HP Application Lifecycle Management best practices series for
ALM practitioners

Entities sharing best practices

Technical white paper

Table of contents

Welcome 10 this QUIEeiiiiiiiiiii e 2
ABOUE ENHHIES SHAIING . ..ttt ettt ettt ettt et et e e et et e eneeenaeas 2
AUGIBNCE ..ttt ettt ettt e tb e e b e tb e e bt e e enb e e ateeenbeeeetbeeennes 3
PrErEQUISTIES. ...ttt ettt e e e ettt e e e e e e e e 3
Introduction fo entities sharing.................c.oooiiiiii i 4
Importance of entities ShArNG...........oiiiiiiii e 4
Common entities ShArNG SCENATIOScuuieiiiiiiiii ettt ettt ettt ettt e e sate e e e e eebeeenaeeens 5
COMPLIGNCE. ...ttt ettt ettt et 5
IT ANTHOHIVES ...ttt ettt e e ettt e e e ettt e e e e e e eee s 6
ENtErprise FElEaSE.ottt 7
Parallel developmentoooiiiiii i 7
Preparing for entities Sharingocociiiiiiiiiii e 8
Definiion of @ ProJECt ...iiiieiiiiii ettt enes 8
APPIICAHON L.ttt as 8
VErSION/MOMEIviiiiiie ettt ettt 8
(CUSIOM) PrOJECT ...ttt ettt e ettt e e e et e e e e e e 8
LB 8
REPOSHONY ...ttt ettt e e ettt e e e ettt e e e e et 8
EVEIYINING ..ottt e et e et e e eaes 9
LIDIGIY FYPES .ottt ettt et e ettt e e e eare e 9
CompliaNCe IBrary TYPeccuviiiiiieeiiie et e 9
INtegration Drary TPc..ii ittt 10
ENtities [IDrary TP .. .cuviiiiiiieiie e e 11
Defining @ IDrary ..ottt 11
Importing and synchronizing a library ..ot 12
IO SHOIUS ..o 13
Making entities sharing Work ... 14
Roles and reSponSibilitEs.uiiiiiiiiiie ettt 14
DeVElOPMENT SCENAIIOS.ei ittt ettt et et e et e e et e e easeeeaaeea 15
Sequential develoPMENtcccuiiiiiiiiiii e 15
Parallel developmentoooiiiiii e 16
Connection 10 source code CONOl...........iiiiuiiiiiieeiii ettt 18
RECONGIIAHON FASKS. ... ettt ettt et e e eereeeeaae e 18
CONEIUSIONS ...ttt ettt ettt e nat ettt et 19

Welcome to this guide

Welcome to the HP entities sharing best practices guide for HP Application Lifecycle Management (ALM) software.

This guide provides insights into concepts, guidelines, and practical examples for the best implementation of entities
sharing such as requirements, tests, test assets, and business components in various organizations.

About entities sharing

Traditionally, the application quality management market has been focused on specific testing activities, such as
load/stress and functional/regression testing. As the market shifts, organizations are seeking a combination of greater
business value and agility. Businesses are therefore required to take a more holistic and agile approach if they hope to
attain better quality. To meet their business objectives, they need to evolve from simply finding defects to also validating
functionality. Such an approach is driven by the need for companies as a whole (not just their IT divisions), to increase
efficiency and productivity so that they can maintain market leadership and attain a competitive advantage.

The organizations of today must validate and manage:

e Business functions: Raise user-acceptance level and decrease testing costs while providing increased
requirements coverage.

¢ Production readiness: How does the application scale? Is it secure?

o Risk status: Increase regulation (for example, data privacy and compliance) and security requirements while
managing costs.

To manage the process, organizations need to focus on overall governance rather than specific tasks. In addition, an
increase in the complexity of modern systems, composite applications, and service-oriented architecture (SOA), as
well as the growing number of regulations requires more effective solutions to satisfy quality levels.

HP ALM addresses these needs in a comprehensive manner. It facilitates all types of application tasks, using a solid
foundation for managing complex initiatives and regulatory requirements. HP ALM is designed to address the needs
of organizations that are looking to track and manage projects of all sizes, including large initiatives and
enterprise-wide releases. HP ALM can help facilitate a center of excellence (CoE) approach—a logical or physical
entity that drives standardization and processes across an organization, to improve quality, consistency,
effectiveness, and efficiency.

