
Crash Dumps Nov 2004

Crash Dumps

 1/34

Crash Dumps Nov 2004

INDEX

A little bit of theory 3

Crash events.. 3
What happens when a system crashes?... 4

How to configure dump devices 8
Choosing dump devices .. 8
Configuration steps ... 9

The dump/savecrash process 11
Writing the memory image to the dump devices.. 11
Saving the dump to the filesystem.. 14

Analysis of the dump 16
About the crashinfo utility .. 16
How to obtain and install and execute crashinfo .. 16
About the stack trace... 18
Analysis beyond standard crashinfo output .. 20
crashinfo output example.. 26
Patches related to crash dumps ... 32

Additional information 34

 2/34

Crash Dumps Nov 2004

Did you ever experience a sytem that was hung or crashed unexpectedly? This chapter
explains how to configure a system for crash dump, how to install dump analysis tools and
how to use them in order to quickly isolate the cause of the problem.

A little bit of theory

When the system crashes, HP-UX tries to save the image of physical memory (core), or
certain portions of it, to predefined locations called dump devices. Then, during the following
reboot, a special utility (savecrash) is invoked from a rc-script that copies the memory image
together with the current kernel from the dump devices to the file system. Once there, you can
analyze the memory image with a debugger. The following picture shows the action flow:

Crash events

An abnormal system reboot is called a crash. There are many reasons that can cause a system
to crash; hardware malfunctions, software panics or even power failures. On a properly
configured system, these will typically result in a crash dump being saved. The operating
system logs a crash event for each reason that triggers a crash. There is usually one crash
event per-processor. Although it is not uncommon to see two or more crash events associated
with the same processor.

There are three different types of crash events: PANIC, TOC and HPMC:

PANIC

The crash even type panic refers to crashes initiated by the HP-UX operating system
(software crash event). We differentiate between direct and indirect panics.

A direct panic refers to a subsystem calling directly the panic() kernel routine upon detection
of an unrecoverable inconsistency, for example:

 3/34

Crash Dumps Nov 2004

• panic ("wait_for_lock: Already own this lock!");
• panic ("m_free: freeing free mbuf");
• panic ("virtual_fault: on DBD_NONE page");
• panic ("kalloc: out of kernel virtual space");

An indirect panic refers to a crash event as a result of trap interruption which could not be
handled by the operating system. For example when the kernel accesses a non-valid address, a
Data page fault (trap type 15) would result. The trap handler will save some state information
and then call the panic() routine to bring the box down in an orderly manner. This is indirect
since panic() is called at a point slightly later than the trap condition that caused the failure.
Some examples

• trap type 15, Data page fault
• trap type 18, Data memory protection fault
• trap type 6, Instruction page fault

TOC
The crash event type TOC refers to crashes initiated by a Transfer-Of-Control sequence.
There are three different ways of getting a TOC event for a CPU:

• Operator initiated TOC (eg, manually pushing a TOC button, or cycling the
power button 3 times on some systems, or using the TC command in console
mode).

• MC/ServiceGuard initiated TOC (eg, when it is unable to maintain contact
with the cluster daemon).

• Crash path initiated TOC. On multi-processors systems, the processor taking
the initial crash event (eg, a panic) will cause the other processors to perform
TOC automatically.

A manual TOC is usually done when a system is hung or unresponsive. This way the
crash dump can be analysed to determine root cause.

HPMC
The HPMC crash event type refers to High Priority Machine Check crashes initiated by the
hardware due to hardware inconsistencies or malfunctions such as a Data Cache parity error.
Getting an HPMC does not always mean that the hardware is at fault. The HPMC tombstone
needs to be analyzed to determine if the hardware was really at fault. Software defects can
result in HPMC crash events, but are typically very rare in production quality software.

NOTE: on Itanium systems the naming is sligthly different:

HPMC = MCA (Machine Check Abort)
TOC = INIT

What happens when a system crashes?

Now that you understand the different types of crash events (panic, toc and hpmc), let’s see
what the system does to process these events. Processing these events usually requires an

 4/34

Crash Dumps Nov 2004

interaction between the hardware and operating system software. There are well defined
architected interfaces between hardware and software. For example, PDC entry points
(processor firmware) on the processors and Interruption Vector Table (IVA) in the kernel.
These interfaces allows the hardware to trigger software entry points to initiate logging,
analysis and error recovery to be performed after a hardware fault or vice versa.

Some of the information presented here may be quite indepth on first reading. You may skim
through them initially. It is important to grasp the concept presented here since any
investigative dump analysis work begins with the crash events. It is worthwhile understanding
what the system does in response to crash events and what crucial pieces of information are
saved and where they are stored.

We categorise the crash events into two classes; hardware crash events and software crash
events. Here is a description of what the system does to process these.

Hardware crash events
A hardware crash event can be High Priority Machine Check (HPMC), Low Priority Machine
Check (LPMC) or Transfer of Control (TOC). The machine checks are typically caused by
hardware malfunctions or certain classes of bus errors. TOC on the other hand is usually
initiated by the operator in response to system software being stuck in an error state.
When a hardware crash event occurs, the processor immediately branch to PDC entry point;
PDCE_CHECK for HPMC and LPMC faults, and PDCE_TOC for TOC. The implementation
details of these PDC entry points are processor dependant. Fundamentally they save the
processor’s state (general, control, space and interruption registers) into Processor Internal
Memory (PIM). The processor then vectors back into the operating system entry points;
HPMC_Vector or TOC_Vector. These entry points are defined in the IVA (Interruption
Vector Table) and MEM_TOC in Page Zero respectively.

On entry into the kernel, a crash event entry is created. The operating system makes a pdc call
(PDC_PIM) to read the processor’s state information from PIM into a Restart Parameter
Block (RPB). As such the RPB structure contains information pertinent to the understanding
of the crash. For example, the Program Counter (PC) in the RPB would indicate what routine
was executing at the time of HPMC/TOC event. Once the state has been saved, the operating
system continues to dump physical memory to the dump device.

Software crash events
A software crash event occurs when panic() routine is called. This can either be a direct or
indirect panics. For a software crash event, the PDC and PIM are not involved at all. As such,
the first thing that panic() routine does is to save the processor state into the RPB structure.
The panicking processor will also initiate a TOC to other processors, causing them to stop
what they are doing closer to the point where the problem is detected. This is important to
allow the cause of the panic to be identified.

panic() actually calls a leaf routine panic_save_register_state() to save the processor registers
state. So the return pointer (rp) in the RPB structure actually points to the panic() routine. The
instruction address (pcoq) is zeroed out in the RPB to prevent unwinding beyond panic since
this is the point of interest. Since panic_save_register_state() is a leaf routine, the stack
pointer (sp) in the RPB will be the same as that of panic().

For a direct panic, the RPB contains the processor's registers state of the routine which called

 5/34

Crash Dumps Nov 2004

panic(). In other words, the RPB contains information closest to the point of failure and in the
same context as the routine was called. Thus dump analysis begins with the RPB for direct
panics.

For an indirect panic, the RPB contains the context of a trap handler and it does not reflect the
value of the registers at the time of the fault. Please see the following diagram. An indirect
panic is usually the result of a trap condition which cannot be resolved by the operating
system. The trap handler needs to save the processor state information before bringing down
the system gracefully with a panic call. The trap handler stores these registers state into a
save_state structure. So for an indirect panic, the save_state structure contains information
closest to the point of failure which triggered the trap condition. Thus dump analysis begins
with the save_state for indirect panics.

After panic() has saved the state, it proceeds to dump physical memory to dump device.

PIM Tombstone
The Process Internal Memory or PIM is a storage area in a processor that is set at the time of
an HPMC, LPMC, Soft Boot, or TOC, and is composed of the architected state save error
parameters, and HVERSION-dependent (ie, processor dependent) regions. The internal
structure of PIM is processor dependant. The PDC_PIM procedure is used to access PIM data.

Different systems have different methods of accessing PIM information. On some systems,
there is a pdcinfo program that allows online retrieval of this PIM data. This can be helpful to
retrieve HPMC tombstone data for analysis. The script in /sbin/init.d/pdcinfo automatically
runs pdcinfo command when HP-UX is booted and saves any tombstones in a file in the
directory /var/tombstones. Up to 100 files can be saved. The file "ts99" is the most current,
"ts98" is the next most current...."ts0" would be the oldest.

