ME 760 – Microfluidics for Graduate Students

How to use **COMSOL Multiphysics 3.5**

Finite Element Based software

By: Yasaman Daghighi

Department of Mechanical and Mechatronics Engineering University of Waterloo Winter 2012

Problem Definition

Straight Microchannel

• Two big reservoirs

• Voltage applies to the system

Straight Microchannel
 continues flow

• Two big reservoirs

• Voltage applies to the system

Straight Microchannel

Two big reservoirs Act like Well

• Voltage applies to the system

Straight Microchannel

- Two big reservoirs Act like Well
 changes in the microchannel will not affect the liquid in the well
- Voltage applies to the system

Straight Microchannel

- Two big reservoirs Act like Well
 - * changes in the microchannel will not affect the liquid in the well
 - * Assuming open boundaries at two ends (instead of close system)
- Voltage applies to the system

Straight Microchannel

- Two big reservoirs Act like Well
 - * changes in the microchannel will not affect the liquid in the well
 - * Assuming open boundaries at two ends (instead of close system)
- Voltage applies to the system
 - * the voltage gradient direction: from left to right

8

Step 1:

Open the Software

COMSOL Dropbox

Multiphysics 3.5

Reaction ...

xyExtract

COMSOL MULTIPHYSICS®

Patent pending. Copyright 01994-2008 COMSOL AB. All rights reserved.

COMSOL

iTunes

iTunes

iTunes

COMSOL Multiphysics - Geom1 : [Untitled]

(-2.2, -1.8)

GRID EQUAL SNAP DIALOG MULTI SOLID

Memory: (78 / 82)

- 0

х

Memory: (78 / 82)

Draw your geometry

Step 2:

COMSOL Multiphysics - Geom	1 : [Unt	titled]																					U			
File Edit Option Draw Physics	<u>M</u> esh	<u>S</u> ol	ve <u>P</u>	ostpr	oce	ssing	Mul	tiphy	ysics	Hel	р														_		
C 🖻 🖬 🎒 🔃 🐰 🖻 📾		\triangle	æ 2	<u>ه</u> :	R	_} =	0	4	0	Ø	€ €	۾ د) 📌		ດີດ	26 ε	Ω	۲	6	ę							
Model Tree											_	_					_	_			_	_	 _	_			7
L. F: F:		R	5	Ľ	•	- 1		- 1	- 1						_					-	-	1	 			1	
··· Geom1			-	1.8 -			•	·				•		•								•					1
	•	2		1.6				•														•		•	•		1
	•			1.4 -			•							•		•					•	•			•	•	1
	1	_		1.2 -				•														•					-
		~	5	1																		•					1
	24			0.8 -																							1
	88	ter i		0.6 -				•														•					-
	<u>4</u> L			0.4 -																							-
	+	le		0.2 -																							-
	Ġ		-	0 -																							- =
			-	0.2 -																							- 1
	17			0.4 -																							-
		1 =0	-	0.6																							-
				0.8 -																							-
	l 🐻			-1 -																							-
	o o	UP ↔	-	1.2 -																							-
	ᅓ		-	1.4 -																							-
	B		-	1.6 -																							-
[untitled]	- B		-	1.8 -																							-
	1			L																			 				Ŧ
	×					-2			-1.4		-1			-0.4		0			0.6		1		1.6		2		
		•																									
(-2.2, -1.8)	,	_		G	RID	EQU	AL S	NAP	DIA	LOG	MUL	TI S	OLID		_										Mer	nory:	(78

COMSOL Multiphysics - Geom1 : [Untitled]

