
 Hozer Video Games! - Randy Crihfield

The main purpose of this document is to describe how to program games that are 8K, 16K, 32K, 64K,
all the way up to 1MB. I explains multiple bank switching techniques, and. I also tried to explain the
WHY so folks could go on from here to even bigger and better things. For my point of reference I use
the standard 8K/16K board I use for just about everything, created by Chris Wilkson back in 1999. It
turns out it can easily be done, and rather cheaply. The board now comes in a Sara and non-Sara
variety, so yes games like Cave In can be done without a lot of fuss or muss (been there done that own
one for myself). If you prefer using my �competitor� boards, there's a section at the end.

It was somewhat frustrating to test the GAL programming � after all as far as I know there are no 64K
Sara game images out there to play around with for example. Finding some test bins was very
beneficial, but I still needed them for the 1MB cart I have here on the table (Thanks Snail!). The
original goal, the challenge one customer laid down for me, was to be able to further expand my ability
to create carts for people and keep the price as ridiculously low as I could. In particular they wanted a
64K cartridge. I already make 8K/16K games for $16 which includes postage in the USA, so charging
a little extra for the additional labor seemed reasonable.

My target for non-Sara games -

$11 for 2K/4K games (Same price since 1984!)
$16 for 8K/16K games (Same price since 1999!)
$16 for 32K games (Same price since 2001!)
$20 for 64K games (Same price since, well, 2014!)

For the even larger games, hmmm.... Maybe I should simply say �market prices� like they do for
lobsters. I mean until I see a run on 27c080 eprom based games buying them at quantity of 10 or less is
pretty expensive. We'll see what I can do. I would greatly prefer that $25 be the most I would ever
charge for any normal game.

My OTHER goal was to put this out into the public's hands so anyone and their brother could make
their own games if they so chose. Back in 1984 when I first started making games I used to provide a
schematic and dummy cookbook steps on how one might make their own game from scratch. Over the
years scores and scores of people have emailed me in appreciation for sharing this info. I don't see why
anyone should be denied the know how to make larger games. This is nothing new for me and I am
hopeful many others will enjoy the hobby of actually making the games as much as I have.

Included here are good pics of some of the boards I use, as well as the actual programming! They are
not the only possible way to make games but they work for most. If there is something I haven't quite
explained well please drop me a line and I'll update this document as best I can. And if you invent a
new bank switching scheme, or see an error in my code (or in this document!), please share the info
with the TRUE community, folks like you and I, and ignore the knuckle heads who who want to hold
on to a monopoly, and hold games hostage, just so they can charge high prices.

Happy gaming!

Randy Crihfield
Hozer Video Games

 Version 4.2, 8/2020

Atari 2600 Card Edge connector: Hozer Video Games! - Randy Crihfield

 Denotes additional enabler
 used in bank switching

 A6 � � A7

 A8 � � A12 (out)

 A9 �

 A11 � � A13 (out)

 A3 � � GND / 5V / A14 (out)

 A10 � � A2

 A12 � � A1

 A0 � - (E)nable

 A5 �

 � A4

These are the GAL/PAL pin outs for the 8/16K board originally
designed in 1999 by Chris Wilkson. It is now updated to easily
allow for 32K games. 64K games are just a little different.

The timing circuit is made up of two loops, and these components:

Cap used is 101 (100pf)
Resistor is Red/Red/Red/Gold (2.2K)

Possible PCB Edits: For 32K, you need to cut Eprom pin 27 apart
from 28. 28 stays on +5V, 27 is A14.

For F8 8K (2764) jump GAL pin 19 to ground. (Pin 14 of the
2764) � and no traces cut � hooks up enable for A12_out

For F6 16K (27128) jump GAL pin 19 to +5V (Pin 28 of the
27128) � and no traces cut � adds enable for A13_out

For 32K (27256) jump GAL pin 19 to 27256 pin 27. Don't forget
to cut pin 27 loose - adds enable for A14_out

For 64K � read further into this document

 Hozer Video Games! - Randy Crihfield

1. Using Chris Wilkson's 8K/16K standard/original boards to make a 32K game...

As mentioned, to make any of these games you must attach a wire to GAL pin 19 on the surface (very
top, right picture) and where it attaches makes all the difference. For an 8K game, you attach it to
ground (right most arrow, right picture, Eprom pin 14) or for 16K at +5V (left most arrow, right picture,
Eprom pin 28). For 32K you attach it to Eprom pin 27 (second from left, right picture) which you have
cut loose from +5V for 32K and up (trace cut shown in left picture). What is actually happening is for
8K you want pin 19 as an input (solely because of the dual 8K/16K way the GAL is programmed) to be
always disabled, for 16K you want it always enabled, and for 32K (different GAL programming) you
want it to be the enabler (output) for A14, to pin 27 on a 27256 eprom.

