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ABSTRACT 

 There is evidence to suggest that all numerical formats are not processed by the 

same internal analog representation.  The multiple analog representation models of 

numerical processing propose that there are individual analog representations per 

numerical format.  Our research has expanded on these models in assessing whether there 

are multiple analog representations within a single numerical format.  The data suggest 

that relative frequencies in fact do involve multiple internal quantity representations.  
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INTRODUCTION 

 The cognitive literature on numbers and numerical representations supports an 

innate ability to determine and discriminate between numerical quantities.  This ability is 

demonstrated in animal (Brannon & Terrace, 1998; Cantlon & Brannon, 2006; Davis & 

Perusse, 1988; Matsuzawa, 1985; Meck & Church, 1983), pre-verbal infant (Kobayashi, 

Hiraki, & Hasegawa, 2005; Mack, 2006; Starkey, Spelke, & Gelman, 1983; Starkey & 

Cooper, 1980), and adult research (Buckley & Gillman, 1974; Dehaene, 1995; Dehaene, 

1990; Hinrichs, Yurko, & Hu, 1981; Moyer & Landauer, 1967; Zhang & Wang, 2005).  

PET scans provide support that specific brain areas are designated to process numerical 

stimuli (Burbaud, et. al, 1995; Burbaud, et. al, 1999; Dehaene, et. al, 1996; Kiefer & 

Dehaene, 1997; Rueckert, et. al, 1996 ).  Finally, there is considerable functional 

evidence that individual’s perceptual errors when viewing numbers are similar to errors 

when viewing actual quantities (Buckley, 1974; Dehaene & Akhavein, 1995; Dehaene, 

1990; Hinrichs, 1981; Moyer, 1967; Moyer & Landauer, 1973; Welford,1960; Zhang, 

2005).  This supports the supposition that numbers are processed in ways similar to those 

of physical quantities. 

 There are a number of theories that attempt to model the relation between 

numerical symbols and the quantities that they represent.  The single representation 

model suggests that all numerical stimuli are converted into a single analog 

representation (McCloskey, Sokol, & Goodman, 1986).  The triple code model proposes 

that there are three representations for numerical stimuli: a verbal, a visual, and an analog 

code (Dehaene, 1992).  The multiple representation model suggests that there is an 

individual representation for each numerical format (Gonzalez & Koler, 1982).  In this 
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paper I will examine the response times of individuals comparing two relative 

frequencies.  The comparisons will involve both relative frequencies on the same scale 

and relative frequencies on different scales.  This data will provide insight into whether 

all relative frequencies are processed within a single analog representation or whether 

there are multiple analog representations – one for each scale of the relative frequency. 

Non-verbal Understanding of Numerosity 

 Multiple animal studies, involving a variety of numerical stimuli, have 

demonstrated an ability to discriminate between numerosities and rank numerosities as 

larger or smaller (Brannon, 1998; Cantlon, 2006; Davis, 1988; Matsuzawa, 1985; Meck, 

1983).    These results provide evidence that indicate an innate numerical competence for 

the ability to distinguish between different quantities.  These results also provide 

evidence that internal numerical representation existed before the language of numerical 

symbols was developed. 

 Researchers have demonstrated that primates are able to rank numerosities as 

larger or smaller.  Brannon and Terrace (1998) trained two monkeys to discriminate 

between numerosities 1-4 and to place them in increasing order.  To train the monkeys, a 

touch screen monitor simultaneously displayed four numerosity sets and it was the 

monkeys’ task to order the numerosities in ascending order (eg. 1 arrow right 2 arrow 

right 3 arrow right 4).  The monkeys were then tested with numerosity sets of 5-9 to 

examine whether they were able to properly order the novel stimuli.  In addition, the 

novel stimuli were varied in terms of size, shape, and color to control for non-numerical 

cues.  The authors found that the monkeys were above chance in responding to the new 

stimuli 5-9.  In a similar study, Cantlon (2006) trained two monkeys to order the 
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numerical values 1-9.  The authors then had the monkeys determine whether the numbers 

10, 15, 20, and 30 were larger or smaller than the numbers 1-9.  The monkeys responded 

above chance to comparing the new stimuli to the learned stimuli in the larger/smaller 

comparison task.  The authors argue that such spontaneous behavior of ordering new 

stimuli demonstrates an innate understanding for numerosities. 

 The ability to discriminate between numerosities has also been found in pre-

verbal infants.  Pre-verbal infants have not developed the ability to understand language 

nor the symbols that have been developed to represent numbers.  However, in the past 30 

years, a number of experiments have demonstrated that pre-verbal infants can determine 

whether two numerosity sets have the same quantity value or different value (Kobayashi, 

2005; Mack, 2006; Starkey, 1980; Starkey, 1983).  Pre-verbal infants have not been 

introduced to the concepts of numbers and thus their ability to discriminate between 

numerosities suggests that this ability is innate.  Starkey (1980) conducted an experiment 

with 6- to 7-month-old infants using a habituation-recovery task.  Infants were repeatedly 

shown a slide with a certain number of dots on it.  When the infants decreased their 

looking time, an indication of habituation to the slide, the experimenters presented a slide 

with a different number of dots on it.  They found that the children would look at the new 

slide longer which indicates that the infants were able to discriminate between the two 

different quantities.  In a similar study, Wynn (1992) presented infants with either 1, 2, or 

3 toys and then the toys were placed behind a screen.  The researcher would then drop the 

screen, revealing either 1, 2, or 3 toys, and the infants’ looking times were recorded.  

They found that if the number of toys presented did not correspond with the number of 

toys revealed when the screen was dropped, that the infants looked longer at the incorrect 
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result.  This demonstrates that the infants were able to recognize a difference in the 

number of toys presented and thus an ability to decipher between two different 

numerosities. 

 There is also evidence that pre-verbal infants are able to transform a quantity that 

is presented as a number of auditory sounds into a visual quantity representation.  Starkey 

et al. (1983) conducted an experiment in which 6- to 8-month-old infants were presented 

with an auditory stimulus of 2 or 3 drumbeats.  The infants were simultaneously 

presented two slides, one with 2 objects and one with 3 objects.  After the auditory 

stimulus was presented, the slides remained in front of the infants for another 10 seconds.  

The infants’ looking times were recorded.  The authors found that the infants looked 

longer at the slide of objects that corresponded to the number of drum beats presented.   

This experiment demonstrates that the infants were able to relate the number of drum 

beats heard to the number of objects presented. 

 Further evidence that the representations of numerosities are non-language based 

comes from research with individuals that have language disorders.  Henschen (1920) ran 

a number of case studies with humans, in which language and calculation abilities were 

shown to be independent of each other.  An excellent example of the discrimination 

between language and numerical comprehension is a patient named IH.  IH’s language 

comprehension was poor and his production of language was limited to repeated phrases.  

However, on single and multi-digit calculation tasks, he was found to be completely 

competent, often scoring at or near the maximum score for each test (Cappelletti, 

Kopelman, & Butterworth, 2002).  This further supports the independence of numerical 

and lexical based language processing. 
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 The literature involving animals, pre-verbal infants, and individuals with language 

disorders demonstrates that the ability to represent numerosities is innate.  This innate 

ability in non-language producing animals and infants strongly suggests that numerical 

representations and language are distinct.   

Neuroanatomy of Numerosity 

To examine the biological basis for representing numerosities, a number of 

experiments have examined the neural circuitry involved in number processing.  There is 

evidence to suggest that there are specific brain areas in which quantities are processed, 

and these areas are distinct from those devoted to processing language.   

 As with most cognitive processes, there are specific brain areas that are involved 

in processing and representing numbers.  Dehaene, Piazza, Pinel, and Cohen (2003) 

analyzed research involving functional magnetic resonance imaging (fMRI) to examine 

the activation of the parietal lobe and numerical representations.  Based on multiple 

research studies (Burband, 1999; Chochon, Cohen, van de Moortele, & Dehaene, 1999; 

Pesenti, Thioux, Seron, & De Volder, 2000), the horizontal segment of the intraparietal 

sulcus (HIPS) has been found to be consistently activated when quantity processing is 

involved.  The HIPS has been shown to be activated during mental arithmetic and 

numerical comparisons (Chochon, 1999).  It has also been shown to be activated for 

numerical words but not for general language comprehension (Dehaene, 1995).  In 

addition, activation does not depend on the numerical format that is presented (Dehaene, 

2003).   

 PET scan results also support the conclusion that the inferior parietal lobe is 

involved in number processing.  It has been found that different areas of the parietal lobe 
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are activated, depending on the numerical manipulation.  The frontal and inferior parietal 

area is activated bilaterally during subtraction problems (Burbaud, 1995; Rueckert, 

1996).  Intraparietal activation was discovered during multiplication of two digit numbers 

(Dehaene, 1996) and brain activity was found to be left-lateralized for multiplication 

problems, right-lateralized during comparison tasks, and bilateral during subtraction 

problems (Dehaene, 1996; Kiefer, 1997).   

 Research with primates suggests that neurons are activated for specific 

numerosities.  Nieder, Freedman, and Miller (2002) examined macaque monkeys’ neuron 

firing for different numerosities.  The researchers presented the monkeys with two 

different computer displays of dots and trained them to determine whether the two 

displays had the same number of dots or not.  The monkeys were trained on numerosities 

1-5 and the dots varied in location and physical size on the computer screen.  They were 

trained until they achieved a better than chance success rate.  The researchers then 

inserted electrodes into the monkeys’ lateral prefrontal cortex.  They found that specific 

neurons fired for specific numerosities.  For example, a neuron might fire maximally for 

the three dot display and slightly less for the two or four dot display.  To ensure that the 

monkeys’ neuronal firing was not simply due to a physical characteristic of the display, 

the authors presented the monkeys with novel displays in which the physical appearance 

of the dots varied compared to the originally trained set.  The firing of the neurons was 

found to be dependent solely on the numerosity presented, not on any visual cue.  The 

monkeys’ ability to apply what they had been trained on to new stimuli indicates an 

expansion of an ability that is innate, which the training alone could not provide.  