- 0

х

🐠 COMSOL Multip	hysic	s - Geom1 : [Untitled]																								x
File Edit Options	Draw	Physics Mesh Solve Postr	proce	ssina	Mu	ltiph	vsics	He	p		1															
D 🛎 日 🎒 🗄		Draw Objects 🔹 🕨		Red	tang	le/So	quare) 🦂	•	7 ද්	2 92	Ω	۲	ا	8								
Model Tree		Specify Objects		Red	tang	ie/So	Juare	(Cer	iteret	l)					_											1
┖• 남: 눈:		Object Properties	0	Elli	ose/C	ircle					-	-		1	-	-	-			1	-	-	-		1	
Geom1		Geometric Properties	\odot	Elli	ose/C	ircle	(Cer	tere	d)		•	•	•	•		•	•		•	•			•	•	• -	
	ż¥	Create Composite Object	•	Poi	nt																				• -	
	1	Split Object		Lin	e						·												•		• -	
	×	Delete Interior Boundaries	F.	2nd	l Deg	ree E	3ézier	Cun	/e																• -	
	r	Fillet/Chamfer	24	3rd	Degr	ree B	ézier	Curv	e																• -	
	&	Tangent	•														•								• -	
		Coerce To	•																							
		Modify •																							· -	
		Work-Plane Settings			•		•	•		•	•	•	•	•	•	•	•		•		•		•		· -	_
		Embed																								
		Extrude																								
		Revolve																								
		Create Pairs																								
		Use Assembly																								
	M	Draw Mode																								
		1 Geom1 (2D)	•																							
		-1.0	, I																							$\left \right $
[untitled]		D -1.8																								+
			L	-2	1	- 1	-1.4	-	-1	-	-	-0.4	-	0	-	-	0.6	-	1	-	-	1.6	-	2	-	
	Adding rectangle with label 'R1'.														^											
							_		_			_														-
(-2.2, -0.6)			GRID	EQU	JAL S	SNAP	DIA	LOG	MUL	TI S	OLID)												Mem	iory: (78 82

COMSOL Multiphysics - Geoma . [Ontided	1																				
File Edit Options Draw Physics Mesh Sol	lve Postpro	cessing	Multi	physic:	s Hel	р															
🗅 😅 🖬 🎒 🔃 👗 🖻 🛍 💽 🛆	$ \Delta \Delta =$	₿= } =	= ≌		€ ≶) 🔎	ø	• 💠 🛛	🖌 d	ΩδΩ	Ω	0	(?							
Model Tree		1					_											_		•	1
🕒 t: t: 🖬 🗖 🔣	l f	· · ·	1	1 1	1	1	1				1	1	1	г г	- 1	- 1	- 1	- 1	1	-	
Geom1 O 。	1.8	• •	•	• •		•	•				•									•	1
\odot	1.6			· ·																	1
· 🗍	1.4		6								-									P	1
	1.2			• •	•	·	•		•	·	·	•	•		•	•	•	·	•		1
rZ	1			• •	•	·	·	• •	•	·	·	·	•		•	•	·	·	•		-
× 🔳	0.8		ф	· ·									•					•		p	-
	0.6			· ·		•	•			·	·	•	•				•				-
	0.4			· ·									•		•						-
- +	0.2		<u> </u>								R1									-	-
	0-																				- =
	-0.2																				-
	-0.4																				-
	-0.6																				-
	-0.8																				-
	-1 -																				-
	-1.2																				-
1	-1.4																				-
	-1.6																				-
[untitled]	-1.8																				
																					Ŧ
\mathbf{E}		-2		-1.4	4	-1		-0.	4	0		C	.6	1			1.6		2		
Adding	rectangl	e with	labe	1 'R1	·. ·																
Adding	rectangl	e with e with	labe	1 'R1	1																
(0.4, -1)	GR			AP DIA	ALOG	MULT	I SC												Men	nory:	(79

