 mmHg (*Protocols Vary*)
 Enough To Provide Contact To Skin And To Reflect Pulsatility
- Amplitude Changes On The Graph

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

PVR Influenced By:

Blood Pressure

Volume Of Blood (Infection ? Cellulitis ?)

Position Of Extremity

Overall Size Of Extremity

Cardiac Stroke Volume

May Even Be Different On Same Patient B/W Visits

Large Habitus + Edema Will Attenuate PVR Presentation / Wave

Excessive or Not Enough Cuff Inflation

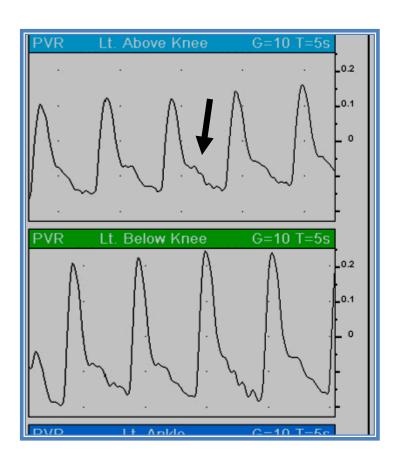
IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

USEFUL FOR:

Determining Level Of Disease:

Aorto-Iliac + Outflow Proximal SFA / DFA Involvement Mid SFA / Abductor Canal Popliteal / Tibial


Other Uses:

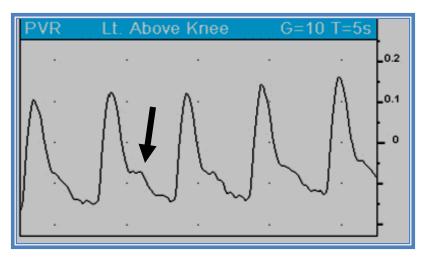
Pre + Post Exercise Measurements
Intra-Op Monitoring
Post-Op Evaluations
Healing Potential
Confirmation Of Rest Pain Symptoms

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: NORMAL

Dicrotic Notch Present


(Arterial Pulse Reverse Component)

Higher Amplitude BK

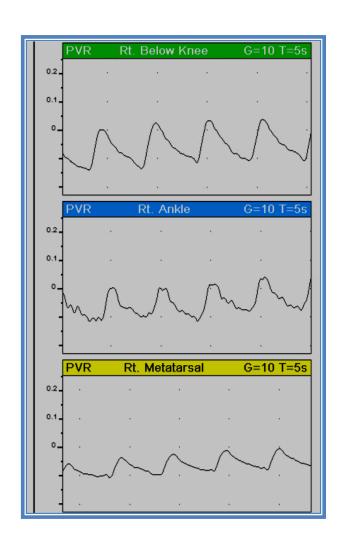
IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: NORMAL

Dicrotic Notch

- More Pronounced W/ Vasoconstriction
- Less Pronounced / Disappears


W/ Vasodilation

W/ Prox. Obstruction

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

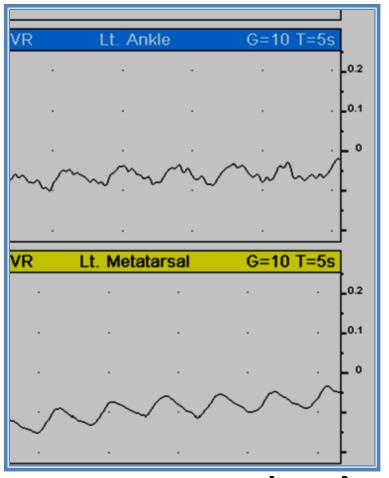
INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

