

HPC & BD Services @ Uni.lu

Building up High Performance Computing & Big Data Competence Center to support national priorities

High Performance Computing & Big Data Services

Dr. Sébastien Varrette

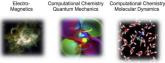
International Supercomputing Conference (ISC'18)
2nd Workshop on HPC Collaboration Between Europe and Latin America

Thursday, June 28th, 2018

Why HPC & BD?

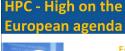
- **HPC**: High Performance Computing
- **BD**: Big Data
- Essential tool for **Science**, **Society and Industry**
- All scientific disciplines are becoming **computational** today
 - modern scientific discovery requires very high computing power and handles huge volumes of data 0
 - cf. J. Rifkin report: "3rd Industrial Revolution Strategy for the Grand Duchy of Luxembourg"
- **Industry and SMEs** are increasingly relying on the power of supercomputers...
 - ... to invent innovative solutions while reducing cost and decreasing time to market
- HPC is part of a **global race** (recognized as a strategic priority) EU is taking up the challenge
 - Ambitious plans from many countries (USA, China, Japan, Brazil & South america, India...) around HPC

Andy Grant, Head of Big Data and HPC, Atos UK&


To out-compete you must out-compute

Prof Tony Hey CBE FREng STFC Chief Data Scientist & Joint Chair, UK E-infrastructure Leadership Council

Excellent research requires excellent research infrastructure



European HPC strategy and its implementation

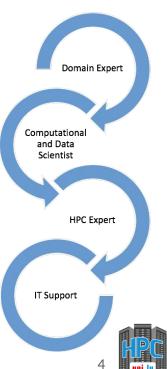
- EU HPC strategy initiated in 2012
 - implementation within H2020 program
- Latest advances:
- IMPORTANT PROJECT OF COMMON **EUROPEAN INTEREST** HIGH PERFORMANCE COMPUTING BIG DATA ENABLED APPLICATIONS
- IPCEI on HPC and Big Data (BD) Applications (IPCEI-HPC-BDA) (Nov. 2015)
 - Luxembourg (leader), France, Italy & Spain
 - Testbed around Personalized Medicine, Smart Space, Industry 4.0 and Smart Manufacturing, New Advanced Materials, FinTech, Smart City...
- **PRACE** (Partnership for Advanced Computing in Europe) transitioning to PRACE2.
 - Luxembourg: 25th country to join in Oct. 17th, 2017
 - Official Delegate/Advisor (P. Bouvry/S. Varrette) from Uni.lu

EU Member States sign the **EuroHPC initiative** and prepare its implementation (Mar. 2017)

- A common effort to create and grow the **European supercomputing ecosystem**
- Federation of national and regional HPC centers (see also PRACE/PRACE2)
 - Funding next-generation Peta-scale / Pre-exascale / Exascale systems
- EuroHPC Joint Undertaking (JU) effective starting Jan. 2019

European Commission President Jean-Claude Juncker "Our ambition is for Europe to become one of the top 3 world leaders in high-performance computing by 2020"

Paris, 27 October 2015



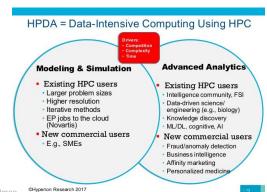
University of Luxembourg as a Jewel

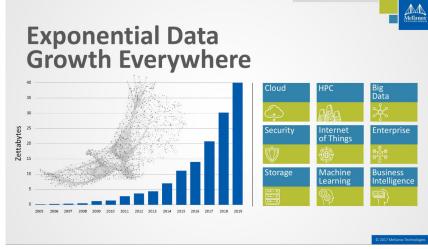
- Created in 2003, moved to Belval in 2015
 - An international university serving its country

- Ranked 12 among the young universities for the Times Higher Education Ranking in 2018
- With regards to HPC, University of Luxembourg offers:
 - o <u>People</u>
 - Domain experts
 - Computational and data scientists
 - Specialists in parallel algorithmics
 - Services
 - HPC clusters and management team
 - IT team (IT department)
 - Infrastructure team (IT department) in collaboration with Fonds Belval
 - Infrastructure
 - Data center and a set high-end clusters
 - Education & Training

Special Study

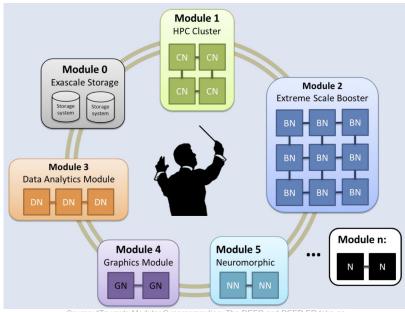
Analysis of the Characteristics and Development Trends of the Next-Generation of Supercomputers in Foreign Countries


