
How to perform HPL on CPU&GPU clusters

Dr.sc. Draško Tomić
email: drasko.tomic@hp.com



Forecasting is not so easy, HPL benchmarking could be even more difficult 



Agenda

TOP500 GPU trends

Some basics about HPL

Performance modeling of HPL on CPUGPU clusters

How to perform efficient HPL on CPUGPU clusters

Examples of current HPL-CPUGPU implementations

Cloud is challenging us



With the advent of GPU cards, HPC landscape has changed dramatically:

- More FLOPS/watt available

- less space for HPC needed

- Supercomputing on every workstation possible



TOP500 List – November 2009



TOP500 List – November 2010



Why GPU on HPC clusters?

Better performance/cost ratio

Faster communication (within CPU/GPU nodes)

Smaller footprint (dense computing)

Why NOT GPU on HPC clusters?

Not a single programming models (MPI & MP & Streams)

Deployment of advanced cooling systems (e.g. water cooling)

Many applications still not supporting GPU accelerators

Not so efficient Linpack benchmarking (like on CPU only 

clusters)



Trends

• A trend is developing in high-performance computing in 
which general-purpose processors are coupled to GPUs 
used as accelerators.

• Such systems are known as heterogeneous (or hybrid) 
CPUGPU systems.



Some definitions from linear 
algebra

• A general band matrix has its nonzero elements arranged uniformly near the diagonal, such 
that: aij equal to 0 if (i-j) greater than ml or (j-i) greater than mu; ml and mu are the lower and 
upper band widths, respectively, and ml+mu+1 is the total band width.

• The matrix A is symmetric if it has the property A equal to AT

• A real symmetric matrix A is indefinite if and only if (xTAx) (A yTAy) < 0 for some non-zero 
vectors x and y.

• A real symmetric matrix A is positive definite if and only if xTAx is positive for all nonzero 
vectors x.

• A matrix U is an upper triangular matrix if its nonzero elements are found only in the upper 
triangle of the matrix, including the main diagonal; A matrix L is an lower triangular matrix if its 
nonzero elements are found only in the lower triangle of the matrix, including the main 
diagonal.

• A general tridiagonal matrix is a matrix whose nonzero elements are found only on the 
diagonal, subdiagonal, and superdiagonal of the matrix



Some definitions from linear algebra (cont.)

• In linear algebra, Gaussian elimination is an algorithm for solving systems of linear 
equations.

• It can also be used to find the rank of a matrix, to calculate the determinant of a matrix, 
and to calculate the inverse of an invertible square matrix.

• The process of Gaussian elimination has two parts. The first part (Forward Elimination) 
reduces a given system to either triangular or echelon form, or results in a degenerate 
equation with no solution, indicating the system has no solution. The second step uses 
back substitution to find the solution of the system above.







Some definitions from linear algebra (cont.)

• The pivot or pivot element is the element of a matrix, an array, or some other kind of 
finite set, which is selected first by an algorithm (e.g. Gaussian elimination, Quicksort, 
Simplex algorithm etc.), to do certain calculations.

• In the case of Gaussian elimination, the algorithm requires that pivot elements not be 
zero. Interchanging rows or columns in the case of a zero pivot element is necessary.

• Example: the system below requires the interchange of rows 2 and 3 to perform 
elimination:



Furthermore, in Gaussian elimination it is generally desirable to choose a pivot element 

with

large absolute value.

This improves the numerical stability.



What is LINPACK?

• LINPACK is a software library for performing numerical linear algebra on digital 
computers. It was written in Fortran by Jack Dongarra, Jim Bunch, Cleve Moler and 
Gilbert Stewart, and was intended for use on supercomputers in the 1970s and early 
1980s.

• The package solves linear systems whose matrices are general, banded, symmetric 
indefinite, symmetric positive definite, triangular, and tridiagonal square.

• In addition, the package computes the QR decomposition (A  QR; QT = Q-1) and 
singular value decompositions of rectangular matrices and applies them to least-
squares problems.

• LINPACK uses column-oriented algorithms to increase efficiency by preserving 
locality of reference. 