© COMSOL Multiphysics - Geom1	: [Unt	titled]																						L				٤ –
ile Edit Options Draw Physics	Mesh	Solv	ve Post	oroci	essing	Mult	tiphy	ysics	Help					_														
) 🛩 🖬 🎒 🔃 🕺 🛍 🛍	R	\triangle		- ¶	= ₿ =	: ≌	4	0	Ð E	5	🤉 ا	÷	M	Ωĥ	2Ω	Ω	۲	<₽	Ŷ									
Model Tree							_									-											7	
└• է: է:	•					1	1	- 1	1	1	-	1	1	-	1		1	1	1	1	1	-	-1			-		
··· Geom1	0		1.8	F.			•			•				•		•		•		•	•						1	
	\odot	2	1.6	F.		•				•		•	•				•	•	•	•			•				1	
	•		1.4	ŀ						•				•		•		•		•							1	
	1	•	1.2	ŀ												•		•		•	•		•				1	
	5	~	1	ŀ								•	•				•	•	•				•					
	2		0.8	ŀ																•							-	
	品	国	0.6	ŀ																							-	
	44	e	0.4	ŀ																							-	
	+	ie.	0.2	┝																							-	
	G		0	ŀ											Micro	ochar	nnel										- =	
	B		-0.2	ŀ																							-	
	7		-0.4	ŀ																							-	
		1 =0	-0.6	ŀ																							-	
			-0.8	ŀ																							-	
	a		-1	ŀ																							-	
	l o	UP →	-1.2	ŀ																							-	
	ta		-1.4	ŀ																							-	
	Б		-1.6	ŀ																							-	
[untitled]	B		-1.8	ŀ																							-	
																				1							Ŧ	
	×				-2			-1.4		-1		-	0.4		0		(0.6		1			1.6		2			
	Add	ling	rectan	gle	with	lab	el	'R1'.																				
	Add	ding datir	rectan	gle ang	with le wit	lab th l	el abe	'R1'. 1 'M'	icro	cha	nnel																	-
	lobe	acti		ang			ab c		1010	ona		· ·		_														

GRID EQUAL SNAP DIALOG MULTI SOLID

Memory: (79 / 83)

COMSOL Multiphysics - Geom1 : [[Unti	tled]																						X
File Edit Options Draw Physics N	1esh	Solv	e Post	proces	sing N	Nultip	hysics	Help	,															
D 🗳 🖬 🎒 🔃 🐰 🖻 🛍 🚺	R	ΔA	& ▲		4 =	≅	()	Ð 🔎) 🔎	ø	-}	🖌 ð	λ6 Ω	Ω	۲	€	Ŷ							
Model Tree				4								6		_										F
L. F: F:	•	Ŀ		<u> </u>	1	1		-	1	1			1	-	-	1	1	1	1	1	1	1	1	<u> </u>
··· Geom1	\circ	•	1.8	F .		•				•		•	•	·	•	•	•	•	•	•	•		•	1
	\odot	1	1.6	F .		•			•	•		•	•	•	•	•	•	•	•	•	•		•	1
	•		1.4	F .		•				•		•		•	•	·	•	•	•	•				
	/	•	1.2	F .		•			•	•		•	•	•	•	•	•	•	•	•	•		•	1
	r	/	1	F .		•		•		•		•		•	•	·	•	•	•	•			•	1
	R		0.8	F .		•				•		•		•	•		•	•	•	•				
	88	Ì\$	0.6	F .		•				•		•		•	•	·	•	•	•	•				
	<u>4</u> 6	Ì£	0.4	F .		•				•		•		•	•	·	•	•	•	•	•			
	+	ie.	0.2	- ·	•									•	•			•						
	6		0	F .		•							Mic	rocha	nnel		•	•	•					- =
-	Ľ	NOME	-0.2	F .		•				•						·	•	•						
	r	æ	-0.4	F .	•	•				•		•			•	·	•	•	•		•			
-	&	1	-0.6	F .		•				•		•		•	•	·	•	•	•	•	•		•	
	•	[]▶	-0.8	F .	•	•				•		•		•	•	·	•	•	•	•	•			
	۲	_₽	-1	F .	•	•				•		•		•	•		•	•	•	•	•			
	0	÷	-1.2	F .	•			•		•							•	•	•					
	Ż×		-1.4	F .	•	•				•		•		•	•		•	•	•		•			
	P		-1.6	F .	•					•					•		•	•	•	•				
[untitled]	5		-1.8	1	•		· ·	•	•	•	· ·	•	•	•	•	•	•	•	•	•			•	-
					-2		-1.4		-1		-0.	4	0			0.6		1	1	1	.6	2		
-	200	ing	rector	ale .	with 1	lahal	101	1																
	Add	ing	rectan	gle t	with 1	label	'R1'																	Î.
(-0.2, -0.8)	Upd	atin	g rect	GRID	e with EOUAL	n Iab SNA	P DIA	LOG	MULT	inel I SO	ID											N	1emory	r: (79 / 83