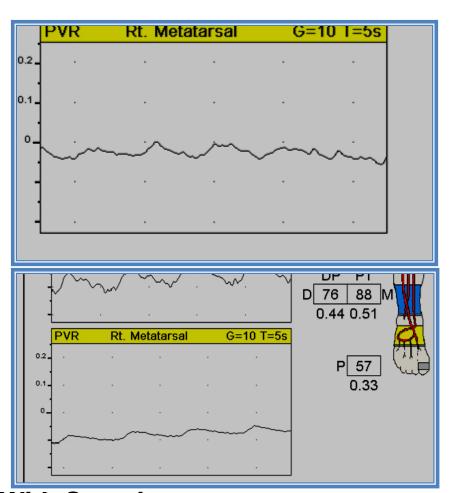
CONTOUR PRESENTATION: MILD (Criteria Varies)

Loss Of Dicrotic Notch

Upstroke Is Less Steep

Rounded Peak

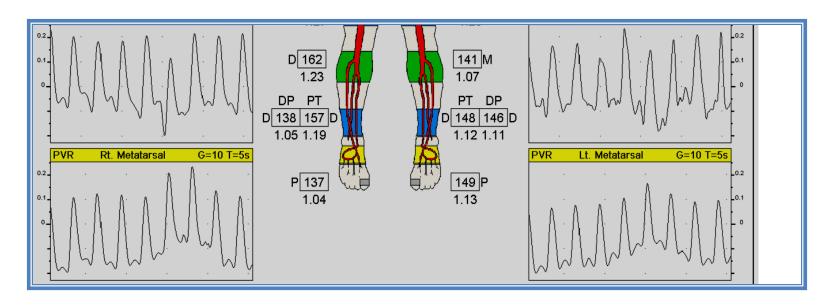

Down slope Bowing


IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: (Criteria Varies)

MODERATE SEVERE

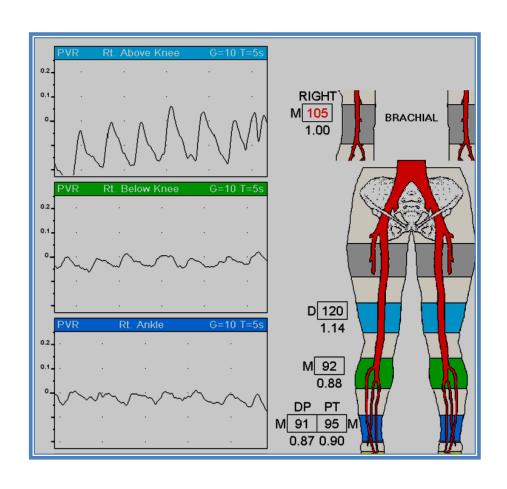


Less Amplitude With Severity

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: (Criteria Varies)

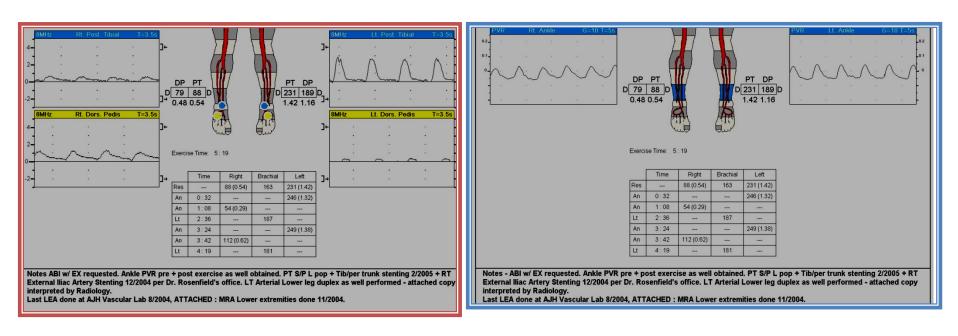


Tachycardia – Camouflaged Notch
Obviously Normal

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: (Criteria Varies)



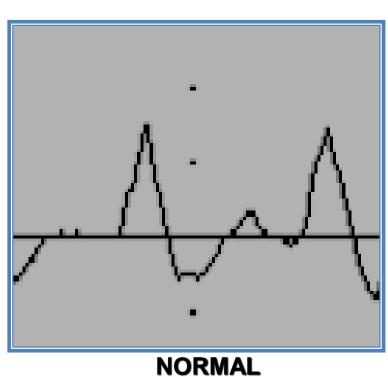
Popliteal / Tibial Trunk
Disease

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: PULSE VOLUME RECORDING / PLETHYSMOGRAPHY

CONTOUR PRESENTATION: (Criteria Varies)

Well Developed Collaterization?