What is HPL?
• A measure of a system's floating point computing power.

• Introduced by Jack Dongarra, it measure how fast a computer solves a dense N by N 
system of linear equations Ax = b, which is a common task in engineering.

• The solution is obtained by Gaussian elimination with partial pivoting (only row 
permutations permited, strategy is to switch the largest entry in the pivot column to the 
diagonal) with 2/3·N3 + 2·N2 + O(N) floating point operations.

• The result is reported in millions of floating point operations per second (MFLOPS).

• For large-scale distributed-memory systems, High Performance Linpack (HPL), a 
portable implementation of the High-Performance LINPACK Benchmark, is used as a 
performance measure for ranking supercomputers in the TOP500 list of the world's 
fastest computers.

HPL reguires MPI and BLAS.

• The HPC benchmark is run for different matrix sizes N searching for the size Nmax for 
which the maximal performance Rmax is obtained.

• The benchmark also reports the problem size N1/2 where half of the performance 
(Rmax/2) is achieved.



Still not easy to run efficiently HPL on large HPC clusters with CPUGPU nodes.

In order to predict HPL performance, we need some benchmarking results from smaller 
clusters.

And then a right approach to scale Linpack on much larger clusters, even those that will 
take place on www.top500.org in forthcoming years. 

Performance Modeling of HPL on CPUGPU clusters 

http://www.top500.org/


Some facts:

Tesla NVIDIA 2090: 655 Gflops (double precision)

SL390 (2 x 5670 CPUs) Rmax = 125 Rpeak = 147

Linpack benchmarking:

Node with Intel Hex Core X5670 (dual socket) and Tesla S2050 (node sees 2 GPUs)

• Node has 48GB of RAM.

• RedHat Enterprise Linux 5.4 64-bit

• Intel compiler version 11.1.069

• Intel MKL version 10.2.5

• Openmpi version 1.4.1

• Cudatoolkit 3.1

• NVIDIA driver supporting CUDA 3.1 (NVIDIA-Linux-x86_64-256.53.run)

• Modified version of HPL from NVIDIA (hpl-2.0_FERMI_v09.tgz)

Rpeak (theoretical) = 140 GFLOPS (12 CPU cores) + 1030 GFLOPS (2 GPUs) = 1170 GFLOPS

Rmax (actual) = 727.3 GFLOPS (62% efficiency)

Node with 2 x Intel Hex Core X5670 (dual socket) and Tesla S2090 (node sees 2 GPUs)

Rpeak (theoretical) = 280 GFLOPS (24 CPU cores) + 1310 GFLOPS (2 GPUs) = 1590 GFLOPS

Example: Performance modeling of HPL on Nvidia

CPUGPU 



Steps to run HPL on NVIDIA GPUs

Install NVIDIA driver

Load the driver

Test it is working

Install CUDA toolkit

Install OpenMPI

Set your environment variables to point to Intel compilers

Compile OpenMPI

Install HPL from NVIDIA

Compile HPL

Launch HPL processes

Prepare node files

Launch Tesla GPU version of HPL





How to HPL-GPU?

http://creative.gettyimages.com/source/search/ImageEnlarge.aspx?MasterID=ba17614&s=ImageDetailSearchState|3|5|0|15|2|1|0|0|1|60|60|2ed3.d7c5.03ff.e000.002f.7ef0|4|0|("Distraught:Expressing+Negativity"+or+"Worried:Expressing+Negativity")+and+"businessman"||1|0&pk=6


How to make efficient HPL on large CPUGPU clusters?

We already know how to enable Linpack even on largest heterogeneous HPC 
clusters

We have good Linpack result (53% efficiency) even on largest heterogeneous HPC clusters, 
e.g. Tsubame: http://matsu-www.is.titech.ac.jp/~endo/papers/endo-ipdps10.pdf

We expect NextGen Intel processor will be at least >25% better 
in doing floats over Westmere (more cores, faster bus…)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


MPI fundamentals

Message Passing Interface (MPI) is a standardized and portable message-passing

system designed by a group of researchers from academia and industry to function on a

wide variety of parallel computers.

