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Theidea of schemeis childishly simple—so simple,
so humble, no one before me dreamt of stooping
so low....It grew by itself from the sole demands
of simplicity and internal coherence.

[A. Grothendieck, Récoltes et Semailles (R&S),
pp- P32, P28]

Algebraic geometry has never been really simple. It
was not simple before or after David Hilbert recast it in
his algebra, nor when André Weil brought it into number
theory. Grothendieck made keyideas simpler. His schemes
give a bare minimal definition of space just glimpsed as
early as Emmy Noether. His derived functor cohomology
pares insights going back to Bernhard Riemann down to
an agile form suited to étale cohomology. To be clear, étale
cohomology was no simplification of anything. It was a
radically new idea, made feasible by these simplifications.

Grothendieck got this heritage at one remove from
the original sources, largely from Jean-Pierre Serre in
shared pursuit of the Weil conjectures. Both Weil and
Serre drew deeply and directly on the entire heritage.
The original ideas lie that close to Grothendieck’s swift
reformulations.

Generality As the Superficial Aspect
Grothendieck’s famous penchant for generality is not
enough to explain his results or his influence. Raoul
Bott put it better fifty-four years ago describing the
Grothendieck-Riemann-Roch theorem.

Riemann-Roch has been a mainstay of analysis for
one hundred fifty years, showing how the topology of a
Riemann surface affects analysis on it. Mathematicians
from Richard Dedekind to Weil generalized it to curves
over any field in place of the complex numbers. This
makes theorems of arithmetic follow from topological
and analytic reasoning over the field F, of integers
modulo a prime p. Friedrich Hirzebruch generalized the
complex version to work in all dimensions.

Grothendieck proved it for all dimensions over all
fields, which was already a feat, and he went further in
a signature way. Beyond single varieties he proved it for
suitably continuous families of varieties. Thus:

Grothendieck has generalized the theorem to the
point where not only is it more generally applica-
ble than Hirzebruch’s version but it depends on
a simpler and more natural proof. (Bott [6])

This was the first concrete triumph for his new cohomol-
ogy and nascent scheme theory. Recognizing that many
mathematicians distrust generality, he later wrote:

I prefer to accent “unity” rather than “general-
ity.” But for me these are two aspects of one
quest. Unity represents the profound aspect, and
generality the superficial. [16, p. PU 25]
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The Beginnings of Cohomology
Surfaces with holes are not just an amusing
pastime but of quite fundamental importance for
the theory of equations. (Atiyah [4, p. 293])

The Cauchy Integral Theorem says integrating a holo-
morphic form w over the complete boundary of any
region of a Riemann surface gives 0. To see its signifi-
cance look at two closed curves C on Riemann surfaces
that are not complete boundaries. Each surrounds a hole,
and each has [ w # 0 for some holomorphic w.

Cutting the torus along the dotted curve C; around the
center hole of the torus gives a tube, and the single curve
C; can only bound one end.

The punctured sphere on the right has stars depicting
punctures, i.e. holes. The regions on either side of C, are
unbounded at the punctures.

Riemann used this to calculate integrals. Any curves C
and C’ surrounding just the same holes the same number
of times have [-w = [~ w for all holomorphic w. That
is because C and the reversal of C’ form the complete
boundary of a kind of collar avoiding those holes. So
Jew = Jow =0.

Modern cohomology sees holes as obstructions to
solving equations. Given w and a path P:[0,1] - S it
would be great to calculate the integral [, w by finding a
function f with df = w, so [, w = f(P) — f(Py). Clearly,
there is not always such a function, since that would
imply [, w = 0 for every closed curve P. But Cauchy,
Riemann, and others saw that if U C S surrounds no
holes there are functions fy with dfy = w all over U.
Holes are obstructions to patching local solutions f;; into
one solution of df = w all over S.

This concept has been generalized to algebra and
number theory:

Indeed one now instinctively assumes that all
obstructions are best described in terms of
cohomology groups. [32, p. 103]

Cohomology Groups
With homologies, terms compose according to
the rules of ordinary addition. [24, pp. 449-50]
Poincaré defined addition for curves so that C + C’ is
the union of C and C’, while —C corresponds to reversing
the direction of C. Thus for every form cw:

J w=Jw+ w and J wz—Jw.
Cc+C’ C C’ -C C

When curves Ci,...,Cy form the complete boundary
of some region, then Poincaré writes >, C, ~ 0 and says
their sum is homologous to 0. In these terms the Cauchy
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Integral Theorem says concisely:

If 3Cy ~ 0, then J w=0

2k Cxk
for all holomorphic forms .