Analog Representation of Numerosity 
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 The preponderance of evidence suggests that numerosities, presented by a 

numerical symbol, are converted into an internal analog representation (Dehaene, 1992).  

An analog representation is a representation of quantity that exists on a continuous 

dimension, just like distance, time, and length (Carey, 2001).  The perception of 

numerical stimuli by individuals is similar to how physical stimuli are perceived on a 

continuous dimension.  

 There is a mathematical equation that relates how physical stimuli are perceived 

by individuals: the Weber-Fechner law (Fechner, 1948).  The Weber-Fechner law 

mathematically demonstrates that there is a discriminability between two stimuli that is a 

function of their ratio. The differential equation is  

dP = k(dS/S) 

where dP is the change in perception, k is a constant that is determined experimentally, 

dS is the change in the stimulus, and S is the stimulus at that instant.  Using this equation, 

it becomes apparent that it is easier to discriminate between the numbers 4 and 5 than it is 

9 and 10. Mathematically, the difference between 4 and 5 is perceived as 1/5 and the 

difference between 9 and 10 is perceived as 1/10.  Thus the perception is that there is a 

smaller difference between 9 and 10 than the numbers 4 and 5, even though mathematical 

difference is the same.  If the equation is rearranged: 

p = k ln(S/S0) 

where p is perception, k is a constant, S is the stimulus presented, and S0 is the base 

threshold of the stimulus (Fechner, 1948), the equation demonstrates that discriminating 

between two stimuli is based on a logarithmic function.  In order to change the perception 

of a continuous function, the stimulus must be increased by a multiplicative factor.  For 
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example, if an original stimulus is given the value 3, in order to perceive that a new 

stimulus is double that of the original, it must have the value of 32 or 9.  This is due to the 

logarithmic relationship between stimuli and the actual perception of the stimuli.    

 Due to the inflexibility of Weber-Fechner’s law, Steven’s (1956) revamped the 

original equation.  Steven’s power law 

log R = a log (S-S0) + log k 

includes an additional parameter and thus makes the equation applicable to more types of 

stimuli (ex. pain, pressure, sound, light) than the Weber-Fechner law.  This equation 

supersedes the Weber-Fechner equation because it describes a broader range of stimuli.  

For our purposes, this equation is the newest mathematical expression of the perception 

of numerical stimuli. 

 Research has consistently demonstrated that numerical stimuli are also subject to 

Steven’s power law (Buckley, 1974; Dehaene, 1990; Dehaene, 1992; Dehaene, 1995; 

Hinrichs, 1981; Moyer, 1967; Moyer, 1973).  That is, numerical stimuli produce the same 

pattern of data as other continuous stimuli (Carey, 2001; Fechner, 1948; Stevens, 1956; 

Stevens & Harris, 1962; Stevens & Guirao, 1963; Stevens & Mack, 1959; Walker, 2002).  

Most notably, research with adults, who have acquired the language of numbers, has 

demonstrated that numerical symbols are transformed into an internal analog 

representation and the results are consistent with Steven’s equation (Dehaene, 1992).  

Support for an internal analog representation is most effectively demonstrated with 

experiments involving the distance effect.   

In a classic experiment, Moyer and Landauer (1967) discovered what is now 

known as the distance effect.  The authors presented the participants with the numbers 1-
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9 and asked them to determine which of two numbers was larger or smaller.  The authors 

found that the participants’ reaction times were an inverse function of the distance 

between the two numbers presented.  More explicitly, the distance effect is when two 

numbers that are close together take a longer time to discriminate between than two 

numbers that are farther apart.  Moyer furthered this research when he completed an 

experiment where he examined the relationship between reaction time and memory 

retrieval (Moyer, 1973).  Participants were presented with a pair of animal names and 

were asked to determine which animal was larger.  They again found that the reaction 

times of the participants were inversely related to the difference in animal size.  Moyer 

and Landauer determined that the distance effect can be described by the Welford (1960) 

function: 

RT = a + k*log[L/(L-S)] 

where RT is the response time, a and k are constants, L is the larger number being 

compared, and S is the smaller number being compared.  Parkman (1971) scrutinized 

Moyer and Landauer’s (1967) conclusion and claimed that they overestimated the 

importance of (L-S) and underestimated the importance of simply S.  Parkman came to 

this conclusion because S was more highly correlated with RT than (L-S).  Moyer and 

Landauer (1973) reanalyzed their data, as well as Parkman’s (1971) data and found that 

log(L/L-S) was more highly correlated with RT than S.  This defense demonstrated that 

both numbers, the larger and smaller numbers being compared, are important when 

running a comparison task.  In addition, the research shows that the Welford model is a 

reliable representation of the distance effect. 
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 The distance effect is a robust effect that has been repeatedly found with adult 

humans.  These result have not only been found when comparing numerosities, but the 

use of dots (Buckley & Gillman, 1974), with single Arabic digits (Buckley & Gillman, 

1974; Dehaene, 1995; Moyer, 1967) and with verbal notation of numbers (Dehaene, 

1995).  In addition, the effect has been found when multi-digit comparison tasks were 

performed (Dehaene, 1990; Hinrichs, 1981; Zhang, 2005).   

The major criticism against the analog representation is not the representation 

itself, but in regards to the automaticity of the representation.  Pansky and Algom (2002) 

found that automatic processing of quantity information can be eliminated if the stimuli 

are manipulated.  Participants were shown two 3X3 matrices.  Each matrix contained the 

number 8, the number 2, or an asterisk.  Participants were asked to judge either the 

numerical magnitude or the numerosity in the matrix.  To judge the numerical magnitude, 

participants had to select the matrix that had the numbers with the higher magnitudes in 

it.  To judge the numerosity, participants had to select the matrix with the higher quantity 

of numbers in it, regardless of the magnitude of those numbers.  The researchers found 

that the automatic processing of the numbers could be eliminated by changing the format 

of the numbers and asterisks.  When the asterisks were enlarged, numerical magnitude 

was judged faster than numerosity.  Thus the automatic processing of numerical 

magnitude was easier than discerning the numerosity of numbers in the matrix because of 

the large size of the asterisks.  When the authors reduced the size of the asterisks, 

numerosity was judged faster than numerical magnitude.  The small size of the asterisks 

made it easier to count the numbers and the automatic processing of the numerical 

magnitude was reduced.  The authors concluded that automatic processing of numbers 
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can be altered by way of presentation.  In another experiment, Dehaene (1995) found that 

he could eliminate automatic processing by having participants compare word numbers 

(ex. ONE) and Arabic numbers (ex. 1).  When the participants were asked to compare 

two stimuli and respond to whether the stimuli were in the same format, both written as 

words or both written as Arabic numbers, automatic processing was eliminated.  These 

experiments do not counter the theory of an analog representation; rather, they 

demonstrate that quantities are not always automatically processed. 

 A secondary criticism against the analog representation is the possibility of 

intermediate representation.  An intermediate representation could exist between 

processing the numerical stimuli and converting the stimuli into an analog representation.   

Noel and Seron (1997) found that a single numerical format can have different numerical 

biases due to differing intermediate representations.  The experiments demonstrated that 

the presentation of a number has an impact on how a number is processed.  In one of the 

experiments the participants were shown a pair of numbers.  There were two different 

structures in which numbers could be presented.  The two structures were either a tens-

hundreds word (ex. 1200=12 hundred) or a thousands-hundred word (1200=1 thousand 2 

hundred).  The pairs of numbers were either the same structure or one of each structure 

and the participants were asked to respond to which number was larger.  They found that 

it took the participants less time if both of the numbers had the same structure and less 

time for the tens-hundred structure.  The authors concluded that the different structures of 

these numbers, that represent the exact same quantity, produce two different intermediate 

representations.  In addition, this suggests that numerical stimuli are not automatically 

converted into an analog representation but rather, are first converted into an intermediate 
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representation.  Alternatively, these results could demonstrate that there are multiple 

analog representations, which will be discussed later in the paper. 

Models of Numerical Representation 

 As demonstrated, there is a general consensus that numerical stimuli are 

converted into analog representations.  However, there is a current debate on whether 

there is a single analog representation that all numerical formats are converted into or 

multiple analog representations in which each format has its own representation.  There 

are a number of models that have been proposed that attempt to explain the current data 

involving numerical representations. 

Single Representation 

 McCloskey developed a model that proposes that all numerical inputs are 

transformed into a single analog representation.  The numerical symbol is converted into 

an analog representation and the analog representation consists of the quantity plus the 

power of ten associated with the number.  For example, the Arabic number 4031 would 

be represented as {4}10EXP3, {3}10EXP1, {1}10EXP 0.  The numbers in braces would 

be represented as quantities and the EXP numbers represent the power of ten associated 

with each quantity.  The analog representation is processed or manipulated the same way, 

regardless of its original format.  From this manipulation, an output is produced 

(McCloskey, 1986).   

McCloskey proposes that numbers are categorized into lexical stacks in both the 

analog representation stage and the number production stage.  The lexical stacks consist 

of ones, teens and tens.  The ones stack consists of the numbers 1-9, the teens stack 

consists of numbers 10-19, and the tens stack consists of 20, 30, 40, 50, 60, 70, 80, and 
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90.  In addition, there are multiplier words (e.g. hundred) that are used to expand the 

number of tens places of the number (McCloskey, 1986).   

 Research on numerical representation involving dots and digits has found that 

there is a single underlying representation for dots and digits.  Buckley and Gillman 

(1974) found that four different formats presented to the participants had a single 

underlying abstract representation.  The participants were shown either Arabic numerals, 

a regular dot pattern, an irregular dot pattern, or a random dot pattern.  The regular dot 

pattern was similar to what appears on a pair of dice.  The irregular dot pattern consisted 

of the dice pattern, with one of the dots “misplaced”.  The random dot pattern was a 

random pattern.  Buckley had the participants perform a larger/smaller comparison task 

involving each of the formats.  The results demonstrated that the distance effect occurred 

for each of the formats.  In addition, the authors statistically scaled the data on 

multidimensions.  When the data was represented on a two dimensional graph, it revealed 

that the four different formats were processed similarly.  These results support that, for at 

least dots and digits, there is a single underlying analog representation. 