From a dump analysis point of view (especially HPMC/TOC), the RPB structure should be a
reflection of the registers state in PIM since the information was copied from it. There are rare
times when rpb values may not seem 'right'. If this is the case then it is better to use the
register values in the PIM data as starting point for analysis. Some interesting registers are:

gr02 Return Pointer (rp)
gr30 Stack Pointer (sp)
cr17 Interruption Instruction Address Space Queue (pcsq)
cr18 Interruption Instruction Address Offset Queue (pcoq)
cr19 Interruption Instruction Register (iir)
cr20 Interruption Space Register (isr)
cr21 Interruption Offset Register (ior)
cr22 Interruption Processor Status Word (ipsw)
cr23 External Interrupt Request Register (eirr)
cr15 External Interrupt Enable Mask (eirr)

Save state structure
The save_state structure is used by the interrupt (ihandler) and trap (thandler) handlers to
temporarily store away processor state (general, control, space and interruption registers) so
that these handlers can safely reuse the registers. It will also allow the handlers to return to the
point of interruption by restoring these register values from the save_state. The save_state
structure (together with a frame marker) is typically allocated on the Interrupt Control Stack
(ICS) or kernel stack.

 6/34

Crash Dumps Nov 2004

Most of the processor registers are saved. However, some registers are not saved because they
are irrelevant when returning to the point of interruption. Since these interrupt and trap
handlers are executed frequently, it is crucial for performance reasons to save only what is
necessary.

RPB structure
Every crash event will create a corresponding RPB structure to contain the processor state at
the time of HPMC, TOC or panic. This register state allows us to understand what is
happening at that point in time as well as provides a starting point for the stack unwind. The
rpb structures are stored in a pre-allocated area in kernel static data area.

Unlike the save_state structure, the rpb structure will contain a more complete save of all the
processor registers. For example, the cr16 interval timer is saved in the rpb but not in the
save_state structure. We can afford to save more registers in rpb since it is created during the
crash path which is not a performance sensitive code path.

Crash event flowchart
Here is a diagram summarizing the above:

 7/34

Crash Dumps Nov 2004

How to configure dump devices

In order to understand the following text you should be familiar with the basic concept of the
Logical Volume Manager LVM. I make use of the these abbreviations:

VG = Volume Group
LV = Logical Volume
PV = Physical Volume

Choosing dump devices

Dump devices are volumes on the disk that are used to hold the entire memory image when
the system crashes. The cumulative size of all specified dump devices has to be some MB
larger than the amount of memory in order to hold the entire core. To determine the current
size of physical memory:

dmesg | grep Physical
Physical:524288 KB ,lockable:386672 KB ,available:454144 KB

As of UX 11.00 you can use crashconf(1M):
crashconf | grep Total
Total pages on system: 131072
Total pages included in dump: 30832

(A page is always 4KB)

NOTE: Increasing the amount of dumpspace is an important thing to do when adding more
physical memory to the system.

Formerly the maximum size of a dump device was 2GB or more precise: the dump LV had to
be placed within the first 2GB of the PV whereas newer systems support dump devices up to
4GB or since UX 11.00 even greater than 4GB.
It's important to mention that it's the Interface Card, not the disk, that defines whether the disk
can be used for more than 4GB of dump. Cards in the systems like L-, N-, V-Class and newer
all support this. Details can be found in KMINE document S3100004913.

A swap device can also be used as dump device in order to save disk space but there are two
disadvantages:

1) Is the primary swap device (usually /dev/vg00/lvol2) also configured as dump device, it

takes more time for the system to bootup after a systemcrash.
Reason: When a dump is found on the dump device during startup it will be written to the
local filesystem (by the rc command savecrash). In the case that the dump device is also
the primary swap, savecrash cannot run in the background because the swap area may be
used during further startup.

2) Were there any problems with savecrash (lack of space in the crash directory) you still

 8/34

Crash Dumps Nov 2004

have the possibility to run it again after the system boot completed (-r Option for resave
dump). In case of a swap device there is a risk that parts of the dump are overwritten by
"swapping" activities and therefor unusable.

You can influence the interaction of savecrash/core and swapon in the config file of
savecrash/core. (see manpage of savecrash/core -w option)

Configuration steps

Creating the logical volumes that should be used for dump
You can specify up to 32 different dump devices. Each dump logical volume has to be
contiguous, i.e. all physical extents are placed one after another and reside on a single PV.
Such a LV can be created with the option -C y of lvcreate command. Bad block relocation
must be disabled (–r n):

lvcreate -L <size in MB> -n lvdump -C y –r n /dev/vg00

You can check the LV parameters with lvdisplay:

lvdisplay /dev/vg00/lvdump | grep Allocation
Allocation strict/contiguous

lvdisplay /dev/vg00/lvdump | grep Bad
Bad block off

The dump LVs must not contain a filesystem of course.

Activating these logical volumes, i.e. tell the system to use them for dump

A traditional dump LV has to be located in the root VG (vg00) and the lvlnboot command is
used to tell the system to uses these LVs for dump. A reboot is neccessary in order to activate
them. Here’s how to configure such a dump device:

Display the current settings:
lvlnboot -v
Boot Definitions for Volume Group /dev/vg00:
Physical Volumes belonging in Root Volume Group:
 /dev/dsk/c0t6d0 (10/0.6.0) -- Boot Disk
 /dev/dsk/c0t5d0 (10/0.5.0)
Root: lvol1 on: /dev/dsk/c0t6d0
Swap: lvol2 on: /dev/dsk/c0t6d0
No Dump Logical Volume configured

Option -d sets the dump device:
lvlnboot -d lvol2 /dev/vg00
lvlnboot -d lvdump /dev/vg00

Check it:
lvlnboot -v | grep dump
Dump: lvol2 on: /dev/dsk/c0t6d0, 0

 9/34

Crash Dumps Nov 2004

Dump: lvdump on: /dev/dsk/c0t6d0, 1

If the dump devices are configured according your needs you have to reboot in order to
make the changes take effect. The message buffer displays all valid dumpdevices during
reboot:

dmesg | grep DUMP
Logical volume 64, 0x2 configured as DUMP
Logical volume 64, 0x9 configured as DUMP

If you like to use a dump device for other purposes you have to deconfigure it using
lvrmboot. Only the last dump device can be deconfigured:
lvrmboot -d lvdump /dev/vg00

NOTE: An entry in the kernel (/stand/vmunix) is necessary if you like to have more
than one (traditional) dump device with LVM. This entry is set by default:
strings /stand/vmunix | grep "dump lvol"
dump lvol

As of UX 11.00 you have the possiblility to configure additional dump devices online, i.e.
without the need of a reboot. These dump LVs must not be configured using lvlnboot –d
but with crashconf(1M). You are no longer restricted to choose a dump LV from the root
VG only. The configuration of such dump devices is similar to the configuration of secondary
swap devices. Here’s how to configure a dump device online:

Add a line for each dump device to /etc/fstab, e.g.:
/dev/vg01/lvdump / dump defaults 0 0

Then run crashconf -a to activate it and crashconf to verify that it is enabled.
Configuring non-root dump devices is similar to configuring secondary swap devices.

Refer to the crashconf(1m) and fstab manual pages for details.

NOTE: Whenever you have dump devices that are not also used for swap activity, make sure
that they are configured last. This will cause them to be used first (dump goes from the end
backward), which will minimize the chance of writing into an area shared by swap. Writing
into swap space is undesirable because it will slow down your reboot processing (see section
above).

NOTE: There are often questions like: “Why is the dump LV not mirrored like root, boot and
swap LVs are?”

lvlnboot -v
Boot Definitions for Volume Group /dev/vg00:
Physical Volumes belonging in Root Volume Group:
 /dev/dsk/c0t6d0 (10/0.6.0) -- Boot Disk
 /dev/dsk/c0t5d0 (10/0.5.0) -- Boot Disk
Root: lvol1 on: /dev/dsk/c0t6d0
 /dev/dsk/c0t5d0
Swap: lvol2 on: /dev/dsk/c0t6d0

 10/34

Crash Dumps Nov 2004

 /dev/dsk/c0t5d0
Dump: lvol2 on: /dev/dsk/c0t6d0, 0
Dump: lvdump on: /dev/dsk/c0t6d0, 1

The answer: the system dumps onto a previously configured area of the disk. The dump
process is a low level routine that bypasses the LVM layer, hence the data is not going to be
mirrored. The OS simply stored the hardware path of the disk and the starting and ending
offset on this disk at the time you activated it. This information is given by the dump LV. This
is the reason why dump LVs must be contiguous.