Step 3:

Mesh your domain

Step 4:

Determine the physics of your model

The physics of problem

- Straight Microchannel
 - 2D: Rectangular geometry

The physics of problem

- Straight Microchannel
 - 2D: Rectangular geometry
 - Wall boundary condition
 - No mass transfer throw walls

Wall boundary condition

NO Mass transfer

					10 1
				· · · · · · · · · · · · · · · · · · ·	
		$\Delta \Delta$			
4-1					1-1
	~				LAD.
×		K I V	$\lambda \neq X \downarrow \neq X \neq X$	- / \ / \ / \ / \ / \ / \ / \ / \ / \ /	rsk-
	\mathcal{V}	1 200			
v			V21-X		~~
~~			9807 N 7 N 7		~~
			$\nu v v v$		
512					
		1/1-36			~~
-7N-		15.171	7 6 		vr.
	Ж.	1 26-1			
X8.,		* 1 ス	$\leq \sqrt{\lambda} \left(\sqrt{2} + \sqrt{2} \right)$		LAN.
40	<u>~</u>				NUR
лъ					LAN.
		Y_Y			
25	77				~~
- 32			V V V		~~ ~

NO Mass transfer

RECALL

The physics of problem

- Straight Microchannel
 - 2D: Rectangular geometry
 - Wall boundary condition
 - No mass transfer throw walls
- Two big reservoirs

Replace them with the open boundary condition

RECALL

The physics of problem

- Straight Microchannel
 - 2D: Rectangular geometry
 - Wall boundary condition
 - No mass transfer throw walls
- Two big reservoirs

Wall boundary condition NO Mass transfer

- Replace them with the open boundary condition
- No mass transfer throw inlet/outlet

Mass Transfer

Open boundary condition RECALL

The physics of problem

- Straight Microchannel
 - 2D: Rectangular geometry
 - Wall boundary condition
 - No mass transfer throw walls Mass Transfer**S** Open boundary
- Two big reservoirs

Wall boundary condition NO Mass transfer

ondition

- Replace them with the open boundary condition
- No mass transfer throw inlet/outlet
- Voltage applies to the system
 - DC Conductive Media
 - Electrical Insulated Walls

ſ	COMSOL Multiphysics - Geom1 : a.mp	bh	Contraction of the second s	
ſ	File Edit Options Draw Physics Mesh	Solve Postprocessing Multiphysics Help		
	D 😅 🖬 🎒 💽 🕺 🖿 📾 💽	△ ☆ ☆ 🗣 📲 = ≌ 💔 🕫 🔎 🖗 🛠	🕅 📢 🔘 Ω Ω6 Ω6 🕅	
	Model Tree	25		4
	··· Geom1 Mode	el Navigator	X	
	Mu	Itiphysics Component Library User Components	Multiphysics	
	S	Space dimension: 2D Application Modes Image: COMSOL Multiphysics Image: Comsol Module Image: Comsol Comsol Comparison Image: C	Add Remove Add Remove Geom1 (2D) Geom1 (2D) Independent variables: x y z Application Mode Properties Add Geometry Add Frame	
ŀ	[untitled]	Dependent variables: u v p Application mode name: mmglf Element: Lagrange - P2P1	Ruling application mode:	
			OK Cancel Help	2
	Mes	sh consists of 406 elements.		*
	Mes	sh consists of 418 elements.		-
	(-1.845, 2.512)	EQUAL	Normal	Memory: (139 / 141)

