

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 1

How to Use Input Field

Suggestions in a Web Dynpro for

Java Application

Applies to:

Web Dynpro for Java 7.11. For more information, visit the Web Dynpro Java homepage.

Summary

This tutorial explains the input suggestion feature available with the Web Dynpro AJAX client. It is shown
how automatic input suggestion can be activated and how an application can implement a customized input
suggestion as an extension of the Object Value Selector (OVS) feature.

Author: Web Dynpro Java Team

Company: SAP AG

Created on: 29 June 2010

https://www.sdn.sap.com/irj/sdn/nw-wdjava

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 2

Table of Contents

Systems, Installed Applications, and Authorizations ... 3

Objectives ... 3

Suggestion with Static Value Sets .. 10

A Dynamic Value Set with Keys of Type CctCode .. 12

Dependent Date Pickers .. 13

City Search with OVS and Input Suggestion .. 14

Dependent Date Pickers .. 16

Value Selection with CctCode and Suggestion ... 17

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 3

Introduction

In this tutorial you will learn how to implement (asynchronous) input suggestion for Web Dynpro

input fields. Input suggestion displays a list of suggested input values while a user types into the
input field.

The input suggestion function in Web Dynpro exists in different forms:

For input fields that are bound to context attributes with value sets, the framework provides
automatic input suggestion. It is sufficient to just set the “suggestValues” property for the input field.

(It does not matter if the value set of the data type has been defined at design time or at runtime.)

Application-controlled input suggestion can be implemented as an extension of the well-known

Object Value Selector (OVS) function. The application has full control of the suggestion list in that
case.

This tutorial describes both automatic and application-controlled input suggestion. You will learn all
the steps for implementing a custom-configured OVS with input suggestion.

To simplify matters, the tutorial application does not use a real data model. Instead, a plain Java
class that manages an extract of the geographical database “GeoNames” is used.

The “GeoNames” database is available at http://www.geonames.org/ under a Creative Commons
License.

Prerequisites

Systems, Installed Applications, and Authorizations

You need the NetWeaver Developer Studio (Version 7.11 or later) to compile and deploy the tutorial
application. The application server used should have the same version as the NWDS or a newer
version.

The tutorial application is available as a development component (DC). You need to import the
Software Component HM-WDUIDMKTCNT, which contains the DC tc/wd/tut/inpfld/sgst. The exact

steps are described in a separate document.

Objectives

After working through this tutorial you should be able to:

 Apply the input suggestion functionality to your applications

 Implement the core OVS functionality

 Implement input suggestion as an OVS extension

 Implement a custom OVS configuration

 Assign the OVS to a (set of) context attribute(s)

 Activate input suggestion for input fields

http://www.geonames.org/
http://creativecommons.org/licenses/by/3.0/legalcode

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 4

An Object Value Selector (OVS) for Cities

The component controller context of our tutorial application contains a node named “Booking” that
stores the data for a hotel search form:

We want to create an OVS for the context attribute “cityName“. The OVS dialog allows the user to
enter a pattern (in our tutorial, this is just a prefix of the searched city). After you have pressed the
“Go” button (this might have a different label, depending on your locale), the OVS queries the data
model for a list of all matching records and displays the result in a table:

The table displays a number of columns that help to identify a city, especially if the city name is not
unique. Note that, for example, “Roma” exists twice and can be identified by the country, or that
“Romanovka” exists twice and can be identified by the region.

When an entry is selected from the table, the OVS updates some context attributes (city name, city
ID, country name, country ID) of the Web Dynpro application and the OVS dialog is closed by the
framework. It is up to the OVS implementation to determine which attributes of the application will be
updated.

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 5

OVS Input and Output Nodes

The OVS needs context nodes to store its input and output values. We use a context node
“CityOVS” (cardinality 1:1, selection 1:1) with two sub-nodes “Input” (cardinality 1:1, selection 1:1)
and “Output” (cardinality 0:n, selection 0:1) in the component controller context. The elements of the
“Output” node represent the rows of the result table;, therefore we give it cardinality 0:n.

Note that only a subset of the output attributes is displayed in the OVS and that the attributes appear
in a specific order. We will describe below how this can be achieved.

Implementing the OVS

The component controller contains an inner class “CityOVS”, which implements the
IWDOVSContextNotificationListener interface. We implement it as a non-static inner class

because we need access to the component controller context and some of its non-static methods.

Let’s have a look at the code. Open the source code for the component controller of the tutorial

(Web Dynpro Explorer Right-click Component Controller Open Java Editor, select CityOVS
in the Outline view):

 private class CityOVS

 extends WDOVSConfigurator

 implements IWDOVSContextNotificationListener, IWDOVSSuggester

Note that this class takes three roles at the same time: OVS context listener, OVS suggester, and
OVS configurator.

