

#TC18

How Walgreens transformed Supply Chain Management with Kyvos, Tableau, and Big Data

Anne Cruz

Manager-Supply Chain Technology Walgreens

Neeray Jain

Technical Architect Walgreens

Mahek Parikh

Data Scientist Walgreens

Walgreens Trusted since 1901

We champion the health and well-being of every community in America.

Walgreens

Walgreens

20,000 Suppliers 40,000 Products 9,000 Stores 100 M Customers

Reporting Ecosystem

Tools

Tableau Excel SAS

Databases

DB2 Hive Hadoop Netezza Oracle

Users

Analysts
Data Scientists
Leadership
Planners
Suppliers

Frequency

Daily Weekly Monthly Quarterly

Overview | Reporting Landscape

Thousands of custom reports being created to support the business.

Forecasting

Supplier Management

Out of Stock (Outs)

Inventory Purpose

Sales & Operations
Planning

Business Questions

Scorecard	Questions
Forecast	 Items performance (forecast vs. actual sales) across stores & categories? What are the trends? Accuracy of item level forecasting? How do my forecasting results compare to other planners? Item forecasts are most important to review today?
Suppliers	 Suppliers meeting their KPI goals? The overall trend? Suppliers scoring best or worst by KPI? For specific items and individual suppliers: Purchase orders filled on-time? In full? If not, where are the biggest misses (research through drill down to PO detail). Where is shrink or waste an issue?

Business Questions

Scorecard	Questions						
Out of Stock (Outs)	 Items currently out of stock? which categories or stores? For how long? Root causes? 						
Inventory Purpose	 Inventory plan impacting stores? DCs? What are the trends? Inventory for each item by category? Projected demand by store type? By promoted vs. basic items? Biggest changes to inventory vs. prior week? Reduce days of supply without impacting sales? 						
Sales & Operations Planning	 Performance against sales goals? Promotions on the calendar for items? Performance of similar items on prior promotions? Inventory level for an item we want to promote? Reliability of suppliers for this item? 						

Data Size and Characteristics

Use Case	Fact Rows	Dimensions	Measures	Data Grain	Time Window of Data
Forecast Scorecard	62 Billion	59	61	Weekly	104 weeks
Suppliers Scorecard	42 Billion	69	36	Weekly	104 weeks
Out of Stock (Outs) Scorecard	6 Billion	57	45	Daily	104 weeks
Inventory Purpose	124 Billion	48	41	Weekly	53 weeks
Sales & Operations Planning	50 Billion	56	36	Daily	104 weeks

- High processing time—manual compilation and aggregation taking hours
- Building scorecards time consuming hence done monthly
- Slow response times—minutes & hours to return queries
- Resources waiting for days to get insights
- Contradicting reports because of data silos and lack of common integration logic
- Existing systems not scalable up to trillions of rows
- Not possible to drill down to granular details
- Tableau couldn't optimally perform due to volume of data and query limitations
- Connecting live via Hive did not work

What we wanted to achieve?

To create a performant solution where multiple prior attempts had not succeeded. Data volumes and query complexity exceeded Tableau's recommended best practices.

It seemed like an impossible task...

