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and starving for knowledge”(Hastie et al. 2001:vii)
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e.g. Lehman Brothers oversight → searches for 23 phrases
like “stupid,” “huge mistake,” etc. (Goldstein 2010)

Dictionary-based methods: inflexible; heavy reliance on
user knowledge
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Discovery vs. Data Extension

Separate distinction between sentiment analysis (e.g. Pang
et al. 2002) and topic classification (Quinn et al. 2010)

This talk: provides supervised technique for data
extension, main application is to sentiment analysis
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Figure: From Hopkins and King (2010)
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-2 -1 0 1 2 NA NB
-2 .70 .10 .01 .01 .00 .02 .16
-1 .33 .25 .04 .02 .01 .01 .35
0 .13 .17 .13 .11 .05 .02 .40
1 .07 .06 .08 .20 .25 .01 .34
2 .03 .03 .03 .22 .43 .01 .25

NA .04 .01 .00 .00 .00 .81 .14
NB .10 .07 .02 .02 .02 .04 .75
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Works better than aggregating imperfect classification
methods

No problem if classification accuracy is low

No parametric modeling assumptions

The hand coded subset need not be a random sample

Scales to large numbers of documents

Software available: readme() function in ReadMe

Our core assumption: relationship between words,
categories constant between labeled, unlabeled sets
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From Text to Data

You have millions of blog posts. Now what? Dimension
reduction

Goal for both supervised, unsupervised analyses: transform
articles into term-frequency matrix

Rows: documents

Columns: unique word strings



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Representing Text as Numbers

Filter: choose English language blogs that mention Bush
(“Bush”, “George W.”, “Dubya”, “King George”, etc.),
Hillary Clinton (“Senator Clinton”, “Hillary”, “Hitlery”,
“Mrs. Clinton”), etc.



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Representing Text as Numbers

Filter: choose English language blogs that mention Bush
(“Bush”, “George W.”, “Dubya”, “King George”, etc.),
Hillary Clinton (“Senator Clinton”, “Hillary”, “Hitlery”,
“Mrs. Clinton”), etc.

Preprocess: convert to lower case, remove punctuation,
perform stemming (reduce “consist”, “consisted”,
“consistency”, “consistent”, “consistently”, “consisting”,
and “consists”, to their stem: “consist”)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Representing Text as Numbers

Filter: choose English language blogs that mention Bush
(“Bush”, “George W.”, “Dubya”, “King George”, etc.),
Hillary Clinton (“Senator Clinton”, “Hillary”, “Hitlery”,
“Mrs. Clinton”), etc.

Preprocess: convert to lower case, remove punctuation,
perform stemming (reduce “consist”, “consisted”,
“consistency”, “consistent”, “consistently”, “consisting”,
and “consists”, to their stem: “consist”)

Stop words: some analyses remove very common words
(e.g. “the,” “almost”)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Representing Text as Numbers

Filter: choose English language blogs that mention Bush
(“Bush”, “George W.”, “Dubya”, “King George”, etc.),
Hillary Clinton (“Senator Clinton”, “Hillary”, “Hitlery”,
“Mrs. Clinton”), etc.

Preprocess: convert to lower case, remove punctuation,
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and “consists”, to their stem: “consist”)

Stop words: some analyses remove very common words
(e.g. “the,” “almost”)

Code variables as number/presence of unique unigrams,
bigrams, trigrams, etc.
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Our 10,771 blog posts about Bush and Clinton:
201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.

Unigrams in > 1% or < 99% of documents: 3,672
variables
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Bag of Words

This = “bag of words” approach

Word order is discarded (but can tag each word with its
part of speech)

Negation ignored (although that can be fixed by making
“not good” one string)

Be (2), Not (1), Or (1), To (2)

Typically provides reasonable predictive power (e.g. Pang
et al. 2002)
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Notation

Document Category

Di =



















































-2 extremely negative

-1 negative

0 neutral

1 positive

2 extremely positive

NA no opinion expressed

NB not a blog
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Notation

Word Stem Profile:

Si =























Si1 = 1 if “awful” is used, 0 if not

Si2 = 1 if “good” is used, 0 if not
...

...

SiK = 1 if “zoo” is used, 0 if not
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Quantities of Interest

Individual document classifications

D1, D2 . . . ,DL

proportions in each category

P(D) =





















P(D = −2)
P(D = −1)
P(D = 0)
P(D = 1)
P(D = 2)

P(D = NA)
P(D = NB)




















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Quantities of Interest

Sensitivity, sens ≡ P(D̂ = 1|D = 1)

Specificity, spec ≡ P(D̂ = 2|D = 2)

Core intuition: if we know misclassification rates, we can
adjust any estimator to produce unbiased category
proportions

To know overall population parameters, we don’t need to
know which we mis-classified
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P(D = 1) =
P(D̂ = 1)− (1− spec)
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1970)

Accounting identity for 2 categories:

P(D̂ = 1) = (sens)P(D = 1) + (1− spec)P(D = 2)

Solve:

P(D = 1) =
P(D̂ = 1)− (1− spec)

sens− (1− spec)

Use this equation to correct P(D̂)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Generalizations: J Categories, No Individual

From King and Lu (2007)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Generalizations: J Categories, No Individual

From King and Lu (2007)

Accounting identity for J categories

P(D̂ = j) =
J

∑

j ′=1

P(D̂ = j |D = j ′)P(D = j ′)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Generalizations: J Categories, No Individual

From King and Lu (2007)

Accounting identity for J categories

P(D̂ = j) =
J

∑

j ′=1

P(D̂ = j |D = j ′)P(D = j ′)

Drop D̂ calculation, since D̂ = f (S):

P(S = s) =
J

∑

j ′=1

P(S = s|D = j ′)P(D = j ′)



How to Read

10,000 Blogs

During This

Talk

Daniel J.

