University of Wollongong

How to use AVR Studio for Assembler Programming

Creating your first assembler AVR project

Run the AVRStudio program by selecting Start\Programs\Atmel AVR Tools\AVR Studio. You
should see a screen like this:

SLIFT
o Fle Project Buld Wiew Tools Debug Help

IDSHOC I RRECCRRIMARIARES > aB I (» PG VB FEEDE

£ Trace Disabled < S RO LT o D R e

14O view x

Hame | Value | Bits
'Welcome to AYR Studio 4
Falyo view | @ o | Ver 412460 W Show dialog at startup
Message << Back Mest Finish Cancel Help | | x
Loaded plugin TKS00 |
b

4l
32uld @ Message | SAFindin Files | B Breakpeints and Tracepoirts

To create a new project, click on New Project (new Projects can also be created later by selecting
Project\New from the Menu system). On the next dialog Box, select Atmel AVR assembler, enter
the project name (eg “first”) and navigate to your desired location by clicking the button labelled

Your screen should look like:

Welcome to AVYR Studio 4

— Create new project

Froject bype: Froject name:
% & Atmel AR Azzembler Ifirst

3 4R GOC
¥ Create initialfle W Create folder
Iritial file:

B :

Iflrat LA

Location:

IH:'\.-'i".‘-.-"Fipmiects"\

Vi

A

YWer 4.12.460

<< Back | Mext > | Finizh | LCancel | Help |

Click Next. Now select the debug platform as AVR Simulator with the device ATmega8515 so
our program will be run on the simulator. Your screen should look like this:

Welcome to A¥YR Studio 4

— Select debug platform and device

Debug plattorm: Device:
% JTAGICE mkll ATrmegab450 ;l
ICE40 ATmegab43
ICESD AT megab430
JTAG ICE ATmegad
= AR Simulatar :ATmegalhls
q ICE200 ATrmegadhln
&Tmegadd
ATtiny11 J
ATtnyl2
ATtinyl3
ATtiny15 |

™ Open platfiom options

Yer 412,460

<4 Back | et Finizh LCancel Help

Now click Finish and you will be shown a screen like this:

AVR Studio - H:\AVRprojects\first\first.asm -1&] x|
© Ble Project Buld Edt Yew Tooks Debug Window Help
INFEIO s RBEHR I ASAZAREEI» nE I C*» 0P OB AEEIE
§ Trace Disabled R I iy - o AR T S
B H:\A¥Rprojectsfirst\first.asm =101 x|
=8 First
43 Source Files j
S [H] first.asm
423 Includzd Files
423 Labels
{23 Output
=4 Object File
1 E— oz
B project | @ rio | FRlyo view | B H:\avRprojects\ first' first.asm 4B
Message x
Loaded plugin 5TKS00
Loaded plugin Atmel AVR pssembler
Loaded partfile: <:\Program Fi Tools\PartDescrip TO0SE515 xml
o 2l

puild @ Message | S@Findin Files | B Breakpoints and Tracepoints

AT90S8515 AVR Simulater Auta @ 1ol

In your first.asm editor, copy and paste in the following code:

CAPNUM SCRL

; My first assembler program
jinclude "*'8515def. inc" ; include the 8515 definition file
.def temp = ri6 ; define a temporary register
; In this example, we will output values to PORTB
RESET:
; Let"s set the Data Direction Register for PORTB (DDRB)
; (0 = input, 1 = output)
; pin nums: 76543210
; LT
; VAAAAAARY
Idi temp, Ob11111111 ; this could also be OxFF
out DDRB, temp ; output the value to DDRB
Idi temp, Ox01 ; load 1 into temp
LOOP:

; Now, we continually loop writing to output B
; followed by rotating left once, and loop back

out PORTB, temp ; output temp to PORTB
rol temp ; rotate temp left
rjmp LOOP ; jump back to LOOP

Then save your file (File\Save or Ctrl-S) and build it (Build\Build or F7). Your code should
appear like this:

Ei H:\A¥Rprojects' first' first.asm

Hy fir=st assembler program
Cinclude "8515def . inc" ;o include the 8515 definition file
.def temp = rl6 ; define a temporary register
In thi=z examnple, we will output waluses to PORETE
RESET :
Let's ==t the Data Direction Eegister for PORTE (DDEE)
(0 = input, 1 = output)
pin num=s: 6543210
[T
; YYYVTTYY
1di temp. 0b11111111 : thiz could als=oc be 0=FF
out DDEBE. temp o output the walus to DDEB
ldi temp. 0=x01 ; load 1 into temp
LOOF :
; How., we continually loop writing to output B
followed by rotating left once, and loop baclk
out PORTE. temp o output temp to PORTE
rol temp . rotate temp left
rimp LOOF ;ojump baclk to LOOP

And your build output should appear like this:

Build

AVELEM: AVE macro agssembler 2.1.2 (build 99 Now 4 2005 09:35:05)
Copyright (C)] 1995-2005 ATHMEL Corporation