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 6

Implementing the Context Notification Interface

For the core OVS functionality, we implement the IWDOVSContextNotificationListener interface

methods onQuery() and applyResult(). The applyInputValues() method is not used in

our example.

The onQuery() method is called by the Web Dynpro runtime when the “Go” button in the OVS

dialog is pressed. Its purpose is to query the data model for all records matching the (set of) input
parameters and to fill the result table (output node) accordingly.

In our implementation, the data model is queried to find all records where the city name starts with
the entered pattern. The parameter “includeAltCityNames” controls whether or not the model should
also look for alternative city names.

For each matching record a context element in the output node is created and its attribute values are
populated:

public void onQuery(IWDNodeElement queryInputNodeElement,

 IWDNode queryOutputNode)

{

 String filter = queryInputNodeElement.

 getAttributeAsText(IInputElement.CITY_PATTERN);

 List<GeoRecord> result = getModel().findMatchingRecords(filter,

 wdContext.currentCityOVSElement().getIncludeAltCityNames());

 for (GeoRecord r : result)

 {

 IWDNodeElement e = queryOutputNode.createAndAddElement();

 e.setAttributeValue(IOutputElement.CITY_GEO_NAME_ID, r.getGeoNameId());

 e.setAttributeValue(IOutputElement.CITY_NAME, r.getName());

 if (wdContext.currentCityOVSElement().getIncludeAltCityNames())

 {

 e.setAttributeValue(IOutputElement.CITY_ALT_NAME, r.getMatchingCityName());

 }

 e.setAttributeValue(IOutputElement.COUNTRY_ISO_CODE, r.getCountryCode());

 e.setAttributeValue(IOutputElement.COUNTRY_NAME, getModel().

 getCountryName(r.getCountryCode()));

 String admin1Key = r.getCountryCode() + "." + r.getAdmin1Code();

 e.setAttributeValue(IOutputElement.ADMIN1_NAME,getModel().

 getAdmin1Name(admin1Key));

 String admin2Key = admin1Key + "." + r.getAdmin2Code();

 e.setAttributeValue(IOutputElement.ADMIN2_NAME, getModel().

 getAdmin2Name(admin2Key));

 e.setAttributeValue(IOutputElement.POPULATION, r.getPopulation());

 }

}

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 7

The applyResult() method is called by the Web Dynpro runtime when a row from the output

table is selected. The dialog is closed automatically and a number of attribute values in the
application context are populated from the selected row.

In our implementation we update the city ID, the city name, the country code, and the country name
attributes:

 public void applyResult(IWDNodeElement applicationNodeElement, IWDNodeElement

 queryOutputNodeElement)

 {

 String cityGeoNameId = (String)

 queryOutputNodeElement.getAttributeValue(IOutputElement.CITY_GEO_NAME_ID);

 applicationNodeElement.setAttributeValue(IBookingElement.CITY_GEO_NAME_ID,

 cityGeoNameId);

 String cityName = getModel().findRecord(cityGeoNameId).getName();

 applicationNodeElement.setAttributeValue(IBookingElement.CITY_NAME, cityName);

 String countryCode = (String)

 queryOutputNodeElement.getAttributeValue(IOutputElement.COUNTRY_ISO_CODE);

 applicationNodeElement.setAttributeValue(IBookingElement.COUNTRY_ISO_CODE,

 countryCode);

 String countryName = getModel().getCountryName(countryCode);

 applicationNodeElement.setAttributeValue(IBookingElement.COUNTRY_NAME,

 countryName);

 }

 Note that if you want to use the typed API for the applicationNodeElement, you

must cast it in accordance with the view controller type and not the component controller type.

That’s all that is needed to implement the core OVS functionality!

Implementing the Suggestion Interface

Let’s enhance the OVS with the input suggestion functionality. We have to implement the methods
from the IWDOVSSuggester interface.

The suggest() method is called by the Web Dynpro runtime whenever the user types inside a

suggestion-enabled input field (after a small delay). This happens asynchronously to avoid blocking
the user.

The purpose of the suggest() method is to provide a list of input suggestions for the currently

entered value (given by the parameter “filter”).

A suggestion list entry has three components:
1. A unique key displayed in the first column of the list
2. A description text displayed in the second column
3. An internal key that can be used to identify the data object corresponding to a suggestion

In our implementation, we first query the data model for all city records that match the last value
entered in the input field. The API for adding a suggestion list entry is the following method:

void addSuggestion(String key, String description, String identifier);

The suggestion key is composed from the city name found, the country code, and the two top-most
administrative levels to make it unique. (This might not even be sufficient, but as a last resort you
can, for example, append a counter to avoid duplicate entries).

As description we use the city name together with the country code.