 McCloskey’s research with brain damaged patients supports his single 

representation model and the existence of lexical stack representations (McCloskey, 

1992; McCloskey & Macaruso, 1995; McCloskey, Sokol, Caramazza, & Goodman-

Schulma, 1990).  In a frequently referenced case study, McCloskey (1986) examined a 

patient named HY who suffered from brain damage.  HY was given an array of 

mathematical tests that demonstrated that he was completely competent in 

comprehending and manipulating numbers.  However, when asked to verbally produce 

the correct answer, HY’s responses became significantly more erroneous.  The authors 
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found that his errors occurred in the same lexical stack.  For example, if the correct 

number was a ones number, HY would produce an incorrect ones digit.  These findings 

support that the patient was transforming all of his numbers into analog representations, 

he just failed in his production stage to be able to produce the correct words 

(phonological representation) to represent those analogs.  The erroneous answers he did 

produce were not random, but rather were in the same lexical stack as the correct answer.  

 As demonstrated, some of the research on numerical cognition supports the single 

representation model.  The model is concrete and makes specific predictions.  However, 

it is limited in its ability to explain all the results found in numerical cognition. 

Triple Code Model  

 Research in the field of cognitive arithmetic has revealed some of the underlying 

processes involved in numerical representation.  There are currently three major models 

that illustrate arithmetic processing: Ashcrafts’ (1987) network retrieval model, Siegler 

and Shrager’s  (1984) distribution of associations model, and Campbell’s (1987a; 1985) 

network interference model.  A common factor in each of the three models is that 

mathematical facts, like addition and multiplication problems, are stored in memory in an 

organized fashion (Ashcraft, 1992).  This research suggests that an analog representation 

of quantity is not always activated when numerical stimuli are presented.  Instead, there is 

an inter network of information, that is recalled when an individual is presented with a 

mathematical problem.  A quantity representation would not be necessary, thus not 

activated, when a mathematical fact is needed. 

 Based on this cognitive arithmetic research and evidence, Dehaene (1992) 

rejected McCloskey’s (1986) model and created a new model termed the Triple Code 
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Model.  The triple code consists of a verbal, visual, and analog code and each of these 

codes activates the parietal area of the brain.  The verbal code is used to manipulate 

verbally spoken numbers, as well as numbers written as words.  This code is located in 

the left angular gyrus.  The visual code is used for visual number forms, such as Arabic 

digits.  This takes place in the posterior superior parietal system.  The analog code is used 

to represent numerical quantities.  The horizontal intraparietal system (HIPS) is activated 

in both hemispheres for analog representations (Dehaene, 2003).  

 The triple code model proposes a network that consists of an analog, visual, and 

verbal code, however, one of the codes can be activated, without the activation of the 

other (Dehaene, 1992).  The analog code, which is a quantity representation, is activated 

when estimations are required.  The visual and verbal codes store memorized facts (ex. 

multiplication tables) and thus would be activated for numerical fact retrieval (Dehaene, 

1992; Gonzalez & Kolers, 1987).  Dehaene (1992) proposes that quantity retrieval is not 

necessary in order to recall memorized facts, which is further supported by Ashcraft’s 

(1992) research.  Thus the analog, visual, and verbal codes can be activated 

independently of each other.  These propositions have also been supported with research 

involving PET scans (Dehaene, 2002). 

 Dehaene (2002) has found that the triple-code model predicts the results of 

various mental disorders.  In split-brain patients, the model predicts that the left 

hemisphere can complete calculations because the three codes exist in the left 

hemisphere.  The right hemisphere of the brain, which consists of only the analog 

representation (HIPS), can recognize and understand the quantity amount of a number, 
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but is not able to verbally communicate the results.  The model accurately predicts these 

results.  

 Dehaene (2002) argues that the triple-code model predicts the neurological route 

of number processing in the brain.  For multiplication tables and rudimentary addition 

problems, the numbers are first transformed into verbal representations which recall the 

word sequence from memory.  This process takes place in the left-cortico-subcortical 

loop involving the basal ganglia and the thalamus.  This first route is used for memorized 

mathematical facts.  The second route is termed an indirect route and is used for quantity 

retrieval.  The numbers are encoded as representations in the left and right inferior 

parietal areas.  Calculations on the representations produce a quantity that is transmitted 

from the left inferior parietal cortex to the left-hemispheric perisylvian language network 

for verbal production.  This indirect route is used when the calculation is not memory 

based.   

 Dehaene’s (Dehaene, 1990; Dehaene, 1992; Dehaene, 1995; Dehaene, 2002; 

Dehaene, Piazza, Pinel, & Cohen, 2003; Dehaene et al.,1996 ) research in the field of 

numerical cognition is extensive.  His contributions range from a theory of memorized 

mathematical facts to the neuro-circuitry of numerical processing.  However, his current 

triple code model fails to address recent research on multiple formats and the subsequent 

biases associated with each format. 

Multiple Quantity Representations 

 There is extensive research that rejects both McCloskey’s (1986) claim of a single 

abstract representation and Dehaene’s (1992) triple code model.  The overriding premise 

of the research demonstrates that different formats of numbers result in different response 
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times, error types, and biases and thus the possibility of more than one analog 

representation (Cohen, Ferrell, & Johnson, 2002; Gonzalez & Kolers, 1982; Takahashi & 

Green, 1983).   

 Examining the theory of multiple representations, Takahashi (1983) found that 

numbers written as words are not processed the same as numerical symbols.  The author 

examined two Japanese scripts, Kanji (number symbols) and Kana (verbally written 

numbers).  In addition to the type of stimuli, the authors also analyzed whether the 

physical size of the stimuli would impact a larger/smaller comparison task.  The 

congruent condition consisted of a number that was physically larger, as well as 

numerically larger.  The incongruent condition consisted of a number that was physically 

larger, however its numerical value was smaller.  The stimuli presented were the numbers 

1-9 written in Kanji and Kana, in two separate sessions.  The participants were asked to 

respond to which of the two numbers presented was numerically larger.  The authors 

found that the participants reacted faster to the Kanji stimuli than the Kana.  For the Kanji 

numbers, the participants responded quickest to the congruent condition, then the same 

condition and responded slowest for the incongruent condition.  They found that the 

distance effect occurred throughout the conditions for the Kanji script.  For the Kana 

condition, there was a main effect for physical size of the stimuli.  Participants responded 

the same for the congruent and the same condition, but responded significantly slower for 

the incongruent condition.  The most interesting finding is that the distance effect 

produced different results for the two scripts.  The data suggests that there are different 

biases involved in the two formats and thus this difference suggests that the two scripts 

have separate analog representations.   
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 Gonzalez and Koler (1982) also refute the single analog representation model in 

support of the multiple representation model.  In addition, they propose that the 

individual representations per format may be inaccessible to each other.  The researchers 

examined whether Roman numerals and Arabic numbers are processed differently.  In 

experiment one, the participants were shown 45 sums that were either in Roman numeral 

form, Arabic form, or a combination of the two.  The participants job was to determine 

whether the equation, p+q=n, was correct or incorrect.  The overall finding was that as 

the number of Roman numerals increased in the equation, the response time also 

increased.  Graphing the data, as the number of Roman numerals increased, the intercept 

also increased.  This could be solely due to inexperienced with Roman numerals or that 

Roman numerals simply take longer to be translated into an analog representation.  If this 

was the case, than as the number of Roman numerals increased, the intercept would also 

increase but the slopes of the lines would be equivalent.  However, the slopes of the 

response times for Arabic numerals also differed from the slopes involving Roman 

numerals.  The varying slopes represent multiple biases in converting of the Roman and 

Arabic stimuli into analog representations.  Thus this finding supports a multiple analog 

representation in which Roman and Arabic numerical formats have different analog 

representations.  In the same study, the researchers analyzed whether lack of familiarity 

with Roman numerals had impacted the results found in the previous experiment.  The 

participants were given practice trials with Roman numerals (I through X) until they 

responded to the value of the number at a rate close to 10% of their ability on Arabic 

trials.  The participants were then presented with the same equations from the previous 

experiment and the findings were replicated.  Thus, the authors concluded that 
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participants’ familiarity with Roman numerals had no impact on the differential biases 

found for Arabic and Roman numerals.   

 Gonzalez and Koler’s (1982) theory that numerical formats each have an 

individual analog representation has only recently been analyzed with numerical 

quantities less than one.  Cohen (2002) completed a number of experiments to analyze 

production and judgment tasks in order to access the perception and understanding of 

proportions.  In the first experiment, participants were asked to estimate the proportion of 

black dots to white dots in either decimal (ex. .01) or relative frequency (ex. 1 in 100) 

format that appeared on the screen.  There were 50,000 black dots on a screen and the 

number of white dots formed proportions ranging from .0001 to .01, however the 

participants were uninformed of this range.  In the second experiment, participants were 

either in the decimal, relative frequency, or display group.  They were either presented 

with a number (decimal/relative frequency) and then were asked to represent it on the dot 

screen by adding white dots to the screen filled with 50,000 black dots or they were 

shown a display screen and were asked to replicate it on the response screen.   The third 

experiment was a replication of the first experiment, however the number of dots on the 

screen varied between 500 and 50,000 and only three different proportions were 

presented (.2, .02, .002).  The fourth experiment was similar to the second experiment 

however the total number of dots varied between 500 and 50,000, only three proportions 

were presented (.2, .02, .002), and there were only two conditions (decimal and relative 

frequency group).   In the fifth experiment, participants were asked to convert between 

decimals and relative frequencies and between relative frequencies and decimals.  The 

results of the fifth experiment revealed that individuals were unable to systematically 
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convert decimals into relative frequencies or vice versa.  In fact, the participants did not 

even create the correct ordinal relationship between the two formats.  Instead, the 

participants produced large relative frequencies for small decimal values and vice versa.  

The inability to easily convert between decimals and relative frequencies suggests that 

the two numerical formats do not share an analog representation. 

 At this point, the current numerical models agree that numerosities and numerical 

symbols are represented as analogs.  However, the theories disagree on how many analog 

representations exist.  The most recent research suggests that some formats may share an 

internal analog representation, while other formats are individualized.  It is plausible that 

innate formats like dots could share an internal representation with integers due to the 

development of the integer notation being based on externally represented numerosities.  