Trillions of records from 50+ tables and sources

Historical analysis at the lowest granularity with 30+ filters

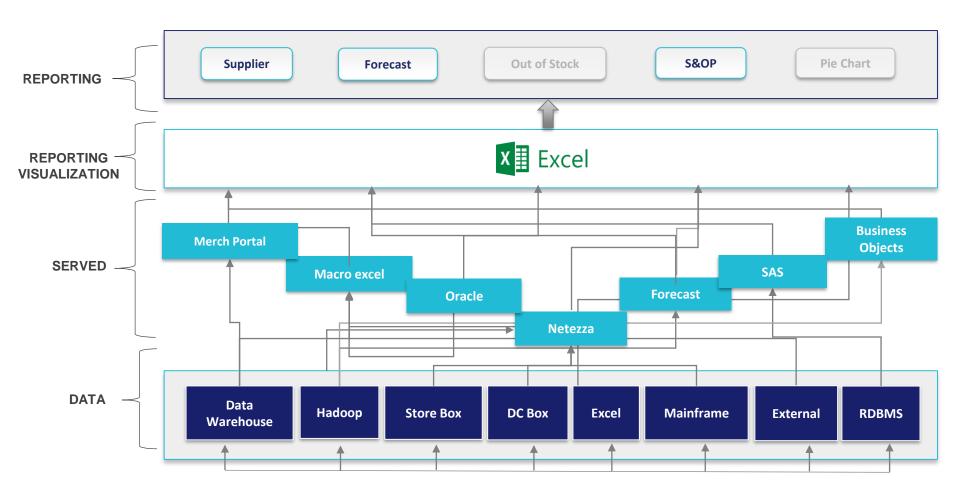
Centralize and standardize data logic

High performance

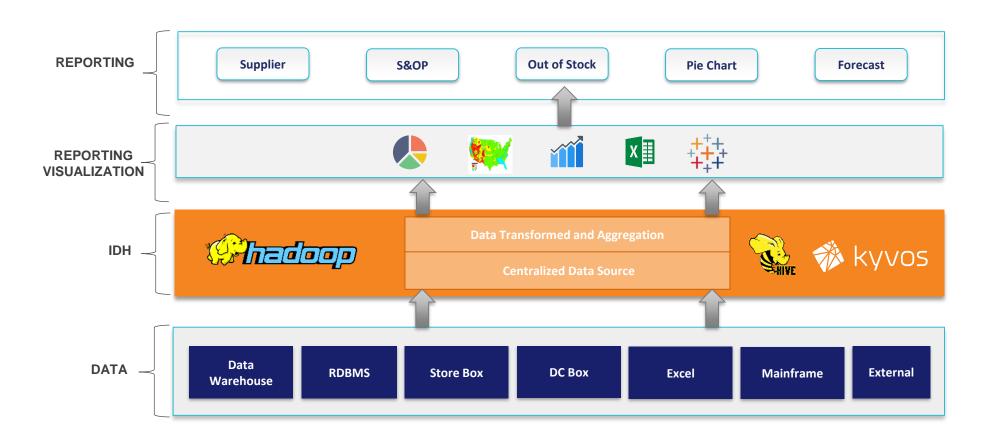
Scalable architecture

Self-service access – with controls

Security for internal and external users


Why we chose Kyvos?

- Surpassed our SLAs—sub-second responses for most queries
- High concurrency—supports our 5,000 users and vendors
- Scalability—availability of lowest grain for 2 years of data across business units
- Flexibility—immediate data access as it becomes available
- Seamless connectivity with Tableau—SQL connectivity to maximize Tableau performance
- Responsiveness
 –excellent support and professional services


Walgreens Use Case-Old State

- Various methods of Scorecard and Dashboard Generation
- High Processing Time
- Inconsistent Data sets
- Data sourced from across the network
- Manual Report Generation

Walgreens Use Case-New State

- Centralized scorecard and dashboard generation
- Reduced processing time for timely reports
- Data unification across the network
- Consistent data sets
- Highly-responsive dashboards

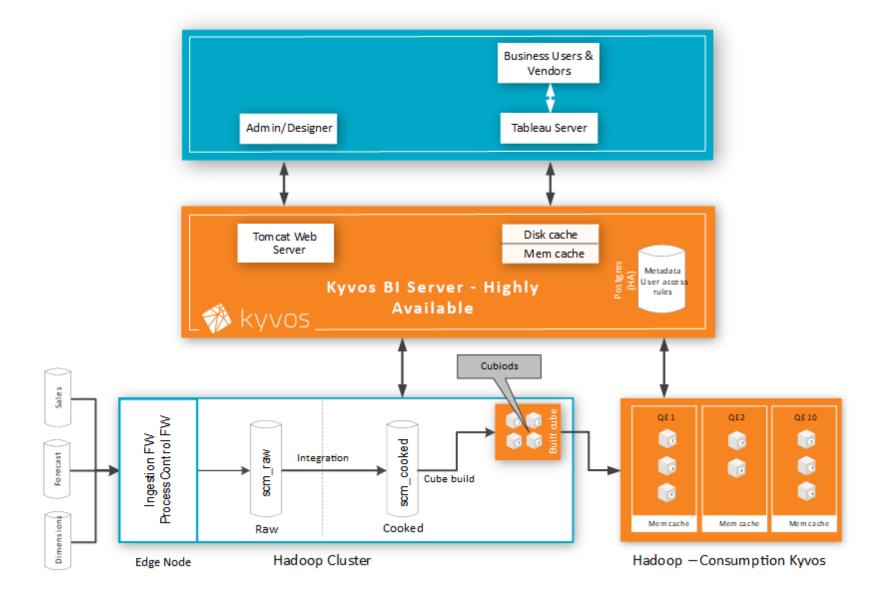


Tableau Performance with Kyvos

Use Case	Fact Rows	Dimensions	Measures	Time Window of Data	Cube Size	Query Performance
Forecast Scorecard	62 Billion	59	61	104 Weeks	74 TB	10 seconds
Suppliers Scorecard	42 Billion	69	36	104 Weeks	70 TB	6.8 seconds
Out of Stock (Outs) Scorecard	6 Billion	57	45	104 Weeks	19 TB	8.2 seconds
Inventory Purpose	124 Billion	48	41	53 Weeks	29 TB	9 seconds
Sales & Operations Planning	50 Billion	56	36	104 Weeks	74 TB	7 seconds