2. Using Randy-made 8K/16K Sara boards to make a 32K Sara game....

Pic on the left - this is looking down on the 27256 Eprom side of the board� note pins 27 and 28 are
traced together. If you cut them apart you have to add another jumper from 28 to the card edge, yuk.
Better to simply bend up the pin 27 when soldering down the eprom. But BEFORE you put the eprom
on the board, attach a wire at the Pin 19 thru-board spot, which is straight above Eprom pin 28 (on the
OTHER side of the board we cut this trace, picture on right) This wire will attach to the bent up Eprom
pin 27, voila! 32K Sara game! Yep, the same board can do 64K games with the alternate edits.

 Hozer Video Games! - Randy Crihfield

To explain even further � The 1FF portion of the address is when all bits are enabled, so only the A3-
A0 lines are needed to determine if bank switch should occur. Consider the below address lines from
the Atari cartridge port when doing 8K bank switching:

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Enabled

1 1 1 1 1 1 1 1 1 1 0 0 0 1 F F 8

1 1 1 1 1 1 1 1 1 1 0 0 1 1 F F 9

.
For example, an 8K eprom only allows for 2 4K banks, so just one switch enabler, A12_out, is needed
that can be selected high or low. If the game calls 1FF8, for example address lines A12 through A3 are
the only ones enabled, then we switch to bank 0. If A0 is also enabled, then we switch to bank 1. No
other combinations can cause the bank switch to occur in this case.

For a 16K chip, we need an additional switch enabler, A13_out, which means we double the number of
banks and double the number of possible addresses to switch to. And so on with a 32K and 64K
eprom. We can't go past 64K with a GAL20v8 because we've run out of address lines that we can
handle! To make 128K we'd need a GAL with more I/O lines, explained later in this document.
Besides the 28 pin package size of the eprom won't allow for anything past 512 without some magic �
note the 27512 data sheet shows all pins in use. To reach 128 or higher you'd have to jump to 32 pins,
the next package size up.

8K bank switching � Two 4K banks, 0-1 � called �F8� because first bank starts at 1FF8
A12_out of the GAL is the only bank selector available.

A3 A2 A1 A0 A12 Comment

1 0 0 0 0 8, Bank switch to 0

1 0 0 1 1 9, Bank switch to 1

Still, some 8K games just don't like this fishy timing. Don't believe me, try the Xonox 8K games.
These DO work with the old style board I use that has no GAL but instead 5 transistors and is a pretty
hefty board. The point is, this isn't a silver bullet solution for all F8 games, just a good, cheap one.

16K bank switching � Four 4K banks, 0-3 � called �F6� because first bank starts at 1FF6
A12_out and A13_out select banks

A3 A2 A1 A0 A13 A12 Comment

0 1 1 0 0 0 6, Bank switch to 0

0 1 1 1 0 1 7, Bank switch to 1

1 0 0 0 1 0 8, Bank switch to 2

1 0 0 1 1 1 9, Bank switch to 3

Noticed that Berzerk VGE had trouble with the GAL boards but worked fine when I used a genuine
PALCE20v8H. Very touchy, some of these hacks. That is rather uncommon though, most every 16K
game with normal bank switching works fine.

 Hozer Video Games! - Randy Crihfield

32K bank switching � Eight 4K banks, 0-7 � called �F4� because first bank starts at 1FF4
A12_out, A13_out, and A14_out select banks

A3 A2 A1 A0 A14 A13 A12 Comment

0 1 0 0 0 0 0 4, Bank switch to 0

0 1 0 1 0 0 1 5, Bank switch to 1

0 1 1 0 0 1 0 6, Bank switch to 2

0 1 1 1 0 1 1 7, Bank switch to 3

1 0 0 0 1 0 0 8, Bank switch to 4

1 0 0 1 1 0 1 9, Bank switch to 5

1 0 1 0 1 1 0 A, Bank switch to 6

1 0 1 1 1 1 1 B, Bank switch to 7

Beware! Some games such as Fade Out! do something funny with the timing. Experience has shown
that using a cmos eprom like a NM27C256B works for �most� 32K games but those sensitive to timing
won't work unless you use an older heavy duty M27256. I have not noticed the actual eprom speed has
made any difference (-15 vs -25) but the cmos certainly has.

64K bank switching � Sixteen 4K banks, 0-F � called �EF� because first bank starts at 1FE0
Again, A3-A0 are the address lines we add to �1FE� as the fourth digit.
A12_out through A15_out select the banks.
Note A3 is coincidentally the same as A15, A2 as A14, etc. This will be VERY handy later!

A3 A2 A1 A0 A15 A14 A13 A12 Comment

0 0 0 0 0 0 0 0 0, Bank switch to 0

0 0 0 1 0 0 0 1 1, Bank switch to 1

0 0 1 0 0 0 1 0 2, Bank switch to 2

0 0 1 1 0 0 1 1 3, Bank switch to 3

0 1 0 0 0 1 0 0 4, Bank switch to 4

0 1 0 1 0 1 0 1 5, Bank switch to 5

0 1 1 0 0 1 1 0 6, Bank switch to 6

0 1 1 1 0 1 1 1 7, Bank switch to 7

1 0 0 0 1 0 0 0 8, Bank switch to 8

1 0 0 1 1 0 0 1 9, Bank switch to 9

1 0 1 0 1 0 1 0 A, Bank switch to A

1 0 1 1 1 0 1 1 B, Bank switch to B

1 1 0 0 1 1 0 0 C, Bank switch to C

1 1 0 1 1 1 0 1 D, Bank switch to D

1 1 1 0 1 1 1 0 E, Bank Switch to E

1 1 1 1 1 1 1 1 F, Bank Switch to F

 Hozer Video Games! - Randy Crihfield

So you want to make a 64K game...