With this logic, it is also possible that, different symbolic notations, such as Roman 

numerals and Arabic numerals, have individual analog representations. 

Theoretical Summary 

 The field of numerical cognition has revealed that numerical representations are 

an innate cognitive process that is independent of the development of language.  

Numerical representations have been shown to exist as analog representations and  

research involving brain scans and electrodes has shown that specific brain areas and 

neurons are specified to process quantity information.  The primary discrepancy in the 

field of numerical cognition is the models.  The single representation model claims that 

all numerical formats are transformed into the same analog representation.  The triple 

code model claims that the analog representation is not always accessed and this 

activation depends on the method of delivering the quantity representation, not 
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necessarily on the format.  The multiple representation model claims that there are 

individual analog representations per format of the quantity.  My research has examined 

whether comparing two relative frequencies involves a single or multiple analog 

representations. 

Relative Frequencies 

 The current research will examine relative frequencies and their cognitive 

representations.  The experiments involve comparing relative frequencies with various 

denominators.  Relative frequencies are a unique numerical format.  Within the single 

numerical format, there are multiple scales in which a quantity can be presented.  These 

scales are based on the relative frequency’s denominator.  For example, the same quantity 

could be presented as 2 in 4 or 1 in 2.  However, the first example is presented as 2 parts 

on a scale that is broken into 4 sections and the second example is presented as 1 part on 

a scale that is broken into 2 sections.  Analyzing this numerical format will allow for an 

examination of whether analog representations are based on the numerical format as a 

totality and thus the example above would produce equivalent response times on a 

larger/smaller comparison task or whether there can be multiple analog representations 

within a single numerical format and thus the example above would not produce 

equivalent response times on a larger/smaller comparison task.  In addition to the models, 

a secondary reason for examining relative frequencies is the current discrepancy on 

whether relative frequencies are naturally understood.  Research has consistently 

demonstrated that elementary children have difficulty understand quantities less than one 

(Mack, 1995; Ni & Zhou, 2005; Sophian, Garyantes, & Chang, 1997).  However, 

Gigerenzer and Hoffrage (1995) claim that relative frequencies are naturally understood.  
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The research for both claims is persuasive.  The current research will provide compelling 

evidence to resolve these two current debates in numerical cognition.   

At the most basic level, children need to learn that whole numbers are infinitely 

divisible.  Research has demonstrated that 6-9 year old children have difficulty 

understanding both the proportion notation of fractions and the quantities they represent 

(Hartnett & Gelman, 1998; Mack, 1995).  By the third grade, children have demonstrated 

that they have learned that whole numbers are divisible, however, they still do not 

understand the fractional notation (Mack, 1995).  In elementary school, specifically 

during the third to sixth grades, children are taught about numerical symbols that 

represent quantities between 0 and 1 (Smith, Solomon, & Carey, 2005).  It is at this time 

that children learn that 2/6 does not mean 2 objects and 6 objects, or 2 whole parts with 6 

pieces per whole part, but rather 2 of 6 parts of 1 whole.  Research has demonstrated that 

5-7 year olds cannot interpret the symbols and notations used to represent fractions 

(Sophian, Garyantes, & Chang, 1997).  Elementary school children often make errors 

with fractions, due to intrusion of knowledge about integers (Ni & Zhou, 2005).  The 

application of knowledge about integers onto fractional notation has been termed the 

“whole number bias.”  The whole number bias causes preschool children to deny 

quantities between 0 and 1 and middle school children to quantify fractions with a higher 

denominator as larger than a fraction with a smaller denominator (Ni & Zhou, 2005).  

Smith, Solomon, and Carey (2005) have demonstrated that even sixth graders still 

classify fractions with a high denominator as larger than a fraction with a smaller 

denominator.  For example, 1 in 4 would be reported as a larger quantity than 1 in 3 

because 4 is larger than 3.  These errors are understandable, in a sense, because 
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increasing the value of the denominator actually means that there is less per part; this 

increase in denominator represents a quantity decrease and this is counterintuitive 

(Sophian, Garyantes, and Chang,1997).  Smith et al. (2005) asked third, fourth, fifth, and 

sixth grade children why fractions consist of two numbers.  The authors found that 43% 

of the children could not explain the relationship between the two numbers, 31% gave 

ambiguous answers, and 24% could provide a clear explanation.  This research 

demonstrates that children in elementary school clearly do not understand the symbolic 

notations of fractions.  

 Unlike fractions, Gigerenzer and Hoffrage (1995) claim that humans have a 

natural understanding for frequencies.  Natural frequencies are the likelihood of event 

occurring in or during an organism’s life.  Through experience, humans become natural 

statisticians in their ability to determine whether an event is likely or unlikely to occur 

(Gigerenzer & Hoffrage, 1995).  For example, research has shown that humans are 

sensitive to frequency patterns in language.  This consists of the frequency in which 

specific letters or words are used and how words tend to be paired together (Hertwig & 

Gigerenzer, 1998; Hintzman, 1976).  Natural frequencies are easily understood by adults 

because they consist of a series of whole numbers.  Though natural frequencies are easily 

understood by adults, adults, like children, have difficulty understanding the association 

between proportion notation and the quantities the notation represents (Gigerenzer & 

Hoffrage, 1999).   

 Gigerenzer and Hoffrages’s application of natural frequencies has involved 

Bayesian reasoning problems.  Bayesian problems involve multiple probabilities in which 

a single probability needs to be inferred.  A number of studies have found that individuals 
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solve a higher percentage of Bayesian problems correctly when they are presented as 

relative frequencies rather than as percentages (Brase, 2008; Gigerenzer & Hoffrage, 

1995).  The relative frequencies are presented as X out of Y and it is theorized by the 

authors that this format is more accurate because the use of whole numbers makes the 

computations easier.  Thus, the numerical format of relative frequencies is more naturally 

understood by adults than any other numerical format representing proportions. 

 Relative frequencies, like integers, represent quantities and thus as those 

quantities become quantitatively closer in value, it should become more difficult for the 

participants to decipher between the values.  Thus, the expected result of comparing two 

relative frequencies would be the Welford function or distance effect.  In addition, as the 

comparisons between relative frequencies become more challenging, it is expected that 

the slope of the distance effect will also increase.  This expectation is based on research 

that Sekuler and Mierkiewicz completed with kindergartner, first-, fourth-, and seventh 

grade children (Sekuler & Mierkiewicz, 1977).  The authors had the children complete a 

larger/smaller task with Arabic numerals.  They found that the younger children’s 

distance effect had a steeper slope than the older children due to the perceived difficulty 

of the task.   

Analog Representation(s) of Relative Frequencies 

 As mentioned earlier, extensive research has established that integers are 

converted into quantity representations that are termed analog representations.  This 

thesis will examine whether relative frequencies are also converted into analog 

representations or if they simply consist of mathematical facts.  If relative frequencies are 

mentally represented as quantities, the data will produce the distance effect.  It is likely 
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that relative frequencies are represented as analogs because they cognitively represent 

quantities and there is no research to the contrary. 

 In order to compare two relative frequencies, the symbolic representations of the 

two relative frequencies must first be transformed into their analog representations.  This 

thesis proposes three possible processes that could occur as the two frequencies are being 

compared.   

 The first theory is that the comparison is made directly within the single analog 

representation of relative frequencies and thus the comparison is quick.  If relative 

frequencies, like integers, consist only of a single analog representation, then the 

comparisons should produce quick reaction times.  The data should represent shallow 

slopes and have a small intercept value.  There would be a shallow slope because the 

comparison of values would be easy across values and thus a shallow distance effect 

would be produced.  The data would also have a small intercept value because there is 

only one conversion step, from a symbolic representation into an analog representation, 

before the quantities would be compared.  This theory is based off of Gigerenzer and 

Hoffrage’s research (1995, 1999) that natural frequencies are easily understood by adults.   

 The second theory is that a mathematical conversion must occur in order to 

transform the relative frequencies into a comparable format.  The denominator of a 

relative frequency is not always the same value and thus the quantities are not always 

represented on the same scale.  For example, a person could be asked to compare 3 in 20 

and 14 in 100.  In order to accurately state which quantity is larger, the person may 

convert the 3 in 20 to 15 in 100 to then compare the relative frequencies on the same 

scale (out of 100).  If this theory is correct, the intercept value is expected to be large 
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because the reaction time is consumed by the mathematical conversion.  The comparison 

of the two quantities, on the same scale, would then be relatively quick across all the 

values compared and thus the data would produce a shallow slope.  

 The third theory is that the two analog representations are simply difficult to 

compare.  This result would be demonstrated by a large slope value when relative 

frequencies of varying denominators are being compared.  This could occur due to 

multiple factors.  First, if relative frequencies, with different denominators, have different 

analog representations, the connection between these two representations could be weak.  

This weak association between analog representations could be caused by the rarity in 

which individuals are exposed to or use relative frequencies.  This rarity in comparing 

relative frequencies, even those that have a large mathematical difference between them, 

causes the task to be difficult and thus large response times are the result.  As the values 

of the frequencies become closer in value, the response times become substantially 

effected due to both the weak association between the analog representations and the 

comparison of two numbers close in value.  The overall result is a steep slope for 

conditions in which multiple denominators are being compared. 

EXPERIMENT 1 

 In Experiment 1, relative frequencies with varying denominators were examined 

to determine whether varying the denominator had an effect on individuals’ reaction 

times.  The relative frequencies were presented as X in Y.  There were five different 

conditions, in which the second number, Y, of the relative frequency was manipulated.  

The participants were presented one condition at a time and completed 110 trials per 

condition.  A single trial consisted of two relative frequencies presented on a computer 
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screen, one number above the other, and the participants were asked to respond whether 

the bottom relative frequency was larger or smaller than the top. 

 Conditions one and two examined whether individuals were able to compare 

similar formats of relative frequencies in a larger/smaller comparison task.  In condition 

one, the participants compared relative frequencies presented as X in 1000 to relative 

frequencies presented as X in 1000.  In this condition, the participants could potentially 

only attend to the first number in the relative frequency and still respond correctly.  In 

condition two, the participants compared relative frequencies presented as X in 736 and 

X in 736.  The participants could, again, only attend to the first number and ignore the 

denominator and still respond correctly.  However, the purpose of this condition was to 

examine whether the denominator has any influence on response time, compared to 

condition one. 