The dump/savecrash process

Writing the memory image to the dump devices

The kernel routine responsible for dumping is dumpsys().

Dump formats
There are four known dump formats. Which format you deal with can be found in the INDEX
file (grep version INDEX):

COREFILE (Version 0)
This format, used up through HP-UX 10.01, consists of a single file containing the
physical memory image, with a 1-to-1 correspondence between file offset and memory
address. Normally there is an associated file containing the kernel image. Sources or
destinations of this type must be specified as two pathnames to plain files, separated by
whitespace; the first is the core image file and the second is the kernel image file.

COREDIR (Version 1)
This format, used in HP-UX 10.10, 10.20, and 10.30, consists of a core.n directory
containing an INDEX file, the kernel (vmunix) file, and numerous core.n.m files, which
contain portions of the physical memory image.

CRASHDIR (Version 2)
This format, used in HP-UX 11.00, consists of a crash.n directory containing an INDEX file,
the kernel and all dynamically loaded kernel module files, and numerous image.X.Y files,
each of which contain portions of the physical memory image and metadata describing
which memory pages were dumped and which were not.

PARDIR (Version 5)
This format is used in UX 11.11 and later. It is very similar in structure to the CRASHDIR
format in that it consists of a crash.n directory containing an INDEX file, the kernel and all
dynamically loaded kernel module files, and numerous image.X.Y files, each of which
contain portions of the physical memory image and metadata describing which memory
pages were dumped and which were not. In addition to the primary INDEX file, there are
auxiliary index files (indexX.Y), that contain metadata describing the image files
containing the memory pages. This format will be used when the dump is compressed. See
crashconf(1M).

Other formats, for example tape archival formats, may be added in the future.

 11/34

Crash Dumps Nov 2004

Selective dumps
The most significant change compared to UX 10.X is the possibility of configuring selective
dumps. Dumps no longer contain the entire contents of physical memory. With memory sizes
growing in leaps and bounds, it become critical that HP-UX dump only those parts of physical
memory which are considered useful in debugging a problem. By default you get a core of
approx. 5-40% of physical memory, variing with the state of the system at dumptime.
Configuration can be checked and modified with the crashconf utility:

crashconf

CLASS PAGES INCLUDED IN DUMP DESCRIPTION
-------- ---------- ---------------- -----------------------------
UNUSED 14253 no, by default unused pages
USERPG 23876 no, by default user process pages
BCACHE 129981 no, by default buffer cache pages
KCODE 2044 no, by default kernel code pages
USTACK 451 yes, by default user process stacks
FSDATA 753 yes, by default file system metadata
KDDATA 72447 yes, by default kernel dynamic data
KSDATA 17699 yes, by default kernel static data

Total pages on system: 261504
Total pages included in dump: 91350

DEVICE OFFSET(kB) SIZE (kB) LOGICAL VOL. NAME
------------ ---------- ---------- ------------ -----------------
 31:0x006000 72544 524288 64:0x000002 /dev/vg00/lvol2

 524288

Compressed dumps
Even with selective dump feature a Superdome equipped with 256GB RAM would take hours
to write the dump to the dump devices. The bottleneck of copying system moemory to disk is
the I/O path. This could be alleviated by dumping to multiple disks in parallel but the system
firmware (IODC) isn’t designed to permit multiple simultaneous I/O requests. Thus the only
approach is to limit the amount of I/O that has to be done.

There is a new feature called compressed dumps available as of HP-UX Itanium release UX
11i v2 (i.e. UX 11.23) and additionally for UX 11i v1 (i.e. UX 11.11). The data is compressed
(using LZO algorithm) before being written out to the dump device. When the system crashes,
the dump subsystem assigns one processor to perform the writes to the dump device(s). It
assigns another four processors to perform compression.

The dump compression features is targeted for large memory systems. Following
requirements must be met:

Systems: Superdome, Keystone, Matterhorn and Prelude

OS: PA-RISC: UX 11i v1 (11.11) + patch
 Itanium: UX 11i v2 (11.23)

Configuration: at least 2GB RAM,
 at least 5 processors

 12/34

Crash Dumps Nov 2004

The compression option is turned ON by default. But it just a hint to the kernel. At the time of
a system crash, the dump subsystem examines the state of the system and its resources to
determine whether it is possible to use compression. Depending on the resources available,
the system decides dynamically whether to dump compressed or not.

Other situations can cause the dump subsystem to decide not to dump compressed:
recursive panic, memory allocation failure - all logged on system console at crash dump and
flagged in the kernel.

HP can’t guarantee a specific compression factor. All compression tends to be dependent on
the type of data being compressed, in particular how random it is. The dump should speedup
by at least a factor of 3 with default selective dump configuration. More typically, customers
will experience a factor of 7.

The crashconf(1M) command was enhanced to be able to configure dump compression:

crashconf -c on

crashconf -v
CLASS PAGES INCLUDED IN DUMP DESCRIPTION
-------- ---------- ---------------- ------------------------------
UNUSED 3645411 no, by default unused pages
USERPG 7113 no, by default user process pages
BCACHE 210990 no, by default buffer cache pages
KCODE 2670 no, by default kernel code pages
USTACK 264 yes, by default user process stacks
FSDATA 116 yes, by default file system metadata
KDDATA 68736 yes, by default kernel dynamic data
KSDATA 259004 yes, by default kernel static data

Total pages on system: 4194304
Total pages included in dump: 328120

Dump compressed: ON

DEVICE OFFSET(kB) SIZE (kB) LOGICAL VOL. NAME
------------ ---------- ---------- ------------ -----------------
 31:0x03a000 310112 4194304 64:0x000002 /dev/vg00/lvol2

 4194304

If you like to make the configuration changes either for selective dump or for compressed
dumps resistant across reboots you need to modify the rc-script
/etc/rc.config.d/crashconf. Usually there should be no need to change the defaults.

The compressed dump feature uses a new crash dump format, PARDIR, for saving the
dumps. You recognise a compressed dump with this evidences:

• In the INDEX file you will find a version 5.
• In the dump directory you will find indexX.Y files along with the usual image.X.Y files.

The dumpreading tools (p4, crashinfo, kmeminfo, etc...) are aware of this new format.

Since the dump is compressed you have little gain to compress it again with gzip, yet since

 13/34

Crash Dumps Nov 2004

the compression is done with a 'compress(1)' compatible algorithm and small chunks, gzip'ing
the dump still reduce it a bit sometime.

A consequence of the compressed dump is indeed a faster ”time to dump” and a somewhat
faster “time to reboot” but the dumpreading tools suffer a serious performance penalty,
making the “time to diagnose” or “time to fix” significantly longer.

NOTE: To enable compressed dump feature at UX 11.11 you need to install the CDUMP11i
product from http://www.software.hp.com/ER_products_list.html. This product contains a set
of enabling patches. At UX 11.23 the compressed dump feature is enabled in core, hence no
product or patches are needed.

Documentation about the compressed dump feature can be found at in the “Managing
Systems and Workgroups” paper at
http://www.docs.hp.com/hpux/os/11i/index.html#System%20Administration

Saving the dump to the filesystem

After the system has finished to write the whole or only parts of the dump to the dump
devices, the system reboots and automatically starts up again. When booting up, the system
starts a rc script to copy the dump into the file system.

As of UX 11.00 the rc script itself is /sbin/init.d/savecrash. The configuration file is
stored at /etc/rc.config.d/savecrash. The default location is /var/adm/crash with sub
directories named crash.n for every saved crash. The crash.n directory contains an ASCII
file named INDEX that contains some metadata of the dump, a copy of the current kernel
vmunix and files for every saved contiguous chunk of memory named image.m.n. If the
kernel contains loadable modules, those are copied to the dump directory too.

You can configure crash directory, compression mode, etc. in the appropriate configuration
file /etc/rc.config.d/savecrash:

Here are the most important options:

SAVECRASH 1 = save a crashdump (default)
 0 = do not save a crashdump

SAVECRASH_DIR directory for the crashfiles. Default is /var/adm/crash

COMPRESS 0 = never compress
 1 = always compress
 2 = compress in case of insufficient space in crasdirectory
 (default)

Further options (MINFREE, SWAP_LEVEL, CHUNK_SIZE, SAVE_PART, FOREGRD, LOG_ONLY) are
explained in the comments of the config file.

