hp48gx calculatrice scientifique

applications hydrauliques

Remarques préliminaires

Emulateur Emu48 pour PC

Outre sur la calculatrice HP48GX proprement dite, les applications hydrauliques tournent parfaitement sur les émulateurs HP48 suivants avec des vitesses d'exécution nettement accrues :

Emulateur m48+ pour iPad/iPhone

Auteurs : Sébastien Carlier et Christoph Gießelink, disponible à l'adresse http://www.hpcalc.org/

ne Auteur : Markus Gonser, basé sur l'émulateur Emu48 et disponible dans l'Appstore

Pour installer les programmes, charger la Library 961 : HYDR et l'enregistrer dans un port, puis l'attacher. Sur demande, l'auteur peut modifier le numéro de librairie attribué. L'utilisateur de ces applications nécessite de bonnes connaissances du fonctionnement de la calculatrice HP48GX. Le transfert de données entre PC et iPad/iPhone se fait via la procédure **EMEC** (ASCII Encoding Objects), Copy Stack, **C**, Paste Stack, **MECE**.

Pour plus de questions, adressez-vous à l'auteur du site internet <u>www.eauxpotables.com</u>.

1 1.1

🙆 Dans le souci d'améliorer constamment les programmes, merci de signaler toute erreur de programmation.

File Edit View Tools Help		
HEWLETT 48GX		
(HOME)	• <u> </u>	•
5	●●●●● 67% ■● ● 67% ■●	
2	Philippe Colbach 97-2016	Philippe Colbach 99-2017
	4:	4:
	2: 1: Dian 1 a 14 au 01/2 21/2 191	
	MTH G PRG H CST VAR J K NXT L	MTH CHARS HODES MEMORY STACK PREV MENU
UP HOME DEF RCL +NUM UNDO PICTURE VIEW SWAP	UP HOME DEF RCL +NUM UNDO PICTURE VIEW SWAP	UP HOME DEF RCL +NUM UNDO PICTURE VIEW SWAP
ASIN 3 ACOS f ATAN $\Sigma \propto^2 \sqrt[2]{77}$ 10 ² LOG e^{π} LN SIN COS TAN $\nabla \propto \sqrt{2}$ VX 1/.	ASIN a ACOS J ATAN Σ $x^{+7}\overline{y}$ 10° LOG e^{-1} LN SIN S COS T TAN U \overline{x} y y^{x} \overline{y} $1/x$ x	ASIN ∂ ACOS \int ATAN Σ x^{*} $\sqrt[4]{y}$ 10 [°] LOG e^{*} LN SIN S COS T TAN U \sqrt{x} y^{*} y^{*} $\sqrt{y^{*}}$ $\sqrt{y^{*}}$
	EQUATION MATRIX EDIT CMD PURG ARG CLEAR DROP ENTER +/-, EEX, DEL (EQUATION MATRIX EDIT CMD PURG ARG CLEAR DROP ENTER +/- , EEX , DEL (
USER ENTRY SOLVE PLOT SYMBOLIC () #	USER ENTRY SOLVE PLOT SYMBOLIC () #	USER ENTRY SOLVE PLOT SYMBOLIC () # α 7 8 9 ÷
		TIME STAT UNITS [] -
(4) (5) (X)	1/0 LIBRARY EQ LIB «»» ""	
	$\frac{1}{10} \frac{\text{CONT OFF}}{\text{ON}} = \rightarrow \rightarrow \rightarrow \rightarrow \qquad \pi \ \Delta \qquad \{\} ::$	$\frac{1}{100} \frac{1}{100} \frac{1}$
$\begin{array}{c} \text{CONT OFF} \\ \textbf{ON} \\ \textbf{O} \\ \textbf$		

PIPE MODELING 1.4

Auteur : Philippe Colbach, 1997-2016

Programme de calcul des pertes de charges dans une conduite d'eau sous pression.