Earl C. Joseph, Ph.D. Steve Conway Robert Sorensen Kevin Monroe Source : IDC report: RIKEN (2016)


New Trends in HPC

Continued scaling of scientific, industrial & financial applications

- ... well beyond Exascale
- New trends changing the landscape for HPC
 - Emergence of Big Data analytics
 - Emergence of (Hyperscale) Cloud Computing
 - Data intensive Internet of Things (IoT) applications
 - Deep learning & cognitive computing paradigms


Source : 2017 Mellanox Cornorate Deck

Toward Modular Computing

- Aiming at scalable, flexible HPC infrastructures
 - Primary processing on CPUs and accelerators
 - HPC & Extreme Scale Booster modules
 - Specialized modules for:
 - HTC & I/O intensive workloads
 - Data Analytics and Al
- 88%* of stakeholders will have multiple architectures
- Creates new adopters, targets also SME market

Source: "Towards Modular Supercomputing: The DEEP and DEEP-ER take or Heterogeneous Cluster Architectures", Norbert Eicker, SC'16 (Nov. 2016)

Next-generation HPC-BD platforms expected to increase modularity ... and thus flexibility

hpc.uni.lu

- Started in 2007, under responsibility of <u>Prof. P. Bouvry</u> & <u>Dr. S. Varrette</u>
 - expert UL HPC team
 - S. Varrette, V. Plugaru, S. Peter, H. Cartiaux, C. Parisot, among others
 - 8,173,747€ cumulative investment hardware (excl. Server rooms)
 - Enables & accelerates scientific discovery & innovation
 - Largest HPC facility in Luxembourg w. GoodYear

Procurement Office

High Performance Computing @ Uni.lu

Logistics & Infrastructure Department

Rectorate

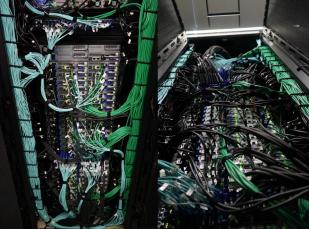
HPC/Computing Capacity

423 TFlops \rightarrow **1035,8 TFlops** by eoy

HTC/Storage Capacity

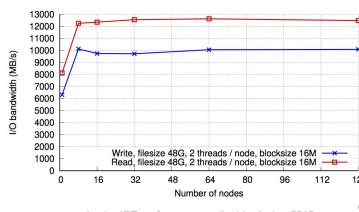
9,8 PB shared

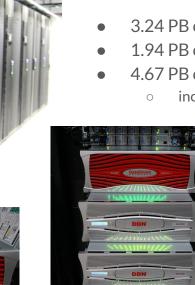
High Performance Computing & Big Data Services



HPC Facility @ Uni.lu / Computing

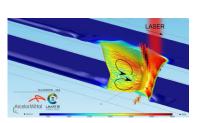
- 5 clusters, 2 sites
- Total computing capacity: 423 TFlops
 - 10,130 CPU cores + 120,704 GPU cores
 - Planned extension to 1035,8 TFlops by Q4 2018 (RFP 180027)
 - Fast interconnect based on Infiniband
 - ... typically over a non-blocking Fat-tree network topology

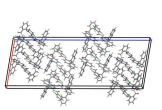

HPC Facility @ Uni.lu / Storage



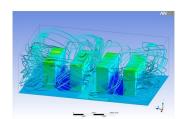
Total shared storage capacity: 9.8 PB

- 3.24 PB on GPFS/SpectrumScale
- 1.94 PB on Lustre
- 4.67 PB on other FS (OneFS...)
 - incl. backups

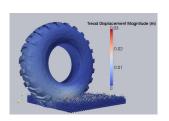


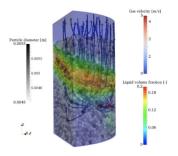

Case Study 1: Material Science & Engineering

- Companies & Research centers in Luxembourg
 - o GoodYear, IEE, Delphi, ArcelorMittal, ProNewTech, Prosciens, CrmClouder.com, UL, LIST...