 14/34

http://www.software.hp.com/ER_products_list.html

Crash Dumps Nov 2004

Saving the dump manually
If the dump was not saved completely due to lack of space in the crash directory you have the
possibility to save the dump again. The -r option (resave) need to be included when this is
not the first time that savecrash runs.
savecrash -v [-r] <crash directory>

There is also the possibility to save the dump directly to a DDS tape:
savecrash -v [-r] -t /dev/rmt/0m

 15/34

Crash Dumps Nov 2004

Analysis of the dump

A complete analysis of a crashdump requires deep internal knowledge and much experience.
That would certainly go beyond this document. Here I'd like to explain how to use the utility
crashinfo in order to narrow down the cause of the crash.

If you like to examine the dump by yourself, please refer to the excellent online webcourse
offered by the Expert Center. This course should be considered as starting point for any dump
analysis. Whenever you deal with a crashdump i recommend you to visit this site. In most
cases you should be able to find a solution. Links to all available dump reading tools are
included.

http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/ (HP internal)

About the crashinfo utility

crashinfo is an executable that is based on libp4, the library of the P4 kernel debugger. It
replaces the old whathappened perl script that was based on the Q4 kernel debugger. P4 and
crashinfo are much more powerful and advanced than Q4/whathappened. The P4 debugger is
based on the korn shell (ksh88) which makes it comfortable to use and the libp4 library.

p4 and crashinfo can be performed on a dump (by executing it from within a crash directory)
as well as on a live system (by executing it not within a crash directoy). The latter can be
useful to examine kernel structures when the system is e.g. not completely hung.

crashinfo is smart, depending on the type of the crash (PANIC, TOC, SG TOC or HPMC) it
prints out the appropriate structures. It also reacts to certain conditions e.g. system low on free
memory, spinlock panics, etc. and prints out the necessary data.

How to obtain and install and execute crashinfo

Use the standalone version to perform a quick check

Obtain the static (standalone) version of the crashinfo binary from the Ktools server (refer to
the Additional information section below). From there the tool can be sent to the customer by
email or pushed to an external ftp server. Size is about 800K.
Store the static crashinfo binary e.g. at /usr/contrib/bin/ on the affected system.
This version should be used to perform a first quick check of the dump.
To get a fingerprint of the dump simply run the standalone crashinfo without options from
within the crash directory:

cd /var/adm/crash/crash.0
/usr/contrib/bin/crashinfo >ci.out

NOTE: Should the chunkfiles (image.n.m for a UX 11.X crashdump) be compressed (the suffix .gz
indicates that) they get decompressed automatically during the execution of crashinfo. This can take a
while. Be sure to have enough space left in the crash directory.

With the help of the webcourse mentioned above it should be possible to solve most of the

 16/34

http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/
http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/PA/introduction/tour_of_p4.htm
http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/PA/introduction/tour_of_q4.htm

Crash Dumps Nov 2004

problems.

Anyway in some cases you might need information that is beyond the standard output of
crashinfo. In this case you can use one of crashinfo’s options or use the P4 debugging
environment to perform a deeper analysis.

At this point you have to decide wether to ship the debugging tools to the customer and
provide a remote connection for a HP RCE or to ship the dump to the Response Center, either
via ftp upload or on a DDS tape or CD-ROM by mail. Which of the above possibilities
(remote login, ftp upload, ship by mail) is appropiate depends on availability of remote login,
the size of the dump and the severity of the problem.

If remote login is not possible, ship the dump to the Response Center
If you choose to analyze the dump on the customers system, obtain the tools either from the
Ktools server (refer to the Additional information section below). Select p4, then shared,
then internet or via anonymous ftp from
ftp://tahoe.grc.hp.com/dumpreading/dump_analyse.tar.gz (HP internal)
Size is about 7MB.
Unpack the files e.g. below /usr/contrib/dumpreading on the system, where the dump is
located.
Before starting you need to set some path variables:

export P4_ROOT=/usr/contrib/dumpreading
export PATH=$P4_ROOT/bin:$P4_ROOT/p4:$PATH
export SHLIB_PATH=$P4_ROOT/bin:$P4_ROOT/p4

Either put the above lines in /etc/profile or simply source the included set_env file in
order to set these variables:
cd /usr/contrib/dumpreading
. ./set_env

If remote login is not possible, ship the dump to the Response Center
If you choose to ship the dump to the Response Center additional information from the
customers system depending on the type of the crash is needed.

Examine crashinfo output to determine which of the crash event types this is:

PANIC the system ran into an unhandable condition and paniced
TOC the system was hung and you TOCed it
SG TOC the TOC was initiated by MC/ServiceGuard
HPMC High Priority Machine Check. The crash was caused by a HW failure

Example:
cat ci.out | grep "Note: Crash"
Note: Crash event 0 was a PANIC !

Provide the following:

swlist -l product >swlist.out (currently installed software & patches)
/var/adm/syslog/OLDsyslog.log (the syslog from the previous boot)

Additionally in case of a TOC, i.e system hang answer these questions:

 17/34

ftp://tahoe.grc.hp.com/dumpreading/dump_analyse.tar.gz

Crash Dumps Nov 2004

”Did you try a telnet connection to the system? How exactly did it fail?”
”Did you try a rlogin connection to the system? How exactly did it fail?”
”Did you try a console connection to the system? How exactly did it fail?”
”Did the system respond to ping?”
“What was the value shown on the hex display?”

Additionally in case of a ServiceGuard TOC:

/var/adm/syslog/[OLD]syslog.log (appropriate syslogs of all nodes in the cluster)

Additionally in case of a HPMC:

/var/tombstones/ts99 (tombstone file containing chassis logs and PIM data)
system’s serial number (obtained from MP/GSP)

Answering the following questions is very important, too:

“Did the system hang or panic more than once recently?”
“Did anything change recently?” (e.g. kernel patches installed, 3rd party software
installed, configuration changes or simply a reboot.

NOTE: A system that panics/hangs multiple times altough no changes have been
performed is likely to suffer from a hardware problem. Whereas hardware failures can
happen all of a sudden, software failures are usually caused by configuration changes.

Please log a hardware case when your system crashed due to HPMC,
else log a software case.

About the stack trace

Before we come to panic() we execute a few other functions that are always the same.
Searching for one of these functions will too turn up lots of hits. How does this typical part of
the stack trace look like?

for UX 10.x and 11.x (PA-RISC):

panic+0x14
report_trap_or_int_and_panic+0x80
trap+0x6dc
thandler+0xd20

for Serviceguard TOCs:

Send_Monarch_TOC+0x58
safety_time_check+0x188
per_spu_hardclock+0x318
clock_int+0x60
mp_ext_interrupt+0x130
ihandler+0x904

the other CPUs are usually spinning on the safety timer lock and have this stack trace:

preArbitration+0x2ec

 18/34

Crash Dumps Nov 2004

wait_for_lock+0x120
sl_retry+0x1c
safety_time_check+0xfc
per_spu_hardclock+0x4f8
clock_int+0x10c
mp_ext_interrupt+0x180
ihandler+0x90c

for "kalloc" panics:

panic+0x10
kalloc+0x174
kmalloc+0x1a8

or
panic+0x10
kalloc+0x174
kalloc_from_superpage+0xc8
kmalloc+0x358
kmem_alloc+0x11

for "spinlock deadlock" panics (an example):

stack trace for event 0
crash event was a panic
panic+0x14
too_much_time+0x2e0
wait_for_lock+0x14c
sl_retry+0x1c
unselect+0x1c
invoke_callouts_for_self+0xc0
sw_service+0xb0
mp_ext_interrupt+0x144
ivti_patch_to_nop3+0x0
idle+0x4dc
swidle_exit+0x0

stack trace for event 1
crash event was a TOC
wait_for_lock+0x198
sl_retry+0x1c
unselect+0x1c
invoke_callouts_for_self+0xc0
sw_service+0xb0
mp_ext_interrupt+0x144
ivti_patch_to_nop3+0x0
idle+0x4e0
swidle_exit+0x0

stack trace for event 2
crash event was a TOC
PCM_wait_for_TOC+0x0
printf+0x6c
too_much_time+0x2e0
wait_for_lock+0x14c
sl_retry+0x1c
unselect+0x1c
invoke_callouts_for_self+0xc0
sw_service+0xb0
mp_ext_interrupt+0x144
ivti_patch_to_nop3+0x0
idle+0x6a8
swidle_exit+0x0

stack trace for event 3
crash event was a TOC
preArbitration+0x280
wait_for_lock+0x110
sl_retry+0x1c
issig+0x64
_sleep_one+0x678
semop+0x304
syscall+0x200
$syscallrtn+0x0