Poincaré generalized this idea of homology to higher
dimensions as the basis of his analysis situs, today called
topology of manifolds.

Notably, Poincaré published two proofs of Poincaré
duality using different definitions. His first statement
of it was false. His proof mixed wild non sequiturs
and astonishing insights. For topological manifolds M
of any dimension n and any 0 < i < n, there is a
tight relation between the i-dimensional submanifolds
of M and the (n — i)-dimensional. This relation is hardly
expressible without using homology, and Poincaré had to
revise his first definition to get it right. Even the second
version relied on overly optimistic assumptions about
triangulated manifolds.

Topologists spent decades clarifying his definitions
and theorems and getting new results in the process.
They defined homology groups H;(S) for every space S
and every dimension i € N. In each H; the group addition
is Poincaré’s addition of curves modulo the homology
relations X C = 0. They also defined related cohomology
groups H'(S) such that Poincaré duality says H;(M) is
isomorphic to H" /(M) for every compact orientable
n-dimensional manifold M.

Poincaré’s two definitions of homology split into many
using simplices or open covers or differential forms or
metrics, bringing us to the year 1939:

Algebraic topology is growing and solving prob-
lems, but nontopologists are very skeptical. At
Harvard, Tucker or perhaps Steenrod gave an
expert lecture on cell complexes and their homol-
ogy, after which one distinguished member of the
audience was heard to remark that this subject
had reached such algebraic complication that it
was not likely to go any further. (MacLane [21,
p. 133]

Variable Coefficients and Exact Sequences
In his Kansas article (1955) and Téhoku article
(1957) Grothendieck showed that given any cate-
gory of sheaves a notion of cohomology groups
results. (Deligne [10, p. 16])

Algebraic complication went much further. Methods
in topology converged with methods in Galois theory
and led to defining cohomology for groups as well as
for topological spaces. In the process, what had been a
technicality to Poincaré became central to cohomology,
namely, the choice of coefficients. Certainly he and others
used integers, rational numbers or reals or integers
modulo 2 as coefficients:

a,Ci+ - +auC, a,€ZorQorRorZzZ/27.

But only these few closely related kinds of coefficients
were used, chosen for convenience for a given calculation.
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So topologists wrote H! (S) for the ith cohomology group
of space S and left the coefficient group implicit in the
context. '

In contrast group theorists wrote H'(G,A) for the
ith cohomology of G with coefficients in A, because
many kinds of coefficients were used and they were as
interesting as the group G. For example, the famed Hilbert
Theorem 90 became

H'(Gal(L/k),L*) = {0}.

The Galois group Gal(L/k) of a Galois field extension L/k
has trivial 1-dimensional cohomology with coefficients in
the multiplicative group L* of all nonzero x € L. Olga
Taussky[33, p. 807] illustrates Theorem 90 by using it on
the Gaussian numbers Q[i] to show every Pythagorean
triple of integers has the form

m? — n?, 2mn, m® + n°.

Trivial cohomology means there is no obstruction to
solving certain problems, so Theorem 90 shows that
some problems on the field L have solutions. Algebraic
relations of H (Gal(L/k), L) to other cohomology groups
imply solutions to other problems. Of course Theorem 90
was invented to solve lots of problems decades before
group cohomology appeared. Cohomology organized and
extended these uses so well that Emil Artin and John Tate
made it basic to class field theory.

Also in the 1940s topologists adopted sheaves of
coefficients. A sheaf of Abelian groups F on a space
S assigns Abelian groups F(U) to open subsets U € S
and homomorphisms F(U) - F(V) to subset inclusions
V < U. So the sheaf of holomorphic functions @, assigns
the additive group Oy (U) of holomorphic functions on
U to each open subset U & M of a complex manifold.
Cohomology groups like H' (M, ©,) began to organize
complex analysis.