 Conditions three and four examined whether individuals were able to compare 

different formats of relative frequencies in a larger/smaller comparison task.  In condition 

three, the standard was presented as X in 736 and the probe was presented as X in 1000.  

In condition four, the standard was presented as X in 1000 and the probe was presented 

as X in 736.  These conditions reveal whether individuals were able to consistently 

convert between two different numerical representations of relative frequencies.  

Conditions three and four also examined whether presentation order of the numerical 

stimulus had an effect on response time.    

 Condition five examined whether individuals were able to compare relative 

frequencies that are presented with varying denominators.  The relative frequencies 

presented were reduced to their lowest common denominator.  The purpose of condition 
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five was to expand the range of denominators presented to the participant and thus to 

challenge the participants’ ability to convert between numerical representations.  

METHOD 

Participants 

 The experiment consisted of 45 participants, 25 females and 20 males.  The 

participants were all over the age of 18 and were recruited from the University of North 

Carolina at Wilmington subject pool.  The participants received course credit for their 

participation.  The participants were unaware of the purpose of the experiment. 

Materials 

 The experiment was performed on a MS Windows based computers and the 

stimuli were presented on 40cm computer monitor.  The project instructor programmed 

the experiments using C++ and Java. 

Stimuli 

 The conditions consisted of relative frequencies with the second number of the 

frequency varying, per condition.   The relative frequencies were presented on the same 

screen, one above the other.  The relative frequency presented on top was termed the 

standard and the bottom relative frequency, the probe.  The participants sat 50cm from 

the screen.  The individual integers presented on the computer screen were 4cm wide and 

5 cm tall. 

Condition 1: X in 1000 compared to X in 1000 

 All of the relative frequencies, presented in this condition, were presented as X in 

1000.  The standard and the probe relative frequencies presented to the participants were 

randomly selected from the range of 250 in 1000 to 750 in 1000.   
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Condition 2: X in 736 compared to X in 736 

 All of the relative frequencies, presented in this condition, were presented as X in 

736.  The standard and the probe relative frequencies presented to the participants were 

randomly selected from the range of 184 in 736 to 552 in 736.  This range is 

mathematically proportionate to the range used in condition one.   

Condition 3: X in 736 and X in 1000 

 The numerical format of the standard was X in 736.  The probe was presented as 

X in 1000.  The range of the standard was between 184 in 736 and 552 in 736.  The range 

of the probe was between 250 in 1000 and 750 in 1000.   

Condition 4: X in 1000 and X in 736 

 The format of the standard was X in 1000.  The probe was presented as X in 736.  

The range of the standard was between 250 in 1000 and 750 in 1000.  The range of the 

probe was between 184 in 736 and 552 in 736.     

Condition 5: Lowest  Common Denominator 

 All of the relative frequencies presented were presented with the lowest common 

denominator and thus the denominator varied between the standard and the probe 

between trials.  The standard and the probe were randomly selected from the range of 250 

in 1000 and 750 in 1000.   

Procedure 

 When the participants arrived to the cognition lab, they were greeted and asked to 

fill out a consent form and a demographic survey.  The participants were then brought 

into a small room that contained a single computer.  The participants were then instructed 

that they would be completing five sets of trials.  They were then asked to read through 
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the instructions and advise the experimenter if they had any questions.  The following 

instructions were presented on the computer screen: 

 
In this experiment, you will be presented two relative frequencies (for example “1 in 10” 
and “5 in 10”) representing different quantities.  These two relative frequencies will be 
presented one above the other: 
 

1 in 10 

5 in 10 

Your job is to judge whether the bottom relative frequency is larger or smaller than the 
top relative frequency.  You will respond by pressing one of the two keys on the 
keyboard.  At the beginning of the experiment, the computer will tell you which key to 
press if the bottom relative frequency is larger than the top relative frequency and which 
key to press if the bottom relative frequency is smaller than the top relative frequency.  
Please respond as quickly and as accurately as you can.  Remember, speed is important, 
but accuracy is essential.  Do you have any questions? 
 

 Each trial consisted of the standard quantity and probe quantity being presented, 

one above the other, on a single screen.  The participant then determined whether the 

bottom quantity was larger or smaller than the top quantity, and pressed the L button, for 

a response of larger or S button, for a response of smaller.  The screen remained visible 

until a response was made.  There was a blank screen between each trial that lasted 

2000ms. 

 Each condition consisted of 10 practice trials and 100 experimental trials.  The 

order of the five conditions were randomized per participant.  The participants’ reaction 

times were recorded in milliseconds.  Each participant participated in all five conditions 

during a 90 minute session.   

RESULTS 
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  Of the fifty-two participants that completed the experiment, the data of forty-five 

participants were examined.  One participant was immediately excluded from the 

experiment, before beginning the task, due to being underage.  The other six participants 

were removed because their error rate in the two easiest conditions, 10001000 and 

736736, was higher than 10% in at least one of the conditions (Mean Error Rate = 

74.0%).  The high error rates demonstrated that the participants either did not understand 

the purpose of the experimental task or simply were not performing the task very 

accurately and thus were not included in the statistical analysis. 

 To allow the participants a chance to practice using the larger and smaller 

response buttons on the keyboard and to practice responding as accurately and quickly as 

they could, the participants completed 10 practice trials before starting the experiment.  

The initial data gathered consisted of response times for 100 trials, per participant, for 

each of the 5 conditions: 10001000 (M=1190ms, SD=564ms, ME=4.69%), 736736 

(M=1339ms, SD=743ms, ME=4.73%), 7361000 (M=3305ms, SD=2763ms, 

ME=23.11%), 1000736 (M=3290ms, SD=2814ms, ME=20.82%), and lcd (M=4598ms, 

SD=3366ms, ME=20.18%).    

 Due to the nature of response time data, low and high response time cut-off values 

were determined per condition.  The high response time cut-off threshold was determined 

by past research in which removing no more than 2% of the data is the recommended 

limit (Ratcliff, 1993).  The top 2% of the response time data, per condition, was excluded 

from our analysis (Ratcliff, 1993).  The cut-off values consisted of any response times 

greater than 3872ms for the 10001000 condition, greater than 5084ms for the 736736 

condition, greater than 17303ms for the 7361000 condition, greater than 18439ms for the 
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1000736 condition, and greater than 21008ms for the lcd condition.  The low response 

time cut-off threshold was also determined by condition.  As a group, the participants’ 

response times were examined in 50ms increments, per condition.  Per 50ms increment, 

the percentage of correct responses was determined.  The low cut-off threshold was 

determined to be the value in which that response time value and all lesser response time 

values the participants responded with an accuracy of 51% correct or higher.  Responding 

with the correct answer more than 50% of the time demonstrated that the participants 

were completing the task as requested (Ratcliff, 1993). 

 The initial examination of the distribution of the data revealed that the data was 

positively skewed.  In order to normalize the distribution, a log (base 10) function was 

applied to the response times.  This transformation allowed the data to be examined with 

normal statistical assumptions.  All further analysis were completed on the log 

transformed data.     

 To analyze whether the distance effect was present in each of the five conditions, 

a series of linear regressions on both a symmetrical log function (log |stimulus-probe|) 

and the Welford function (log max/(max-min)) of the log of the response times were 

completed.  The analysis revealed that the symmetrical log function (log |stimulus-probe|) 

consistently produced a higher r2 value on the log (base 10) response time data, than the 

Welford function (log max/(max-min) (See Table 1).   

 Linear regressions were completed on the symmetrical log function for each of 

the participant’s log (base 10) response time data, for each of the five conditions.  These 

analyses produced each of the participant’s slope, intercept, and r2 values per condition.  

These values were subsequently analyzed through a series of mixed model ANOVAs.  
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Table 1.  The r2 values for the symmetrical log function compared to the Welford 

function for each condition. 

 

 10001000 736736 7361000 1000736 lcd 

Log|s-p| .051 .042 .054 .038 .019 

Welford .050 .039 .048 .035 .019 
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 A mixed model ANOVA with subject as the random effect and condition as the 

within subject variable revealed a significant main effect of condition on slope, F(4,220) 

= 9.125, p<.001, MSE=.008.  Tukey’s post-hoc test revealed that the 7361000 condition 

(M=-.1626, SD=.1184) and the 1000736 condition (M=-.1492, SD=.1232) produced 

significantly higher slopes than the 10001000 condition (M=-.0902, SD=.0410), 736736 

condition (M=-.0866, SD=.0404), and the lcd condition (M=-.0748, SD=.0851) (Figure 

1).  The analysis also revealed that the 7361000 and 1000736 conditions were not 

significantly different from each other and the 10001000 condition, 736736 condition, 

and lcd condition were not significantly different from each other.  In addition, a one-

sample t-test (t(134)=-16.4482, p<.01) demonstrated that the three most shallow slope 

conditions (10001000, 736736, and lcd) were significantly different from zero. 

 A mixed model ANOVA with subject as the random effect and condition as the 

within subject variable revealed a significant main effect of condition on intercept, 

F(4,220) = 67.313, p<.001, MSE=.034.  Tukey’s post-hoc test revealed that the 10001000 

condition (M=2.9534, SD=.1190) and the 736736 condition (M=2.9966, SD=.1337) were 

not significantly different from each other, however both conditions had a significantly 

smaller intercept than the 7361000 condition (M=3.2545, SD=.2164) and the 1000736 

condition (M=3.2694, SD=.2369).  The 7361000 condition and 1000736 condition were 

found not to be significantly different from each other.  In addition, the lcd condition had 

a significantly larger intercept than the other four conditions (M=3.5040, SD=.1844) 

(Figure 2). 