Model Navigator Multiphysics Component Library User Components	X	
Space dimension: 2D Application Modes COMSOL Multiphysics COMSOL Multiphysics AC/DC Module Acoustics Module Chemical Engineering Module Chemical Engineering Module Heat Transfer Module MEMS Module RF Module Structural Mechanics Module	Add Remove	
	Independent variables: x y z Application Mode Properties	
	Add Geometry Add Frame	
Dependent variables: Application mode name: Element:	Ruling application mode:	
	OK Cancel Help	

Model Navigator					
Multiphysics Component Library User Components					
Space dimension: 2D	•	Multiphysics			
Acoustics Module Chemical Engineering Module Earth Science Module Heat Transfer Module MEMS Module MEMS Module Structural Mechanics Electrostatics Microfluidics Moving Interfaces Eluid-Structure Interaction		Add Remove			
Acoustic-Structure Interaction Electro-Thermal Interaction Thermal-Electric-Structural Interaction Thermal-Structural Interaction RF Module Structural Mechanics Module	*	Independent variables: x y z Application Mode Properties Add Geometry Add Frame			
Dependent variables:		Ruling application mode:			
Application mode name: Element:	v	Multiphysics			
		OK Cancel Help			

Model Navigator		×
Multiphysics Component Library User Components		
Space dimension: 2D Image: Constant of the second secon	•	Multiphysics Add Remove Geom1 (2D)
 Two-Phase Flow, Laminar, Phase Field Two-Phase Flow, Laminar, Level Set Convection and Diffusion Electrokinetic Flow Flow with Species Transport Electroosmotic Flow 	-	Independent variables: x y z Application Mode Properties Add Geometry Add Frame
Dependent variables: Application mode name:		Ruling application mode:
Element:	Ŧ	Multiphysics
		OK Cancel Help

Multiphysics Component Library User Components Space dimension: 2D Image: Space dimension: 2D Image: Heat Transfer Module MEMS Module Image: MEMS Module MEMS Module Image: MEMS Module Structural Mechanics Image: Memory Microfluidics Electrostatics Image: Microfluidics Microfluidics Image: Memory Microfluidics Image: Microfluidics Image: Microfluidics Image: M	 Multiphysics Add Remove Geom1 (2D) Geom1 (2D) Independent variables: x y z Application Mode Properties Add Geometry Add Frame
Dependent variables: Application mode name: mmglf Element: Lagrange - P ₂ P ₁	 Ruling application mode: Multiphysics

Model Navigator	×
Multiphysics Component Library User Components	
Space dimension: 2D	Multiphysics
Heat Transfer Module MEMS Module Structural Mechanics Electrostatics Microfluidics General Laminar Flow Incompressible Navier-Stokes Steady-state analysis Transient analysis	Add Remove
 Weakly Compressible Navier-Stokes Stokes Flow Weakly Compressible Stokes Flow Two-Phase Flow, Laminar, Phase Field Two-Phase Flow, Laminar, Level Set Two-Phase Flow, Laminar, Level Set Electrokinetic Flow 	Independent variables: x y z Application Mode Properties Add Geometry Add Frame
Dependent variables:u v pApplication mode name:mmglfElement:Lagrange - P2 P1	 Ruling application mode: Multiphysics
	OK Cancel Help

Model Navigator	×
Multiphysics Component Library User Components	
Space dimension: 2D	Multiphysics
Heat Transfer Module	Geom1 (2D)
Electrostatics	
General Laminar Flow Incompressible Navier-Stokes	
Steady-state analysis Transient analysis Weakly Compressible Navier-Stokes	
⊕ ← ● Stokes Flow ⊕ ← ● Weakly Compressible Stokes Flow	Application Mode Properties
	Add Geometry
Electrokinetic Flow	Add Frame
Dependent variables: u v p Application mode name mmglf	Ruling application mode:
Element: Lagrange - P ₂ P ₁	Multiphysics
	OK Cancel Help