Leaders in these fields saw cohomology as a unified
idea, but the technical definitions varied widely. In the
Séminaire Henri Cartan speakers Cartan, Eilenberg, and
Serre organized it all around resolutions. A resolution
of an Abelian group A (or module or sheaf) is an exact
sequence of homomorphisms, meaning the image of each
homomorphism is the kernel of the next:

{0} A Iy L

It quickly follows that many sequences of cohomology
groups are also exact. That proof rests on the Snake
Lemma immortalized by Hollywood in a scene widely
available online: “A clear proof is given by Jill Clayburgh
at the beginning of the movie It’s My Turn” [35, p. 11].

Fitting a cohomology group H'(X, F) into the right
exact sequence might show H (X, F) = {0}, so the ob-
structions measured by H' (X, F) do not exist. Or it may
prove some isomorphism, H (X, F) = HX(Y, G). Then the
obstructions measured by H' (X, F) correspond exactly to
those measured by H*(Y, G).

Group cohomology uses resolution by injective mod-
ules I;. A module I over a ring R is injective if for
every R-module inclusion j: N » M and homomorphism
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f N -1 there is some g: M — 1 with f = gj. The diagram
is simple:

N>+>M

This works because every R-module A over any ring R
embeds in some injective R-module. No one believed
anything this simple would work for sheaves. Sheaf coho-
mology was defined only for sufficiently regular spaces
using various, more complicated topological substitutes
for injectives. Grothendieck found an unprecedented
proof that sheaves on all topological spaces have injec-
tive embeddings. The same proof later worked for sheaves
on any Grothendieck topology.

Tohoku

Consider the set of all sheaves on a given topolog-
ical space or, if you like, the prodigious arsenal
of all “meter sticks” that measure the space. We
consider this “set” or “arsenal” as equipped with
its most evident structure, the way it appears so
to speak “right in front of your nose”; that is what
we call the structure of a “category.” [16, p. P38]

We will not fully define sheaves, let alone spectral
sequences and other “drawings (called “diagrams”) full of
arrows covering the blackboard” which “totally escaped”
Grothendieck at the time of the Séminaire Cartan [R&S,
p- 19]. We will see why Grothendieck wrote to Serre on
February 18, 1955: “I am rid of my horror of spectral
sequences” [7, p. 7].

The Séminaire Cartan emphasized how few specifics
about groups or modules go into the basic theorems.
Those theorems only use diagrams of homomorphisms.
For example, the sum A + B of Abelian groups A, B can
be defined, uniquely up to isomorphism, by the facts that
it has homomorphisms iy:A—-A+ B and i3.B— A+ B
and any two homomorphisms f: A— C and g B— C give
aunique u: A + B- C with f = ui, and g = uig:

ia ip
A——A+B<—28B

NS

The same diagram defines sums of modules or of sheaves
of Abelian groups.

Grothendieck [13, p. 127] took the basic patterns used
by the Séminaire Cartan as his Abelian category axioms.
He added a further axiom, AB5, on infinite colimits.
Theorem 2.2.2 says if an Abelian category satisfies AB5
plus a set-theoretic axiom, then every object in that
category embeds in an injective object. These axioms
taken from module categories obviously hold as well for
sheaves of Abelian groups on any topological space, so
the conclusion applies.

People who thought this was just a technical result on
sheaves found the tools disproportionate to the product.
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They were wrong on both counts. These axioms also sim-
plified proofs of already-known theorems. Most especially
they subsumed many useful spectral sequences (not all)
under the Grothendieck spectral sequence so simple as to
be Exercise A.3.50 of (Serre [11, p. 683]).

Early editions of Serge Lang’s Algebra gave the Abelian
category axioms with a famous exercise: “Take any book
on homological algebra, and prove all the theorems
without looking at the proofs given in that book” [20, p.
105]. He dropped that when homological algebra books
all began using axiomatic proofs themselves, even if their
theorems are stated only for modules. David Eisenbud,
for example, says his proofs for modules “generalize with
just a little effort to [any] nice Abelian category” [11,
p. 620].

Injective resolutions in any Abelian category give
derived functor cohomology of that category. This was
obviously general beyond any proportion to the then-
known cases. Grothendieck was sure it was the right
generality: For a cohomological solution to any prob-
lem, notably the Weil conjectures, find the right Abelian
category.

The Weil Conjectures
This truly revolutionary idea thrilled the mathe-
maticians of the time, as I can testify at first hand.
[30, p. 525]

The Weil Conjectures relat-
ing arithmetic to topology were

immediately recognized as a

The

huge achievement. Weil knew con jeCtui’e S
that just conceiving them was
a great moment in his career. were too

The cases he proved were im-
pressive. The conjectures were
too beautiful not to be true and
yet nearly impossible to state
fully.