The purpose of this document is to assist HP ALM customers in assessing their current software development lifecycle
(SDLC) practices and successfully build and maintain a quality methodology using advanced features provided by
HP ALM. All aspects of this process have been researched using best practice data and expertise from various
sources such as HP operating system administrators, HP Professional Services, technical documentation, books from
industry experts, and the personal experience of many customer quality organizations. These guidelines help reduce
in initial creation time and achieve improved value in operating the HP ALM.

Audience

This guide is intended for:

e Business analysts
¢ Quality CoE managers
¢ Quality automation engineers

e Development managers

Prerequisites

To use this book, you should have a good acquaintance with major phases of the SDLC. You should also be familiar
with the business processes in actual IT organizations.

Operational knowledge and administrative privileges of HP ALM are essential in implementing these best practices. It
is strongly recommended to read the “Libraries” and “Baselines and imported libraries” chapters of the HP
Application Lifecycle Management user guide to get a general understanding of libraries, baselines, import, and
synchronization features mentioned in this document.

Note:

All features discussed in this document are available only in HP ALM version
11.00. These features are disabled in HP Quality Center Starter Edition and
HP Quality Center Enterprise Edition.

Introduction to entities sharing

Importance of entities sharing

In the world of cross-functional IT initiatives, the same application may be incorporated into multiple initiatives. It is
critical for various IT teams to be able to share the same set of requirements, tests, test assets, and business
components in order to validate that the new initiative is working as expected and does not disrupt the behavior of
other applications. Instead of re-creating entities, customers should be able to share the same entities across projects.

Since many industries are heavily regulated and must pass a variety of compliance-based tests such as Sarbanes-
Oxley (SOX) and HIPAA, it would be highly inefficient to duplicate entities across multiple projects—especially when
these regulations are updated regularly.

Figure 1: Typical enterprise IT topology

Portal Data mart Billing
Billing
CRM Portal Billing

Data mart

Requirements,

Shared library tests,

Requirements, tests, components
components

Another factor affecting the behavior of IT organizations is agile development, the centralization and global
distribution of project teams. In general, conditions for building products have evolved from performing some isolated
steps of the SDLC to integrating all steps of the product’s lifecycle—regardless of the approach taken. Business
analysts are now more involved at all stages of the development lifecycle. They prepare general requirements and
continuously validate the requirement coverage and product readiness for production. The project management staff
requires better access to the status of the entire process during each stage of the project. Developers need to
understand how their bugs impact the project schedule.

The reusable library of requirements, tests, test assets, and business components allows multiple stakeholders to
coordinate their efforts to support enterprise-wide releases. Each team can import the baseline of the library and work
with the assets within their own project.

There are two types of libraries:

o A source library is a library used as the basis for creating another library.

o A destination library can be created by importing an existing source library from the same project or from a
different project.

Changes made to entities in an imported library, either in the source project, destination project or both, can be
viewed from either project. If desired, those changes can be synchronized between the two projects to enable

ongoing consistency. A library also enables the organization to reuse compliance requirements and tests, reduce
duplication of effort, and aggregate metrics across projects using a common set of metrics. Alternatively, even if all
assets are maintained inside one large project, using entities sharing allows independent work of multiple
stakeholders while enabling consistency of the data.

Common entities sharing scenarios

Different companies manage various areas of the SDLC (such as requirements management, festing, and defects
tracking) in a similar manner. Most companies go through the same path of maturity, while some reach the higher
level and others stop short in the comfort zone of lower effort. No matter what the level of maturity, when it comes to
development processes and scenarios, companies usually go through these processes.

Compliance

Figure 2: Compliance sharing scenario

Application A

Many organizations—especially those in the finance, healthcare, and government sectors—are required to comply
with specific government regulations such as HIPAA, SOX, US Section 508, and many others. It is therefore
obligatory for their IT divisions to demonstrate adherence to the highest level of regulatory compliance. The following
steps are usually required by these regulations:

o Sign-off of certain processes and documents after passing necessary reviews and approvals. In a regulated
environment, businesses must provide proof and reasoning when they make decisions that may potentially affect
compliance with the law and standards.

e Generation of reports in predefined formats that provide sufficient proof that the organization meets the required
level of compliance with specific government or industry regulations and requirements.

o Auditing of changes that impact regulatory requirements throughout the application lifecycle to show
application consistency.

e Propagation of changes to all repositories that use a certain application.