H:VAVEprojecta\ firstyfirst.asmid): Including file 'Ci%Program Filesh.
H:VAVBprojecta\ firsth\first.azmi(2d): No EEPROM data, deleting H:\AVEp:

ATI058515 memory use summary [bytes]:

Segment Begin End Code Data Used Size T=e%
[.ceeg] 0x000000 Ox00000c 1z 0 1z §19:2 0.1%
[.dseg] 0x000060 0x000060 0 0] 51z 0.0%
[.ezeg] 0x000000 Ox000000 0 0] 51z 0.0%

® Azzenmbly complete, 0 errors. 0 warnings

Notice the code has been built with no errors or warnings and that the code is 12 bytes in size (six
assembler instructions at two bytes each).

Using the AVR Simulator to test your first program

Now we are ready to simulate the code. In order to see what the code is doing, we need a better
‘view’. So click the I/0 View tab at the bottom of the docked window pane. Expand the Register
16-31 tree and the 1/O ATMEGAZ8515 tree and then expand PORTB.

Your I/O View panel should look like this:

I} Wi

M arme | Yalue | Bits Address

Register 0-15

=15 Register 16-31
----- B 1 0:00
----- B 17 0:00
----- B 1= 0:00
----- B 19 0:00
----- B =o 0:00
----- B =t 0:00
----- B == 0:00
----- B =3 0:00
----- B =4 0:00
----- B = 0:00
----- B == 0:00
..... @ o7 =00
..... @ o5 =00
----- B o 0:00
----- B o 0:00
----- B =t 0:00

EEI---E Pracessar

#-[F stack Monitor

=Bl /0 ATMEGASSLS

-1 AMALOG_COMPARATOR

H-E) cPu

-] EEPROM

r|- 30 EXTERMAL_TNTERRUPT

-2 PORTA

=22 PORTE

22 pPORTE 0x00 OOOOO0O0O0O 18(38)
' 0x00 OOOOOOO0O 1737
0x00 OOOOOOO0O 16(36)

TIMER _COUNTER 0
TIMER _COUMTER _1
-39 USART
g WATCHDOG

55 SPI

Now we are ready to start simulating. Select Debug\Start Debugging (or Ctrl-Alt-Shift-F5). You
will now see a yellow arrow pointing to the next instruction to be executed, similar to this picture:

VYVYVyvy

=) 1di temp, 0b11111111 . this
out DDRE. temp oooutp
1di temp. 0x01 o load

To step through each instruction, select Debug\Step Into (or press F11). Do this once now. The
yellow arrow should be pointing to the next instruction (the “out” instruction). Before moving to
the next instruction, check also the register list. You should see that the value for r16 has changed
from 0x00 to OxFF.

Press F11 again. Now the DDRB value in the 1/0 View tree has changed to OxFF, which is also
shown by the dark squares. Each dark square represents one pin, from pin7 to pinO (left to right).
This means you have successfully written OXFF (or 0b11111111 to DDRB).

Pressing F11 a couple more times sets first register 16 and then PORTB to be the value 0x01. Next
to PORTB, you will see 7 white squares (pins 7 to 1) and one dark square (pin 0). As you
successively press F11, you will see the dark pin on PORTB shift left. This is what your I/0O View
screen might look like after a few iterations:

[REETRY

=52 PORTE

22 PORTE 0x03 OOOOmO0O0 15038
o DDRE 0:FF HHENEEEEE 1737
=2 PINB 008 OO0OOmMO0O0O 16(36)

Now, let’s say we wanted to further debug the program by editing the value in register 16? No
matter what the current value of r16 is, let’s give it the value 0x1C. To do this, open up the Register
view (View\Register or Alt-0) and you should see a screen like this:

EOO= 0x00 EROl= Ox00 -~

ROzZ= 0x00 RO3= 0=00
FO04= 0x00 ROS= 0=00
RO&= 0x00 ROT= 0x=00
FOS= 0x00 ROS= 0=00
Fl0= 0x00 Rll= 0=00
Flz= 0x00 R13= 0x=00
Fld= 0x00 R13= 0x00 -
Blé= 0x10 ER17= 0=00
Fl8= 0x00 R1%9= 0=00
Bz0= 0x00 RZ1= 0=00
RAZ= Mwnn R253= (w00 d

In order to change a value, double-click on the value for the register you need. In this case, double-
click on the value next to R16. (In the picture above, you would click on the number 0x10).