Weil [37] presents the
topology using the nineteenth-
century terminology of Betti
numbers. But he was an estab-
lished expert on cohomology
and in conversations:

Atthat time, Weil was explaining things in terms of
cohomology and Lefschetz’s fixed point formula
[yet he] did not want to predict [this could actually
work]. Indeed, in 1949-50, nobody thought that
it could be possible. (Serre quoted in [22, p. 305].)

Lefschetz used cohomology, relying on the continuity
of manifolds, to count fixed points x = f(x) of continuous
functions f : M - M on manifolds. Weil’s conjectures deal
with spaces defined over finite fields. No known version
of those was continuous. Neither Weil nor anyone knew
what might work. Grothendieck says:

Serre explained the Weil conjectures to me in
cohomological terms around 1955 and only in
these terms could they possibly “hook” me. No
one had any idea how to define such a cohomology

beautiful not

to be true and
yet nearly

impossible to
state fully.
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and I am not sure anyone but Serre and I, not
even Weil if that is possible, was deeply convinced
such a thing must exist. [R&S, p. 840]

Exactly What Scheme Theory Simplified
Kronecker was, in fact, attempting to describe and
to initiate a new branch of mathematics, which
would contain both number-theory and algebraic
geometry as special cases. (Weil [38, p. 90])

Riemann’s treatment of complex curves left much to
geometric intuition. So Dedekind and Weber [8, p. 181]
proved a Riemann-Roch theorem from “a simple yet rig-
orous and fully general viewpoint,” over any algebraically
closed field k containing the rational numbers. They note
k can be the field of algebraic numbers. They saw this
bears on arithmetic as well as on analysis and saw all too
well that their result is “very difficult in exposition and
expression” [8, p. 235].

Meromorphic functions on any compact Riemann sur-
face S form a field M(S) of transcendence degree 1 over
the complex numbers C. Each point p € S determines a
function e, from M(S) to C + {co}: namely e, (f) = f(p)
when f is defined at p, and e, (f) = oo when f has a pole
at p. Then, if we ignore sums o + oo:

ep(f+g) = ep(f) + ep(g),
ep(f ) g) = ep(f) - en(g),

ep( 1) -
PFT e

Dedekind and Weber define a general field of algebraic
functions as any transcendence degree 1 extension L/k of
any algebraically closed field k. They define a point p of L
to be any function e, from L to k + {0} satisfying those
equations. Their Riemann-Roch theorem treats L as if it
were M (S) for some Riemann surface.

Kronecker [19] achieved some “algebraic geometry over
an absolutely algebraic ground-field” [38, p. 92]. These
fields are the finite extensions of Q or of finite fields F,.
They are not algebraically closed. He aimed at “algebraic
geometry over the integers” where one variety could be
defined over all these fields at once, but this was far too
difficult at the time [38, p. 95].

Italian algebraic geometers relied on an idea of generic
points of a complex variety V, which are ordinary complex
points p € V with no apparent special properties [26]. For
example, they are not points of singularity. Noether and
Bartel van der Waerden gave abstract generic points which
actually have only those properties common to all points
of V. Van der Waerden [34] made these rigorous but not
so usable as Weil would want. Oscar Zariski, trained in
Italy, worked with Noether in Princeton, and later with
Weil, to give algebraic geometry a rigorous algebraic basis
[23, p. 56].

Weil’s bravura Foundations of Algebraic Geometry [36]
combined all these methods into the most complicated
foundation for algebraic geometry ever. To handle vari-
eties of all dimensions over arbitrary fields k, he uses
algebraically closed field extensions L/k of infinite tran-
scendence degree. He defines not only points but also
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subvarieties V' < V of a variety V purely in terms
of fields of rational functions. Raynaud [25] gives an
excellent overview. We list three key topics.

(1) Weil has generic points. Indeed, a variety defined
by polynomials over a field k has infinitely many
generic points with coordinates transcendental
over k, all conjugate to each other by Galois
actions over k.

(2) Weil defines abstract algebraic varieties by data
telling how to patch together varieties defined by
equations. But these do not exist as single spaces.
They only exist as sets of concrete varieties plus
patching data.

(3) Weil could not define a variety over the integers,
though he could systematically relate varieties
over Q to others over the fields F,,.