[T initiatives

Figure 3: [T initiative scenario

Payment
info

Mature IT organizations often adopt an approach called a business initiative. An initiative is a set of applications that
are developed to support a common business goal. An example of an initiative is adding Web-based payment solutions
such as PayPal to an existing credit card clearance process. To support this initiative, several new applications may need
to be developed and a large number of the existing software applications may need to be modified.

The scale of these developments and modifications could not be managed if each application team works alone in its
respective silos. Instead, all requirements management, development, testing, deployment, and change management
processes need to be coordinated across multiple applications. With each application team introducing its own
requirements, tests, components, and defects, the key to a successful release of an IT business initiative is to enable
visibility, coordination, and collaboration.

There are some major challenges in the implementation of an IT initiative that are addressed by HP ALM:

e Progress reports provide a vital understanding of the IT initiative’s current status at any point in time. Multiple
applications and even other related initiatives may depend on the requirements or testing progress of a project. If
each application participating in the initiative is represented by a library, then HP ALM provides an easy way to
import several libraries into a single project to manage this initiative.

o The proliferation of composite applications dictates the need to test not only each component individually but also
end-to-end business transactions and communication between all components.

¢ With so many composite applications and increased SOA usage, one small change in the requirements or a defect
fix may affect the entire business transaction. Change impact analysis of the initiative and its hidden dependencies
across all applications is imperative in reaching “go/no go” decisions early in the cycle.

o If the same application exists in multiple repositories, all relevant stakeholders must make sure that any changes to
an application are properly synchronized between multiple instances of the application.

Enterprise release

Figure 4: Enterprise release scenario

Q1 release Q2 release

A common approach among mature IT organizations is to group multiple initiatives fogether and release updates
periodically—monthly, quarterly, or biannually. Each release consists of a number of IT initiatives—each with its own
requirements, dependencies, timelines, and priorities. Managing an enterprise release is complex, it involves
tracking and reporting the progress of each of the initiatives and its underlying applications. By sharing entities, the
enterprise release management feam can control the data consistency and quality of each of the components of the
final package. The release of multiple initiatives requires even more visibility, coordination, and collaboration.
Multiple stakeholders must be able to assess the quality of each of the inter-connected projects and measure the
overall release status and readiness at any time.

Parallel development

To respond to the demands of a hyper-competitive marketplace, IT departments today are tasked with increasingly
diverse responsibilities. They must support global, 24x7 operations and integrated supply chains while quickly
delivering applications to market.

To do this, companies often build software by employing parallel development in one of two modes: the waterfall
approach or agile development. In the waterfall approach, each team may develop separate, unrelated features and
deliver them at the end of the process for final integration.

In agile development:

¢ Development teams must manage an increasing number of rapid changes

e Business analysts need to learn how to capture requirements in higher-level user stories, which are both more
flexible and can be easily interpreted by test and development teams

e QA organization needs to make sure they are prepared to test the multilayered applications delivered by
development. Their test plans need to be flexible enough to accommodate the changes in each iteration.

HP ALM provides fools to achieve these goals including entity sharing between projects being developed
in parallel, regardless of what approach is taken—waterfall or agile—thus allowing quick synchronization of
changes and traceability.

Preparing for entities sharing

This chapter describes the basic steps for the best way to use HP ALM for entities sharing.

Definition of a project

The first step in implementing HP ALM is to decide what the ALM project should represent. This decision will have a
profound effect on the way the project is managed, how requirements are written and the approach that is taken to
test the application. Since no two IT shops are identical, the decision depends largely on considerations such as the
company culture, business processes in place, and previous tool limitations (if any). Most ALM projects (database with
resource repository) can be used in the following ways.

Application

This is the common case. Each project represents one application, with all of its requirements, business models, key
performance indicators (KPIs), test sets, test resources, defects and reports. This is the natural way to map development
activities, to manage relationships between business analysts, developers, and testers. For example, billing, customer
relationship management, and portal are widespread names of projects and these are dedicated to their namesake
applications. The situation may get more complex when one application is used as a component of another application
or initiative.

Version/model

A major application version generates a new HP ALM project and serves as a starting point for future development.
This is common in independent software vendor circles where a major version signifies the end of a big cycle and
start of a new one. In this case, the older version enters a maintenance state, and the new version moves through
development milestones towards a release.