Model Navigator					
Multiphysics Component Library User Components					
Space dimension: 2D	Multiphysics Add Remove				
MEMS Module MEMS Module MEMS Module Microfluidics Microfluidics Microfluidics Microfluidics Microfluidics Microfluidics Microfluidics	Geom1 (2D)				
 Steady-state analysis Transient analysis Weakly Compressible Navier-Stokes Stokes Flow Weakly Compressible Stokes Flow Weakly Compressible Stokes Flow Two-Phase Flow, Laminar, Phase Field Two-Phase Flow, Laminar, Level Set Convection and Diffusion Electrokinetic Flow 	Independent variables: x y z Application Mode Properties Add Geometry Add Frame				
Dependent variables: u v p Application mode name: mmglf Element: Lagrange - P ₂ P ₁	 Ruling application mode: Multiphysics 				
	OK Cancel Help				

ſ	COMSOL Multiphysics - Geom1 : a.mp	bh	Contraction of the second s	
ſ	File Edit Options Draw Physics Mesh	Solve Postprocessing Multiphysics Help		
	D 😅 🖬 🎒 💽 🕺 🖿 📾 💽	△ ☆ ☆ 🗣 📲 = ≌ 💔 🕫 🔎 🖗 🛠	🕅 📢 🔘 Ω Ω6 Ω6 🕅	
	Model Tree	25		4
	··· Geom1 Mode	el Navigator	X	
	Mu	Itiphysics Component Library User Components	Multiphysics	
	S	Space dimension: 2D Application Modes Image: COMSOL Multiphysics Image: Comsol Module Image: Comsol Comsol Complexity Image: Complexity <t< th=""><th>Add Remove Add Remove Geom1 (2D) Geom1 (2D) Independent variables: x y z Application Mode Properties Add Geometry Add Frame</th><th></th></t<>	Add Remove Add Remove Geom1 (2D) Geom1 (2D) Independent variables: x y z Application Mode Properties Add Geometry Add Frame	
ŀ	[untitled]	Dependent variables: u v p Application mode name: mmglf Element: Lagrange - P2P1	Ruling application mode:	
			OK Cancel Help	2
	Mes	sh consists of 406 elements.		*
	Mes	sh consists of 418 elements.		-
	(-1.845, 2.512)	EQUAL	Normal	Memory: (139 / 141)

Model Navigator					
Multiphysics Component Library User Component	nts				
Space dimension: 2D Acoustics Module Chemical Engineering Module Earth Science Module Heat Transfer Module MEMS Module Structural Mechanics Heat Transfer Mechanics	 Multiphysics Add Remove Geom1 (2D) Incompressible Navier-Stokes 				
Moving Interfaces Fluid-Structure Interaction Acoustic-Structure Interaction Electro-Thermal Interaction Thermal-Electric-Structural Interaction Thermal-Structural Interaction Structural Mechanics Module	n → → → → → → → → →				
Dependent variables: c Application mode name: chekf Element: Lagrange - Quadratic	Ruling application mode: Incompressible Navier-Stokes (mmglf) Multiphysics				
	OK Cancel Help				

Model Navigator	×
Multiphysics Component Library User Components	
Space dimension: 2D Acoustics Module Chemical Engineering Module Earth Science Module Earth Science Module Heat Transfer Module Heat Transfer Module MEMS Module Electrostatics Electrostatics Electrostatics Microfluidics Moving Interfaces Fluid-Structure Interaction Electro-Thermal Interaction Electro-Thermal Interaction Thermal-Electric-Structural Interaction	 Multiphysics Add Remove Geom1 (2D) Incompressible Navier-Stokes Incompressible Navier-Stokes Implication Mode Properties Add Geometry Add Geometry
Dependent variables: V	Ruling application mode:
Application mode name: emdc	Incompressible Navier-Stokes (mmglr)
Element: Lagrange - Quadratic	Multiphysics
	OK Cancel Help

lodel Navigator	X
Multiphysics Component Library User Components Space dimension: Description: Space dimension: Description: Description: Descript	 Multiphysics Add Remove Geom1 (2D) Incompressible Navier-Stokes Incompressible Navier-Stokes Implement variables: u v p lmx_mmglf l Application Mode Properties Add Geometry Add Frame
Dependent variables: V Application mode name: emdc Element: Lagrange - Quadratic	Ruling application mode: Incompressible Navier-Stokes (mmglf) Multiphysics