Serre Varieties and Coherent Sheaves

Then Serre [27] temporarily put generic points and non-
closed fields aside to describe the first really penetrating
cohomology of algebraic varieties:

This rests on the use of the famous Zariski topol-
ogy, in which the closed sets are the algebraic
sub-varieties. The remarkable fact that this coarse
topology could actually be put to genuine mathe-
matical use was first demonstrated by Serre and
it has produced a revolution in language and
techniques. (Atiyah [3, p. 66])

Say a naive variety over any field k is a subset V < k"
defined by finitely many polynomials p;(x, ..., X,) over k:

V={Xek'p@X) = =pn(X) =01}

They form the closed sets of a topology on k" called
the Zariski topology. Even their infinite intersections are
defined by finitely many polynomials, since the polyno-
mial ring k[xy,...,x,] is Noetherian. Also, each inherits
a Zariski topology where the closed sets are the subsets
V' < V defined by further equations.

These are very coarse topologies. The Zariski closed
subsets of any field k are the zero-sets of polynomials
over k: that is, the finite subsets and all of k.

Each naive variety has a structure sheaf Oy which
assigns to every Zariski open U € V the ring of regular
functions on U. Omitting important details:

f(X)
g(x)

A Serre variety is a topological space T plus a sheaf
Or which is locally isomorphic to the structure sheaf
of a naive variety. Compare the sheaf of holomorphic
functions O, of a complex manifold. The sheaf apparatus
lets Serre actually paste varieties together on compatible
patches, just as patches of differentiable manifolds are
pasted together. Weil could not do this with his abstract
varieties.

Certain sheaves related to the structure sheaves O
are called coherent. Serre makes them the coefficient
sheaves of a cohomology theory widely used today with
schemes. The close tie of coherent sheaves to structure
sheaves makes this cohomology unsuitable for the Weil

Oy(U) ={ such that when X € U then g(X) + 0 }.

VOLUME 63, NUMBER 3



conjectures. When variety (or scheme) V is defined over a
finite field [, its coherent cohomology is defined modulo
p and can count fixed points of maps V -V only modulo
p. Still:

The principal, and perhaps only, external inspira-
tion for the sudden vigorous launch of scheme
theory in 1958 was Serre’s (1955) article known
by the acronym FAC. [R&S, p. P28]

Schemes
The point, grosso modo, was to rid algebraic geom-
etry of parasitic hypotheses encumbering it: base
fields, irreducibility, finiteness conditions. (Serre
[29, p. 201])

Schemes overtly simplify algebraic geometry. Where
earlier geometers used complicated extensions of alge-
braically closed fields, scheme theorists use any ring.
Polynomial equations are replaced by ring elements.
Generic points become prime ideals. The more intri-
cate concepts come back in when needed, which is fairly
often, but not always and not from the start.

In fact this perspective goes back to unpublished work
by Noether, van der Waerden, and Wolfgang Krull. Prior
to Grothendieck:

The person who was closest to scheme-thinking
(in the affine case) was Krull (around 1930). He
used systematically the localization process, and
proved most of the nontrivial theorems in Com-
mutative Algebra. (Serre, email of 21/06/2004,
Serre’s parentheses)

Grothendieck made it work. He made every ring R
the coordinate ring of a scheme Spec(R) called the
spectrum of R. The points are the prime ideals of R,
and the scheme has a structure sheaf @y on the Zariski
topology for those points, like the structure sheaf on
a Serre variety. It follows that the continuous structure
preserving maps from Spec(R) to another affine scheme
Spec(A) correspond exactly to the ring homomorphisms
in the other direction:

spec(R) — 2D spec(A) .

A 4>f R

The points can be quite intricate: “When one has to

construct a scheme one generally does not begin with the
set of points” [10, p. 12].

For example, the ring R[x] of real polynomials in
one variable is the natural coordinate ring for the real
line, so the spectrum Spec(R[x]) is the scheme of the
real line. Each nonzero prime ideal is generated by a
monic irreducible real polynomial. Those polynomials
are x —a for a € R and x> — 2bx + ¢ for b,c € R with
b? < c. The first kind correspond to ordinary points x = a
of the real line. The second kind correspond to pairs
of conjugate complex roots b + /b2 —c. The scheme
Spec(R[x]) automatically includes both real and complex
points, with the nuance that a single complex point is a
conjugate pair of complex roots.