That is not a long jump from here but unlike the 32K �cut a trace and move the wire� simple approach
it is a bit more difficult. The problem is you have a new address line on the 27512, pin 1, which means
you need another output line on the GAL. No problem � except there are none left free!!! So we have
to get a little creative. Instead of two loops for the clock we need to reduce it to just one. This ends up
being good news in the end.

Here are the steps.

1. Cut eprom pin 27 free just as we did for the 32K board (lower right arrow)
2. Cut eprom pin 1 free in the same way (upper right arrow)
3. Tricky cut #1 � cut GAL pin 11 free from where it attaches to the cap (middle arrow)
4. Tricky cut #2 � cut the trace between GAL pin 1 and GAL pin 21 (left arrow)
5. The GAL programming makes all the difference, more on that later....

OK so obviously we're getting a little ugly with the board, but just a little. You are going to end up
with two additional jumper wires on the board, three total:

1. GAL pin 19 jumps to eprom pin 27 (just as it did for the 32K board)
2. GAL pin 1 now is tied directly to the cap where GAL pin 11 used to be
3. GAL pin 21 jumps to eprom pin 1 (our new A15)

See, not so bad. On the board there is an extra solder hole beside the cap which is perfect for attaching
the wire to GAL pin 1, which is handy. This leaves us with GAL pin 11 not being used. Unfortunately
on a GAL 20v8 this is only an input, but if you swap a GAL 22v10 you could jump a couple lines
around and the extra pin would now an input/output, which means if you want to make a 128K game
you can do it. However it STILL requires a whole new board, because the 128K eprom is going to
have 32 legs in its package not 28, never mind jumping the pin around would require 2 more jumpers.
Ugly! But that's OK, at least we know now HOW to do it, what the wiring will take, etc. Good news
there (and besides I have a MUCH better idea...)

 Hozer Video Games! - Randy Crihfield

By the way shortening the clock to one loop works for me with 8K, 16K, 32K, etc as well. I am not
sure why Chris went with the 2.2K resistor and two loops, but it is easy to work around. I suppose he
never intended this board to ever be pushed to its limits in this way, back in 1999! As it is designed it
works just fine with the lower than 64K sizes (all the way down to 2K, truthfully) so I am sure not
complaining.

Finally, I said �The GAL programming makes all the difference� and here is what I mean by that. My
goal was to make a 64K game � ANY 64K game. I do this for a hobby and the challenge was there. As
it is, my updated work should allow for all types of 64K games that don't require any RAM (except
Sara chips � I can make 8/16/32/64K games that use the Sara chip now). The �progressive� bank
switching is the easiest � for those in the know you see the GAL programming would be as easy as
�A12 = A0, A13=A1, A14=A2, and A15=A3� which is child's play to program. Unfortunately .. no
one uses this style of bank switching as far as I know. Instead it is always some custom job.

The wiring I have works for any 64K but for example doing the Megaboy the GAL had to know to
�figure out what bank you are on and increment by one� which is how the Megaboy does its bank
switching. This wasn't hard but it won't work for say Turbo or Stella's Stocking, which required yet a
different GAL programming to be done. Sigh. In other words, no standards between developers.
Sometimes that is by design, because some people are interested in MONEY not community.

Let's program a GAL!

Ok so what is going on behind the scenes? Let's use the F8 example to learn how to program a GAL.
This will require you hunt down and download EQN2JED.exe which is in truth a set of three files, that
one, JED2EQN.exe, and device.lib. These are old DOS programs but work great, however any
filenames must be 8 chars or less, etc. Now using your favorite editor create Atari_F8.eqn and create
this:

Remember, we are interested in 1FF8 and
1FF9. That would be 1111111111000 and
1111111111001. The difference is that final
bit, which here is in the A0 location
(remember, it goes A12 down to A0, 13
bits right? More later, bear with me...)

Well, then when we are in the first bank A0
equals 0 and in the second bank A0 is 1.
So all we need to do is watch for the first
12 bits to match up, the 111111111100 part.
That is what o15 is. When those 12 bits
match, we simply bankswitch to the value
of A0, either bank 0 or bank 1.

Remember the PAL mapping? A0 maps to
pin 9, so note ro22 (which is the eprom
enabler for A12out) is set to i9. That only
happens when o15 is true.