Walgreens Big Data Architecture

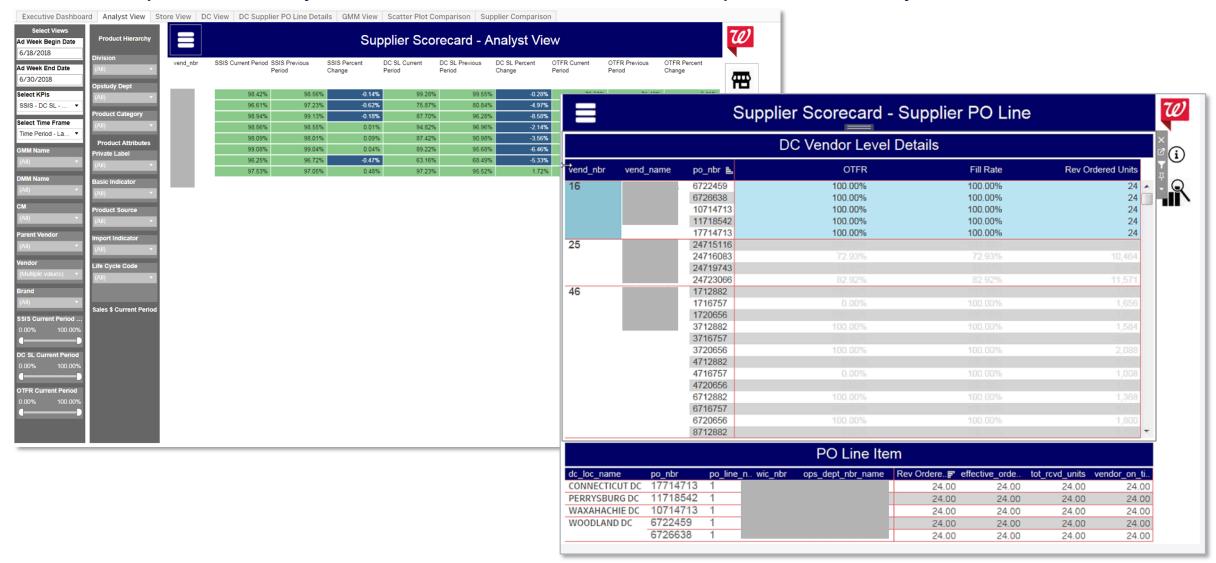
Supplier Performance Use Case

Objective: Enable our vendors to analyze their performance at each item and store level including lead times, shipment, and forecasts.

To provide row level security for each vendor's data.

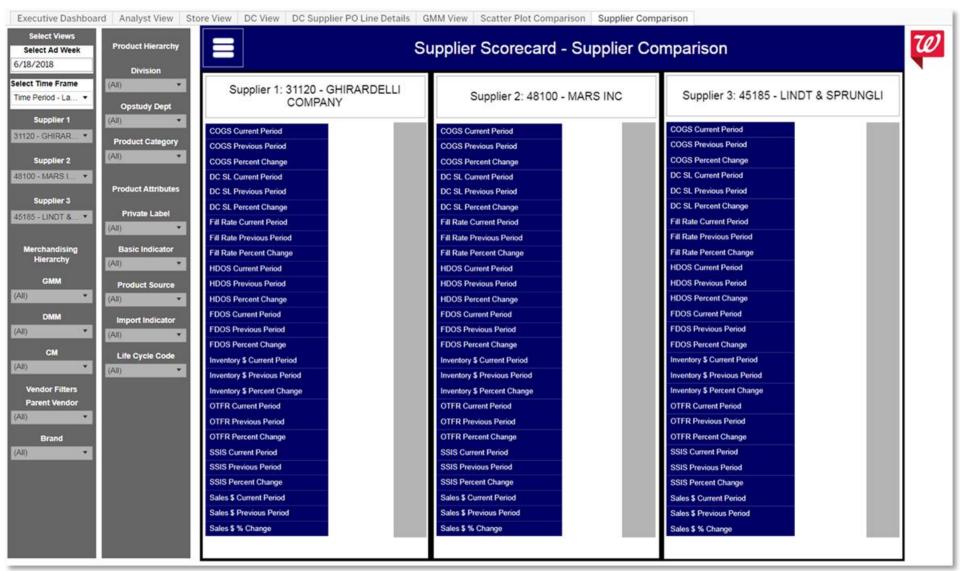
Supplier scorecard fully automated, available weekly with KPIs on supplier performance