Step 5:

Define the Boundary Conditions

다 🖆 🖬 🚭 🔃 🕹 🛍 🕼 🛆 🛆 🛦 🚽 丰 😑 🚷 😥 🔎 🗩 🖉 🖓 🚳 🛍 🐇 👔

_ 0

Х

Mesh consists of 488 elements. Number of degrees of freedom solved for: 1049 Solution time: 0.032 s

Weakly compressible flow: Off

? 🐼 ۞ Ω Ω ၷ ၷ 🗽 🚼 🕹 🖷 🖓 🖉 😫 😫 🖕 😫 🖕 😫 🖕 🖄 🖄 🕼 🕼 🖉 🕹 🎦

D 😅 🖬 🚭 🔃 🕺 🛍 🛍 📐 🛆 🛦 🗣 🗣 = 😫 🚷 🖉 🖓 🖉 🖉 🖓 🖓 🖉 🖓

S 🐼 🐼 🗴 🛍 🛍 陆 🛆 🔬 🗣 丰 🖴 🔇 🖉 🖉 🖓 🖉 🖉 🖓 🖉 🖉

오 🐼 🕼 🕲 🖬 🛍 🕼 💫 🖉 😫 😫 😫 🖕 🖕 😫 📲 🖴 🖉

To COMSOL Multiphysics - Geom1/I	MEMS Module - Conductive Media DC (emdc) : a.mph	_ 🗆 X
File Edit Options Draw Physics N	Mesh Solve Postprocessing Multiphysics Help	
D 🚄 🖶 🎒 💽 🐰 🖻 💼	? � @ Ω Ω ዄ ዄ \ 🛠 짖 오 🔍 🔍 🔍 🖌 🖌 🖉	
Model Tree └・ 上: 上: □ Geom1 □ Incompressible Navier-Stokes (mi Conductive Media DC (emdc)		
	Boundary Settings - Conductive Media DC (emdc)	
	Boundaries Groups Boundary selection 1 2 3 4 Group: > Select by group Interior boundaries Conditions Part, Color/Style Boundary sources and constraints Library material: Use to set the set of the	
Conductive Media DC (emdc)	OK Cancel Apply Hel	P
Dependent variables: V Default element type: Lagrange - Quad		1.5 2
Constraint type: Ideal	Mesh consists of 406 elements.	
	Mesh consists of 416 elements. Mesh consists of 418 elements.	-
(-1.5, 0.5)	GRID EQUAL SNAP	Memory: (126 / 143)

□ 🛎 🖬 🚭 🔃 🐰 🖻 🛍 🕟 🛆 🛦 🚽 📲 🖴 🕼 ⊘ ⊘ 🖗 🛠 🖗 🤶 🥐

? | ♦ ۞ Ω Ω ☎ ☎ № | € = = = | ♥ ♀ ♀ ♀ ≫ ≫ | € = = = | ♥ ∞ △ △ | → △ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 €

? | ♦ ۞ Ω Ω ☎ ☎ № | € = = = | ♥ ♀ ♀ ♀ ≫ ≫ | € = = = | ♥ ∞ △ △ | → △ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 €

Step 6:

Solve your problem

TOMSOL Multiphysics - Ge	eom1/MEMS Module - Conductive M	ledia DC (emdc) : a.mph			
<u>File Edit Options Draw Phy</u>	<u>y</u> sics <u>M</u> esh <u>S</u> olve <u>P</u> ostprocessing	M <u>u</u> ltiphysics <u>H</u> elp			
🗅 🚅 🖬 🎒 💽 🐰 🖿) 📾 💽 🛆 🛦 🛦 🗣 😫 =	😫 🔇 🗩 🗩 💭 🙀	🕴 📢 🔘 ລຸລຣ 🏡 😽	?	
Model Tree					
L. L: L:			III		• •
Geom1	2.5				
Incompressible Navier-St	V Progress - Solve Problem			×	
Conductive Media DC (en					
		Assembling matrice	es		
	Progress Convergence Plot Log	1			
	Description	Progress Convergence	Parameter Value		
	Nonlinear solver	69 % 1.19e-4	Step 16	Stop	
	Assembly	23 %		Stop	KK I
< III					
a.mph					
Path: C:\Users\Princess\Deskto					
aun erfeserstrinnesstbeske					2
	Close automatically			Cancel	
	Crose automatically			Cancer	-
(-0.319, 1.396)	EQUA			Normal	Memory: (141 / 143)