You should see a screen like this:

it x|

Enter value for register R16

| 1d
* Hex " Dec ¢ Oct Bin

k. I Cancel |

Enter in the value 1C as above, and click OK. This change should be reflected in red in your
Register View window as well as having changed the value of r16 under your 1/0O Tree View.
Clicking F11 a few more times gives you these screen shots:

=52 PORTE

22 PORTE 01 OOO0MEMEO0 1838
X DORE :FF HNEEEEEE 1707
...=8 PINB 01 OJO0OMEEOO 16636

-8
2

=2 PORTE 0x3 OONEEOO0O 1833
= DORE 0=FF HEANEEEEE 1737
.22 PINE 0x38 OOMEMOO0 1636
=-=2 PORTE
=2 PORTE 070 OMEEOOO0O 1538
- DDRE 0:FF HMEANEEEEE 1737
22 PINE 070 OHEEOOO0 16 (36

In order to stop debugging and return to editing your code, select Debug\Stop Debugging (or Ctrl-
Shift-Fb5).

Simulating Inputs

What if, rather than continually outputting values, our AVR microcontroller was used to read values
from one port and output to another. For example, we could use the AVR in this way:

: ATMEL ;
—3E AVR —
—0 o—

Q@ porTB= &

~— NOT(PORTA)

Create a new project, or change the code in the current project. Copy and paste in the following
code:

; My second assembler program

jinclude "*'8515def. inc" ; include the 8515 definition file
.def temp = ri6 ; define a temporary register

; Continually read in from PORTA and write out to PORTB

RESET:
; Let"s set the Data Direction Registers (DDRA & DDRB)
; (0"s = inputs, 1°s = outputs)
1di temp, O0x00
out DDRA, temp
1di temp, OxFF
out DDRB, temp
LOOP:

; Now, we continually loop, reading from PORTA pins,

; negating the value and writing to PORTB

in temp, PINA ; read in from PORTA’s input pins
neg temp ; negate temp register

out PORTB, temp ; write out to PORTB

rjmp LOOP ; jump back to LOOP

Save (Ctrl-S) and Build (F7) your new project. Your assembly should complete with no errors
again, but this time, the code size should display as 16 bytes (8 instructions at 2 bytes each).

AT9038515 memory use summary [bytesz]:

Zedquent Begin End Code Data Tzed Zize Tze%
[.cseg] Ox000000 Ox000010 16 0 16 8192 0.2%
[.dseg] 0x000060 Ox0000&0 0 0 n E12 0.0%
[.ezeg] O0xO000000 Ox000000 0 0 1] 512 0.0%

Azzembly complete, 0 errors. 0 warnings

Now, let’s set up your I/O View to see both PortA and PortB. Collapse registers r16-r31, and
expand Port A. Your view should look like this:

\&g) L TP AL L e e |

-G
i
el
i
Qa
—
=

----- =2 PORTA 000 OOOOCOOO 1B §3E)

----- DORA 000 OOOOCOOO 1A (348)

----- =2 PINA oxa4 OOOOOOOO 19(39
=52 PORTBE

----- =2 PORTE 056 OOOOOOO3 18(38)

----- DDRE 0:FF DOOOOOOOO 17§37

----- =2 FINE 056 DOOOOOOOO 16436)
. =0 proTe

Select Debug\Start Debugging and press F11 to step through the code and iterate the loop a couple
of times. Regardless of the number of loop iterations you step through, your screen will stay in the
following state:

@ (SRR L | [AL B o LR |

=

=2 PORTA
----- =2 PORTA 000 OO00O000O000O0 1636
----- DORA 000 OO00O000O000O0 14 (34)
----- =2 PINA 000 OO00O000O000O0 19(39)
=152 PORTE
----- =2 PORTE 0:FF HENEEEENE 1533
----- DORE 0:FF HENEEEEE 1737
----- =2 PINE 0:FF HHENEEEENE 16(36)
m =0 n~nTe

That is, Port A’s pins are constantly inputting 0x00, and thus Port B is always outputting OxFF. In
order to test your program, you need to simulate various inputs at the PINA pins. So, while your
program is running, create a test bit-pattern on the PINA pins by clicking on each individual square.
For example, the diagram below shows the bit pattern 0-1-0-1-1-0-1-0 (or 0x5A). Once you’ve
entered this, complete one whole iteration of the loop by repeatedly pressing F11. Your screen
should look like this:

[aali R S E R LT TR LR R
=-=2 PORTA
----- =2 PORTA 0=00 OO00O000O0O0O 1B(38)
----- DORA 000 OO00O000O00O0 14634)
----- =2 PINA 054 ONONEOEO 1939
52 PORTE
----- =2 PORTE 045 HOMOCEOME 18 (38)
----- DORE 0:FF HENEEEENE 1737
----- =2 FINE 0x45 HOEOOEOE 16036
m..=@ proTr

Try testing other bit patterns to confirm that your code will work regardless of what bit pattern is
applied to the inputs pins of Port A. You can also select Debug\AutoStep (Alt-F5) to have the
code automatically stepped through.

You may wish to investigate the other hardware peripherals available for inspection under your 1/0
View tree. These include configuration registers for the ADC, external interrupts, timers and even
internal CPU registers such as the Status Register (SREG), or internal processor registers such as
the Program Counter.