 A mixed model ANOVA with subject as the random effect and condition as the 

within subject variable revealed a significant main effect of condition on r2, F(4,220) =  
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Figure 1.  This graph demonstrates the mean slope values for each condition, for 

Experiment 1. 
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Figure 2.  This graph demonstrates the mean intercept values for each condition, for 

Experiment 1. 
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5.492, p<.001, MSE=.007.  Tukey’s post-hoc test revealed that the lcd condition 

(M=.0324, SD=.0369) accounted for less of the variance than the 10001000 (M=.1003, 

SD=.0723), 736736 (M=.0952, SD=.0797), 7361000 (M=.1070, SD=.1216), and  

1000736 (M=.0925, SD=.0976) conditions (Figure 3), which were not significantly 

different from each other. 
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Figure 3.  This graph demonstrates the mean r2 values for each condition, for Experiment 

1. 
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DISCUSSION 

 The appearance of the distance effect, within each of the five conditions, suggests 

that relative frequencies (1) have an analog quantity representation and (2) the analog 

representation is not of the components of the relative frequency, but rather of the 

proportion the numerical frequency represents. First, the pattern of data revealed in 

Experiment 1 is consistent with the distance effect (Moyer & Landauer, 1967) produced 

with other analog tasks (Buckley & Gillman, 1974; Carey, 2001).  This has traditionally 

been interpreted as supporting the assumption of analog representation (Dehaene, 1990; 

Dehaene, 1995; Hinrichs, 1981; Zhang, 2005). The same conclusion is appropriate here.  

Second, the slopes of the distance effect in the same denominator conditions suggest that 

these analog representations are of the proportion rather than the numerator of the relative 

frequency. If the participants based their judgments by comparing the two numerators 

and ignored the denominators, the distance effect would be based on the mathematical 

difference between those two integers.  Instead, the participants were attending to the 

quantity represented by the relative frequency as demonstrated by the distance effect 

being based off of the mathematical difference between the proportions that the relative 

frequencies represented.  If the numerator values were being compared, the slope values 

for the 10001000 and 736736 conditions would have been significantly different from 

each other.  However, the slope and intercept values were not significantly different from 

each other in the 10001000 and 736736 conditions.  Thus the pattern of data for the two 

conditions were essentially equivalent and this could have only occurred if the 

proportional values were used in both conditions. 
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 The slopes for the two conditions in which the denominators of the probe and the 

standard are the same (i.e., 10001000 and 736736 conditions) were (1) the same and (2) 

shallow.  The shallow slopes of the 10001000 and 736736 conditions indicate an efficient 

comparison between the quantities being compared. Theoretically, the most efficient 

comparisons should be made within a single analog representation. Given that one would 

logically suspect that relative frequencies with the same denominator would share a 

quantity representation and the data demonstrate a very efficient comparison process, we 

conclude that relative frequencies with a common denominator share a quantity 

representation.   If all numerical representations existed within a single analog 

representation, we would expect to find that comparing quantities should be equally easy 

for all the conditions.   

 The lcd condition, in which there were many different denominators, produced an 

equivalent slope value to the same denominator conditions.  The shallow slope 

demonstrates an efficient comparison between two quantities.  Thus, when relative 

frequencies with varying denominators were compared, we conclude that the comparison 

occurred within a single analog representation.   

 The slopes for the two-denominator conditions (i.e., 7361000 and 1000736 

conditions) were the same (i.e., there was no effect of presentation order) and quite steep. 

The data reveals that the quantity comparisons in the two-denominator conditions were 

slow and imprecise.  It was hypothesized that with only two denominators being 

compared that these conditions would produce faster overall response times than the lcd 

condition, in which the denominator consistently varied.  However, the slope for the 

7361000 and 1000736 conditions were steeper than the lcd condition, suggesting that the 
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task was even more difficult than the lcd condition. The pattern of data suggests that the 

comparisons are not being made within the same analog representation, rather, that the 

comparisons are made between two different analog representations.   

 The intercept values explain some of the inconsistency in the slope results. The 

lcd condition produced a very high intercept value.  The production of a high intercept 

value by the participants appears to unveil the difficulty of the task and how the 

participants were able to simplify the consistently changing denominators.  The high 

intercept value together with the shallow slope suggests that the participants applied a 

mathematical strategy to convert the numerical stimuli into a common denominator or 

numerical format.  This conversion explains how two relative frequencies with different 

denominators could be compared within a single analog representation.  Thus, it appears 

that the lcd condition caused participants to convert the numerical stimuli into a common 

denominator or perhaps a more common format (i.e. decimals) before the comparison 

was made within a single analog representation.    

 In the 7361000 and 1000736 conditions, the intercept value was significantly 

higher than the same denominator conditions, but significantly less than the lcd condition. 

It is not clear what the extra intercept time involves in the two-denominator condition, 

however, it is apparent that it does not involve a mathematical conversion.  The 

application of a mathematical strategy would result in an easier comparison between the 

two quantities and thus result in a shallow slope for these conditions.  Instead, the slope 

for the 7361000 and 1000736 conditions is greater than 1.5 times steeper than the other 

conditions.   
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 In Experiment 2, we examined the effect of reaction time when participants were 

asked to compare a relative frequency and a decimal in a larger/smaller comparison task.  

The decimal format was examined for two primary reasons.  First, the advantage of 

examining the decimal format is the ability to present equivalent values as either a 

relative frequency (X in 1000) or as a decimal and have them be visually similar.  The 

use of decimals allowed us to infer whether the decimal format and the relative frequency 

format have separate or overlapping analog representations.  Secondly, decimals and 

relative frequencies are completely separate numerical formats.  Examining the pattern of 

data produced from comparing two different numerical formats, and thus two analog 

representations, expanded the research completed in Experiment 1 and thus aided in a 

more comprehensive explanation and interpretation of all the results.  Thus, Experiment 2 

expanded, as well as confirmed the data from Experiment 1. 

EXPERIMENT 2 

 Experiment 2 was quite similar to Experiment 1.  The participants were asked to 

compare two quantities in a larger/smaller comparison task.  One of the quantities was 

presented as a decimal and the other as a relative frequency.  The participants’ response 

times were recorded. 

METHOD 

Participants 

 Participants consisted of 41 college students, 23 females and 18 males.  The 

participants were all over the age of 18 and were recruited from the University of North 

Carolina at Wilmington.  The participants did not consist of individuals who completed 
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Experiment 1.  The participants received course credit for their participation.  The 

participants were unaware of the purpose of the experiment.   

Materials 

 The apparatus used in Experiment 2 was the same as Experiment 1. 

Stimuli 

 In Experiment 2, two numerical stimuli were compared in a larger/smaller 

comparison task.  The comparisons consisted of one quantity being presented as a relative 

frequency and one quantity as a decimal.  Six conditions were examined. 

Condition 1: X in 1000 is to a decimal 

 In this condition, the quantity presented at the top of the screen was a relative 

frequency displayed as X in 1000.  The relative frequencies ranged in value from 250 in 

1000 to 750 in 1000.  The quantity presented at the bottom of the screen was a decimal.  

The decimal quantities had the same proportional range as the relative frequencies, from 

0.250 to 0.750. 

Condition 2: A decimal is to X in 1000 

 Condition two consisted of the same numerical stimuli being presented as 

condition one.  The only difference was that the decimal was presented at the top of the 

screen and the relative frequency at the bottom of the screen. 

Condition 3: X in 736 is to a decimal 

In this condition, the quantity presented at the top of the screen was a relative 

frequency displayed as X in 736.  The relative frequencies ranged in value from 184 in 

736 to 552 in 736.  The quantity presented at the bottom of the screen was a decimal.  
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The decimal quantities had the same proportional range as the relative frequencies, from 

0.250 to 0.750. 

Condition 4: A decimal is to X in 736 

 Condition four consisted of the same numerical stimuli being presented as 

condition three.  The only difference was that the decimal was presented at the top of the 

screen and the relative frequency at the bottom of the screen. 

Condition 5: X in lowest common denominator is to a decimal 

In this condition, the quantity presented at the top of the screen was a relative 

frequency displayed as X in lowest common denominator.  The relative frequencies in 

this condition were divided through by the numerator and denominator’s greatest 

common factor.  The proportional range for the relative frequencies was 0.250 to 0.750.  

The quantity presented at the bottom of the screen was a decimal.  The decimal quantities 

had the same proportional range as the relative frequencies, from 0.250 to 0.750. 

Condition 6: A decimal is to X in lowest common denominator 

 Condition six consisted of the same numerical stimuli being presented as 

condition five.  The only difference was that the decimal was presented at the top of the 

screen and the relative frequency at the bottom of the screen. 

Procedure 

 When the participants arrived to the cognition lab, they were greeted and asked to 

fill out a consent form and a demographic survey.  The participants were then brought 

into a small room that contained a single computer.  The participants were then instructed 

that they would be completing six sets of trials.  They were then asked to read through the 
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instructions and advise the experimenter if they had any questions.  The following 

instructions were presented on the computer screen: 

 
In this experiment, you will be presented one relative frequency (for example “1 in 10”) 
and one decimal, representing different quantities.  These two quantities will be presented 
one above the other: 
 

1 in 10 

.5 

Your job is to judge whether the bottom quantity is larger or smaller than the top 
quantity.  You will respond by pressing one of the two keys on the keyboard.  At the 
beginning of the experiment, the computer will tell you which key to press if the bottom 
quantity is larger than the top quantity and which key to press if the bottom quantity is 
smaller than the top quantity.  Please respond as quickly and as accurately as you can.  
Remember, speed is important, but accuracy is essential.  Do you have any questions? 
 

 Each trial consisted of the stimulus and probe quantities being presented, one 

above the other, on a single screen.  The participants’ task was to determine whether the 

bottom quantity was larger or smaller than the top quantity, and pressed the L button, for 

a response of larger or S button, for a response of smaller.  The screen remained visible 

until a response was made.  There was a blank screen between each trial that lasted 

2000ms. 

 Each condition consisted of 10 practice trials and 100 experimental trials.  The 

order of the six conditions was randomized per participant.  The participants’ reaction 

times were recorded in milliseconds.  Each participant completed all six conditions 

during a 90 minute session.   