MENU DE SAISIE DES PARAMÈTRES DE CALCUL

Touche	Opération	Arguments	
DNm	Saisit le diamètre nominal DN de la conduite exprimé en mm.	1: Diamètre DN ou inconnue 'X'	
Lm	Saisit la longueur L de la conduite exprimée en m.	1: Longueur L ou inconnue 'X'	
komm	Saisit la rugosité k₀ de la conduite exprimée en mm.	1: Rugosité k₀ ou inconnue 'X'	
01⁄s	Saisit le débit Q transitant dans la conduite exprimé en l/s.	1: Débit Q en l/s ou inconnue 'X'	
÷l∕s	Convertit un nombre exprimé en m ³ /h en l/s.	1: Débit Q en m³/h ou inconnue 'X'	
'X'	Place l'inconnue 'X' dans la pile.		

MENU DE CALCUL DE LA PERTE DE CHARGE

Touche	Opération	Arguments
i	Affiche les données DN, L, kb et Q.	
<u>4760</u>	Place la fonction algébrique ΔΖΕ(DN,L,kb,Q) dans la pile. Exécuter EVAL donne le résultat exprimé en mCE. Formule de calcul itérative de la perte de charge se basant sur les équations de Darcy-Weisbach et de Colebrook-White.	
SOLV	Résout une équation sans devoir indiquer ni le nom de la variable inconnue ni une supposition initiale. Nota : L'inconnue doit <i>obligatoirement</i> être 'X'.	1: Equation
əm∛h	Convertit un nombre exprimé en l/s en m ³ /h.	1: Débit Q en l/s
PREV	Retourne au menu de saisie des paramètres de calcul.	

Exemples

 $800\ m$ DN100 en fonte ductile, rugosité de service 0,1 mm, débit de 40 m³/h :

100 DNmm 800 Lm 0,1 kbmm 40 +1/≤ Q1/≤ NXT,

	Pipe But	Parameters
		800 m
i	RD: Q:	.1 mm 11.11 1/s

AZEO EVAL donne une perte de charge de 17,95 mCE.

Plusieurs tronçons de conduites peuvent être assemblés pour la résolution d'une équation : 800 m DN100 en fonte ductile : 100 DNmm 800 Lm 0,1 kbmm 'X' +1/5 Q1/5 NXT 42EO FREV, 500 m DA110 en PEHD : 90 DNmm 500 Lm 0,04 kbmm NXT 42EO ++, Perte de charges imposée de 20 mCE : 20 🕤 SOLV donne un débit de 29,77 m3/h.

MENU DE CALCUL DE LA PUISSANCE DES POMPES

Touche	Opération	Arguments
Q1⁄s	Saisit le débit transitant dans la conduite exprimé en l/s. Les données DN, L et k₅ sont saisies dans le menu de saisie des paramètres de calcul.	1: Débit Q en l/s
Hæm	Saisit la hauteur géodésique H _{geo} exprimée en m.	1: Hauteur géodésique H _{geo} en m
$[\mathfrak{N}_{k}]$	Saisit le rendement du couple moteur/pompe exprimé en %.	1: Rendement entre 0 et 100
i	Affiche les données DN, H _{geo} et η.	
MN-M	Calcule la puissance du couple moteur-pompe exprimée en kW.	
Eldah	Calcule la consommation spécifique exprimée en kWh/m ³ .	

Exemple

800 m DN100 en fonte ductile, rugosité de service 0,1 mm, débit de 40 m³/h, hauteur de refoulement 50 m, rendement moteur/couple de 80% :

100 DNmm 800 Lm 0,1 kbmm 40 +1/5 Q1/5 NXT NXT,

50 Ham 80 7%,

		'	
	Pump	Parameters	
	0.00		_
	- 100 A		S
	Hoen	13 50 m	
	Linãeo		
	n mai in th	80%	
1			

NJW donne une puissance de 9,25 kW,

Ekkh donne une consommation spécifique de 0,23 kWh/m³.

Variable

ZePar { DN[m] L[m] k_b [mm] Q[m³/s] H_{geo}[m] η [%] }

NET

NETWORK MODELING 4.1

Auteur : Philippe Colbach, 1999-2017

Programme de calcul des réseaux de distribution gravitaires (ramifiés ou maillés) alimentées par un réservoir unique ou par deux réservoirs en parallèle et, le cas échéant, par des stations de pompage. Le réseau doit être exempt de toute station de réduction ou d'augmentation de la pression de service.