Hopkins

Introduction

Opinions in

Blogs

Background

Goals for

Estimator

Preprocessing

Nonparametric

Estimator

Conclusion

Additional

Material

Generalizations: J Categories, No Individual

From King and Lu (2007)

Accounting identity for J categories

P(D̂ = j) =
J

∑

j ′=1

P(D̂ = j |D = j ′)P(D = j ′)

Drop D̂ calculation, since D̂ = f (S):

P(S = s) =
J

∑

j ′=1

P(S = s|D = j ′)P(D = j ′)

Simplify to an equivalent matrix expression:

P(S) = P(S |D)P(D)
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tabulation)
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Technical estimation issues:
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Solutions

Use subsets of S ; average results
Use constrained LS to constrain P(D) to simplex
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Comparing Performance

Percent of Blog Posts Correctly Classified

In-Sample In-Sample Out-of-Sample Mean Absolute

Fit Cross-Validation Prediction Proportion Error

Nonparametric — — — 1.2

Linear 67.6 55.2 49.3 7.7

Radial 67.6 54.2 49.1 7.7

Polynomial 99.7 48.9 47.8 5.3

Sigmoid 15.6 15.6 18.2 23.2

Table: Performance of our Nonparametric Approach and Four
Support Vector Machine Analyses.
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What can go wrong?

We assume Ph(S |D) = P(S |D)

Must choose word stem subset size (a smoothing
parameter)

Need enough labeled documents in each category (can
hand code more if CI’s are too large)

Need sufficient information in: documents, categorization
scheme, numerical summaries of the documents, and
hand-codings

Use additional hand coding to verify assumptions
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Computer science → developed huge range of supervised,
unsupervised techniques (e.g. SVM, LDA)

Automated techniques → open many areas of inquiry for
political scientists of all stripes

Core distinction: supervised vs. unsupervised techniques

For supervised learning, computer scientists’ typical goal 6=
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ReadMe designed to return unbiased estimates of category
proportions
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An Unsupervised Example: LDA

1 2 3 4 5 6 7

1 don’t know they illeg law they about

2 you you english here the here church

3 peopl differ languag fine we’re and would

4 there communiti speak pay enforc want you

5 are american them they’re that their immigr

6 job veri they’re legal togeth get that

7 mani like their tax about money cathol

8 know more know who was back like

9 problem your learn you this work say

10 there and our should down lot i’m

Prop. 0.144 0.122 0.139 0.157 0.142 0.141 0.155

Table: Clustering 836 comments from focus groups on immigration
using 165 word stems, LDA.
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Campaign Quotations

Source: Leskovec, Backstrom, and Klineberg (2009)

Cull through 90 million new articles from 1.6 million
websites

Identify variants of text strings from 2008 U.S.
Presidential campaign

94,700 distinct phrases

Many research opportunities: study campaign dynamics,
back-and-forth of campaign rhetoric



Figure: From Leskovec et al. (2009)



Figure: From Monroe et al. (2008)



Figure: From Grimmer and King (2010)



Figure: From Grimmer 2010; press releases
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Code (1): Loading Textual Data

How to do this at home?

Most computer scientists use Perl, Python, other
programming languages

R → increasing tools for automated content analysis

e.g. tm, ReadMe

Commercial software → increasing tools as well (e.g.
Clementine for Stata)
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Loading Textual Data

Example here: from ReadMe

Must specify control file telling ReadMe where documents
are

Control file: lists each document location, category,
whether it is in training set (vs. test set)
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Control File

C:/Users/114715-berk.txt,None,1
C:/Users/62815-berk.txt,None,1
C:/Users/118871-berk.txt,California,1
C:/Users/106588-berk.txt,California,1
C:/Users/122973-berk.txt,None,1
C:/Users/106590-berk.txt,California,1
C:/Users/54635-berk.txt,Regulation,1
C:/Users/136556-berk.txt,Regulation-Politics,1
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Input Command

Input data from R using following function

setwd(“C:/Users/Dan/”)

library(ReadMe)

underg ←
undergrad(control=”C:/Users/Dan/control1.txt”,sep=”,”)

Need to use fullfreq=T argument to get number of words
(not occurrence)
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Code (2): Estimating an SVM

library(e1071)

svout ← svm(as.factor(TRUTH2) .,
data=underg2$trainingset2,cross=5,probability=T,kernel=”radial”)
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Code (2): Estimating an SVM

library(e1071)

svout ← svm(as.factor(TRUTH2) .,
data=underg2$trainingset2,cross=5,probability=T,kernel=”radial”)

p1 ←
predict(svout,newdata=underg2$testset2,probability=T)
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Code (2): Estimating an SVM

library(e1071)

svout ← svm(as.factor(TRUTH2) .,
data=underg2$trainingset2,cross=5,probability=T,kernel=”radial”)

p1 ←
predict(svout,newdata=underg2$testset2,probability=T)

table(underg2$testset2$TRUTH2,p1 > .5)
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