RESULTS 

  Of the fifty-four participants that completed the experiment, the data of forty-one 

participants were examined.  One participant was removed for not completing all six 
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conditions.  Twelve participants were removed from the data set because their error rates 

in the two easiest conditions, 1000deci and deci1000, were higher than 10% in either 

condition (Mean Error Rate = 51.9%).  The high error rates demonstrated that the 

participants either did not understand the purpose of the experimental task or simply were 

not performing the task very accurately and thus were not included in the statistical 

analysis. 

 Similar to Experiment 1, the first ten trials of each condition were considered 

practice trials and they were completed before the experimental trials began, so that the 

participant could get acquainted with the task.  The practice trials were not statistically 

examined.  The initial data gathered consisted of response times for 100 trials, per 

participant, for each of the 6 conditions: 1000deci (M=1487ms, SD=890ms, ME=2.46%), 

deci1000 (M=1530ms, SD=832ms, ME=2.37%), 736deci (M=3405ms, SD=2601ms, 

ME=20.63%), deci736 (M=3296ms, SD=2452ms, ME=19.61%), and lcddeci 

(M=3425ms, SD=2530ms, ME=13.63%), decilcd (M=3481ms, SD=2588ms, 

ME=13.46%).   

 The slowest and quickest response times were removed from the data set by the 

same criteria used in Experiment 1.  The slowest 2% of the response time data were 

removed per condition (Ratcliff, 1993).  The cut-off values consisted of any response 

times greater than 6378ms for the 1000deci condition, greater than 6467ms for the 

deci1000 condition, greater than 16168ms for the 736deci condition, greater than 

15254ms for the deci736 condition, greater than 16978ms for the lcddeci condition, and 

greater than 15868ms for the decilcd condition.  Like Experiment 1, the faster response 

times were eliminated until the responses consistently demonstrated a 51% or better 
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accuracy threshold, per condition (Ratcliff, 1993).  In the 1000deci and deci1000 

conditions, the participants always responded above 51% correct and thus all of the data 

were included. 

 Like Experiment 1, the initial distribution of the data was positively skewed.  To 

normalize the distribution of the data, the response time data was again transformed by 

using the log (base 10) of the response time.   

 To examine whether the symmetrical log function fit the data better than the 

Welford function, a linear regression was completed on the data for each of the two 

functions, per condition.  The analysis revealed that the symmetrical log function (log 

|stimulus-probe|) consistently had a higher r2 value on the transformed log (base 10) 

response time data, than the Welford function (log max/(max-min), with each of the six 

conditions (See Table 2).    

 The dependent variables under examination were the participants’ slope, 

intercept, and r2 values for each of the three conditions   To obtain these values, linear 

regressions were completed on the symmetrical log function for each of the participant’s 

log (base 10) response time data, for each of the three conditions.  A series of 2X3 mixed 

model ANOVAs were completed to examine the dependent variables. 

 A 2 (deci first/deci second) X 3 (1000/736/lcd) mixed model ANOVA with 

subject as the random effect and condition and order as the within subject variables 

uncovered a significant main effect of condition on slope, F(2,240) = 14.856, p<.001, 

MSE=.009.  Tukey’s post-hoc test revealed that the 736 condition (M=-.1493, SD=.1272) 

had a significantly higher slope than both the 1000 condition (M=-.0872, SD=.0407) and 

the lcd condition (M=-.0724, SD=.0954) (Figure 4).   There was no significant difference  
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Table 2.  The r2 values for the symmetrical log function compared to the Welford 

function for each condition. 

 

 1000deci deci1000 736deci deci736 lcddeci decilcd 

log|s-p| .041 .039 .032 .026 .015 .005 

Welford .040 .037 .028 .024 .014 .004 
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Figure 4.  This graph demonstrates the mean slope values for each condition, for 

Experiment 2. 
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between the 1000 and lcd conditions.  The analysis also revealed that the decimal order 

was not significant and there was not a significant interaction between condition and 

order.  In addition, a one-sample t-test (t(163)=-13.4877, p<.01) demonstrated that the 

two most shallow slope conditions (1000, lcd) were significantly different from zero. 

 A 2 (deci first/deci second) X3 (1000/736/lcd) mixed model ANOVA with 

subject as the random effect and condition and order as the within subject variables 

revealed that there was a significant main effect of condition on intercept, F(2,240) = 

66.563, p<.001, MSE=.030.  Tukey’s post-hoc test demonstrated that all three conditions 

were significantly different from each other.  The 1000 condition (M=3.0489, SD=.1347) 

had the smallest intercept, then the 736 condition (M=3.2689, SD=.1866), and the lcd 

condition (M=3.3531, SD=.1908) produced the largest value (Figure 5).  There was no 

significant effect of order and there was no significant interaction between condition and 

order.   

 A 2X3 mixed model ANOVA with subject as the random effect and condition as 

the within subject variable demonstrated that there was a significant main effect of 

condition on r2, F(2,240) = 16.271, p<.001, MSE=.007.  Tukey’s post-hoc test revealed 

that the lcd condition (M=.0407, SD=.0485) was found to account for significantly less of 

the variance than the 736 (M=.1141, SD=.1120) and 1000 conditions (M=.0884, 

SD=.0723) (Figure 6).  The 736 and 1000 conditions were found to not be significantly 

different from each other.  The analysis also revealed no significant effect of order and no 

significant interaction between condition and order. 
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Figure 5.  This graph demonstrates the mean intercept values for each condition, for 

Experiment 2. 
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Figure 6.  This graph demonstrates the mean r2 values for each condition, for Experiment 

2. 
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DISCUSSION 

 Like Experiment 1, the distance effect was found in each of the conditions of 

Experiment 2 and thus the numerical comparisons were again completed between analog 

representations.  The data demonstrate that the participants did not simply compare the 

components of the numerical stimuli, but rather accessed the quantity representations of 

both formats.  The results of Experiment 2 were consistent of that of Experiment 1 with 

the 1000 condition replicating the findings of the 10001000 and 736736 conditions, the 

736 condition replicating the findings of the 7361000 and 1000736 conditions, and the 

lcd condition of Experiment 2 replicating the results of the lcd condition of Experiment 1.   

 The 1000 condition replicated the findings for the 10001000 condition and 

736736 condition in Experiment 1.  For the 1000 condition in Experiment 2, the slope of 

the data was shallow and the intercept value was small.  The difference between the two 

experiments is that Experiment 1 compared a relative frequency to a relative frequency 

where Experiment 2 compared a relative frequency to a decimal.  The parallel results 

from the two experiments, leads to an interesting conclusion.  Theoretically, the data 

suggest that relative frequencies with 1000 as the denominator share the same analog 

representation as decimals.  In the 10001000 condition of Experiment 1, the data reveal 

an efficient comparison between the two quantities, within a single analog representation, 

as is evident by a small slope and intercept value.  The pattern of data for the 1000 

condition of Experiment 2, is equivalent to that found in the 10001000 condition of 

Experiment 1.  Thus the data suggest that comparing a relative frequency out of 1000 and 

a decimal occurs within a single analog representation. 
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 The lcd condition from Experiment 2 replicated the findings for Experiment 1, 

with a high intercept value and a shallow slope.  The shallow slope, like that produced in 

the lcd condition of Experiment 1, suggests that the relative frequency and the decimal 

are converted into a single analog representation.  The high intercept value would 

suggest, like Experiment 1, that a mathematical strategy is applied to one or both of the 

numerical stimuli before the comparison is completed.  In Experiment 2, the numerical 

comparison was made between one relative frequency and one decimal.  It is likely that 

the relative frequency was either converted into a relative frequency out of 1000 or a 

decimal before the larger/smaller comparison was made.   

 The data from the 736 condition in Experiment 2 revealed a high slope and 

relatively high intercept value, replicating the findings of Experiment 1.  The high slope 

demonstrates that the comparison between the two quantities became increasingly 

difficult as the values became closer in value.  Again, the relatively high intercept value 

suggests that to compare a relative frequency out of 736 and a decimal that some sort of 

preparatory act needs to take place.  However, similar to the 7361000 and 1000736 

conditions from Experiment 1, the large slope value suggests that no mathematical 

strategy was used in this condition.  Like Experiment 1, the data suggests that numerical 

comparisons between a decimal and a relative frequency out of 736 are not being 

processed within a single analog representation.  Rather, the combined results in this 

condition suggest that the comparisons are between two separate analog representations 

and these comparisons are laborious.   
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GENERAL DISCUSSION 

The results are consistent in both experiments.  The conditions that consisted of 

comparing two relative frequencies with the same denominator produced quick reaction 

times, with small intercept and slope values.  The numerical comparisons in these 

conditions were processed quickly.  The combination of these results suggests that 

relative frequencies with the same denominator are processed within the same analog 

representation.  The conditions in which the denominator consistently changed caused the 

participants to perform some sort of preparatory act before the comparison was 

completed.  It’s likely that the participants used a mathematical rule to convert one or 

both of the numerical stimuli so that both quantities had the same denominator.  The task 

is made easier by converting the stimuli because then the stimuli can be compared within 

a single analog representation.  Lastly, the conditions in which only two denominators 

were compared produced significantly higher response times than the other three 

conditions.  The pattern of data from these conditions suggests that the numerical 

comparisons are not occurring within a single analog representation, rather via multiple 

representations. 

Analog Representation 

The cognitive literature has consistently demonstrated that the ability to 

discriminate between quantity representations is present in animals, pre-verbal infants, 

and adults.  A considerable amount of the research has focused on integers and the 

transformation between numerical symbol into an analog representation.  The current 

research is the first to analyze whether relative frequencies, a numerical format that 

represents quantities less than one, are also translated into an analog representation.  Our 



 56

findings suggest that the adult human brain is not simply structured to process whole 

numbers, but also proportions.  

The same denominator conditions from Experiment 1 both produced the distance 

effect and thus demonstrated that an analog representation was accessed.  In both of these 

conditions, the participants could have simply compared the numerators of the two 

quantities being compared and they would have responded correctly. Analyzing the 

conditions individually does not answer the question of whether the analog representation 

is simply of the numerator of each relative frequency being compared or if it is the analog 

representation of the proportion of each of the relative frequencies being compared.  