HP ALM is implemented differently in various types of companies. Sometimes a new project represents a new model
(physical entity) of the product, such as a cell phone, printer, or TV set. In this case too, a new project is created
when new model development is started.

Consider the fact that the same goal may be achieved by using the application usage scenario and employing
release and cycles features of HP ALM to manage new versions.

(Custom) Project

This is also a common usage pattern found in many IT organizations. For example, suppose there is a requirement o
create a Web application to display the credit rating of a banking customer. To develop this new feature, a new
project is opened to cover all aspects of planning, coding, testing, and bug tracking. Integration of existing
components and systems usually falls into this category.

LOB

In a world of huge companies and endless mergers and acquisitions, one line of business (LOB) may be quite
separate from another or just maintain independent sets of data, thus making the case for this kind of implementation.
Each LOB maintains one project where it keeps all applications or compliance information.

Repository

More frequently than not, stakeholders in the application lifecycle elect to designate one project as a repository or
rollout so that master records of requirements, test, and test sets are kept there. While not a “project” in strict terms, it
gives the ability fo maintain the “master definitions” part of the process while all “execution” aspects are stored in
other projects.

HP strongly recommends having one repository project when developing and testing complex or composite applications.

Everything

Sometimes the company decides fo maintain all activities of all teams inside one rather large project. This type of
implementation may indicate the desire to keep everything in one place and separate various types of entities by
granting certain privileges to certain users. Alternatively, such projects may be dedicated to one of the various ALM
activity types, for example, a defects-only project or requirements-only project for all kinds of the applications.

HP would not recommend implementing this scenario due to the contradiction with the ALM project management
capabilities (by default, the project should have clear start and end) and possible complexity which would
increase over time.

HP ALM allows great flexibility in mapping software development processes—therefore it is imperative to analyze
them prior fo implementing the tool.

Library types

A library represents a set of entities in a project and the relationships between them, such as coverage and
requirements traceability. The entities in a library can include requirements, tests, test assets, and business
components. After creating a library, you also create a baseline in order to have a snapshot of the library at a
specific point in time. You can compare baselines at all stages of the application lifecycle. Viewing baseline history
enables you fo track changes made to individual entities in your library over time. As development continues, you can
view and compare all versions of an entity that are stored in a baseline. Based on comparison, you may decide to
import a baseline to reuse an existing set of entities, or you may choose to synchronize the projects to maintain the
same level of functionality.

The following sections describe different library types based on the usage of scenarios and the origin of the project.

Compliance library type

Figure 5: Compliance library type

SOX
15027001

policies

SOX
ISO27001

policies

SOX
1SO27001
policies

SOX
1SO27001
policies

v

SOX
1SO27001
policies

This library type primarily aims to provide reusable compliance requirements and generic test case definitions through
sharing in companies that need to address regulatory rules that change over time such as SOX, HIPAA, COBIT, and
many others. The library is usually defined as read-only after its initial creation by importing from the repository/rollout
project. The compliance library type is locked down through permissions to allow for the extraction of the requirements
to the project library but not modification of the compliancy library itself or the extracted requirements. When a
compliance requirement needs to be updated within the repository itself, the Compliance Officer (or someone fulfilling
that role such as Library Administrator) makes the modifications within the library. The changes are applied to the
implementation project using synchronization—a changed icon and alerts let the project owners know they should
resynchronize the requirements. A full audit history of library changes is provided by HP ALM.

10

HP recommends creating a new baseline, ideally with the date of change in the title, upon modification of the library
requirements set. In this case, change request and exception request workflow are usually established. When a
compliance library type is in use, collisions are not possible.

HP also recommends keeping a library for each specific compliance requirement to allow for the most flexibility.
This way you get only the entities relevant for the selected regulation when importing a library or synchronizing
between libraries.

Integration library type

Figure 6: Integration library type

Integration

Project A
Project B
Project C
Project D

Requirement
test case

Requirement
test case

Requirement
test case

Requirement
test case

This library type’s goal is to provide reusable requirements and test cases for onetime usage through sharing. It is
often used as a repository for common requirements and artifacts that span multiple projects, for example, common
GUI interface test set, common database, or security requirements; performance requirements or test, and so on. This
type of library acts as a “template” library and as such, is defined as read-only after its initial creation by importing
from the repository or rollout project. Change request and exception request workflow are rarely established in this
type of library. Changes applied in the integration project are seldom synchronized with repository or rollout projects
and vice-versa. With this library type, collisions are possible but usually discarded in both the implementation and
repository or rollout projects because they can corrupt the library.