 19/34

Crash Dumps Nov 2004

Analysis beyond standard crashinfo output

crashinfo’s options
crashinfo has some options that might be useful:

$ crashinfo -h
crashinfo (3.19)
Usage: crashinfo [options ...] [coredir | kernel core]
Default: coredir="." if "INDEX" file present else
 kernel="/stand/vmunix" core="/dev/kmem"
Options:
 -h | -help [flag,flag...]
 flags: detail
 -u | -update
 -v | -verbose
 -c | -continue
 -H | -Html
 -e | -email <mail_addr>[,flag,flag...]
 flags: file=<file>
 from=<from>
 callid=<callid>
 -t | -trace [flag,flag...]
 flags: args
 regs (PA Only)
 Rregs (PA Only)
 locals (IA64 Only)
 frame (IA64 Only)
 mems (IA64 Only)
 bsp (IA64 Only)
 ss (IA64 Only)
 -s | -syscall
 -f | -full_comm
 -l | -listonly
 -n | -nolist
 -S | -Sleep
 -i | -ioscan
 -ofiles [pid]
 -signals [pid]
 -vmtrace [flag,flag...]
 flags: bucket=<bucket>
 arena=<arena>
 count=<num>
 leak
 cor
 log
 parse
 -kmeminfo

Refer to the crashinfo homepage in order to get more information on the usage.

Working with the P4 debugger
From within the dump directory execute p4:

$ p4
Send bugs, remarks, ideas to --> ktools@wtec.cup.hp.com

Web based p4 at http://ktools.france.hp.com/~ktools/wp4

$ man # For online help on p4 functions
$ man -l # For a listing of p4 functions
$ ref -n # Lookup p4 reference manual on the web -
 http://ktools.france.hp.com/~ktools/p4-4/

 20/34

Crash Dumps Nov 2004

$ p4 -u # Get the latest version of p4

P4 revision: 7.103

Loading symbols from lab07/vmunix
Kernel TEXT pages not requested in crashconf
Will use an artificial mapping from lab07/vmunix TEXT pages

Using a.out from lab07/vmunix and mem from crash.0/INDEX ...
Open crash.0/vmunix and crash.0/INDEX OK

HP-UX trefftz1 B.11.00 U 9000/800 648359312
This is a WIDE mode kernel (LP64)
$

To obtain a stacktrace:

$ trc event 0
Event #0 : proc[29] pid=1498 tid=1555 cmd="/usr/sbin/nfsd 4"
============== EVENT ============================
= Event #0 is PANIC on CPU #3
= p crash_event_t 0x22000
= p rpb_t 0x975608
= Using pc from pim.wide.rp_rp_hi = 0x3a1174
============== EVENT ============================
panic+0x14
report_trap_or_int_and_panic+0x84
trap+0xe14
thandler+0xd24
+------------- TRAP ----------------------------
| Trap type 6 in KERNEL mode at 0 (0x00000000_00000000)
| p struct save_state 0xa8da000.0x400003ffffff2850
+------------- TRAP ----------------------------
suspicious trap addr, try to resync with ss_rp=0x277a48
sendfile_rele+0x318
...
...

P4 includes a pool of useful commands:

$ man -l
p4_btype_def - Define a new base type for p4
p4_ls_type - List all the p4 data types
p4_kernel_symbols - Access kernel global variables as ksh variables
p4_ls_su - List all struct/union data types
p4_ls_td - List all typedefs
p4_ls_enum - List all enum types or members of an enum type
p4_add_enum - Define an enum type or enumerant
p4_struct_init - Dynamically load additional debug infos
p4_print - General print utility
p4_print_next - General print utility, print next element
p4_print_prev - General print utility, print previous element
p4_print_redo - Redo p4_print command
p4_printf - Print formatted output similar to printf(3S)
...
...

Each command has a man page.

Some P4 commands are intended to provide the same functionality as existing HP-UX
commands. The usually begin with a capital letter:

 21/34

Crash Dumps Nov 2004

$ Bdf
Filesystem kbytes used avail %used Mounted on
/dev/root 204800 75635 121232 38% /
/dev/vg00/lvol1 299157 46240 223001 17% /stand
/dev/vg00/lvol8 4706304 1018611 3459291 23% /var
/dev/vg00/lvol7 1343488 590072 706389 46% /usr
/dev/vg00/lvol4 204800 146089 55072 73% /tmp
/dev/vg00/lvol6 1024000 966638 53817 95% /opt
/dev/vgdata/lvdata 102400000 78978488 23238632 77% /mnta2
/dev/vgabin/lvbin 102400000 29787064 72059592 29% /mnta1
/dev/vgprog/vgprog 102400000 100095664 2227558 98% /interconnect
/dev/vg00/lvol5 20480 14763 5396 73% /home
/dev/vg03/ldata2 102400000 38024176 63930960 37% /mnta3
/opt/bmpa/tmp/.MTP_interface_pipe.15840
 0 0 0 0%

$ Swapinfo -tm
 Mb Mb Mb PCT START/ Mb
TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 4096 498 3598 12% 0 - 1 /dev/vg00/lvol2
reserve - 1003 -1003
memory 1580 598 982 38%
total 5676 2099 3577 37% - 0 -

$ BootString
disc(10/4/12.0.0;0)/stand/vmunix

$ Boottime
0x3d27fc5f : Sun Jul 7 10:31:27 2002

$ Time
0x3d2d41de : Thu Jul 11 10:29:18 2002

$ Crashconf -v
CLASS PAGES INCLUDED IN DUMP DESCRIPTION
-------- ---------- ---------------- -------------------------------------
UNUSED 24611 no, by default unused pages
USERPG 95002 no, by default user process pages
BCACHE 162582 no, by default buffer cache pages
KCODE 1908 no, by default kernel code pages
USTACK 1440 yes, by default user process stacks
FSDATA 1258 yes, by default file system metadata
KDDATA 25286 yes, by default kernel dynamic data
KSDATA 15593 yes, by default kernel static data

Total pages on system: 327680 (1310720 Kb)
Total pages included in dump: 43577 (174308 Kb)

DEVICE OFFSET(Kb) SIZE (Kb) LOGICAL VOL. NAME
------------ ---------- ---------- ------------ -------------------------
 28:0x030000 101216 1024000 64:0x000002 /dev/vg00/lvol2

 1024000

Total avail dump space: 1024000 (256000 pages)
Space for dump headers: - 60 (15 pages)
 ==========
Total useable dump area: 1023940 (255985 pages)

$ CpuUsage
 pid tid pri spu kt_cpu recent user sys intr kt_start
p_comm
 0 0 128 3 0 0 0 4695 162 0x3d27fc5f
swapper
 1 1 168 0 0 0 265 5052 0 0x3d27fc68 init
 2 2 128 0 0 0 0 1104 0 0x3d27fc5f
vhand

 22/34

Crash Dumps Nov 2004

 3 3 128 2 1 0 0 93680 1865 0x3d27fc5f
statdaemon
...

$ Dmesg
o
10/0 c720
10/0.6 tgt
10/0.6.0 sdisk
10/0.7 tgt
10/0.7.0 sctl
...

$ Fstyp /var
hfs
f_bsize: 8192 /* preferred file system block size */
f_frsize: 1024 /* fundamental file system block size */
f_blocks: 1443040 /* total blocks of fr_size on file system */
f_bfree: 532045 /* total number of free block in fs */
...

$ Ipcs -m
IPC status from /dumps/dumpread/labs/lab20 as of Thu Jul 11 10:29:18 2002

T ID KEY MODE OWNER GROUP
Shared Memory:
m 0 0x411057d6 --rw-rw-rw- root root
m 1 0x4e100002 --rw-rw-rw- root root
m 2 0x41142787 --rw-rw-rw- root root
m 3 0x5011e167 --r--r--r-- root other
m 9220 0x0c6629c9 --rw-r----- root root
...