A polynomial equation like x> + y? = 1 has many kinds
of solutions. One could think of rational and algebraic
solutions as kinds of complex solutions. But solutions
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modulo a prime p, such as x = 2 and y = 6 in the finite
field [F,3, are not complex numbers. And solutions modulo
one prime are different from those modulo another. All
these solutions are organized in the single scheme

Spec(Z[x,y]/(x* + y* —1)).

The coordinate functions are simply integer polynomi-
als modulo x> + y? — 1. The nonzero prime ideals are not
simple at all. They correspond to solutions of this equa-
tion in all the absolutely algebraic fields by which Weil
explicated Kronecker’s goal, including all finite fields. In-
deed, the closest Grothendieck comes to defining schemes
in Récoltes et Semailles is to call a scheme a “magic fan”
(éventail magique) folding together varieties defined over
all these fields (p. P32). This is algebraic geometry over
the integers.

Now consider the ideal (x> + y> — 1) consisting of
all polynomial multiples of x> + y®> — 1 in Z[x, y]. It is
prime, so it is a point of Spec(Z[x,y]). And schemes
are not Hausdorff spaces: their points are generally not
closed in the Zariski topology. The closure of this point is
Spec(Z[x,y]/(x*> +y?—1)). This ideal is the generic point
of the closed subscheme

Spec(Z[x,y1/(x* + y* — 1)) » Spec(Z[x,y]).

The irreducible closed subschemes of any scheme are,
roughly speaking, given by equations in the coordinate
ring, and each has exactly one generic point.

In the ring Z[x, y1/(x*> + y> — 1) the ideal (x> +y*> — 1)
appears as the zero ideal, since in this ring x> + y* —
1 = 0. So the zero ideal is the generic point for the
whole scheme Spec(Z[x, y]/ (x> + y*> — 1)). What happens
at this generic point also happens almost everywhere
on Spec(Z[x,y]/(x*> + y*> — 1)). Generic points like this
achieve what earlier algebraic geometers sought from
their attempts.

Schemes vindicate more classical intuitions as well.
Ancient Greek geometers debated whether a tangent line
meets a curve in something more than a point. Scheme
theory says yes: a tangency is an infinitesimal segment
around a point.

The contact of the parabola y = x> with the x-axis
y = 0in R? is plainly given by x> = 0. As a variety it would
just be the one point space {0}, but it gives a nontrivial
scheme Spec(R[x]/(x?)). The coordinate functions are
real polynomials modulo x? or, in other words, real linear
polynomials a + bx.

Intuitively Spec(R[x]/(x?)) is an infinitesimal line seg-
ment containing 0 but no other point. This segment is
big enough that a function a + bx on it has a slope b
but is too small to admit a second derivative. Intuitively
a scheme map v from Spec(R[x]/(x?) to any scheme S
is an infinitesimal line segment in S, i.e. a tangent vector
with base point v(0) € S.

Grothendieck’s signature method, called the relative
viewpoint, also reflects classical ideas. Earlier geometers
would speak of, for example, x> + t - y? = 1 as a quadratic
equation in x,y with parameter t. So it defines a conic
section E; which is an ellipse or a hyperbola or a pair of
lines depending on the parameter. More deeply, this is
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a cubic equation in x, y,t defining a surface E bundling
together all the curves E;. Over the real numbers this
gives a map of varieties

E={{xy,t)ER}x’+t-y>=1} —=R

Each curve E, is the fiber of this map over its parameter
t € R. Classical geometers used the continuity of the
family of curves E; bundled into surface E but generally
left the cubic surface implicit as they spoke of the variable
quadratic curve E,.

Grothendieck used rigorous means to treat a scheme
map [ : X - S as a single scheme simpler than either one of
X and S. He calls f a relative scheme and treats it roughly
as the single fiber X, C X over some indeterminatep € S z

Grothendieck had this viewpoint even before he had
schemes:

Certainly we’re now so used to putting some
problem into relative form that we forget how
revolutionary it was at the time. Hirzebruch’s
proof of Riemann-Roch is very complicated, while
the proof of the relative version, Grothendieck-
Riemann-Roch, is so easy, with the problem
shifted to the case of an immersion. This was
fantastic. [18, p. 1114]

What Hirzebruch proved for complex varieties Grothen-
dieck proved for suitable maps f . X - S of varieties over
any field k. Among other advantages this allows reducing
the proof to the case of maps f, called immersions, with
simple fibers.