Entities library type

Figure 7: Entities library type

Data mart
Portal €
Savings

SAP

SN—_—

Project C Project D

Data mart +
savings + SAP
feature pack

Data mart +
portal feature
pack

Data mart +
savings + SAP
maintenance

Data mart + portal
maintenance

This library type is intended to manage reusable requirements and test case definitions that are considered assets to
the application. As opposed to other library types, this library is typically defined as read/write after its initial
creation by importing from the repository or rollout project. The workflow for change requests and exception requests
is established according to the adopted methodology. Changes are made only to the implementation project, and the
changes are applied to the repository or rollout project using synchronization. With this library type, collisions are
possible and need to be handled to avoid the corruption of the library.

These are suggested library types—in actual implementations their usage can vary.

Detining a library

Library structure should be planned with future needs and growth in mind. HP recommends examining the granularity
of the libraries before creating them.

Smaller libraries give greater flexibility in assembling multiple combinations of assets for sharing. On the other hand,
too many libraries may cause management overhead and confusion. When creating libraries, you may want to use
filters to select only the relevant informational resources instead of selecting generic roots. This model gives the user
more control over library content, and helps define libraries that are not based solely on the hierarchical structure of
the project.

Another approach is to define “initial roots” for the libraries and let HP ALM automatically gather all of the relevant
entities based on predefined links (for example, coverage and requirement traceability).

The capabilities of filtering and auto completion of entities selection were added in HP ALM version 11.00.

HP recommends synchronizing baseline creation time with a major step in the development process such as the end
of a cycle, iteration, or release.

11

12

When creating a library, you may prefer to choose either requirements coverage or test coverage or both options that
may result in a large population of linked entities even if you selected a small number of records. To avoid
performance problems, the number of entities recommended for a single library is calculated based on two site
configuration parameters:

e REQUIREMENTS_LIBRARY_FUSE with default value of 3,500

— Maximum number of requirements in a library should not exceed this parameter value, that is, 3,500 entities

e LIBRARY_FUSE with default value of 2,500
— Maximum number of tests in a library should not exceed this parameter value, that is, 2,500 entities

— There is a ratio of 1:4 between tests and resources, that is, maximum number of resources should not exceed the
quarter of LIBRARY_FUSE, that is, 625 entities

- Same rule works for business components, that is, maximum number of business components should not exceed
the quarter of LIBRARY_FUSE, that is, 625 entities

These values are verified when you create baselines, import libraries, or synchronize libraries. HP strongly
recommends limiting the number of entities in a library to the sum of all sorts of records according to the rules above.

Importing and synchronizing a library

HP recommends using cross-project customization to make sure that the fields used in all your projects have common
definitions, making it easier to import and export projects. Shared customization is the preferred way to introduce
custom fields to projects, otherwise they are ignored by the import and synchronization process. Put all custom fields
and values in a template project and use this template to create new projects. There are more reasons to establish a
template project, such as cross-project reporting and defect synchronization. As shown in the previous section, in the
maijority of implementations customers have more than one project fo cover their needs. Having a template project
helps in proactively reducing problems regardless of the approach taken.

The process of importing the library can be time consuming. As the import operation builds the library structure and
populates every entity, folder, and link, large libraries could take several hours to import. Moreover, during the import
process, the structure of the library is unstable as more entities are being created and populated, so HP recommends
not using the library objects until the import process is complete. An easy and recommended way to accomplish this is
to perform imports of large libraries overnight, when HP ALM is not being used for its normal activities.

Similarly, when synchronizing the library that contains entities that are under version control, it is advisable to verify
that all objects on the destination side are checked in and not locked.

The first step of the library import or synchronization process is verification. The verification process includes the
following checks:

o Requirement type check: Checks that your project contains the necessary requirement types.

o Entities compatibility check: Checks that your project has the necessary extensions enabled. If the source project
has an extension enabled, and the source library includes entities for that extension, your project must also have
that extension enabled.

o Library size check: Checks that the number of entities in the library does not exceed the maximum defined by site
configuration parameters.