$ Processes
Loaded 4116 proc_t entries in 'DefaultView'

$ keep p_stat (UX 10.X and 11.00 only)
Kept 281 entries in DefaultView

$ vp p_pid p_ppid p_comm | grep getty
0x00000663 0x00000001 getty

$ Ps -p 16440
 Sleep PRI TID PID PPID PCOMM SC_NAME KSTAT CTXT_FLAGS
 1026 661 12314 16440 23369 rm unlink TSSLEEP 0x00000000

Additionally there are other useful commands:

Get the command line of a process:

$ pcmd -p 16440
 addr pindx pid : command
 0x6393d80 2225 16440 : rm 1_450.dbf 1_4500.dbf 1_45000.dbf 1_45001.dbf
1_45002.dbf

Get the stacktrace of a process:

$ trace -a -p 16440
proc[2225] pid=16440 tid=12314 cmd="rm 1_450.dbf 1_4500.dbf 1_45000.dbf 1_45"
Process : p proc_t 0x6393d80
 proc[2225] pid=16440 rm
Kthread : p kthread_t 0x67e89a8
Using PCB: p user_t 0x627f400.0x400003ffffff0000
SR5=0x0627f400

 23/34

Crash Dumps Nov 2004

 SP SZ RP Return Name
0x400003ffffff21a0 0x00c0 0x00128a8c _swtch+0xd4
 arg0: 0x00000000001cc988
0x400003ffffff20e0 0x0130 0x001286ac _sleep+0x154
 arg0: 0x0000000000957448
 arg1: 0x0000000000000295
0x400003ffffff1fb0 0x00d0 0x001cc988 getnewbuf_desperate+0x258
 arg0: 0x0000000000000001
 arg1: 0x0000000000002000
0x400003ffffff1ee0 0x0120 0x00168d2c getnewbuf+0x584
 arg0: 0x0000000000004850
 arg1: 0x0000000000002000
...
...

Or use
$ trace -w -p 16440

Print values and structures:

Print value at address 0x023ff070:

$ p i4 0x023ff070
0x023ff070
0x023ff070 : 0x023e95f0

I.e. the value referenced by the “pointer” 0x023ff070 is 0x023e95f0

If you know that you are referencing a certain structure you can print it:

$ p struct inode 0x023ff070
0x023ff070
0x023ff070 :
0x023ff070 struct inode {
0x023ff070 struct inode *i_chain[2]; 0x023e95f0
0x023ff078 dev_t i_dev; 0x40000005
0x023ff07c ino_t i_number; 0x00058a40
0x023ff080 u_int i_flag; 0x00000446
0x023ff084 ushort i_lockword; 0x0011
0x023ff088 tid_t i_tid; 0x00001b2f
0x023ff08c struct vnode {
0x023ff08c u_short v_flag; 0x0000
...

P4 provides some nice commands to calculate:

convert to decimal:

$ d 0x100
256

or
$ dec 0x100
256

convert to hexadecimal:

$ x 256
0x100

or
$ hex 256
0x100

 24/34

Crash Dumps Nov 2004

convert to any format:

$ Let -b 256
100000000

$ x 0x7fff64d8-0x30

Print kernel globals/tunables:

$ printf '%d\n' nproc
6420

$ d nproc
6420

$ d vxfs_ninode
128000

NOTE: dec, hex and Let are aliases for the p4_let(1) command.

 25/34

Crash Dumps Nov 2004

crashinfo output example

 crashinfo (3.10) output

 =====================
 = Table Of Contents =
 =====================

* General Information
* Crash Events
* Message Buffer
* Memory Globals
* Buffer Cache Globals
* Swap Information
* Global Error Counters / kmem_writes
* Network Interfaces
* IOVA Usage Check
* Crash Event / Processor Information
* Processor Clock Info
* Syswait Array
* Load Averages
* Thread Information
* Kernel Patches

 =======================
 = General Information =
 =======================

Dump time Fri May 9 08:14:12 2003 UTC-2
System has been up 1 minute.

System Name : HP-UX
Node Name : banana
Model : 9000/800/A500-7X
HP-UX version : B.11.00 (64-bit Kernel)
Number of CPU's : 2
Disabled CPU's : 0
CPU type : PCXW+ (750 Mhz)
CPU Architecture : PA-RISC 2.0
Load average : 0.29 0.08 0.03

 ================
 = Crash Events =
 ================

Note: Crash event 0 was a TOC !

Note: This seems to be a user initiated TOC !
It seems the monarch processor has not updated the system wide clock
for approx 4547 seconds. Concentrate on the stack trace for the monarch
processor (usually CPU 0) !
For more information go to:
"http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/PA/toc/crashinfo_clock.htm"

Stack Trace for crash event 0
=============================

============== EVENT ============================
= Event #0 is TOC on CPU #0
= p crash_event_t 0x22000
= p rpb_t 0x7bc358
= Using pc from pim.wide.rp_pcoq_head_hi = 0x126348
============== EVENT ============================
SR4=0x00000000
 SP RP Return Name
0x000000000b7e22a0 0x00126348 idle+0x1000
0x000000000b7e2050 0x00128adc swidle+0x20

Stack Traces for other processors
=================================

Processor #1

 26/34

Crash Dumps Nov 2004

============== EVENT ============================
= Event #1 is TOC on CPU #1
= p crash_event_t 0x22030
= p rpb_t 0xcac370
= Using pc from pim.wide.rp_pcoq_head_hi = 0x126388
============== EVENT ============================
SR4=0x00000000
 SP RP Return Name
0x000000000b7e52a0 0x00126388 idle+0x1040
0x000000000b7e5050 0x00128adc swidle+0x20

 ==================
 = Message Buffer =
 ==================

gate64: sysvec_vaddr = 0xc0002000 for 1 pages
NOTICE: autofs_link(): File system was registered at index 3.
NOTICE: nfs3_link(): File system was registered at index 5.
0 sba
0/0 lba
0/0/0/0 btlan3
0/0/1/0 c720
0/0/1/0.7 tgt
0/0/1/0.7.0 sctl
0/0/1/1 c720
0/0/1/1.7 tgt
0/0/1/1.7.0 sctl
0/0/1/1.15 tgt
0/0/1/1.15.0 sdisk
0/0/2/0 c720
0/0/2/0.7 tgt
0/0/2/0.7.0 sctl
0/0/2/1 c720
0/0/2/1.7 tgt
0/0/2/1.7.0 sctl
0/0/2/1.15 tgt
0/0/2/1.15.0 sdisk
0/0/4/1 asio0
0/2 lba
0/4 lba
0/6 lba
8 memory
160 processor
162 processor
btlan3: Initializing 10/100BASE-TX card at 0/0/0/0....

 System Console is on the Built-In Serial Interface
Entering cifs_init...
Initialization finished successfully... slot is 8
Logical volume 64, 0x3 configured as ROOT
Logical volume 64, 0x2 configured as SWAP
Logical volume 64, 0x2 configured as DUMP
 Swap device table: (start & size given in 512-byte blocks)
 entry 0 - major is 64, minor is 0x2; start = 0, size = 8388608
 Dump device table: (start & size given in 1-Kbyte blocks)
 entry 0 - major is 31, minor is 0x1f000; start = 310112, size = 4194304
Warning: file system time later than time-of-day register

Getting time from file system
Starting the STREAMS daemons-phase 1
Create STCP device files
Starting the STREAMS daemons-phase 2
 B2352B/9245XB HP-UX (B.11.00) #1: Wed Nov 5 22:38:19 PST 1997

Memory Information:
 physical page size = 4096 bytes, logical page size = 4096 bytes
 Physical: 3145728 Kbytes, lockable: 2374088 Kbytes, available: 2731304 Kbytes

 ==================
 = Memory Globals =
 ==================

Physical Memory = 786432 pages (3.00 GB)
Free Memory = 676440 pages (2.58 GB)
Average Free Memory = 599788 pages (2.29 GB)

 27/34

Crash Dumps Nov 2004

desfree = 3072 pages (12.00 MB)
minfree = 1280 pages (5.00 MB)

 ========================
 = Buffer Cache Globals =
 ========================

dbc_max_pct = 50 %
dbc_min_pct = 5 %
dbc current pct = 5.4 %
bufpages = 42627 pages (166.51 MB)
Number of buf headers = 22596

fixed_size_cache = 0
dbc_parolemem = 0
dbc_stealavg = 0
dbc_ceiling = 393216 pages (1.50 GB)
dbc_nbuf = 19660
dbc_bufpages = 39321 pages (153.60 MB)
dbc_vhandcredit = 0
orignbuf = 0
origbufpages = 0 pages

 ====================
 = Swap Information =
 ====================

swapinfo -mt emulation
======================

 Mb Mb Mb PCT START/ Mb
TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME
dev 4096 0 4096 0% 0 - 1 LVM vg00/lv2
reserve - 3 -3
memory 2324 24 2300 1%
total 6420 27 6393 0% - 0 -

 =======================================
 = Global Error Counters / kmem_writes =
 =======================================

default_disk_ir = 1

Note: Immediate reporting for SCSI devices switched on per default !