The method relies on base change transforming a
relative scheme f : X - S on one base S to some f': X' - S’
on some related base S’. Fibers themselves are an example.
Given f: X — S each point p € S is defined over some field
k, and p € S amounts to a scheme map p: Spec(k) — S.
The fiber X, is intuitively the part of X lying over p and
is precisely the relative scheme X, — Spec(k) given by
pullback:

X, ——X

1

Spec(k) —S

Other examples of base change include extending a
scheme f:Y — Spec(R) defined over the real numbers
into one f'.Y’' - Spec(C) over the complex numbers by
pullback along the unique scheme map from Spec(C) to
Spec(R):

Y ———Y

| b

Spec(C) — Spec(R)

Other changes of base go along scheme maps S' > S
between schemes S,S’ taken as parameter spaces for
serious geometric constructions. Each is just a pullback
in the sense of category theory, yet they encode intricate

'm 1942 Oscar Zariski urged something like this to Weil [23,
p- 70]. Weil took the idea much further without finally making it
a working method [38, p. 91ff].
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(x,y,t)~t.

information and express operations which earlier geome-
ters had only begun to explore. Grothendieck and Jean
Dieudonné took this as a major advantage of scheme
theory:

The idea of “variation” of base ring which we intro-
duce gets easy mathematical expression thanks to
the functorial language whose absence no doubt
explains the timidity of earlier attempts. [17, p. 6]

Etale Cohomology

In the Séminaire Chevalley of April 21, 1958, Serre pre-
sented new 1-dimensional cohomology groups H!(X, G)
suitable for the Weil conjectures: “At the end of the
oral presentation Grothendieck said this would give the
Weil cohomology in all dimensions! I found this very
optimistic” [31, p. 255]. That September Serre wrote:

One may ask if it is possible to define higher
cohomology groups H?(X, G)...in all dimensions.
Grothendieck (unpublished) has shown it is, and
it seems that when G is finite these furnish
“the true cohomology” needed to prove the Weil
conjectures. On this see the introduction to [14].
[28, p. 12]

Grothendieck later described that unpublished work
of 1958, saying, “The two key ideas crucial in launching
and developing the new geometry were those of scheme
and of topos. They appeared almost simultaneously and
in close symbiosis.” Specifically he framed “the notion
of site, the technical, provisional version of the crucial
notion of topos” [R&S, pp. P31 and P23n]. But before
pursuing this idea into higher-dimensional cohomology
he used Serre’s idea to define the fundamental group of
a variety or scheme in a close analogy with Galois theory.

Notice that Zariski topology registers punctures much
more directly than it registers holes like those through
the center of the torus or inside the tube.
m

\Q/ *

{ \
/

N = S

Zariski closed subsets are (locally) the zero-sets of
polynomials, so a nonempty Zariski open subset of
the torus is the torus minus finitely many punctures
(possibly none). Such a subset might or might not be
punctured at some point P itself, so the Zariski opens
themselves distinguish between having and not having
that puncture. But every nonempty Zariski open subset
surrounds the hole through the torus center and the
one through the torus tube. These subsets by themselves
cannot distinguish between having and not having those
holes. Coherent cohomology registers those holes by
using coherent sheaves, which cannot work for the Weil
conjectures, as noted above.

So Serre used many-sheeted covers. Consider two
different 2-sheeted covers of one torus T. Let torus T be
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twice as long as T, with the same tube diameter. Wrap T’
twice around T along the tube:

Tr/

O

wrap 2X
T ’ vertically

wrap 2X horizontally
— T

Let torus T” be as long as T with twice the tube diameter.
Wrap it twice around the tube. The difference between
these two covers, and both of them from T itself, reflects
the two holes in T.

Riemann created Riemann surfaces as analogues to
number fields. As Q[+/2] is a degree 2 field extension of
the rational numbers Q, so T' — T is a degree 2 cover of
T. As Q[+/2]/Q has a two element Galois group where
the nonidentity element interchanges /2 with —+/2, so
T’ - T has a two-element symmetry group over T where
the nonidentity symmetry interchanges the two sheets of
T over T.