The identifier parameter should be a string that can be used to uniquely identify the suggestion

value in the finalize() method. In our implementation, we use the (unique) key of a city record as

identifier:

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 8

 public void suggest(IWDOVSControl ovsControl, String filter, IWDSuggestionList

 suggestions)

 {

 List<GeoRecord> result = getModel().findMatchingRecords(filter,

 wdContext.currentCityOVSElement().getIncludeAltCityNames());

 for (GeoRecord r : result)

 {

 String suggestionKey = createSuggestionKey(r);

 String countryName = getModel().getCountryName(r.getCountryCode());

 String description = r.getMatchingCityName() + " (" + countryName + ")";

 suggestions.addSuggestion(suggestionKey, description, r.getGeoNameId());

 }

 }

The finalize () method is called by the Web Dynpro runtime to store the suggested value back

into the context attribute(s) of the application.

In our implementation, the identifier contains the key of the database record for the matching city,
and we store the city name, country code, and country name:

 public void finalize(IWDOVSControl ovsControl, String identifier)

 {

 IBookingElement booking = wdContext.currentBookingElement();

 GeoRecord r = getModel().findRecord(identifier);

 if (r != null)

 {

 booking.setCityName(r.getName());

 booking.setCountryIsoCode(r.getCountryCode());

 booking.setCountryName(getModel().getCountryName(r.getCountryCode()));

 }

 else

 {

 booking.setCityName(null);

 booking.setCountryIsoCode(null);

 booking.setCountryName(null);

 }

 }

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 9

Custom OVS Configuration

The appearance of the OVS dialog can be controlled by implementing a subclass of

WDOVSConfigurator and using an instance of this subclass in the addOVSExtension() call.

The OVS configurator class can modify the labels, order, and visibility of the OVS input fields as well
as the result table columns. Additionally, the title of the OVS dialog can be modified.

In our implementation, the “CityOVS” class itself serves as configurator by extending the class
WDOVSConfigurator and overriding its methods.

We override methods getColumnLabel() and getFieldLabel() to assign custom texts to the

input field labels and to the headers of the result table columns. The texts are stored in the

component’s message pool and accessed through the IWDTextAccessor interface:

 @Override

 public String getColumnLabel(String fieldName)

 {

 return getFieldLabel(fieldName);

 }

 @Override

 public String getFieldLabel(String fieldName)

 {

 return wdComponentAPI.getTextAccessor().getText("city_ovs_field_" + fieldName);

 }

The dialog title is changed by overriding method getWindowTitle():

 @Override

 public String getWindowTitle()

 {

 return wdComponentAPI.getTextAccessor().getText(IMessageTutorial.CITY_OVS_TITLE);

 }

We want to display the following columns in the output table of the OVS:

When the “includeAltCityNames” option is enabled, we want to display an additional column:

This is achieved by overriding the following method:

 @Override

 public List<String> selectResultColumns(List<String> names)

 {

 if (wdContext.currentCityOVSElement().getIncludeAltCityNames())

 {

 return Arrays.asList(

 IOutputElement.CITY_NAME,

 IOutputElement.CITY_ALT_NAME,

 IOutputElement.COUNTRY_NAME,

 IOutputElement.ADMIN1_NAME,

 IOutputElement.ADMIN2_NAME,

 IOutputElement.POPULATION);

 }

 else

 {

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 10

 return Arrays.asList(

 IOutputElement.CITY_NAME,

 IOutputElement.COUNTRY_NAME,

 IOutputElement.ADMIN1_NAME,

 IOutputElement.ADMIN2_NAME,

 IOutputElement.POPULATION);

 }

 }

This method should return a list of the context attribute names in the order that is to be used for the
table columns. We recommend using the constants generated for the attribute names.

Attaching the OVS to the Context

In the wdDoInit() method of the component controller, we assign the OVS to the context attribute

that stores the city name:

 WDValueServices.addOVSExtension

 (

 "CityOVS",

 new IWDAttributeInfo[] {wdContext.nodeBooking().getNodeInfo().

 getAttribute(IBookingElement.CITY_NAME)},

 getCityOVS().getProvider(), /* OVS dialog provider */

 getCityOVS() /* suggester */

);

We have encapsulated the creation of and access to the OVS dialog provider inside our CityOVS

class, but this is not mandatory.

Framework-Controlled Suggestion Support

As mentioned above, an automatic input suggestion also exists, where the suggestion list is created

by the runtime from the value set attached to some DDIC type.

Suggestion with Static Value Sets

In our search form, we have an input field where the user can select his or her preferred hotel
category. (This is more for demonstration purposes; a real application would probably just use a
drop-down list instead).

The hotel category values are defined in the DDIC type HotelCategory. The value set was

created at design time using the DDIC editor:

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 11

To activate input suggestion for the corresponding input field, it is sufficient to set the

suggestValues property to true.