 ======================
 = Network Interfaces =
 ======================

Name PPA Driver Interface Mac States IP
 Name Description Address Link IP Address
--
lan0 0 btlan3 100BT PCI Built-in 0x00306e26c1ac UP n/c n/c

n/c : means "Not Configured", ifconfig has not been done on this interface

If you want more information, you can use : "lanshow -f"

 ====================
 = IOVA Usage Check =
 ====================

99% of IOVA still available/free.

 =======================================
 = Crash Event / Processor Information =
 =======================================

Number of processors = 2

 s
 t
 a spin reg eiem/spl eirr ipsw
evt cpu t type dpth src cr15 cr23 cr22

 28/34

Crash Dumps Nov 2004

--- --- - ----- ---- --- ---------------- ---------------- ----------------
0 0 E TOC 2 rpb c600000000000000 0800000000000012 080efc1f WBCVRQPDI
 mpi fffffff0ffffffff
1 1 E TOC 0 rpb fffffff0ffffffff 0000000100000000 0804fc1f WCRQPDI

Outstanding external interrupts
===============================

 eirr
cpu bit SPL Handler SPL Handler
--- ---- -------- ----------- -------
0 4 SPL6/SPINLOCK_EIEM SPL6/SPINLOCK_EIEM clock_int
0 59 SPL6/SPINLOCK_EIEM SPL5/SPLIO sapic_interrupt
0 62 SPL6/SPINLOCK_EIEM SPL5/SPLIO sapic_interrupt
1 31 SPLNOPREEMPT SPLNOPREEMPT take_a_trap

SPL/EIEM values:

0xfffffffeffffffff = SPLPREEMPTOK - Default user mode SPL level.
0xfffffff0ffffffff = SPLNOPREEMPT - Disable kernel preemption (scheduling interrupt off).
0xffffff00ffffffff = SPL2 - Disable software interrupt (software triggers off).
0xef00080000000000 = SPL5 - Disable IO modules.
0xc700000000000000 = SPL6+CLOCK_RESYNC - Disable hardclock+enable clock-resync.
0xc600000000000000 = SPL6 - Disable hardclock.
0x0000000700000000 = SPL7/PSW_I=0 - Disable the world.

 ========================
 = Processor Clock Info =
 ========================

hardclock_late = 796
itick_per_tick = 7500000
lbolt = 10644 (0x2994)

 mpi interval clk eiem eirr PSW
cpu timeinval timer delta (ticks) od 0,4 0,4 I
--- ------------------ ------------------ ------------- --- ---- ---- ---
0 0x2e22064a2f 0x3492b9cb4da -455287 796 1 0 0 1 1
1 0x3494f94b457 0x3494f36f29a 0 0 1 1 0 0 1

WARNING: Processor 0 appears to have had clock interrupts held off for
approx 4547 seconds. Current SPL = 0xc600000000000000 (SPL6).

 =================
 = Syswait Array =
 =================

cpu iowait
--- ------
1 1
Note: This shows the number of threads waiting on buffer I/O.
First figure out how long the I/O is outstanding. A good way to do
so is by searching in the threads list for processes that have a
waitchannel like biowait, ogetblk or swbuf. As a rule of thumb, only
consider I/O's outstanding longer than 30 seconds (your mileage may
vary).

For more information go to:
"http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/PA/toc/buffer_hang.htm"

 =================
 = Load Averages =
 =================

avenrun
=======
0.29 0.08 0.03

real_run
========
0.144118 0.044052 0.015964

pwrun ("fast" io wait)
======================

 29/34

Crash Dumps Nov 2004

0.429802 0.121551 0.043083

mp_avenrun
==========
cpu0 : 0.461995 0.135315 0.048295
cpu1 : 0.111926 0.030288 0.010752

 ======================
 = Thread Information =
 ======================

9 Threads ran in the last second
46 Threads ran in the last 5 seconds
47 Threads ran in the last 10 seconds
52 Threads ran in the last minute
89 Threads ran in the last hour

statdaemon ran 84 ticks ago

Most Common Wait Channels
=========================
 ticks since run:
Wait Channel count longest shortest
------------ ----- ---------- ----------
vx_inactive_thread_sv 25 6271 171
vx_inactive_thread_sv+0x8 25 6271 171
lvmkd_q 6 225 225
streams_mp_sync 2 6307 6306
streams_blk_sync 2 6307 6306

Most Common Sleep Callers
=========================
 ticks since run:
Sleep Caller count longest shortest
------------ ----- ---------- ----------
vx_inactive_thread() 50 6271 171
lvmkd_daemon() 6 225 225
wait1() 3 239 0
biowait() 2 0 0

Idle Globals
============

candidate_idle_spu = 0
migration_cycles = 0

Running Threads (TSRUNPROC) and idle Processors
===

 TICKS TICKS I TICKS
 SINCE SINCE C SINCE NREADY
TID PID PPID RUN IDLE PRI SPU STATE S MIGR FR LO AL COMMAND
------- ----- ----- ---------- ---------- --- --- ----- - --------- -- -- -- -------
 0 0 IDLE N 171 0 0 0
 0 1 IDLE N 203 0 0 0

Note:
FR: free to run on any processor (candidate for thread migration).
LO: locked (via processor affinity/mpctl) to this processor).
AL: Alpha semaphores misses (special scheduling when miss a sema).

Threads waiting on cpu (TSRUN) - sorted by cpu/pri/ticks-since-run
==

Note: There is 1 thread in TSZOMB stat !

All Threads - sorted by ticks-since-run
=======================================

TID PID PPID TICKS PRI SPU STAT SYSCALL COMMAND WCHAN
------- ----- ----- ---------- --- --- ----- -------------- -------------- -----
503 446 445 0 148 1 SLEEP execve sh biowait(0x42f8a6d8)

 30/34

Crash Dumps Nov 2004

502 445 440 0 152 0 SLEEP execve sh proc[33]+0x1a8
497 440 430 0 158 0 SLEEP waitpid nettl proc[27]
35 33 0 69 138 1 SLEEP n/a vxfsd vx_ifree_thread_sv
33 33 0 71 138 0 SLEEP n/a vxfsd
vx_event_wait(0x42b88aa0)
34 33 0 71 138 0 SLEEP n/a vxfsd vx_iflush_thread_sv
36 33 0 71 138 1 SLEEP n/a vxfsd
vx_inactive_cache_thread_sv
4 4 0 84 128 0 SLEEP n/a unhashdaemon unhash
3 3 0 84 128 1 SLEEP n/a statdaemon ticks_since_boot
38 33 0 152 138 1 SLEEP n/a vxfsd
vx_logflush_thread_sv
39 33 0 171 138 1 SLEEP n/a vxfsd vx_attr_thread_sv
75 33 0 171 138 1 SLEEP n/a vxfsd
vx_inactive_thread_sv+0x8
54 33 0 171 138 0 SLEEP n/a vxfsd
vx_inactive_thread_sv
37 33 0 171 138 0 SLEEP n/a vxfsd
vx_delxwri_thread_sv
40 33 0 171 138 0 SLEEP n/a vxfsd vx_tuning_thread_sv
499 442 1 202 127 0 SLEEP read nktl_daemon netdiag_ques+0x44
498 441 440 203 178 0 ZOMB exit nettl
1 1 0 203 168 1 SLEEP sigsuspend init *uptr+0
483 426 1 204 154 0 SLEEP select syslogd selwait
23 23 0 225 147 1 SLEEP n/a lvmkd lvmkd_q
19 19 0 225 147 0 SLEEP n/a lvmkd lvmkd_q
22 22 0 225 147 0 SLEEP n/a lvmkd lvmkd_q
21 21 0 225 147 0 SLEEP n/a lvmkd lvmkd_q
20 20 0 225 147 0 SLEEP n/a lvmkd lvmkd_q
18 18 0 225 147 0 SLEEP n/a lvmkd lvmkd_q
487 430 100 226 158 1 SLEEP waitpid nettl proc[28]
486 429 1 237 155 0 SLEEP msgrcv ptydaemon msgque[0]+0x5c
157 100 1 239 158 0 SLEEP waitpid rc proc[23]
52 33 0 274 138 0 SLEEP n/a vxfsd
vx_inactive_thread_sv
73 33 0 276 138 1 SLEEP n/a vxfsd
vx_inactive_thread_sv+0x8
50 33 0 277 138 0 SLEEP n/a vxfsd
vx_inactive_thread_sv
0 0 0 284 128 0 SLEEP n/a swapper runout
71 33 0 316 138 1 SLEEP n/a vxfsd
vx_inactive_thread_sv+0x8
69 33 0 319 138 1 SLEEP n/a vxfsd
vx_inactive_thread_sv+0x8
...
...
...
85 33 0 6271 138 1 SLEEP n/a vxfsd
vx_inactive_thread_sv+0x8
12 12 0 6306 -32 0 SLEEP n/a ttisr ttirr
28 28 0 6306 100 0 SLEEP n/a sblksched streams_blk_sync
26 26 0 6306 100 0 SLEEP n/a smpsched streams_mp_sync
24 24 0 6306 148 0 SLEEP n/a lvmschedd lv_schedule_daemon
25 25 0 6307 100 1 SLEEP n/a smpsched streams_mp_sync
27 27 0 6307 100 1 SLEEP n/a sblksched streams_blk_sync
10 10 0 6384 100 0 SLEEP n/a strweld weldq_runq
8 8 0 6384 100 0 SLEEP n/a supsched streams_up_runq
9 9 0 6384 100 0 SLEEP n/a strmem __gp+0x4e8
11 11 0 6384 100 0 SLEEP n/a strfreebd str_freeb_idle