La méthode utilisée repose sur le principe de l'équilibre des débits en chaque nœud et sur le principe de l'équilibre des pertes de charges le long de chaque maille (méthode Hardy-Cross). En règle générale, les niveaux piézométriques sont donnés avec une précision de < 10^{-2} m. La précision des débits résultants est des fois de quelques dixièmes de l/s resp. de m³/h.

Nota : L'application NET ayant été écrite pour les besoins propres de l'auteur, elle ne dispose que d'un nombre limité de dispositifs empêchant les opérations erronées. Se référer aux précisions mentionnées dans le descriptif des opérations. En outre, l'application a été testée pour un état personnalisé des indicateurs système.

La dénomination des variables s'aligne à la littérature allemande, à savoir k_b pour « *Betriebsrauigkeit* » (rugosité fonctionnelle), **S** pour « *Strang* » (conduite), **K** pour « *Knoten* » (nœud), **M** pour « *Masche* » (maille).

Arbre des menus

Nota : Pour revenir au sous-menu de saisie précédent, taper NET pour accéder au menu principal, puis sélectionner le sous-menu correspondant.

Touche	Opération	Variables
	Sous-menu des options : unité de débit, nombre de réservoirs.	Le choix des options est enregistré dans la variable △MOD.
0-0	Sous-menu de saisie des attributs des conduites.	Les attributs sont enregistrés dans les variables △SN et △SPar.
-04	Sous-menu de saisie des attributs des nœuds.	Les attributs sont enregistrés dans les variables AKN et AKPar.
	Sous-menu de saisie des attributs des réservoirs.	Les attributs sont enregistrés dans les variables △RN et △RPar.
_	Affiche les données de calcul sous forme d'une chaîne de caractères pouvant être copiée (Copy Stack) dans un logiciel de traitement de texte.	

MENU PRINCIPALE 1 donnant accès aux sous-menus de saisie des attributs du réseau

Données de calcul

Pipe number	Numéro de conduite
Initial node	Nœud amont
Final node	Nœud aval, déterminant le sens positif du courant
Diameter (mm)	Diamètre de la conduite
Length (m)	Longueur de la conduite
Roughness (mm)	Rugosité fonctionnelle de la conduite
l length L	Longueur total du réseau
Node number	Numéro de nœud
Nodal demand (l/soum3/h)	Consommation au droit du noud
Ground level (m)	Niveau du terrain au droit du nœud
l demand Q (l/soum3/h)	Consommation totale dans le réseau
Reservoir number Pressure head (m)	Numéro de nœud sur lequel est branché le réservoir Plan d'eau du réservoir conditionnant la pression statique
-	<pre>Pipe number Initial node Final node Diameter (mm) Length (m) Roughness (mm) l length L Node number Nodal demand (l/s ou m3/h) Ground level (m) l demand Q (l/s ou m3/h) Reservoir number Pressure head (m)</pre>

Nota : La consommation totale correspond à la somme des consommations *positives* attribuées aux nœuds du réseau. Les consommations *négatives* assimilées aux débits d'alimentation des pompes ne sont pas comptabilisées.

MENU PRINCIPALE 2 donnant	accès aux fonctions de calcul	et d'affichage des résultats
---------------------------	-------------------------------	------------------------------