; Atari F8 programming

chip Atari_F8 GAL20V8

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 f19=19 ro20=20 o21=21
ro22=22 i23=23 VCC=24

equations

ro22 := i9
ro22.oe = OE
o21 = i11
o21.oe = vcc
ro20 = gnd
ro20.oe = gnd
f19 = gnd
f19.oe = gnd
f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd
o16 = /i8
o16.oe = vcc
o15 = i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * i6 * /f18 * /f17
o15.oe = vcc

 Hozer Video Games! - Randy Crihfield

Ok so reusing this table from above, let's add the GAL pins:

A12 A11 A10 A9 A8 A7 A6 A5 A0 A3 A2 A1 A0 Address Enabled

1 1 1 1 1 1 1 1 1 1 0 0 0 1 F F 8

1 1 1 1 1 1 1 1 1 1 0 0 1 1 F F 9

i8 i5 i7 i4 i3 i23 i2 i10 i14 i6 f18 f17 i9 GAL pins

.
and suddenly o15 makes more sense! By the way when you WANT a value to be 0 you �not� it by
using a / in front of it. The �*� means �and�. It is Boolean math = when they are all true you have a
match.

So when this is all true you bank switch:

o15= i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * i6 * /f18 * /f17

A12=1, A11=1, �, A3=1, NOT A2=0, NOT A1=0

(NOT FALSE means TRUE, right? That's �NOT 0� in a binary world)

Anyhow, when these are all true 015 becomes true and then ro22 is set to whatever A0 happens to be.
If the call was 1111111111001 (1FF9) then A0, the last bit, was a 1 and you bank switch to the second
bank. Easy. How easy? Consider this, suppose we change just these two lines:

ro22 := i2
o15 = /i8 * /i5 * /i7 * i4 * /i3 * /i23 * /i2 * i10 * /i14 * /i6 * /f18 * /f17 * /i9
 + /i8 * /i5 * /i7 * i4 * /i3 * /i23 * i2 * /i10 * /i14 * /i6 * /f18 * /f17 * /i9

What have we done? Well, o15 now only becomes true when these two possible address values were
called: 0001000100000 = 0220 OR 000100100000 = 0240. Follow that? So if the address called
matches the first one, 0220, OR it matches the second one, 0240, you use the value of i2 (A6) to select
the bank. Congratulations, you now have a GAL that can be used to make Gingerbread Man (which
uses the UA bank switching style!)

Probably too late to have explained this, but all the addresses use 13 lines, A12 down to A0. That
means in HEX it is 4 sets (pretend 3 leading 0's). Four groups of 4.

If you don't know Hex, four bits resolve to a numerical value from 0 (0000) to F (1111). Why F?
Because there is no �10�. You count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. It makes sense, look at
some more examples. 1 is 0001. But 2 is 0010. That mean there is �one 2�. The spots are 8, 4, 2, and
1. So to show 10, or A, that is 8 and 2, so 1010. One 8 and one 2.

Here's the whole thing to make it VERY clear:

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

So 1FF8 resolves to 0001 1111 1111 1000 and we drop the leading 0's just as you wouldn't say there
were 0005 apples, you'd say there were 5. Got it?

Oh � to create the jdec file to program your gal with execute this command: EQN2JED filename.eqn

 Hozer Video Games! - Randy Crihfield

The Program dumps...

Atari F8/F6 - 8K/16K JDEC file, in EQN format.

Note for o15=i2 (and so forth) the
SECOND line of the equation is
only used when tied to +5 volts.

That is, the portion i2 through i14
handle 8K, while the second portion,
+ i2 through i14 only becomes
viable when GAL pin 19 is tied to
+5 volts which allows for the 16K
bank switching.

If GAL pin 19 is tied to ground, you
essentially multiply by 0 and it is
eliminated. This means for an 8K
cart, where pin 19 IS tied to ground,
you only get bank switching in the
range 1ff8 and 1ff9, but for a 16K
one you get 1ff6, 1ff7, 1ff8, and 1ff9

Neat you can do 8K and 16K with
one GAL!

0840 Econobanking � 8K JDEC file, in EQN format.

One of the most simple because the
switching just watches for A12 to be
0 and A11 to be 1. If that's true then
the bank switch occurs, which uses
the value in A6 to decide if it is in
bank 0 or 1.

No jumper are required on the board
at all, just the Eprom and the GAL.

It might be worth noting that ALL
of these bank switches, every one of
them, can be implemented on a
board using a Sara chip. No magic
involved to get the extra memory to
appear. If one programs using any
of these bank switch styles and
wants to leverage the Sara chip it
should be easy. Not that anyone
does...

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 f19=19 ro20=20 o21=21
ro22=22 i23=23 VCC=24

equations

ro22 := i9
ro22.oe = OE
o21 = i11
o21.oe = vcc
ro20 := /f17
ro20.oe = OE
f19 = gnd

f19.oe = gnd
f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd
o16 = /i8
o16.oe = vcc
o15 =i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * i6 * /f18 * /f17

 + i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * /i6 * f18 * f17 * f19
o15.oe = vcc

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12

/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 f19=19 f20=20 o21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

ro22 := i2
ro22.oe = OE
o21 = i11
o21.oe = vcc
f20 = gnd
f20.oe = gnd
f19 = gnd
f19.oe = gnd

f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd
o16 = /i8
o16.oe = vcc
o15 = /i8 * i5
o15.oe = vcc

 Hozer Video Games! - Randy Crihfield

UA � 8K JDEC file, in EQN format.