 ==================
 = Kernel Patches =
 ==================

PHKL_12965 PHKL_13431 PHKL_13810 PHKL_14026 PHKL_14088
PHKL_14763 PHKL_14765 PHKL_15510 PHKL_15547 PHKL_15550
PHKL_15551 PHKL_15553 PHKL_15705 PHKL_15910 PHKL_16074
PHKL_16209 PHKL_16236 PHKL_16819 PHKL_17042 PHKL_17205
PHKL_17258 PHKL_17458 PHKL_17869 PHKL_17953 PHKL_18295
...
...
PHNE_15537 PHNE_16017 PHNE_16599 PHNE_17586 PHNE_18272
PHNE_18409 PHNE_19620 PHNE_19759 PHNE_20344 PHNE_20431
PHNE_21217 PHNE_21433 PHNE_21897 PHNE_22086 PHNE_22125
PHNE_22159 PHNE_22244 PHNE_22245 PHNE_22566 PHNE_22642
PHNE_22962 PHNE_23249 PHNE_23456 PHNE_23930 PHNE_24100

 31/34

Crash Dumps Nov 2004

Patches related to crash dumps

There are several patches that fix problems related to crash dumps. Either a dump could not
be properly or not at all taken or the unwinding of the stack trace was not possible. There have
also been problems when saving the crash to the file system or with the crashconf(1M)
command. The kernel patches usually patch the /usr/conf/lib/libshutdown-pdk.a library.

UX 11.00: PHKL_20873 - 11.00 patch for kernel stack unwinding

PHKL_21121 - 11.00 patch for kernel stack unwinding
PHKL_21120 - 11.00 patch for kernel stack unwinding
PHKL_20900 - 11.00 Add missing crash dump debug information
PHKL_22926 - 11.00 Incomplete Selective Dump, TOC/Panic Failure
PHKL_20937 - 11.00 Fix for TOC vector overwriting
PHKL_20989 - 11.00 Cumulative dump device, dump size patch
PHKL_20173 - 11.00 Include zero page in dumps
PHKL_20915 - 11.00 trap-related panics/hangs
PHCO_26188 - 11.00 savecrash(1M) cumulative patch
PHCO_20196 - 11.00 savecrash startup files cumulative patch
PHCO_19726 - 11.00 crashconf(1M) cumulative patch

UX 11.11: PHKL_27918 - 11.11 EPIC debug info

PHKL_32715 - 11.11 crash,vpars,timeout;SG TOC,nParCnfg,shutdown
PHKL_28237 - 11.11 vPar enablement, CDUMP enablement patch
PHKL_26705 - 11.11 syslog/console handling,printf panic fix
PHKL_34106 - 11.11 early dump, CDUMP, dump menu, EVA, zero page
PHCO_30361 - 11.11 savecrash cumulative, CDUMP enablement

UX 11.23: PHCO_30312 - 11.23 q4 patch version B.11.23l
PHCO_31561 - 11.23 Cumulative savecrash(1M) patch
PHCO_31609 - 11.23 Improve the performance of libcrash
PHCO_31612 - 11.23 crashutil support to control libcrash cache
PHKL_31500 - 11.23 Sept04 base patch
PHKL_31503 - 11.23 IDE/ATAPI cumulative patch
PHKL_31507 - 11.23 Cumulative kernel SCSI patch
PHKL_34213 - 11.23 vPars CPU migr, cumulative shutdown patch
PHKL_34460 - 11.23 Cumulative Crash Dump Patch;EH;MCA Full,Comp

 32/34

http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20873
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_21121
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_21120
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20900
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_22926
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20937
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20989
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20173
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_20915
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_26188
http://itrc.hp.com/service/patch/patchDetail.do?patchid=HCO_20196
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_19726
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_27918
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_32715
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_28237
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_26705
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_34106
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_30361
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_30312
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_31561
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_31609
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHCO_31612
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_31500
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_31503
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_31507
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_34213
http://itrc.hp.com/service/patch/patchDetail.do?patchid=PHKL_34460

Crash Dumps Nov 2004

 33/34

Crash Dumps Nov 2004

Additional information

Dump reading webcourse:
http://wtec.cup.hp.com/~hpux/crash/FirstPassWeb/ (HP internal)

Dump reading webcourse for Itanium systems:
http://wtec.cup.hp.com/~hpux/crash/ia64crash/ (HP internal)

Ktools server (p4ooshop)
http://ktools.france.hp.com/~ktools/cgi-bin/p4ooshop.cgi (HP internal)

P4 homepage:
http://ktools.france.hp.com/~ktools/p4-4/ (HP internal)

There is a nice web based P4:
http://ktools.france.hp.com/~ktools/wp4 (HP internal)

crashinfo homepage:
http://wwwukrc.uksr.hp.com/edt/crashinfo.html (HP internal)

System crash dump white paper:
http://docs.hp.com/cgi-bin/otsearch/getfile?id=/hpux/onlinedocs/os/syscrash.html

Refer to the vPars Chapter to learn how a virtual partition system dumps.

Related manual pages:
savecrash(1M), crashconf(1M), crashutil(1M), lvlnboot(1M)

 34/34

http://wtec.cup.hp.com/~hpux/crash/ia64crash/
http://ktools.france.hp.com/~ktools/cgi-bin/p4ooshop.cgi
http://ktools.france.hp.com/~ktools/p4mc/p4mcframes.html
http://ktools.france.hp.com/~ktools/wp4
http://wwwukrc.uksr.hp.com/edt/crashinfo.html
http://docs.hp.com/cgi-bin/otsearch/getfile?id=/hpux/onlinedocs/os/syscrash.html

	Crash Dumps
	A little bit of theory
	Crash events
	PANIC
	TOC
	HPMC

	What happens when a system crashes?
	Hardware crash events
	Software crash events
	PIM Tombstone
	Save state structure
	RPB structure
	Crash event flowchart

	How to configure dump devices
	Choosing dump devices
	Configuration steps
	Creating the logical volumes that should be used for dump
	Activating these logical volumes, i.e. tell the system to us

	The dump/savecrash process
	Writing the memory image to the dump devices
	Dump formats
	Selective dumps
	Compressed dumps

	Saving the dump to the filesystem
	Saving the dump manually

	Analysis of the dump
	About the crashinfo utility
	How to obtain and install and execute crashinfo
	Use the standalone version to perform a quick check
	If remote login is not possible, ship the dump to the Respon
	If remote login is not possible, ship the dump to the Respon

	About the stack trace
	Analysis beyond standard crashinfo output
	crashinfo’s options
	Working with the P4 debugger

	crashinfo output example
	Patches related to crash dumps

	Additional information