Post-processing

Step 7:

Plot Parameters

Principal Streamline General Su	Particle Tracing Max/Min Deform Animate face Contour Boundary Arrow
Plot type	Solution to use
Surface	Solution at time: 0
Contour	Time:
E Boundary	Solution at angle (phase): 0 degrees
Arrow	Frame:
Principal	Geometries to use
Streamline	Geom1
Particle tracing	
Max/min marker	
Deformed shape	Logical expression for inclusion:
Geometry edges	
	Element nodes to fulfill expression:

X

Plot Parameters

X

Plot Parameters

Principal Streamlin General Su	Face Contour Boundary	Animate Arrow
Plot type	Solution to use	
Surface	Solution at time: 0	-
Contour	Time:	
E Boundary	Solution at angle (phase): 0 degr	ees
Arrow	Frame:	
Principal	Geometries to use	
Streamine	Geom1	
Particle tracing		
Max/min marker		
Deformed shape	Logical expression for inclusion:	
Geometry edges		
	Element nodes to fulfill expression:	

×

Plot Parameters

Principal Streamline General Su	e Particle Tracing Max/Min Deform Animate Irface Contour Boundary Arrow
Arrow plot	Plot arrows on: Subdomains 💌
Subdomain Data Bound	dary Data Height Data
Predefined quantities:	Velocity field Recover
x component:	Conductive Media DC (emdc) Incompressible Navier-Stokes (mmolf)
y component:	Velocity field
Unit:	
Arrow positioning	
Number	1
x points: • [15	Edit
y points: • 15	Edit
	lat tat
Arrow parameters	
Arrow parameters Arrow type: Arrow	w Scale factor: V Auto 1

Any Question up to here?

HINT:

Comsol Library

COMSOL Dropbox

Multiphysics 3.5

Reaction ...

xyExtract

COMSOL MULTIPHYSICS®

Patent pending. Copyright 01994-2008 COMSOL AB. All rights reserved.

COMSOL

iTunes

iTunes

随 Model Navigator

 ΣZ

🐠 Model Navigator	
Model Navigator New Model Library User Models Open Settings Model Library Model Library COMSOL Multiphysics AC/DC Module AC/DC Module Acoustics Module Chemical Engineering Module Component Library Earth Science Module Heat Transfer Module MEMS Module	
Reaction Engineering Lab	Description:
Show all files Documentation Library Root Refresh	
	OK Cancel Help

🐠 Model Navigator			x
New Model Library User Models Op Model Library COMSOL Multiphysics AC/DC Module Acoustics Module Acoustics Module Acoustics Module Acoustics Module Component Library Component Library Earth Science Module Heat Transfer Module MEMS Module MEMS Module Microfluidics Models Microfluidics Models Piezo Models Sensor Models Microfluidics Models Sensor Models Sensor Models Methodule Sensor Models Sensor Models Structural Mechanics Module Structural Mechanics Module	en Settings		
Library Root	Refresh		
		OK Cancel Help	2

Model Navigator			x
New Model Library User Models Ope Model Library COMSOL Multiphysics AC/DC Module Acoustics Module Acoustics Module Acoustics Module Component Library Earth Science Module MEMS Module MEMS Module Microfluidics Models Microfluidics Models Microfluidics Models Microfluidics Models Microfluidics Models Microfluidics Models Free Reaction Engineering Lab RF Module MEMS Module Structural Mechanics Module Microfluidics Module	en Settings		
Show all files Library Root	Documentation Refresh		
		OK Cancel Help	>

Thank You