The synchronization process is performed based on these rules:

It overrides entities that were changed in the destination project according to the timestamp. The change is written
info history log of the entity.

If source entity was not changed, but destination was modified, the destination entity remains untouched.

When an entity is deleted in the source project, it is placed into the special obsolete folder in the destination
project. This allows additional verification before final deletion, or it allows entities to be restored to their original
place in the hierarchy. After reviewing the obsolete folder, the user should remove any entities—only then is the
synchronization process complete.

The process does not allow schema inconsistency and will fail during the verification step even before any data is
copied. It is therefore important to keep source and destination projects entities in the same shape in terms of
schema. To provide consistency, use cross-project customization as described above.

There is no way to merge data between source and destination entities if there is a data conflict. These conflicts
may be a result of the baseline version of the entity taking precedence over the locally modified copy of the same
entity. In this case, the only way to merge the changes is to do so manually.

Import status

Import and synchronization processes may become quite complex, especially when there are many projects
participating in the process. To better understand the status of the entities and the impact their change or deletion
may have, open the “Usage” view, Imported By/From tabs. See the “Imported Libraries” chapter of HP Application
Lifecycle Management user guide for details.

Another option for checking the entities status is to generate a baseline report. This report provides detailed
information on the baselines content in a standard HP ALM report output format. The report was introduced in
HP ALM version 11.00.

13

14

Making entities sharing work

This chapter describes best practices for sharing entities in HP ALM.

Roles and responsibilities

Similar to the other entities in HP ALM, libraries and baselines have group permissions, for example, that can create
and import. When importing a library, the importing user must have permissions to create the relevant entities in
the modules.

Since the import and synchronization processes may result in data corruption or loss if not managed properly,
permissions should be carefully planned based on a person'’s role in this process. The following are examples of
useful roles that were observed at HP ALM customer sites:

Library Administrator (LibAdm)

The Library Administrators are responsible for the library and its contents. They handle synchronizations, provide
entities collision reports, and notify project managers about library usage by other project managers.

Implementation Project Manager (ImpPM)

The Implementation Project Manager is responsible for an implementation project, selects and imports libraries,
defines milestones, and assigns reconciliations tasks to subject matter experts working on the implementation project.

Repository Project Manager (RepPM)
The Repository Project Manager is responsible for a repository or rollout project, selects and imporis libraries,

assigns reconciliations tasks to subject matter experts working on the implementation or repository project, and
provides stable baselines for import.

Implementation Project Contributor (ImpPC)

People acting in this capacity are usually business analysts, test engineers, QA managers, and the like. They have
access to and control over certain information, such as a specific application’s requirements or test sets.

Repository Project Contributor (RepPC)

Like the previous role, people in this role handle the portion of the library tree that the LibAdm assigned to them.

Library Reconciliation Board (LRB)

This is a board of Library Administrators, Implementation Project Managers, and Repository Project Managers. The
board members plan reconciliation activities, and analyze entities collision reports based on their expertise and
input from subject matter experts who are Implementation Project Contributors and Repository Project Contributors.

The user who performs the import operation, such as LibAdm, ImpPM, and RepPM, should have permissions for both
the origin project and the destination project. The permissions for both projects do not need to be the same. For
example, a user can be a super-admin in the origin project, and have limited privileges in the destination project,
such as create and update permissions.

Libraries in the group permission screen have a data hiding filter. This filter can be used to hide certain libraries from
particular users, such as ImpPC and RepPC. To define specific criteria for the data hiding filter, use user-defined fields
for libraries.

Remember that the above definitions are roles and responsibilities, not people. One person could fulfill multiple roles
within the SDLC organization structure.

Development scenarios

Libraries and baselines are powerful tools that can be used across the SDLC. HP recommends following these rules
when using these tools in your organization:

¢ Use a naming convention or custom attributes for libraries fo enable the correct identification of their type,
scope, status.
— Type: compliancy, entities, and so on
— Scope: description of the contents

— Status: new, ready, under maintenance, and so on

¢ Use a naming convention or custom attributes for baselines to enable the correct identification of their type.

— Type: after synchronization, after reconciliation, before synchronization, and so on

It is possible to enforce naming conventions by using workflow code.