At runtime you will get a suggestion list like the following:

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 12

A Dynamic Value Set with Keys of Type CctCode

The input field for entering the preferred language demonstrates the input suggestion together with
one of the so called CCTS data types (CCTS = Core Component Technical Specification). We don’t
want to go into the details of CCTS support in Web Dynpro here. For more information, refer to this
SDN article.

The context attribute language is not of type string but of CCTS type Code:

We create a value set for this attribute, where the keys have the runtime type CctCode that corresponds to

the design-time type Code:

 private void addLanguages()

 {

 IModifiableSimpleValueSet<CctCode> valueSet =

 wdContext.nodeBooking().getNodeInfo()

 .getAttribute(IBookingElement.LANGUAGE).getModifiableScalarType("")

 .getSVServices().getModifiableSimpleValueSet();

 Locale[] locales = Locale.getAvailableLocales();

 Locale sessionLocale = WDResourceHandler.getCurrentSessionLocale();

 Arrays.sort(locales, new CompareLocalesByDisplayName(sessionLocale));

 for (Locale locale : locales)

 {

 CctCode key = new CctCode(locale.getLanguage(), null, null, null, null, null);

 valueSet.put(key, locale.getDisplayLanguage(sessionLocale), sessionLocale);

 }

 }

https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/30d35ece-5c67-2910-64aa-cb331726ee1c?overridelayout=true

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 13

Note how the input field is rendered at runtime and how the suggestion feature works here:

When you type inside this field, all languages matching the entered value are offered as
suggestions. A language matches the entered value if either the language code or the language
name starts with the entered value.

When you select a suggested value and leave the field, the language key and the language name
will be displayed inside the field:

Dependent Date Pickers

Just as an aside, we want to demonstrate a feature (not related to suggestion) that is useful when
entering date ranges using date pickers.

The “Arrival Date” and “Departure Date” fields both have a date picker attached as they are bound to
context attributes of type date.

Select some date in a future month or year for the arrival date. Then open the date picker for the
departure field. Note that the date picker starts at the same year and month as the arrival date just
entered.

This dependency between date pickers is achieved by setting the defaultDateRefId property of

the departure field to the ID of the arrival field:

You have to activate the advanced properties in your IDE to see this property.

If the dependent field is still empty and the reference field already contains a date, the date picker
automatically opens at that date.

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 14

Tutorial Result

Let’s review the features shown in this tutorial.

City Search with OVS and Input Suggestion

When you start the tutorial application, you should see the following screen:

Type an uppercase “A” into the “Destination” field. A list of cities starting with “A” will be d isplayed
below the field:

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 15

Type “ms” to get “Ams”:

You can extend the search for a city so that alternative city names are also included. To activate this
feature, select the menu entry “Include Alternative City Names” from the tray menu:

Type “Santa”, for example, and you will get the following suggestions:

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 16

 Note that the main city name of all these entries doesn’t start with “Santa”, but that there is
an alternative name starting with that prefix.

Open the OVS for the field and type “Santa” again; then press the “Go” button:

Note the additional column “Alternative Name” that contains the alternative city name matching the
entered pattern.

Dependent Date Pickers

Select a date for the arrival, for example, July 1
st
, 2010. Then click on the calendar icon of the

departure date field:

The date picker opens in the same year and month as the arrival date, as long as the departure field
is still empty.

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 17

Value Selection with CctCode and Suggestion

Open the list of preferred languages by clicking the down-arrow:

Note that the input field is rendered like a dropdown list and that the list entries are rendered in two
columns. Select an entry from the list.

The input field displays the language key and the language name.

Enter a language name, for example, “English”, and press the ENTER key. The entered string is
validated against the value set and, if the language exists, the key and language name are displayed
inside the input field.

Enter some incorrect value such as “Anglish” and press ENTER. A validation error is displayed.

Clear the field again and type “d”. A list of suggested languages appears:

Note that the suggestion list contains also those entries where the language name starts with “d”,
not only those where the key starts with “d”!

Restrictions

As always, the described features are only guaranteed to work for browser versions that are officially
supported by the described Web Dynpro release.

More Information

SAP Developer Network SDN http://sdn.sap.com

http://sdn.sap.com/
http://sdn.sap.com/

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 18

Text Symbols

 Symbol Usage

 Note

 Recommendation

 Warning

 See also

 Arrow for navigation paths

http://help.sap.com/erp2005_ehp_04/helpdata/DE/40/00be09879f114aa1ec46c2afa4445b/frameset.htm

 How to Use Input Field Suggestions in a Web Dynpro for Java Application

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 19

Copyright

© Copyright 2010 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9,
iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server,

PowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes,
BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX,

Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP pro ducts and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and
other Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered

trademarks of Business Objects S.A. in the United States and in other countries. Business Objects is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document
serves informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP

Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable fo r errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the

express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituti ng an
additional warranty.