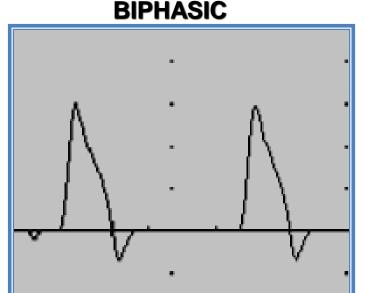

INDIRECT TESTING:

CW DOPPLER

INDIRECT TESTING: CW DOPPLER

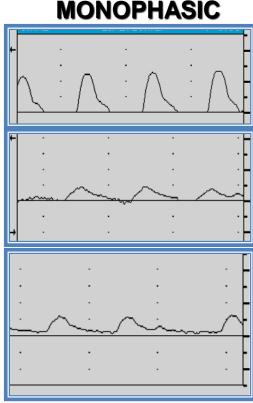
- Reflects The Compliance and Elasticity Of The Artery
- Triphasic Morphology Normal
- Loss Of Phasicity Due To Decreased Elasticity / Compliance Of The Artery As Disease Progresses

Reversal In Early Diastole Forward In Late Diastole



IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

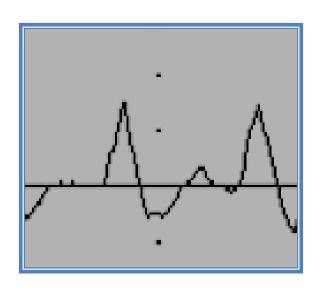
INDIRECT TESTING: CW DOPPLER


Reflects The Compliance and Elasticity Of The Artery

• Loss Of Phasicity Due To Decreased Elasticity / Compliance Of The Artery As Disease Progresses

Forward In Late Diastole Loss

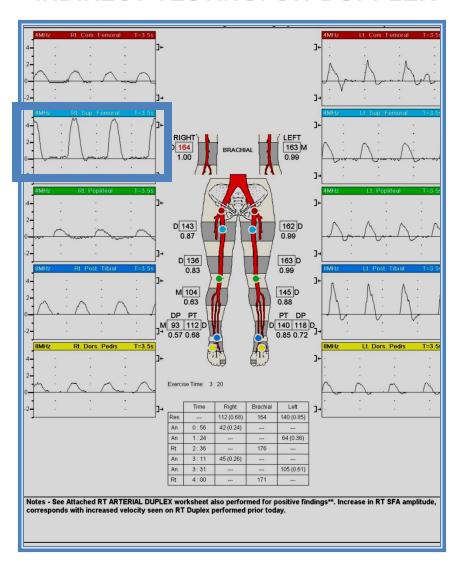
What's The Difference? →



IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: CW DOPPLER

NOTE:


- CW Is Qualitative
- Between Region Changes Indicate Disease
- Sensitivity Reduced :
 Obesity
 Wrong Freq. Selection
 Scarring Of Skin
 Calcifications W/In Artery Insonated
- Artifacts: Venous Interference Movement
- Correct Filter / Scale Adjustment
- Don't Make A Triphasic Signal Look Biphasic

Requires Expertise In Obtaining True Doppler Insonation Angle & Clean Signal For True Morphology

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: CW DOPPLER

CW

 Morphology At And Distal To Stenosis Confirmed By Arterial Duplex Same Day

INDIRECT TESTING:

TREADMILL EXERCISE TESTING

INDIRECT TESTING: TREADMILL EXERCISE TESTING

MAIN INDICATIONS:

- Important for differentiating true vascular claudication from pseudoclaudication
- Performed on all patients that complain of pain while walking
- Evaluate S/P Revascularization (Iliac Stents, etc..)