This is very much like the Atari F8
but instead of 1FF8 and 1FF9 bank
switching occurs when 0220 or
0240 are called. The bank is
selected using A6. Gingerbread
Man and Funky Fish work great
with this one.

This one also requires no Jumper for
anything, just the Eprom and the
GAL.

Atari F4 - 32K JDEC file, in EQN format.

For this style of bank switching,
GAL pin 19 is always tied to
A13_out. This programming
doesn't allow for 8K or 16K games,
it's 32K style only.

So far I've noticed all the 32K
games use the �Atari Style� bank
switching, so this works for just
about anything. If something new
came along, obviously I'd have to
create yet another program for the
GAL to handle it. The hardware
wouldn't change, just the GAL
contents. You would STILL need a
jumper from pin 19 of the GAL to
pin 27 of the eprom.

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 ro19=19 ro20=20 o21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000

@ptd unused

equations

ro22 := i9
ro22.oe = OE
o21 = i11
o21.oe = vcc

ro20 := f17
ro20.oe = OE
ro19 := i6
ro19.oe = OE
f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd

o16 = /i8
o16.oe = vcc
o15 = i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * i6 * /f18
 + i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * /i6 * f18
o15.oe = vcc

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12

/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 f19=19 f20=20 o21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

ro22 := i2
ro22.oe = OE
o21 = i11
o21.oe = vcc
f20 = gnd
f20.oe = gnd
f19 = gnd
f19.oe = gnd

f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd
o16 = /i8
o16.oe = vcc
o15 = /i8 * /i5 * /i7 * i4 * /i3 * /i23 * /i2 * i10 * /i14 * /i6 * /f18 * /f17 * /i9
 + /i8 * /i5 * /i7 * i4 * /i3 * /i23 * i2 * /i10 * /i14 * /i6 * /f18 * /f17 * /i9

o15.oe = vcc

 Hozer Video Games! - Randy Crihfield

Whups, something's gotta change to make 64K games with Chris' boards!

 A6 � � A7

 A8 � � A12 (out)

 A9 � � A15 (out)

 A11 � � A13 (out)

 A3 � � A14 (out)

 A10 � � A2

 A12 � � A1

 A0 � � (E)nable

 A5 �

 Free! � � A4

MegaBoy F0 - 64K JDEC file, in EQN format.

OK, this is for the Megaboy by
Dynacom. Since it was the only
commercially released 64K game I
could think of, that was my first
64K target. Should a homebrew
come along that uses the same
scheme obviously this would work.
The actual wiring is proper for any
64K game that uses no RAM but
again you could use the Sara chip
here.

The Megaboy rom �advances� to
bank switch rather than does a
lookup. That is, you have to figure
out what bank you are on and �add
one�. This made for some tricky
GAL programming, but there it is.

TBD � X07 programming for the GAL

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 ro19=19 ro20=20 ro21=21
ro22=22 i23=23 VCC=24

equations

ro22 := /ro22

ro21 := /ro21 * ro22 * ro20 * ro19 + ro21 * /ro22 * /ro20 * /ro19 + ro21 *
/ro22 * /ro20 * ro19 + ro21 * /ro22 * ro20 * /ro19 + ro21 * /ro22 * ro20 *
ro19 + ro21 * ro22 * /ro20 * /ro19 + ro21 * ro22 * /ro20 * ro19 + ro21 *
ro22 * ro20 * /ro19

ro20 := ro20 * /ro22 + /ro20 * ro22

ro19 := /ro19 * ro22 * ro20 + ro19 * /ro22 * ro20 + ro19 * ro22 * /ro20 +
ro19 * /ro22 * /ro20

f18 = gnd
f18.oe = gnd

f17 = gnd
f17.oe = gnd

o16 = /i8

o15 = i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * i14 * /i6 * /f18 * /f17 * /i9

For a 64K game, we have run out of output pins! So this requires a
slight change in the timing loop. Rather than go out pin 15, pass
through a 2.2K resistor, back in through pin 11, back out again
through pin 21, and finally to the clock we've just made the loop a
simple out and back.

The capacitor is again a 101 (100pf) and the resistor a 2.2K
(Red/Red/Red/Gold).

As an aside � this timing loop seems to work for ALL the bank
switching styles. But for the board I use this new loop style requires
a trace cut and wires added.

This uncovers an input pin (Pin 11) and an I/O pin (Pin 21). We
need the output pin to connect to A15_out, Pin 1 of the Eprom, to
enable it.

Since the pin 11 is now unused, were I to switch to a GAL 22v10 I
could indeed make a 128K game! But if I am going to redesign a
new board anyway, I'd druther use two GAL's and see if I can't
redesign the whole mess. How about a board that does 128K,
256K, 512K, and yes 1024K! Stay tuned......