- Walgreens Supplier Management team able to compare suppliers side by side
- Multiple reports consolidated into a single scorecard
- Supports complex filtering and queries to identify trends and take action


Supplier direct access to their KPIs and performance trends with row level security

- KPIs for week to date and year to date
- Current year Performance vs last year
- KPI to PO Drill down to line item detail
- Best/Worst performing items

Supplier Performance Use Case


Scorecard updated weekly with drill down to PO Line and Shipment details by vendor

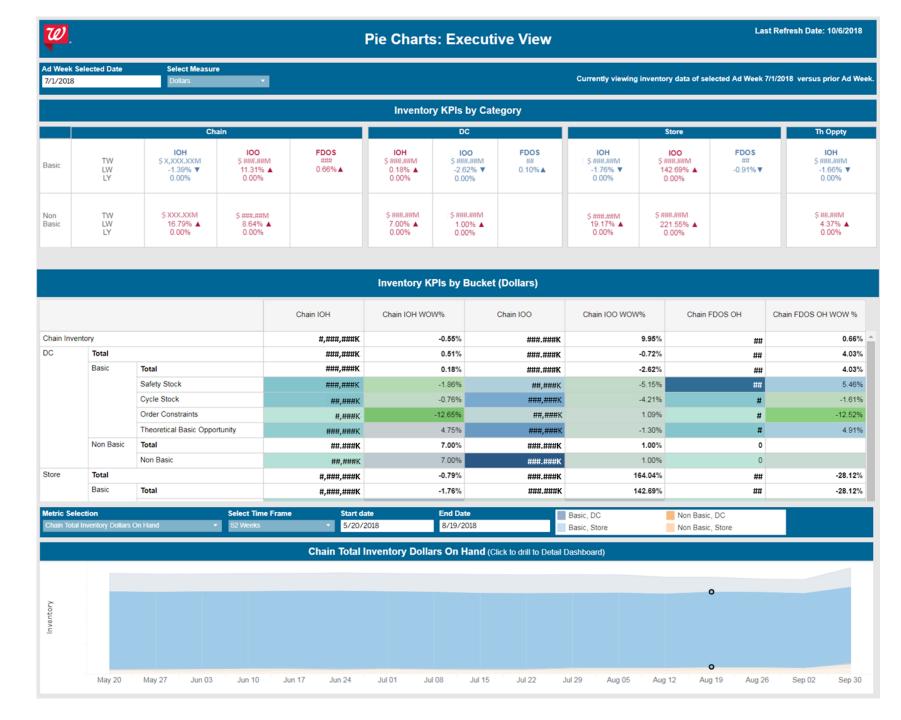
Supplier Performance Use Case

Side by Side Supplier Comparisons

Out of Stock Items

Out of Stock trends for Puerto Rico stores, filtered on selected OpStudies

Inventory Purpose


Objective: Identify ways to reduce excess days of supply across 9,000 stores by analyzing all products at the store and distribution center level.

- Critical component of Supply Chain
- Four business units—different planning and forecasting needs for each
- Need to engage vendors and merchants to stock the right SKUs
- Inventory Management flow–tracking inventory to DCs and stores for better customer experience