ABI'S MAY BE NORMAL AT REST:

- Collateral Development Adequate For Resting Vascular State
- Not Adequate With Increased Demand For Blood Supply

WITH EXERCISE:

- Obstruction Present Will Not Be Able To Meet Perfusion Needs
- Need Will Exceed Collateral Capability
- Significant Pressure Drop As Result

INDIRECT TESTING: TREADMILL EXERCISE TESTING

MAIN CONTRA-INDICATIONS:

ABI less than .5 (Varies)

Recent onset of chest pain

Severe Pulmonary Disease

? Cardiac status, known cardio-vasc. dis., prev. MI or CABG

Severe pulmonary disease / Shortness of Breath

Inability to ambulate at treadmill speed

Ischemic rest pain

Ischemic limb ulceration

*If the Patient's symptoms occur at rest (non-claudication symptoms) and the resting examination is negative, there is no need to exercise the patient (?)

INDIRECT TESTING: TREADMILL EXERCISE TESTING

OPTIONS OTHER THAT TREADMILL:

Toe Ups / Toe Raises

Simple & Effective

Reactive Hyperemia

Can Be Painful
Occlusion Of Cuff / Post Release Measurements

Lab Dependant, Personal Physician Preference, Supporting Data Exists For All Methods Of Post Maneuver Measurements

INDIRECT TESTING: TREADMILL EXERCISE TESTING

Discussion: Method

Patient Walks For Specified Time At Specified Grade Or Until Symptoms
Halt Exercise

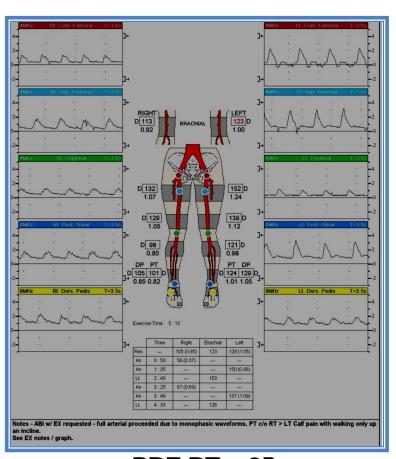
Protocols Vary:

5 Minutes, 10% (7°) Grade At 1.5 MPH

5 Minutes, 12% Grade At 2 MPH More..

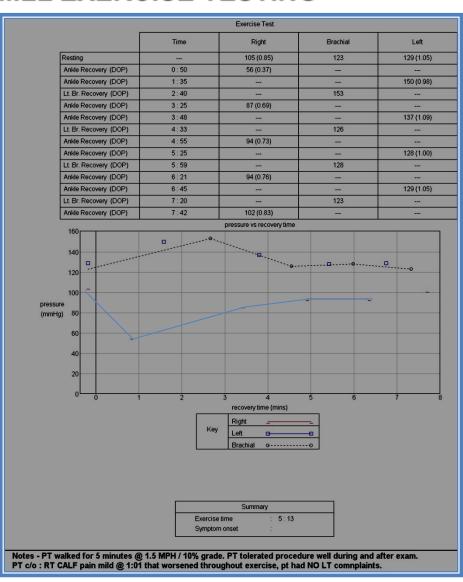
INDIRECT TESTING: TREADMILL EXERCISE TESTING

METHOD Discussion: Post Exercise Measurements


Protocols Vary:

- Immediate Ankle + Brachial Pressure
 30 Second Intervals First 4 Minutes
 Immediate Post Ex PVR
 Every Minute Until Pressure Returns To Resting State (< 10 min.)</p>
- Immediate Ankle + Brachial Pressure
 2 Minute Intervals Until Pressure Returns To Resting State (<10 min)
- All Protocols: Record PT Symptoms While Exercising

Post Exercise PVR For Non-Occlusive ABI


IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: TREADMILL EXERCISE TESTING