Touche	Opération	Variables / Arguments	
	Lance la procédure du calcul hydraulique. La progression du calcul est visualisée par la barre NETWORK MODELING 4.1 CHEMORE MODELING 4.1 CHEMORE ADD COMPARE symbolisant les étapes suivantes : - lecture des données de calcul et identification des mailles, - détermination des débits initiaux, - calcul itératif des mailles avec une précision de < 10 ⁻² m, - calcul des pertes de charge linéaires, - suppression des fichiers de calcul. Dans le cas d'un calcul d'un réseau à deux réservoirs, toute la séquence est répétée jusqu'à ce que la ligne piézométrique	La procédure d'identification des mailles génère une liste $\triangle MPar$ { { {K _n } _{Mn} } comprenant les listes des numéros des nœuds des différentes mailles. Les résultats du calcul sont enregistrés dans les variables $\triangle SQ$ { $Q_{Sn}[m^3/s]$ } et $\triangle KP$ { { Npkn[m] $P_{Kn}[mCE]$ } }.	
10	aft une precision de < 10 ² m au niveau du deuxieme reservoir.	1. Numára da conduita S	
13	place dans la pile	1: Numero de conduite S _n	
iK	Affiche les résultats du calcul N_p et P du nœud K_n et les place dans la pile.	1: Numéro de nœud K _n	
P(Q)	Calcule la pression de service P au droit du nœud K _P en fonction de la consommation Q _c au droit du nœud K _Q . Nota : K _Q ne doit pas avoir été attribué à un réservoir. Nota : La consommation Q _c reste mémorisée au droit du nœud K _Q . Utiliser P (Q) pour rétablir la consommation initiale.	 3: Numéro du nœud K_P 2: Numéro du nœud K_Q 1: Consommation Q_c 	
Q(P)	Calcule de façon itérative la consommation Q_c au droit du nœud K_Q en fonction de la pression de service P imposée avec une précision de < 10^{-2} mCE au droit du nœud K_P . Nota : K_Q et K_P ne doivent pas avoir été attribués à des réservoirs. Nota : La consommation Q_c reste mémorisée au droit du nœud K_Q . Utiliser P(Q) pour rétablir la consommation initiale.	 3: Numéro du nœud K_Q 2: Numéro du nœud K_P 1: Pression de service P 	
<u> </u>	Affiche les résultats de calcul sous forme d'une chaîne de caractères pouvant être copiée (Copy Stack) dans un logiciel de traitement de texte.		

Résultats de calcul

Sn	Pipe number	Numéro de conduite
K1	Initial node	Nœud amont
К2	Final node	Nœud aval, déterminant le sens positif du courant
DN	Diameter (mm)	Diamètre de la conduite
L	Length (m)	Longueur de la conduite
kb	Roughness (mm)	Rugosité de la conduite
Q	Volume flow rate (l/soum3/h)	Débit d'eau transitant dans la conduite
J	Slope of hydraulic grade (m/km)	Pente de la ligne piézométrique
Kn	Node number	Numéro de nœud
Qc	Nodal demand (l/soum3/h)	Consommation au droit du nœud
N	Ground level (m)	Niveau du terrain au droit du nœud
Np	Reference pressure (m)	Niveau piézométrique
Ρ	Operating pressure (mWC)	Pression de service en mètres de colonne d'eau

SOUS-MENU DE SAISIE DES ATTRIBUTS DES CONDUITES

Touche	Opération	Argum	ents
Sh	Saisit le numéro de la conduite.	1:	Numéro de conduite S _n
Ŕ	Saisit le numéro du nœud amont K ₁ .	1:	Numéro de nœud K $_1$
Ka	Saisit le numéro du nœud aval K_2 , déterminant le sens positif du courant.	1:	Numéro de nœud K ₂
DNm	Saisit le diamètre DN de la conduite exprimé en mm.	1:	Diamètre DN
Lm	Saisit la longueur L de la conduite exprimée en m.	1:	Longueur L
komm	Saisit la rugosité <i>fonctionnelle</i> k₅ de la conduite exprimée en mm.	1:	Rugosité fonctionnelle k _b
	Nota : La rugosité fonctionnelle tient compte du revêtement intérieur de la conduite, des turbulences dues aux joints, du branchement des conduites secondaires et des raccordements particuliers, des changements de direction, des équipements de robinetterie et des dépôts divers. La directive DVGW W303 recommande les coefficients suivants : - conduites d'adduction : $k_b = 0,1 \text{ mm}$ - conduites maîtresses de distribution : $k_b = 0,4 \text{ mm}$ - réseaux de distribution en PVC ou PEHD : $k_b = 0,4 \text{ mm}$ - réseaux de distribution en fonte ductile : $k_b = 1,0 \text{ mm}$		

L'opération de saisie des attributs d'une conduite est clôturée par la commande STORE.