Serre consciously extended Riemann’s analogy to a
far-reaching identity. He gave a purely algebraic defini-
tion of unramified covers S’ — S which has the Riemann
surfaces above as special cases, as well as Galois field
extensions, and much more. Naturally, in this generality
some theorems and proofs are a bit technical, but over
and over Serre’s unramified covers make intuitions taken
from Riemann surfaces work for all these cases. Groth-
endieck used these to give the first useful theory of the
fundamental group of a variety or a scheme, that is, the
one-dimensional homotopy. He also worked with a slight
generalization of unramified covers, called étale maps,
which include all algebraic Riemann covering surfaces.

Serre had not calculated cohomology of sheaves but
of isotrivial fiber spaces. Over a torus T those are roughly
spaces mapped to T which may twist around T but
can be untwisted by lifting to some other torus T” - T
wrapped some number of times around each hole of T.
While Grothendieck [12] also used fiber spaces for one-
dimensional cohomology, he found his Téhoku methods
more promising for higher dimensions. He wanted some
notion of sheaf matching Serre’s idea.

During 1958 Grothendieck saw that instead of defining
sheaves by using open subsets U < S of some space S, he
could use étale maps U — S to a scheme. He published this
ideaby spring 1961 [15, §4.8, p. 298]. Instead of inclusions
V € U < §, he could use commutative triangles over S:

v— I .y UxsV—=V

A

S U————S

In place of intersections U NV < S he could use pullbacks
U X5V over S. Then an étale cover of a scheme S is any
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set of étale maps U; —» S such that the union of all the
images is the whole of S. Sites today are often called
Grothendieck topologies, and this site may be called the
étale topology on S.

There are two basic ways to solve a problem locally
in the étale topology on S. You could solve it on each
of a set of Zariski open subsets of S whose union is S,
or you could solve it in a separable algebraic extension
of the coordinate ring of S. The first gives an actual,
global solution if the local solutions agree wherever they
overlap. The second gives a global solution if the local
solution is Galois invariant—like first factoring a real
polynomial over the complex numbers, then showing the
factors are actually real. Etale cohomology would measure
obstructions to patching actual solutions together from
combinations of such local solutions.

In 1961 Michael Artin proved the first higher-
dimensional geometric theorem in étale cohomology [1,
p- 359]. According to David Mumford this was that
the plane with origin deleted has nontrivial H; in the
context of étale cohomology that means the coordinate
plane punctured at the origin, k*> — {0}, for any field of
coordinates k. Weil’s conjectures suggest that, when k
is absolutely algebraic, this cohomology should largely
agree with the classical cohomology of the complex case
C? — (0,0). That space is topologically R* punctured at
its origin. It has the classical cohomology of the 3-sphere
$3, and that is nontrivial in H®. So Artin’s result needed
to hold in any Weil cohomology. Artin proved it does
hold in the derived functor cohomology of sheaves on
the étale site. Today this is étale cohomology.

In short, Artin showed the étale site yields not only
some sheaf cohomology but a good usable one. Classical
theorems of cohomology survive with little enough change.
Grothendieck invited Artin to France to collaborate in the
seminar that created Théorie des topos et cohomologie
étale [2]. The subject exploded, and we will go no further
into it.

Toposes are less popular than schemes or sites in ge-
ometry today. Deligne expresses his view with care: “The
tool of topos theory permitted the construction of étale
cohomology” [10, p. 15]. Yet, once constructed, this coho-
mology is “so close to classical intuition” that for most
purposes one needs only some ordinary topology plus
“a little faith/un peu de foi” [9, p. 5]. Grothendieck would
“advise the reader nonetheless to learn the topos lan-
guage which furnishes an extremely convenient unifying
principle” [5, p. VII].

We close with Grothendieck’s view of how schemes and
his cohomology and toposes all came together in étale
cohomology, which indeed in his hands and Deligne’s
gave the means to prove the Weil conjectures:

The crucial thing here, from the viewpoint of the
Weil conjectures, is that the new notion of space
is vast enough, that we can associate to each
scheme a “generalized space” or “topos” (called
the “étale topos” of the scheme in question).
Certain “cohomology invariants” of this topos
(as “babyish” as can be!) seemed to have a good
chance of offering “what it takes” to give the
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conjectures their full meaning, and (who knows!)
perhaps to give the means of proving them. [16,
p. P41]

Courtesy of Patricia Princehouse.

Colin McLarty with a Great Pyrenees, from the region
where Grothendieck spent much of his life.
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