PRE RT:.85

POST RT: .37

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: EXERCISE TESTING

METHOD Discussion: Toe Raises

PT Standing – Raises On Toes – Returns To Flat Performed Until PT Cannot Continue Or Set Rate (50) Symptom Onset / Toe Raising #'s Recorded

Has Been Considered As Criteria For Positive (Varies)

> 20 mmHg Drop In Pressure ↓ of 20% Of Resting ABI

Some Considerations:

Can Be Alternative To Treadmill Exercise
Cardiac Risk Factors / Exertional Limitations
Calf Pain May Be Due To General Fatigue
Treadmill Exercise More Accurate For Claudicate
Patients

IDENTIFICATION WITH INDIRECT TESTING CAPABILITY

INDIRECT TESTING: EXERCISE TESTING

METHOD Discussion: Reactive Hyperemia

- Inflate Thigh Cuff > 20 mmHg Beyond Thigh Pressure
- Maintain Inflation B/W 3-5 Minutes
- Release And Obtain Ankle Pressures

General Criteria:

 \downarrow In 20 mmHg (+)

Limitations:

- Difficult Differentiating True vs. Pseudoclaudication
- Extremely Painful For Most Patients

Some Considerations:

Apply Calf Cuff Instead Of Thigh In Suspected Below CFA
 Disease

COLOR DUPLEX

VS.

SEGMENTAL / INDIRECT PHYIOLOGIC ASSESSEMENT

SEGMENTAL BP / PVR Suggested For Primary Diagnosis:

- Reimbursement Conditions & Requirements
- Used For 1st Time Diagnosis/ Initial Screen
 - * * Localize + Characterize Arterial Disease
- Follow Up Exams

Revascularization

Functional Status Of Stents/ Grafts

Treadmill Exercise

General Limitations :

Cannot Differentiate From Tight Stenosis Vs. Collaterization

False Elevation Of Pressures

Exact Segment Difficult To Quantify

COLOR DUPLEX - Suggested In Known Disease States:

- Localizes Stenosis + Severity Of Stenosis
- Collateral Development Visualization
- F/U Revascularization Patentcy

Stent + Graft + Angioplasty

General Limitations :

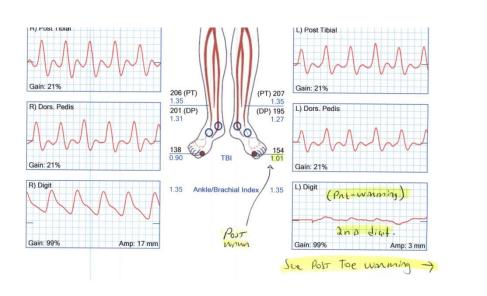
Regions Difficult To Asses:

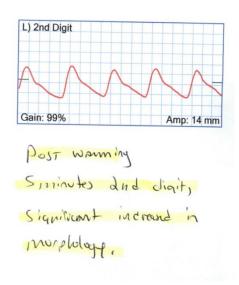
Tibial Vessels + Tibio - Peroneal Trunck