The standard defines the syntax and semantics of a core of library routines useful to a wide

range of users writing portable message-passing programs in Fortran 77 or the

C programming language.

Several well-tested and efficient implementations of MPI include some that are free and

in the public domain.

Both point-to-point and collective communication are supported.

MPI is a message passing appplication programming interface.

http://en.wikipedia.org/wiki/Fortran_77
http://en.wikipedia.org/wiki/C_(programming_language)


MP fundamentals

Multiprocessing is the use of two or more central processing units (CPUs) within a single 

computer system.

The term also refers to the ability of a system to support more than one processor and/or the

ability to allocate tasks between them.

There are many variations on this basic theme, and the definition of multiprocessing can vary

with context, mostly as a function  of how CPUs are defined (multiple cores on one die, multiple

dies in one package, multiple packages in one system unit, etc.).

http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Multi-core_(computing)
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/System_unit


Stream processing
Stream processing is a computer programming paradigm, related to

SIMD (single instruction, multiple data), that allows some applications to more easily exploit

a limited form of parallel processing.

Such applications can use multiple computational units, such as the FPUs on a GPU or field

programmable gate arrays (FPGAs), without explicitly managing allocation, synchronization, or

communication among those units.

The stream processing paradigm simplifies parallel software and hardware by restricting the

parallel computation that can be performed.

Given a set of data (a stream), a series of operations (kernel functions) are applied to each

element in the stream.

Uniform streaming, where one kernel function is applied to all elements in the stream, is typical. 

Kernel functions are usually pipelined, and local on-chip memory is reused to minimize external

memory bandwidth. Since the kernel and stream abstractions expose data dependencies, compiler

tools can fully automate and optimize on-chip management tasks.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/SIMD
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Floating_point_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Pipeline_(computing)


Hybrid (MPI, MP, Streaming) HPL programming model 

Standard open-source HPL is designed for homogeneous clusters.

The LU factorization takes almost all the computation time of the benchmark. The 

computation time of the LU factorization is dominated by the matrix update and the upper 

(U) matrix factor.

The solution is obtained by performing LU factorization of the dense matrix A with 

partial pivoting, and then solves the resulting triangular system of equations.

The workload of the Linpack benchmark is (2/3)N3 + 2N2 + O(N).

The matrix update is a form of the matrix-matrix multiply (DGEMM (Double Precision 

General Matrix Multiply)) which is an O(N3) operation. The latter uses a triangular solver 

with multiple right-hand-sides (DTRSM) kernel which is an O(N2) operation.

To make use of the computing capacity of the whole system, it is neccessarry to fully 

exploit the parallel task, thread and data possibilities of the HPL.



Hybrid (MPI, MP, Streaming) HPL programming model (cont.) 

The MPI is used by HPL originally for the homogeneous distributed-memory computers.

However, we can map one MPI process on each compute element (CPUGPU 

node), and then proceed with distributed computation within elements.

These compute elements connect each other with high-speed cluster 

interconnect, therefore CPU can perform the communication (swap and 

broadcast of the pivot row) with others, and the compute-intensive tasks 

(DGEMM and DTRSM) can be executed by the CPU and GPU cooperatively.

To parallelize the compute-intensive tasks, MP programming model on the 

host and parallel threads can be spawned at runtime when the progress 

enters the parallel region.

In this phase it is crucial to optimally balance parallel threads on CPU cores, in 

order to achieve maximum utilization of resources, and on the same time, to 

avoid processes to wait on each others.

Therefore, right load balancing scheme in MP is everything.



Hybrid (MPI, MP, streaming) HPL programming model 
(cont.) 

For GPUs only, the good strategy is to use the streaming computing to develop 

the data parallel of the work assigned to them.

For example, one can use CAL (Compute Abstraction Layer) to program the 

kernels running on the GPU.

CAL can make users access the low-level native instruction set and memory of the 

massively parallel streaming processors in the GPU architecture.

CAL API exposes the stream processors as a single instruction, multiple data (SIMD) 

array of GPUs computational processors.

GPU device has a scheduler that distributes the workload to the SIMD engines 

according to the domain of the execution specified as invoked.