However, comparing the pattern of response times for both conditions based on the 

values of the numerators in the relative frequencies versus the proportion values of the 

relative frequencies can answer the question.  For example, the average response times of 

comparing the relative frequency of 300 in 1000 to 400 in 1000 could be compared to the 

average response times of comparing 300 in 736 to 400 in 736.  If the participants were 

solely attending to the numerators, then the response times for both conditions would be 

equivalent because the comparison is the same (300 to 400).  If the participants were 

comparing the proportional value of each of the relative frequencies than the response 

time for the 736736 condition would be faster than the 10001000 condition.  The faster 

response time would be due to the larger mathematical difference between the proportion 

300 in 736 and 400 in 736 (.136) than 300 in 1000 and 400 in 1000 (.100).   Examining 

the pattern of data for the 10001000 and 736736 conditions concurrently suggests that the 

analog representation being accessed is that of the proportional value of the relative 

frequencies.  These results suggests that even when the denominator of the relative 
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frequency did not play a role in determining the correct response, the proportion that the 

relative frequency represented was being translated into an analog representation. 

 To analyze the presence of the distance effect, in both experiments, a series of 

regressions were completed on the individual conditions.  The results demonstrated the 

presence of the distance effect in both conditions comparing relative frequencies with the 

same denominator, as conditions comparing relative frequencies with different 

denominators.  As mentioned earlier, the quick and efficient comparisons of relative 

frequencies with the same denominator suggest that the relative frequencies are being 

compared within the same analog representation.  In contrast, the extended response 

times of comparing relative frequencies with different denominators, suggest that these 

comparisons involve multiple analog representations.  The combined results suggest that 

the distance effect can be produced within a single analog representation, as well as when 

two separate analog representations are being compared.  Within a single analog 

representation, the distance effect is produced because the two quantities fall on the same 

continuous scale and the closer the quantities are to each other, the more difficult it 

becomes to discriminate between them.  It appears that when two quantities, that have 

separate analog representations, are compared that the two continuous scales that the 

quantities fall upon are also compared.  Analog representations for different numerical 

formats (ex. Arabic and Roman numerals) have been shown to produce different patterns 

of data (Gonzalez & Koler, 1982).  These patterns of data are based on the numerical 

biases that exist for each of the formats.  A possible cause of numerical biases could be 

due to how the quantities are aligned on the analog scale for that specific format.  Thus, 

when two quantities that have separate analog representations are compared, it is not 
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solely the comparison of two quantities but rather the totality of comparing two quantities 

and where the two quantities are represented on two different analog scales.  The 

combination of comparing the quantities and scales of each numerical stimuli would 

explain the difficulty in comparing relative frequencies that do not have the same 

denominator and thus do not share the same analog representation. 

Numerical Models and Relative Frequencies 

 The results of both experiments suggest that relative frequencies with different 

denominators have separate analog representations.  The 10001000, 736736, and lcd 

conditions from Experiment 1 and the 1000deci, deci1000, lcddeci, and decilcd 

conditions from Experiment 2 provided evidence that relative frequencies with the same 

denominator have the same analog representation.  The numerical comparisons in these 

conditions were quick and produced shallow slopes.  However, the 7361000 and 1000736 

conditions from Experiment 1 and the 736deci and deci736 conditions from Experiment 2 

produced longer response times with steeper slopes which suggests the involvement of 

multiple analog representations.  Comparing our results to the current numerical models, 

our results counter McClosky’s (1986) single analog representation model and Dehaene’s 

(1992) triple code model, and provide support for Gonzalez and Koler’s multiple 

representations model.  McCloskey’s (1986) model would predict that relative 

frequencies would be translated into the same analog representation as every other 

numerical format.  If this were the case, comparisons between two relative frequencies or 

a relative frequency and a decimal would result in a consistent shallow slope.  The slope 

value would be consistent and small for every condition because any comparison between 

two numbers would be taking place within a single analog representation and 
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comparisons within a single analog representation are efficient.  McClosky’s model 

would have been supported if the same pattern of data that was produced in the 

10001000, 736736, 1000deci, and deci1000 condition was produced by each of the other 

conditions.  This was not the case.  Instead, the 7361000, 1000736, 736deci, and deci736 

conditions produced much steeper slopes than the other conditions.   

 Dehaene’s (1992) triple code model assumes that different numerical 

presentations are processed in different modules of his model.  The model consists of an 

analog, visual, and verbal code.  The analog code is a quantity representation and thus 

this is the code that relative frequencies would be translated into.  The visual and verbal 

codes involve memorized mathematical facts (ex. multiplication tables) and thus do not 

apply to this research.  Our presentation of numerical stimuli were consistently presented 

as Arabic numerals and thus Dehane’s model would predict that the stimuli would all be 

converted into a single analog representation and thus have the same predictions as 

McCloskey’s (1986) model.  However, again, varying the denominator of the relative 

frequencies was found to effect the slope values for the different conditions and thus 

comparing relative frequencies with varying denominators is not equally efficient.  Thus, 

the triple code model does not adequately explain the results of our experiments. 

 Our data associate well with Gonzalez and Koler’s (1982) multiple analog 

representation model.  The multiple analog model proposes that there is an analog 

representation per numerical format and it is unknown whether these individual analog 

representations can interact without the use of a mathematical strategy.  Our data expands 

on this model by suggesting that there are multiple analog representations within a single 

numerical format, relative frequencies.  The data also appear to suggest that each analog 
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representation is based on the relative frequency’s denominator.  In both Experiments 1 

and 2 we found that when a relative frequency out of 736 was compared to a relative 

frequency out of 1000 or compared to a decimal that these comparisons had a 

significantly different slope value than when the denominators were the same or in the 

lcd condition.   

 The extended response times for the 736 conditions suggest that comparing 

relative frequencies with different denominators is quite difficult.  Comparing two 

separate analog representations appears to be like comparing two quantities that are 

measured with separate scales.  For example, it would be like comparing a measurement 

on a meter stick versus a yard stick.  It is not solely the comparison of two values, rather 

a comparison of where the values fall on two scales.  Without using a mathematical 

conversion, this comparison is arduous and thus comparing a measurement on one stick 

versus the other takes time and becomes significantly more difficult as the comparisons 

become closer in value.  The 736 conditions, with the resulting high slope value and 

extended response times, suggest that comparisons between relative frequencies with 

different denominators cause separate analog representation to interact. 

Relative Frequencies Are Not Natural 

 Research in numerical cognition consistently provided evidence for the theory 

that humans innately understand integers.  The research has not adequately demonstrated 

whether or not quantities less than one, like relative frequencies, have an innate cognitive 

representation.  Gigerenzer and Hoffrage (1995) argue that relative frequencies are 

naturally understood.  The authors have established that the relative frequency format 

increases individuals’ accuracy on Bayesian Reasoning problems.  Gigerenzer and 
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Hoffrage (1995) make no conclusions about the internal representation of relative 

frequencies. 

 Our response time data provides insight into whether relative frequencies are truly 

naturally understood.  If relative frequencies are innately understood, individuals should 

be able to compare two quantities accurately and relatively quickly.  The 10001000 and 

736736 conditions from Experiment 1 provide such evidence.  The shallow slope in both 

conditions demonstrates that the task was completed with ease and the values of the 

numerical stimuli had minimal effect on the participants’ response times.  In addition, 

participants consistently completed the conditions in less than two seconds suggesting 

that the cognitive processing of the quantities is efficient.  Overall, relative frequencies 

that have the same denominator provide evidence of the naturalness of relative 

frequencies. 

 The 7361000, 1000736, and the lcd conditions from Experiment 1 suggest that 

relative frequencies are not innately understood or if they are understood, relative 

frequencies with different denominators are difficult to compare.  The high slope values 

from the 7361000 and 1000736 conditions demonstrate that comparing quantities with 

different denominators dramatically affects the participants’ reaction time.  This data was 

found to be significantly different from the 10001000 and 736736 conditions from 

Experiment 1 and thus suggest that all relative frequencies are not processed the same.  In 

the lcd condition, in order to be able to compare two relative frequencies, participants had 

to first convert one of the quantities.  If relative frequencies are naturally processed, a 

mathematical strategy should not be necessary to complete a comparison.  It appears that 

when comparisons are completed with different denominators, and thus different analog 
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representations, relative frequencies do not produce a pattern of data that suggests they 

are naturally understood. 

 It is reasonable to suggest that relative frequencies with the same denominator 

share an analog representation and that relative frequencies with different denominators 

do not share an analog representation.  Relative frequencies with the same denominator 

are being compared on the same scale.  The scale is determined by the value of the 

denominator.  The denominator is critical to the analog scale because it determines how 

many parts per whole.  Comparing two relative frequencies, with different denominators, 

involves comparing two scales that are broken down into a different number of parts.  

Thus it is understandable that each scale or each relative frequency with a different 

denominator value has an individual analog representation. 

Future Research 

 There is an anomaly in our data that needs further exploration.  In the 7361000 

and 1000736 conditions, the participants were consistently presented with two relative 

frequencies, one as X in 736 and one as Y in 1000.  In this condition, it appears that a 

direct comparison was completed, with no mathematical conversions.  In the lcd 

condition, the participants were presented with two relative frequencies and the 

denominators of these relative frequencies consistently varied.  In this condition, the 

participants converted one relative frequency to have the same denominator as the other 

relative frequency.  The question arises, why was a mathematical strategy used in one 

condition but not the other? 

 There is limited research with quantities less than one.  Further research is needed 

with different numerical representations of proportions and how their internal 
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representations interact.  For example, does the presentation of quantities as fractions (3/4 

and 4/5) produce the same pattern of response time data as the same quantities in relative 

frequency format (3 in 4 and 4 in 5).  The study of internal representations and quantities 

less than one is a novel area of numerical cognition and thus has extensive avenues to 

explore.   

Conclusion 

 Our research has demonstrated that relative frequencies are understood as the 

proportions they represent and are transformed into analog representations.  The data 

suggest that there are multiple representations and these representations are based on the 

value of the relative frequency’s denominator.  Quantities that are represented with the 

same denominator provide evidence that relative frequencies are naturally understood.  

However, the internal representations of relative frequencies with different denominators 

do not appear to interact efficiently.  This suggests that relative frequencies are not 

innately understood. 
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