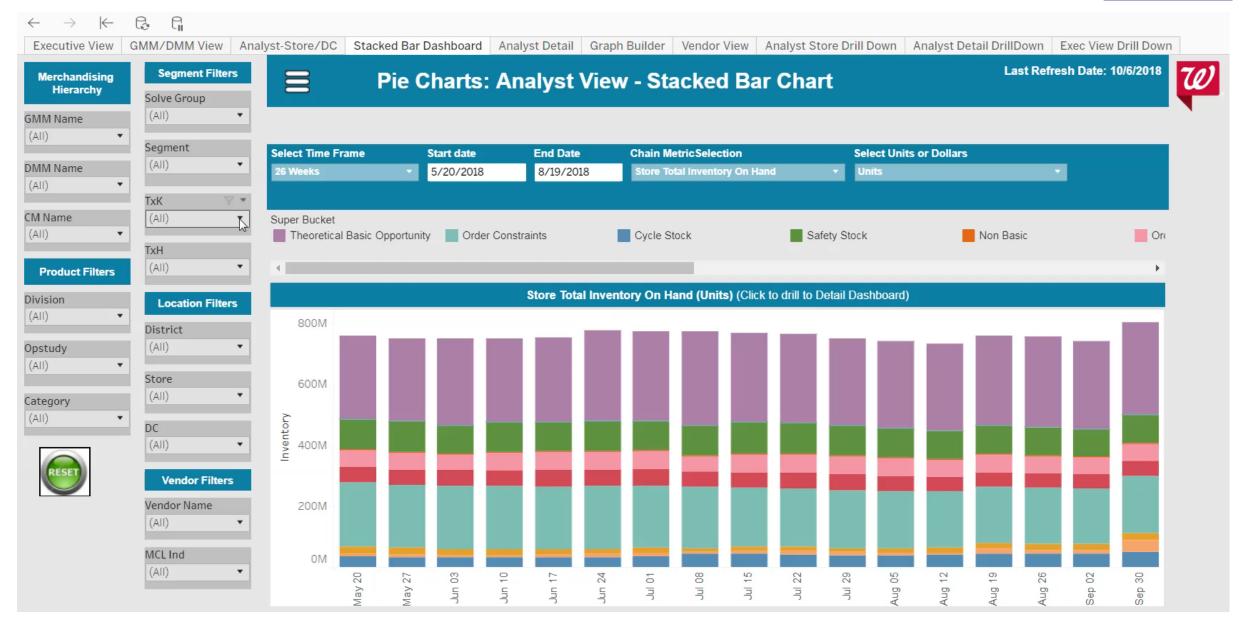
Inventory Purpose

- Current positions for all levels in the supply chain
 - YoY comparisons
 - WoW comparisons
 - Largest changes by category
- Visual guides to identify patterns, drill for details, make adjustments
- Chart builder tool to identify outliers, research issues

Inventory Purpose

Last Refresh Date: 10/6/2018

Pie Charts: Analyst View - Stacked Bar Chart



Inventory Purpose Example Introduction

- Filtering 30+B Inventory Records
- Across 17 weekly partitions
- For multiple store segments...
- In under 10 Seconds

Tableau/Kyvos Development Key Points

Leverage the Strengths of both parts

- Pause/Resume when changing filters
- Help users make good design tradeoffs (e.g. breadcrumbs, no. of filters)

Getting the data design right upfront is key

- Hierarchies must be fully qualified in Kyvos
- Measures should be defined in advance
- TDS file from Kyvos required to show hierarchy in Tableau

Appropriate partition schema is critical

- Optimize based on analyst use cases
- Use Kyvos Partitioning to support fast query response time

Minimize Tableau layer calculations

- Weighted calculation using LOD function of Tableau
- Data source joins

Benefits

Technical

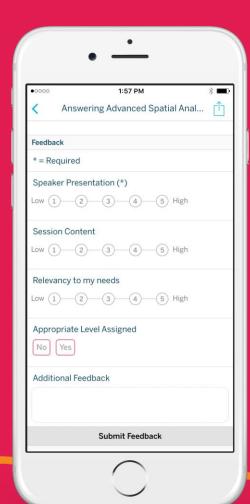
- Super fast response times on trillions of rows
- On-demand analysis
- Instant insights
- Single source of truth
- Minimal IT dependency
- Scheduled automated pre-aggregation
- Drill down to lowest level of granularity
- Tableau on steroids

Business

- Reduced time to insight
- Better forecasting visibility
- Granular drill down that was impossible before
- Improved supply planning
- Reducing out of stock items
- Cost savings on excess inventory
- Enhanced supplier collaboration
- Identify sales opportunities sooner
- Ability to share and collaborate across teams

Lessons Learned

- A picture paints a thousand words
- It's very important to provide accurate visualizations
- Criticality of data visualization at this scale
- Deliver essential information and make visualizations user friendly
- Focus on exact business requirements
- Technology stack is important, but correct infrastructure is more important
- Choosing the right technology partners


Q & A

Thank you!

Meet Kyvos Team at Booth #628

Please complete the session survey from the Session Details screen in your TC18 app

TABLEAU CONFERENCE