Nota : Deux conduites ne peuvent pas avoir les mêmes nœuds amont et aval (double conduite). Le cas échéant, il faut placer un nœud de support intermédiaire.

Touche	Opération	Arguments
i	Affiche les données S _n , K ₁ , K ₂ , DN, L et k_b	
STORE	Mise en mémoire des attributs saisis d'une conduite. Nota : Les attributs DN et k _b restent mémorisés pour la saisie suivante.	
RECALL	Rappel des attributs de la conduite S _n . Une éventuelle modification de ces attributs est enregistrée par la commande STORE .	1: S _n
E	Supprime les attributs de la conduite S _n .	1: S _n
Ø	Quitte le sous-menu de saisie des attributs des conduites et affiche le sous-menu de saisie des attributs des nœuds La commande génère une liste △Kex des nœuds saisis lors de l'enregistrement des conduites et pour lesquels doivent obligatoirement être définis les attributs correspondants dans le sous-menu En l'absence de données enregistrées, retour au menu principal.	

SOUS-MENU DE SAISIE DES ATTRIBUTS DES NŒUDS

Touche	Opération	Arguments		
Kn	Saisit le numéro du nœud.	1: Numéro du nœud Kn		
Qc.2	Saisit la consommation Q_c au droit du nœud exprimée en l/s ou en m ³ /h.	1: Consommation Q _c		
	Nota : La consommation $Q_c = 0 I/s$ ou m ³ /h est saisie par défaut.			
	Nota : Une consommation <i>négative</i> correspond au débit d'alimentation d'une pompe. <i>Il n'est cependant pas possible</i> <i>de saisir une courbe de pompe</i> .			
Nm	Saisit le niveau du terrain au droit du nœud exprimé en m.	1: Niveau N		
	Nota : Le niveau N=0 m est saisi par défaut.			
k-Qc	Multiplie toutes les consommations <i>positives</i> avec le facteur k : simulation de la consommation de pointe ou de l'accroissement de la consommation future, partant de l'hypothèse couramment appliquée lors des calculs hydrauliques que le pourcentage de la répartition des consommations particulières reste identique.	1: Facteur multiplicateur k		
	Nota : Les consommations <i>négatives</i> assimilées aux débits d'alimentation de pompes restent inchangées.			
	Nota : La multiplication des consommations ne peut être exécutée que si tous les nœuds ont été pourvus d'attributs. En règle générale, l'application du facteur multiplicateur est effectuée après la simulation de la consommation de base.			

L'opération de saisie des attributs d'un nœud est clôturée par la commande STORE.

Touche	Opération	Arguments
i	Affiche les attributs saisis K_n , Q_c et N	
STORE	Mise en mémoire des attributs saisis d'un nœud.	
RECALL	Rappel des attributs du nœud K _n . Une éventuelle modification de ces attributs est enregistrée par la commande STURE .	1: Numéro de nœud Kn
CELETE	Supprime le nœud Kn et ses attributs. Nota : Avant de supprimer un nœud, il faut en supprimer le ou les conduites s'y rattachant.	1: Numéro de nœud Kn
CPLTE	Pourvoit tous les nœuds non pourvus d'attributs des attributs standardisés $Q_c=0 I/s/m^3/h$ et N=0 m.	
8	Quitte le sous-menu de saisie des attributs des nœuds et affiche le sous-menu de saisie des attributs des réservoirs Nota : La commande pourvus d'attributs. Dans le cas contraire, une liste des nœuds non pourvus d'attributs est placée dans la pile.	

Touche	Opération	Arguments	
Kr1	Enregistre le numéro de nœud du réservoir 1.	1: Numéro du nœud K _{R1}	
OFm	Enregistre le niveau du plan d'eau du réservoir 1 exprimé en m conditionnant la pression statique.	1: Niveau OF (trop-plein)	
KRa	Enregistre le numéro de nœud du réservoir 2.	1: Numéro du nœud K _{R2}	
OFm	Enregistre le niveau du plan d'eau du réservoir 2 exprimé en m conditionnant la pression statique.	1: Niveau OF (trop-plein)	

Les attributs d'un réservoir sont enregistrés dès leur saisie.