Calcification / Dense Plaque

lliac Involvement

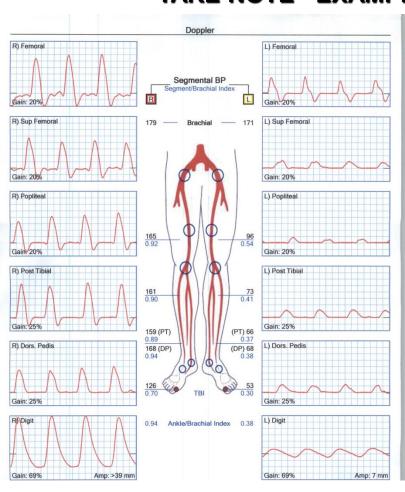
SEG BP / PVR VS DUPLEX SUMMATION

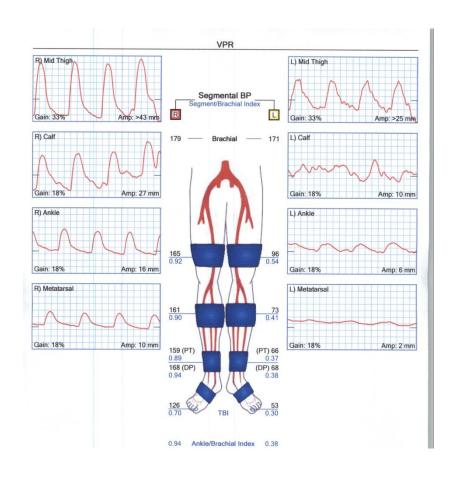

Best Used In Conjunction Each Have Specific Indications Follow Reccomendations By ICAVL / Other Associatations

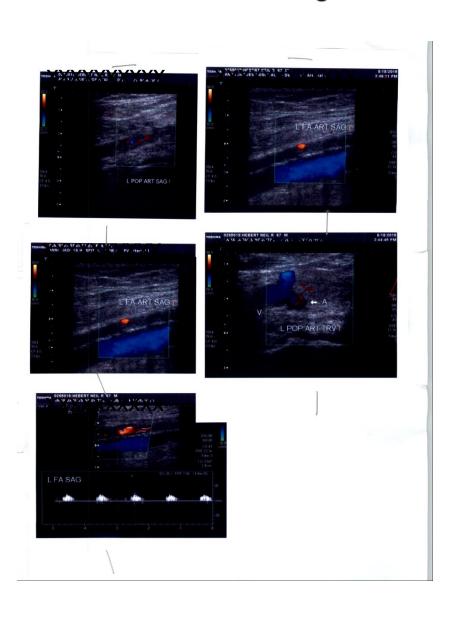

GENRAL ACCEPTED PRACTICES:

General Concept Is To Use Physiological Assessment For PT Management /
Decision Making Initially

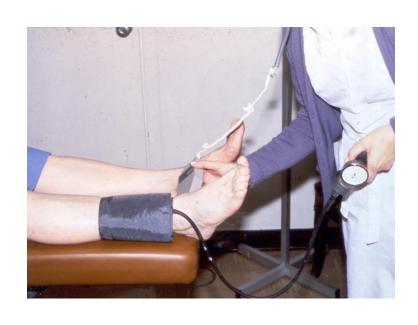
Color Duplex Utilization For Further Quantification

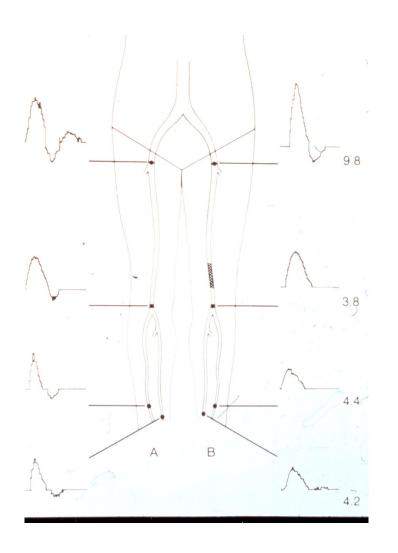

TAKE NOTE - EXAMPLE : Warm the Digits




Post 5 minutes Toe Warming

TAKE NOTE - EXAMPLE 4 - Image When Suspicious





TAKE NOTE - EXAMPLE 4 - Image When Suspicious

Hand Held Doppler

When to Operate on Foot

- In patient with abscess systemic sepsis and an ischemic foot - I+D of the foot as an emergent procedure. Limit procedure to drainage of all pus and dead tissue
- Over extensive debridement may convert ischemic tissue to frank gangrene and thereby reduce options for closure of the foot

Severe infection secondary to MRSA

Chronic infection

- Generally can perform podiatric procedure 48 hours after revascularisation.
- Inflow procedures and revascularisation of peroneal artery may take 48 hours to obtain maximal perfusion of foot

Osteomyelitis

Beware!

- Revascularisation may convert dry gangrene to wet gangrene
- Need to closely monitor and be prepared to perform urgent debridement

Diabetic Foot

