
1

How to use AVR Studio for Assembler Programming

Creating your first assembler AVR project

Run the AVRStudio program by selecting Start\Programs\Atmel AVR Tools\AVR Studio. You
should see a screen like this:

To create a new project, click on New Project (new Projects can also be created later by selecting
Project\New from the Menu system). On the next dialog Box, select Atmel AVR assembler, enter
the project name (eg “first”) and navigate to your desired location by clicking the button labelled
“…”.

2

Your screen should look like:

Click Next. Now select the debug platform as AVR Simulator with the device ATmega8515 so
our program will be run on the simulator. Your screen should look like this:

3

Now click Finish and you will be shown a screen like this:

In your first.asm editor, copy and paste in the following code:

;
; My first assembler program
;
.include "8515def.inc" ; include the 8515 definition file
.def temp = r16 ; define a temporary register

;
; In this example, we will output values to PORTB
;
RESET:
 ; Let's set the Data Direction Register for PORTB (DDRB)
 ; (0 = input, 1 = output)
 ; pin nums: 76543210
 ; ||||||||
 ; VVVVVVVV
 ldi temp, 0b11111111 ; this could also be 0xFF
 out DDRB, temp ; output the value to DDRB
 ldi temp, 0x01 ; load 1 into temp

LOOP:
 ; Now, we continually loop writing to output B
 ; followed by rotating left once, and loop back
 out PORTB, temp ; output temp to PORTB
 rol temp ; rotate temp left
 rjmp LOOP ; jump back to LOOP

4

Then save your file (File\Save or Ctrl-S) and build it (Build\Build or F7). Your code should
appear like this:

And your build output should appear like this:

Notice the code has been built with no errors or warnings and that the code is 12 bytes in size (six
assembler instructions at two bytes each).

5

Using the AVR Simulator to test your first program

Now we are ready to simulate the code. In order to see what the code is doing, we need a better
‘view’. So click the I/O View tab at the bottom of the docked window pane. Expand the Register
16-31 tree and the I/O ATMEGA8515 tree and then expand PORTB.

Your I/O View panel should look like this:

Now we are ready to start simulating. Select Debug\Start Debugging (or Ctrl-Alt-Shift-F5). You
will now see a yellow arrow pointing to the next instruction to be executed, similar to this picture:

6

To step through each instruction, select Debug\Step Into (or press F11). Do this once now. The
yellow arrow should be pointing to the next instruction (the “out” instruction). Before moving to
the next instruction, check also the register list. You should see that the value for r16 has changed
from 0x00 to 0xFF.

Press F11 again. Now the DDRB value in the I/O View tree has changed to 0xFF, which is also
shown by the dark squares. Each dark square represents one pin, from pin7 to pin0 (left to right).
This means you have successfully written 0xFF (or 0b11111111 to DDRB).

Pressing F11 a couple more times sets first register 16 and then PORTB to be the value 0x01. Next
to PORTB, you will see 7 white squares (pins 7 to 1) and one dark square (pin 0). As you
successively press F11, you will see the dark pin on PORTB shift left. This is what your I/O View
screen might look like after a few iterations:

Now, let’s say we wanted to further debug the program by editing the value in register 16? No
matter what the current value of r16 is, let’s give it the value 0x1C. To do this, open up the Register
view (View\Register or Alt-0) and you should see a screen like this:

In order to change a value, double-click on the value for the register you need. In this case, double-
click on the value next to R16. (In the picture above, you would click on the number 0x10).

7

You should see a screen like this:

Enter in the value 1C as above, and click OK. This change should be reflected in red in your
Register View window as well as having changed the value of r16 under your I/O Tree View.
Clicking F11 a few more times gives you these screen shots:

In order to stop debugging and return to editing your code, select Debug\Stop Debugging (or Ctrl-
Shift-F5).

8

Simulating Inputs

What if, rather than continually outputting values, our AVR microcontroller was used to read values
from one port and output to another. For example, we could use the AVR in this way:

PORTB =
NOT(PORTA)

Create a new project, or change the code in the current project. Copy and paste in the following
code:

;
; My second assembler program
;
.include "8515def.inc" ; include the 8515 definition file
.def temp = r16 ; define a temporary register

;
; Continually read in from PORTA and write out to PORTB
;
RESET:
 ; Let's set the Data Direction Registers (DDRA & DDRB)
 ; (0's = inputs, 1's = outputs)
 ldi temp, 0x00
 out DDRA, temp
 ldi temp, 0xFF
 out DDRB, temp

LOOP:
 ; Now, we continually loop, reading from PORTA pins,
 ; negating the value and writing to PORTB
 in temp, PINA ; read in from PORTA’s input pins
 neg temp ; negate temp register
 out PORTB, temp ; write out to PORTB
 rjmp LOOP ; jump back to LOOP

Save (Ctrl-S) and Build (F7) your new project. Your assembly should complete with no errors
again, but this time, the code size should display as 16 bytes (8 instructions at 2 bytes each).

Now, let’s set up your I/O View to see both PortA and PortB. Collapse registers r16-r31, and
expand Port A. Your view should look like this:

9

Select Debug\Start Debugging and press F11 to step through the code and iterate the loop a couple
of times. Regardless of the number of loop iterations you step through, your screen will stay in the
following state:

That is, Port A’s pins are constantly inputting 0x00, and thus Port B is always outputting 0xFF. In
order to test your program, you need to simulate various inputs at the PINA pins. So, while your
program is running, create a test bit-pattern on the PINA pins by clicking on each individual square.
For example, the diagram below shows the bit pattern 0-1-0-1-1-0-1-0 (or 0x5A). Once you’ve
entered this, complete one whole iteration of the loop by repeatedly pressing F11. Your screen
should look like this:

Try testing other bit patterns to confirm that your code will work regardless of what bit pattern is
applied to the inputs pins of Port A. You can also select Debug\AutoStep (Alt-F5) to have the
code automatically stepped through.

You may wish to investigate the other hardware peripherals available for inspection under your I/O
View tree. These include configuration registers for the ADC, external interrupts, timers and even
internal CPU registers such as the Status Register (SREG), or internal processor registers such as
the Program Counter.