Nota : Un réservoir doit *obligatoirement* être attribué à un nœud terminal. En d'autres termes, il ne peut y avoir qu'une seule conduite de départ. Le cas échéant, il faut placer un nœud de support avec une seule conduite de départ.

Nota : Une consommation attribuée à un nœud d'un réservoir n'est pas prise en compte pour le calcul hydraulique du réseau. Elle est toutefois prise en compte dans la consommation totale dans le réseau.

Touche	Opération	Arguments
	Affiche les attributs enregistrés des réservoirs.	
Ø	Quitte le sous-menu de saisie des attributs des réservoirs et retourne au menu principal.	

Variables

 $\triangle MOD$ { 0(l/s)/1(m³/h) 0(1 réservoir)/1(2 réservoirs) }

Messages d'erreur (liste non exhaustif)

STORE Error: Parameter(s) Missing Pour que les attributs d'une conduite/d'un nœud puissent être enregistrés, il faut saisir tous les attributs. La touche in renseigne sur les valeurs manquantes (NOVAL).

```
STORE Error:
Kn doesn't exist
```

Enregistrement des attributs d'un nœud qui n'existe pas, c. à d. qui n'a pas été défini lors de l'enregistrement des attributs des conduites. Retourner au sous-menu de saisie des attributs des conduites.

```
EXIT Error:
Parameter(s) missing
Nœuds existants non définis
```

Exemple 1

Créer un nouveau dossier et lancer l'application NET.

I : choisir **m3/h** comme unité de débit et le nombre **1** comme nombre de réservoirs.

•••• : choisir le sous-menu de saisie des attributs des conduites. Saisir les attributs des conduites :

10 Sn 10 K1 20 K2 200 DNmm 2500 Lm 0,1 kbmm WXT STORE.

20 Sn 20 K1 30 K2 150 DNmm 1000 Lm 1,0 kbmm XXT STORE.

30 Sn 30 K1 40 K2 1500 Lm (DN et k_b sont en mémoire) **NXT** STORE.

40 Sn 20 K1 50 K2 100 DNmm 1000 Lm (k_b est en mémoire) MXT STORE.

50 Sn 50 K1 40 K2 1500 Lm (DN et k_b sont en mémoire) **NXT STORE**

60 Sn 40 K1 60 K2 150 DNmm 3000 Lm 0,1 kbmm NXT STORE.

x quitter le sous-menu de saisie des attributs des conduites et accéder au sous-menu de saisie des attributs des nœuds. Saisir les attributs des nœuds :

20 Kin 50 Qc. ? 160 Nm NXT STORE.

30 Kn 50 Qc. ? 150 Nm NXT STORE.

40 Km 50 Qc...? 140 Nm NXT STORE.

50 Kn 50 Qc...? 150 Nm NXT STORE.

60 Kn -80 Qt...? (débit de pompage) 100 Nm NXT STORE.

EXIT CPLITE : pourvoir tous les nœuds non pourvus d'attributs, i.e. le nœud 10 auquel sera attribué le réservoir, des attributs standardisés Q_c=0 l/s et N=0 m.

e quitter le sous-menu de saisie des attributs des nœuds et accéder au sous-menu de saisie des attributs des réservoirs. Saisir les attributs du réservoir :

10 KR1 200 (niveau du plan d'eau conditionnant la pression statique dans le réseau) OFM.

🔤 : quitter le sous-menu et retourner au menu principal.

: afficher les données de calcul, exécuter la fonction Copy String de l'émulateur, puis coller la chaîne de caractères dans un programme de traitement de texte.

INTERPORT : lancer la procédure de calcul hydraulique.

: afficher les résultats de calcul, exécuter la fonction Copy String de l'émulateur, puis coller la chaîne de caractères dans un programme de traitement de texte.