 Hozer Video Games! - Randy Crihfield

�Atari� FE � 64K JDEC file, in EQN format

Ok so as you can see the 64K bank
switching doesn't HAVE to be hard
to figure out! This is the GAL
programming as laid out in the big
table described earlier. I don't know
of any games that use this but it
certainly seems the most
straightforward of all schemes.

Again, input pin 11 is free which
does us no good here but switch the
GAL20v8 with a GAL22v10 and
suddenly you can map A16_out and
do 128K!

In the meantime, look how easy
64K can be!

Here's a pic of a couple of the final products! - The other side is just the eprom, boring...

 32K Game with simple Jumper 64K Game, same Jumper and 2 more

The 8K, 16K, and 32K games all have one jumper from pin 19 to Ground, +5V, or Eprom pin 27. The
64 bit has to compensate for the change in the clock loop. Note in addition to two more wires the
resistor has also changed, as mentioned in the previous sections. If there is ever some big influx of
64K games I'd create a new board, but for now cutting a few traces and adding a couple wires seems
simple enough (and keeps the cost down for everyone.)

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12

/OE=13 i14=14 o15=15 o16=16 f17=17 f18=18 ro19=19 ro20=20 ro21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

ro22 := i9
ro21 := i6
ro20 := f17
ro19 := f18
f18 = gnd
f18.oe = gnd
f17 = gnd
f17.oe = gnd

o16 = /i8

o15 = i8 * i5 * i7 * i4 * i3 * i23 * i2 * i10 * /i14

 Hozer Video Games! - Randy Crihfield

So you are greedy and you want a 128K, 256K, 512K, and yes even a 1MB game! Well, yep, it is more
than possible it's been done! Snailsoft made me up a demo using the inefficient Super Banking style
bank switching and voila. Now let's see someone actually do something amazing with it, I hope!

There are two GAL's. One controls the ROM enable for A12, A13, A14 and A15. Yes, the 64K cart as
described earlier. The SECOND GAL controls the ROM enable for A16, A17, A18, and A19. The
GALs are also tied together at pin 23. It really isn't so wild if you think about it � If you want to make
a 128K game you use a 22v10 and enable the pin 23 as if it were going to the ROM. The second GAL
watches pin 23 and if its enabled passes it along to A16. Poof.

OR! You use two 20v8 GALs and both independently watch for bankswitching and when it does flip
their respective output pins off and on. That's how the Super Banking works, just a simple extension of
the 0840 pumped up. What this means is you can do all sorts of things. One could do incremental
bank switching (where the 65th call tickles pin 23 and the second GAL increments, etc) Or you could
use the EF �style� for both, but for the second use something like the DF range. You could mix and
match � using EF style for one and F0 style for the other. Some of these solutions wouldn't even need
anything more complicated than a pair of 20v8. Since the two GALS are programmed independently,
you can do almost anything.

Both GAL's have the exact same general layout:

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Enabled

i14 i4 i10 i3 i2 i5 i6 i7 f17 i8 i16 i9 i11 GAL pins

The only diff are the locations enabled on the EPROM, which again are �in order�

A12_out A13_out A14_out A15_out
ROM
Enable

To
Clock

To Other
GAL

 Master GAL

A16_out A17_out A18_out A19_out
ROM
Enable

To
Clock

To Other
GAL

 Slave GAL

ro21 ro18 ro19 ro22 o16 o20 o23/i23 GAL pins

 A8 � � Other GAL

 A9 � � A15/A19 (out)

 A11 � � A12/A16 (out)

 A7 �

 A6 � � A14/A18 (out)

 A5 � � A13/A17 (out)

 A3 � � A4

 A1 � � A2

 A10 � � (E)nable

 A0 � � A12

For a 128K game, just like the 64K game, the
capacitor is again a 101 (100pf) and the resistor a
2.2K (Red/Red/Red/Gold). This is the same for
BOTH GAL chips.

To have the master send an enable to the slave the
master GAL (the one under the eprom) needs to be
a GAL22v10 so pin 23 is another output pin. The
slave GAL, which would simply be watching the
input on pin 23, could always be a GAL20v8.

Since making this I've adapted it to other folk's
128K and 256K bankswitching and my hardware
handles it easily. Their board is currently limited
to 256K max, my board is not!

 Hozer Video Games! - Randy Crihfield

Bonus, if you made a 64K Super Banking image you could easily use the same board because the
master GAL does exactly that � handles 64K. You could in truth program it with any style of 64K bank
switching you wanted as long as you keep the output pins correctly lined up in your GAL
programming. I'd be glad to help there if you need it.

Here's the eqn file for the 1MB image

This is exactly the same logic for
the base image, except the comment

about A16_out etc would read it is
for A_12_out, etc. The actual jdec
code is spot on the same.

For a 512mb game, the ro22 which
is A19_out would not be used, so it
and its output enable would be set to
ground. That means instead of what
you see here, it would change to

ro22 = gnd
ro22.oe = gnd

and for 256 the ro19 would join it,
and for 128 the ro18 would join
them! It's as easy as that folks.