An example: Hybrid programming model of TianHe-1 
system 



Example: HPL on TSUBAME 1.0. Each color indicates the type of processors.

Opteron cores  10480; Xeon cores  640; NVIDIA  624; ClearSpeed 648



Example: HPL on Tianhe-1 system



Example: Tianhe-1 system (cont.)



Cloud is challenging us

We expect more and more HPC systems will be on Cloud.

HPC Cloud systems are even more challenging systems than traditional CPUGPU systems.

“Cloud” CPUGPU nodes can have various performance

“Cloud” communication links between nodes can have various bandwidth

Challenge: How to run HPL efficientlly on HPC Cloud?



How to… 

•  to distribute load on computational nodes in a 
way to minimize processing times…

•  while minimizing communication times 
between nodes?

http://msxml.excite.com/clickserver/_iceUrlFlag=1?rawURL=http://1.bp.blogspot.com/_7gYB5u3xrQE/TJSuYwoLylI/AAAAAAAAAEA/98p9S9FwWdM/s1600/happy+sad+face.jpg&0=&1=0&4=15.195.185.75&5=15.195.185.75&9=45ce261385ef4f7aa5788f8d9608cc01&10=1&11=info.xcite&13=search&14=372380&15=main-title&17=10&18=10&19=0&20=0&21=10&22=oE3DYSsvPz0=&23=0&40=9kJyNFGdLsCOdjsW8uOQTQ==&_IceUrl=true


Example: Second Largest Eigenvalue 
Minimizer (SLEM)

• considers both processing power of 
computational nodes and speed of 
communication links

• while minimizing response times in the cloud

http://msxml.excite.com/clickserver/_iceUrlFlag=1?rawURL=http://www.stress-relief-workshop.com/image-files/problem-solving.jpg&0=&1=0&4=15.195.185.82&5=15.195.185.82&9=e301aa425adb4289a0468f8d9608cc01&10=1&11=info.xcite&13=search&14=372380&15=main-title&17=8&18=8&19=0&20=0&21=8&22=bqjgKq3pP2M=&23=0&40=1T89TxwqRD5stbqYC5oYQw==&_IceUrl=true


Some math needed here

P Doubly stochastic and symmetric matrix

Second  matrix eigenvalue

Matrix transpose

1

1 Unary vector

http://msxml.excite.com/clickserver/_iceUrlFlag=1?rawURL=http://gighive.com/the-buzz/wp-content/uploads/2009/12/problem-solving.jpg&0=&1=0&4=15.195.185.82&5=15.195.185.82&9=e301aa425adb4289a0468f8d9608cc01&10=1&11=info.xcite&13=search&14=372380&15=main-title&17=5&18=5&19=0&20=0&21=5&22=1D63aUlvZ3s=&23=0&40=K2fpjHk9IvU=&_IceUrl=true


Breaking the symmetry



Grid adjacency (A) matrix

Hadamard (Ys * A) 

multiplication

http://msxml.excite.com/clickserver/_iceUrlFlag=1?rawURL=http://ikilled007.files.wordpress.com/2009/08/chaostheory.jpg&0=&1=0&4=15.195.185.81&5=15.195.185.81&9=d818445751de435ebde68f8d9608cc01&10=1&11=info.xcite&13=search&14=372380&15=main-title&17=5&18=5&19=0&20=0&21=5&22=Q8YBzh4bkjs=&23=0&40=KUz2iBbSLjgeP0qSOWyfZw==&_IceUrl=true


Computing optimal distribution

(9)

http://msxml.excite.com/clickserver/_iceUrlFlag=1?rawURL=http://www.mce.k12tn.net/inservice/math2.gif&0=&1=0&4=15.195.185.76&5=15.195.185.76&9=604a2b7274824d51a6998f8d9608cc01&10=1&11=info.xcite&13=search&14=372380&15=main-title&17=7&18=7&19=0&20=0&21=7&22=CBgc18NiMK8=&23=0&40=8yXnP2YoY8Y=&_IceUrl=true


© 2006 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice 

Thank you.