En toute logique, le réservoir participe à hauteur de 120 m³/h à l'approvisionnement des consommateurs. La pression de service est de 15,5 mètres de colonne d'eau au droit du nœud 50. Quel doit être le débit de pompage au droit du nœud 60 pour que la pression de service au droit du nœud 50 atteigne 25 mCE ? $60 (K_Q) 50 (K_P) 25 (P)$ QCP donne 108,58 m³/h. En effet, 50 K donne 25 mCE comme pression de service.

Exemple 2

Reproduire avec un réseau alimenté par deux réservoirs le deuxième exemple de l'application PIPE calculant la capacité de transport d'une ligne de conduites pour une perte de charges imposée de 20 mCE :

Créer un nouveau dossier et lancer l'application NET.

I : choisir **m3/h** comme unité de débit et le nombre **2** comme nombre de réservoirs.

👓 : choisir le sous-menu de saisie des attributs des conduites. Saisir les attributs des conduites :

10 Sh 10 K1 20 K2 100 DNmm 800 Lm 0,1 kbmm NXT STORE.

20 Sn 20 K1 30 K2 90 DNmm 500 Lm 0,04 kbmm NXT STORE.

NUT : quitter le sous-menu de saisie des attributs des conduites et accéder au sous-menu de saisie des attributs des nœuds.

EXIL : pourvoir tous les nœuds des attributs standardisés $Q_c=0$ l/s et N=0 m. Aucune consommation particulière aux nœuds, le deuxième réservoir figurant comme seul consommateur gravitaire.

: quitter le sous-menu de saisie des attributs des nœuds et accéder au sous-menu de saisie des attributs des réservoirs. Saisir les attributs des réservoirs :

10 KR1 100 OFm 30 KR2 80 (différence de niveau de 20 mCE simulant la perte de charges imposée) OFm.

NXT i quitter le sous-menu et retourner au menu principal.

NXT E : lancer la procédure de calcul hydraulique.

10 (*ou* 20) **IS** donne 29,77 m3/h comme débit de transit.

Exemple 3

Réseau de 108 nœuds, 110 conduites et 3 mailles calculé avec le programme NET sur iPhone 7 en 14 secondes :

ΔZE

Auteur : Philippe Colbach, 1997

Formule de calcul itérative de la perte de charge dans une conduite d'eau sous pression se basant sur les équations de Darcy-Weisbach et de Colebrook-White:

 $\begin{aligned} & Q[m^3/s] = \pi \times DN[m]^2/4 \times \left(-2 \times LOG_{10}(2,51 \times 1,30 \cdot 10^{-6}[10^{\circ}C]/\sqrt{(2 \times 9,80665[m/s^2] \times DN[m]^3 \times \Delta H[mCE]/L[m])} + \\ & k_b[mm]/(3,71 \times DN[m] \times 1000)\right) \times \sqrt{(2 \times 9,80665[m/s^2] \times DN[m] \times \Delta H[mCE]/L[m])} \end{aligned}$

Cette formule est à la base des applications PIPE et NET. Opération pouvant être appliquée sous forme algébrique ' $\Delta ZE(DN,L,k_b,Q)$ '. Le résultat du calcul est donné avec la précision maximale supportée par la fonction ROOT.

La désignation de la perte de charge par Δz_e s'aligne à la littérature allemande.

	Arguments	
le charge Δz _e exprimé en mCE dans une ession en fonction de son diamètre nominal 1, de sa longueur L exprimée en m, de sa mée en mm et du débit Q exprimé en m ³ /s.	4: 3: 2: 1:	DN en m L en m k _b en mm Q _c en m³/s
	de charge Δz _e exprimé en mCE dans une ession en fonction de son diamètre nominal n, de sa longueur L exprimée en m, de sa mée en mm et du débit Q exprimé en m ³ /s.	Argumentsde charge Δz_e exprimé en mCE dans une4:ession en fonction de son diamètre nominal3:n, de sa longueur L exprimée en m, de sa2:mée en mm et du débit Q exprimé en m³/s.1:

Nota : Les unités des paramètres divergent pour certaines de celles employées par les applications PIPE et NET.