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12

/OE=13 i14=14 o15=15 o16=16 f17=17 ro18=18 ro19=19 o20=20 ro21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

; these ALL matter, toggle A16_out, A17_out, A18_out, and A19_out
ro21 := f17
ro21.oe = OE
ro18 := i7
ro18.oe = OE
ro19 := i6
ro19.oe = OE
ro22 := i5

ro22.oe = OE

; hande rest of output lines
/f17 = gnd
f17.oe = gnd
/o16 = gnd
o16.oe = gnd
o15 = /i14

o15.oe = vcc

; This triggers the bankswitch, when A12=0 and A11=1
o20 = /i14 * i4

 Hozer Video Games! - Randy Crihfield

But wait there's more! Here's a snapshot of the original 32K boards I have, in a drawer unused.

And just suppose.....

you have some of these
old Chris Wilkson 32K
boards laying around?
The ones he made up for
Marble Craze, etc.

Well guess what chicken
butt, not only is Chris a
genius but he's a man
ahead of his time.

The board, drawn up back in 2000, is ready to go for a 2K, 4K, 8K, 16K, 32K, AND 64K game just as
it was originally made! Chris left GAL pin 15 free � and put a solder hole next to it for a wire. A few
mm's away there is another solder hole � connected to pin 1 of the eprom! You add a jumper here, cut
pin 1 loose from the 5V connection it normally has, and voila you have a tidy 64K board ready to rock.

The GAL programming map is below. All you have to do to try this for example is take the 64K FE
programming from above, throw away the gnd statements, remap the pins to the right places and away
you go! I did it, and it works.

Here are the pins:

Old 1 clk i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 12 GND i13 i14 o15 o16 f17 f18 ro19 ro20 ro21 ro22 i23 24 5V

New 1 clk i23 i3 i4 i5 i18 i7 i11 i10 i19 i14 12 GND i13 i6 o16 o17 i9 i8 ro21 ro20 ro15 ro22 i2 24 5V

And here's the eqn for the 64K �Other� Chris Wilkson 32K board:

Funny isn't it, how back in 2000 we
could have had 64K games and
widespread 32K ones, but because
�some people� wanted to hold a
tight monopoly on the information
so they could make money they
never shared even these simple
things?

That's why I give this info away for
FREE so anyone can make any
game they want, w/o having to
cough up a boatload of money to
line someone's pockets....

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 i14=14 ro15=15 o16=16 o17=17 i18=18 i19=19 ro20=20 ro21=21
ro22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

ro22 := i10
ro15 := i18
ro20 := i9
ro21 := i8

o17 = /i11

o16 = i11 * i5 * i7 * i4 * i3 * i2 * i23 * i19 * /i6

 Hozer Video Games! - Randy Crihfield

Which is too bad. If they had talked nicely to Chris they would have known better what they were
doing.

For instance, now suppose you have a couple
of these blue jobbers. I see them often enough
that I have a good sized drawer of them.
Folks buy them, they don't work, and then
they ship them to me to make work.

These guys cannot easily do 64K, and it's a
crying shame. There are two pins not
connected on the GAL, 11 and 14, which are
both input only pins. So there's nowhere
handy to hook up A15_out. I mean you
COULD if you were to hack the board up but
why did it come to that? You could also make

it work using a GAL 22v10, but you still have to work the thing over. The board was soooo close to
being a pretty 64K board. Sigh. But maybe we can make it sit up and dance for us. Of course the folks
who worked up this �competitor� board wouldn't give us the GAL's jdec file.

Yet I think we can figure it out! <Smile!> First here are the �comparative� pins to our old friend
GAL20v8 using Chris' original workhorse 8/16K board, let's try for the simple 64K EF programming.
That Chris is amazing, and he also shared his work with others...

.Here are the pins laying our old and their new side by side:

Old 1 clk i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 12 GND i13 i14 o15 o16 f17 f18 ro19 ro20 ro21 ro22 i23 24 5V

New 1 clk i9 i17 i18 i19 i6 i2 i23 i3 i8 i11 12 GND i13 i7 o22 o21 i4 i5 ro15 ro16 ro14 ro20 i10 24 5V

What's fishy here? Well ro14 is! Because they never thought past the end of 32K they �wasted� the
output pins by burying them. The easiest thing to do to fix this is to change GALs, so we could swap
that �input only� pin 14 of the GAL20v8 with a i/o pin 14 which is what it is on a GAL22v10.

And here's the eqn that allows the 32K �competitor� board to do 64K, using a GAL22v10. Does it
work you ask? You bet, I made someone a MegaBoy cart already:

So my suggestion � bend up pins 14
on the 22v10 and 1 on the eprom.
Solder the chips in place otherwise.
Then jumper a wire from the two
bent up pins. Voila, your 32K board
you bought from my �competitor�
that they won't tell you diddly squat
about how to program you have
turned into a 64K game.

I mean, if you wanted the 8K, 16K,
or 32K programming I could give
you that too but I think after reading
this you could probably make
anything you want without too much
trouble....