Part of the LibAdm'’s responsibility is to inform ImpPMs about content changes so they can choose the proper library
and baseline. In some cases, when there are a large number of entities and widespread use in child projects,
consider implementing an automatic notification feature, such as automatic email to ImpPMs, for changes in the
rollout project.

Before sharing entities, make sure these conditions are met:

e Repository or rollout projects are available and contain all relevant libraries

e Implementation projects have already been created using the cross project customization feature and libraries have
been imported as part of project setup

There are two common development scenarios in which entity sharing is an integral part of the process—sequential

development and parallel development. HP ALM natively supports both scenarios and provides the means to improve
productivity by using this feature.

Sequential development

This is the most popular way to develop and test software. Tasks come one after the other and synchronization is
performed at certain, predefined points of time.

Figure 8: Sequential development diagram

Implementation project A Implementation project B

Pty ¢ T——OO—0 o

Repository project

. Baseline before synchronization . Baseline after reconciliation

. Baseline after synchronization *queline after import @ Baseline for project milestone

15

16

Here is a typical flow of events in a sequential development project:

¢ ImpPM reaches a project milestone that requires the synchronization of imported libraries (from implementation
project info repository project)

e ImpPM asks ImpPCs to commit a stable revision of assigned entities (or group of entities)

e ImpPM creates the baseline for project milestone

o LRB compares the implementation project baseline and the repository project baseline to assess the impact

e LRB plans for reconciliation activities and assigns them to ImpPCs or RepPCs

e LibAdm performs library synchronization for the repository project (gets the latest or stable baseline from
repository project)

e Baseline after synchronization is automatically created
e ImpPCs or RepPCs perform reconciliation tasks

e LibAdm creates a baseline after reconciliation

In the case of sequential development, more than two projects may synchronize with a single repository or
rollout project.

Parallel development

This method of development is primarily used by agile teams to speed up delivery.

Figure 9: Parallel development diagram

Implementation project A

Repository project

o Baseline before synchronization

' Baseline after synchronization

. Baseline after reconciliation

@ Baseline for project milestone

Implementation project B *Bm“"e after import

Here is the typical flow of events in a parallel development project:

ImpPMs of project A reach project milestone that requires the synchronization of imported libraries (from
implementation project to repository project)

ImpPMs of project A ask their ImpPCs to commit a stable revision of assigned entities (or group of entities)
ImpPMs of project A create the baseline for project milestone

LRB compares the implementation project baseline and the repository project baseline to assess the impact
LRB plans for reconciliation activities and assigns them to ImpPCs of project A or RepPCs

LibAdm performs library synchronization for the repository project (gets the latest or stable baseline from
repository project)

Baseline is automatically created after synchronization
ImpPCs of project A or RepPCs perform reconciliation tasks
LibAdm creates a baseline after reconciliation

ImpPM of project B reaches project milestone that requires the synchronization of imported libraries
(from implementation project to repository project)

ImpPMs of project B asks ImpPCs of their project to commit a stable revision of assigned entities (or group
of entities)

ImpPM of project B creates a baseline before synchronization

ImpPM of project B performs library synchronization for the implementation project, that is, gets lafest or stable
baseline from repository project (from repository project to implementation project)

Baseline is automatically created after synchronization
ImpPCs of project B performs reconciliation tasks
ImpPM of project B creates baseline for project milestone

LibAdm performs library synchronization for the repository project, that is, gets latest or stable baseline from
implementation project (from implementation project to repository project)

Baseline is automatically created after synchronization
ImpPCs of project B or RepPCs perform reconciliation tasks

LibAdm creates a baseline after reconciliation

Due to the complexity and multiple meeting points, parallel development is typically used between no more than two
projects or development teams.

17

18

Connection to source code control

Regardless of the chosen development method—be it sequential or parallel—in most of the cases the development
teams keep source code in a shared repository managed by a source code control (SCC) system. This is vital in
handling the actual source and objects associated with the coding effort.

As with ALM, managing source code follows a similar pattern with either a sequential or parallel development.
Branching and merging, creating baselines or checkpoint and many other lifecycle concepts directly apply to
SCC tools.

HP ALM can plug into the leading development environments such as Eclipse and Microsoft® Visual Studio and source
code control systems such as Subversion. HP ALM Connector, developed by Tasktop—an HP partner, integrates its
task-focused interface technology with HP ALM, resulting in improved developer productivity and interoperability with
infegrations with primary commercial and open source ALM platforms.