CLK=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 i8=8 i9=9 i10=10 i11=11 GND=12
/OE=13 ro14=14 ro15=15 ro16=16 i17=17 i18=18 i19=19 ro20=20 o21=21
o22=22 i23=23 VCC=24

@ues 0000000000000000
@ptd unused

equations

ro20 := i3
ro14 := i6
ro16 := i4

ro15 := i5

o21 = /i23

o22 = i23 * i19 * i2 * i18 * i17 * i10 * i9 * i8 * /i7

 Hozer Video Games! - Randy Crihfield

And finally, the Hozer 64K board that does bank switching from A10 up to A15!
The ultimate in flexibility � you can bank in 4K, 2K, or even 1K banks! Shazaaam!

 A8 � � A11

 A9 �

 A5 � � A15 (out)

 A10 � � A12 (out)

 A12 � � A14 (out)

 A2 � � A13 (out)

 A1 � � A11 (out)

 A0 � � A10 (out)

 A4 � � (E)nable

 A3 � � A6

 � A7

Let's map the GAL pins, showing F8 as an example:

A12 A11 A10 A9 A8 A7 A6 A5 A0 A3 A2 A1 A0 Address Enabled

1 1 1 1 1 1 1 1 1 1 0 0 0 1 F F 8

1 1 1 1 1 1 1 1 1 1 0 0 1 1 F F 9

i6 i23 i5 i3 i2 i13 i14 i4 i10 i11 i7 i8 i9 GAL pins

These are the original Chris GAL pin mappings:

A12 A11 A10 A9 A8 A7 A6 A5 A0 A3 A2 A1 A0 Address Enabled

1 1 1 1 1 1 1 1 1 1 0 0 0 1 F F 8

1 1 1 1 1 1 1 1 1 1 0 0 1 1 F F 9

i8 i5 i7 i4 i3 i23 i2 i10 i14 i6 f18 f17 i9 GAL pins

So old vs new mapping is

1 2 3 4 5 6 7 8 9 10 11 12 Old

1 14 2 3 23 11 5 6 9 4 X 12 New

13 14 15 16 17 18 19 20 21 22 23 24 Old

X 10 22 15 8 7 19 18 21 20 13 24 New

On the old style, 11 and 13 were not used. Instead, now 16 is A10(out) and 17 is A11(out)
To use 13 you have to switch to a 22v10 and program correctly. If you want to use a 20v8, bend up pin
13 and solder to ground, bend up pin 16 and solder to hole at pin 13. This means you lose A10 out.
You just can't have it both ways but you CAN bankswitch at 2K intervals since A11(out) is still there.
Hole at 16 must be soldered to pin 5 of GAL so A10 connects to A10(out) physically.

So really, this is the same as the normal 64K GAL except we've spit
A10 and A11 into their discrete in and out, so we have the ability to
enable or disable them as WE desire � ie if we want to bank switch
at the 2K or even 1K level.

As far as I know, there is NO other board out there that will allow
this to happen.

For normal programming, you'd just pass the A10 and A11 right on
through, its not as if an 8K or larger game is going to care. In fact
why bother, just hardware it.

There is already a simple solution for 32K and 64K games that use
standard bankswitching, Chris Wilkson's board does nicely. The
Hozer 64K SuperBoard is for those who want to bank switch at the
2K or 1K level. I merely demonstrate they CAN easily do all
tuypes and that the boards work.

 Hozer Video Games! - Randy Crihfield

So� I thought this document was done and then someone asked about SARA games. I have a nod to
them above on a prior page, in fact my SARA board is just the standard Chris style board made longer
so the SARA sits on there with it. The SARA is a leech chip � you just extend the address lines to it, no

interrupt in any circuit, EXCEPT for A12 (card
edge 18). Before, it exclusively went from CE18
to pin 8 on the GAL, but now it goes from CE18
to pin 1 on the SARA and pin 2 on the SARA goes
to pin 8 on the GAL. That�s all there is to make a
SARA game. I talked a fellow hobbyist through it
and they did it with my competitors board after I
told them how (pin 23 of the GAL for that one)

I know it looks like a rat nest but that�s it! You
take your regular 8/16K game and leech on that
SARA chip. I�m impressed this fellah was so
determined to really roll his own!

Here are some of my more exotic boards. The 32/64K board on the far left can bankswitch down to 1K
and 2K increments. The second board is my Sara board, no mystery there. The third one is a
Tigervision board, notice it is an exact repro of the original circuitry found in their carts! Finally the
fourth, well, that is explained above in this document, my 1MB board.

Over the years I�ve designed many of my own boards, the best selling being my 4K 2732 one based on
the same setup I used to give a photocopy to of every person who bought a game from me. The 4K
board is shaped like the far left one above, so it fits darn near perfectly into Atari, Activision, Coleco,
Imagic, Xonox, Avalon Hill, etc cases. Some do require ever so slight modifications but for most it is a
direct fit. I will never love Parker Brothers cases, the things are evil to open up 9 out of 10 times.