Even if there is no automatic connectivity between your SCC and HP ALM, it is still valuable to track the SCC
baselines and to relate them to the baselines created in HP ALM using certain procedures and naming conventions.

HP recommends that every time a baseline in HP ALM is created, a notation of the SCC tool baseline label or
numbering pattern is written in the library baseline comments. For example, the baseline comments in ALM may
contain “Subversion Release 4.3 beta” or at least “Checkpoint 1.7.” This should allow for an easy correlation of the
two related entities. On the other hand, a reference could also be placed in the SCC checkpoint comments area to
reference its corresponding baseline in HP ALM.

Reconciliation tasks

As mentioned in previous sections, various data conflicts may arise during the synchronization process. To enable
data consistency, follow these guidelines when performing data reconciliation tasks in the repository project:

e Delete an entity that has been created in a repository project

— ImpPC is required to delete the entity

Restore an entity that has been deleted in a repository

— ImpPC is required to move a deleted entity from the “SYNCH_OBSOLETE_*" folder to its original node
(folder or entity)

Keep entity in “Baseline after synchronization” (latest revision)

- Nothing has to be done

Keep entity in latest “Baseline before synchronization” (previous revision)

- ImpPC is required to check-out a previous revision of the entity and perform an immediate check-in

® Merge entity from both baselines (create a new revision)
— ImpPC is required to check-out a revision of the entity that represents the best starting point for the reconciliation,
(that is, the revision containing most of the information that needs to be kept), apply the changes approved by
the LRB, and check in the entity.

Conclusions

The recent wave of application modernization has clearly started showing its power. Driven by new technologies and
the quest for simplification and decreased costs, modernization touches almost all aspects of IT. It turns local,
dedicated teams into virtual, distributed ones. It reshapes applications from monolithic blocks of software to composite
“systems of systems.” It enriches user experience and company brand through Web 2.0 and rich Internet
applications. It changes release management from single launches o multi-application “release trains.” To truly
enable business change, IT managers must examine their approach to plan, develop, deploy, and operate software
applications.

Since applications are no longer encapsulated, neither are projects. Functionality, performance, and security
decisions made within a project affect IT services throughout the enterprise. Sharing entities between projects and thus
allowing collaboration between various stakeholders in IT helps keep up the pace of the ever changing essence of
today’s applications. HP ALM provides all of the necessary means for sharing artifacts. This is particularly vital in
larger enterprises where team collocation is not always viable.

To learn more about how you can avoid re-creating entities and benefit from sharing the same entities across multiple
projects, visit www.hp.com/go/alm.

—-s,J Get connected

woarw.hp.com/ g getconracied

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The
only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or

omissions contained herein.

Microsoft is a U.S. registered trademark of Microsoft Corporation. ’

4AA3-4753ENW, Created June 2011

http://www.hp.com/go/alm�
http://www.hp.com/go/getconnected�

	Welcome to this guide
	About entities sharing
	Audience
	Prerequisites
	Introduction to entities sharing
	Importance of entities sharing
	Common entities sharing scenarios
	Compliance
	IT initiatives
	Enterprise release
	Parallel development

	Preparing for entities sharing
	Definition of a project
	Application
	Version/model
	(Custom) Project
	LOB
	Repository
	Everything

	Library types
	Compliance library type
	Integration library type
	Entities library type

	Defining a library
	Importing and synchronizing a library
	Import status
	Making entities sharing work
	Roles and responsibilities
	Development scenarios
	Sequential development
	Parallel development
	Connection to source code control
	Reconciliation tasks
	Conclusions

<<

 /ASCII85EncodePages false

 /AllowPSXObjects true

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /ColorConversionStrategy /sRGB

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 100

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 100

 /ColorSettingsFile ()

 /CompatibilityLevel 1.5

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)

 >>

 /DetectBlends true

 /DetectCurves 0.10000

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 2

 1

 1

 2

]

 /QFactor 1.30000

 /VSamples [

 2

 1

 1

 2

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 150

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 10

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 300

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 300

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /ConvertToRGB

 /DestinationProfileName (sRGB IEC61966-2.1)

 /DestinationProfileSelector /UseName

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks true

 /IncludeHyperlinks true

 /IncludeInteractive true

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing false

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo false

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages false

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [612.000 792.000]

>> setpagedevice