Application domains

- Physics and Chemistry (materials design, new insights), Finite Element Analysis (FEA),
 Computational Fluid Dynamics (CFD), Optimization, Visualisation...
- Computing infrastructure answering these needs
 - Traditional (CPU only) or Hybrid (CPU + Accelerators)

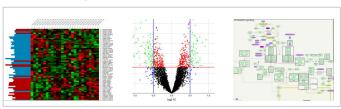


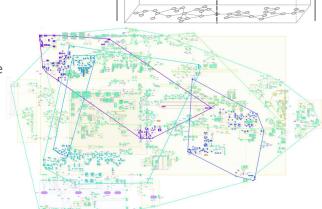

Molecular crystal structure prediction with FHI-aims, PMSRU (UL)

CFD Analysis of Data Center Cooling

Snow-tyre interaction, <u>LuxDem</u> (UL)

Hydrodynamic study within counter-current packed bed reactor, <u>LuxDem</u> (UL)


Case Study 2: Biomedical Industry



Source: Illumine

- Companies & Research centers in Luxembourg
 - o ITTM, IBBL, UL, LIH...
- Potential to attract external companies
 - Edico Genome (US), Fabric Genomics (US), Swarm64 (DE)...
- Application domains
 - o System Bio-medicine, BD Analytics, Pharmacology, Personalised Medicine
- Computing infrastructure answering these needs
 - Traditional (CPU only), HTC, Hybrid (CPU + Accelerators)
 - [High Performance] Data Storage

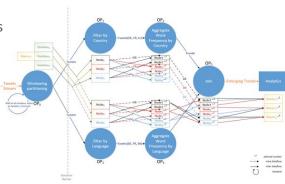
Experimental biologist

Visualization of biological knowledge: Bi-level optimization/ Parkinson disease map. CSC/LCSB (UL

Case Study 3: Deep Learning - Cognitive Computing

- Companies & Research centers in Luxembourg
 - Churchill Frank, SES, Aiva Technologies, IEE, UL...
- Potential to attract external companies
 - Amazon (US), Google (US), Uber (US), Tesla (US), Deepsense.AI (US)...

- Data Mining, Self-Driving cars, Satellite & Communications, Big Data Analytics
- Computing infrastructure answering these needs
 - Traditional (CPU only), HTC, Hybrid HPC (CPUs + Accelerators)


Satellite imagery via image segmentation from Deep Learning, Deepsense.ai, 2017

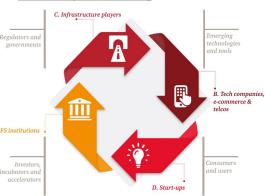
Space Mining, http://www.spaceresources.public.lu/

Source: "Luxembourg strikes deal to create 'driverless car' test zone", Luxembourg Wort, 2017

Real-Time Big-Data Analytics: Emerging trend Twitter streams. UL

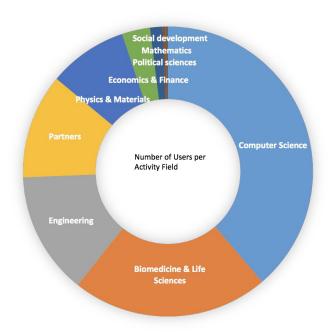
Case Study 4: Data science, IoT and FinTech

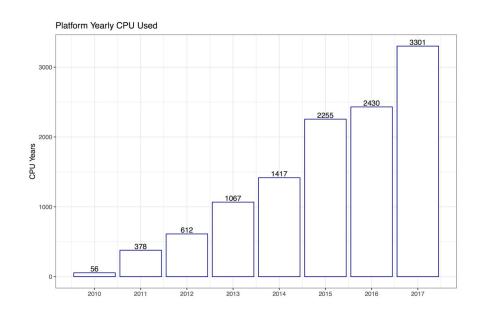
- Companies & Research centers in Luxembourg
 - o Big Four (E&Y, Deloitte, PwC, KPMG), ExaMotive, AXA, BIL, BCEE, UL...
- Potential to attract external companies
 - Amazon (US), NEST (US), Somfy (FR), Google (US)...
- Application domains
 - o Risk & Asset Management, Data intensive IoT, Smart City
- Computing infrastructure answering these needs
 - Cloud Computing, HTC, HPC



Chaos-enhanced mobility models for multilevel swarms of UAVs (PCOG)

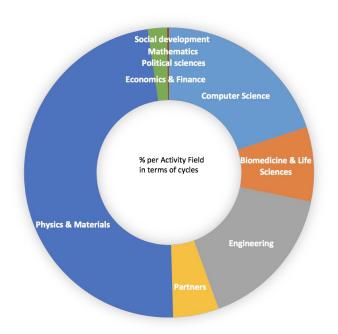
A Smart Day in Luxembourg, Luxinnovation

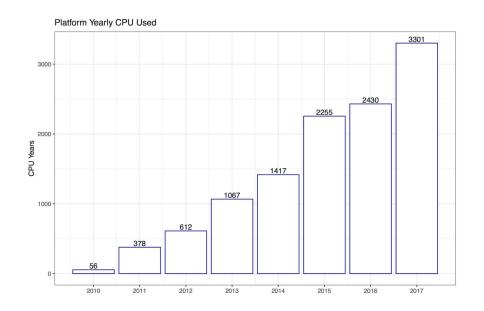



FinTech ecosystem, from 2016 PwC report

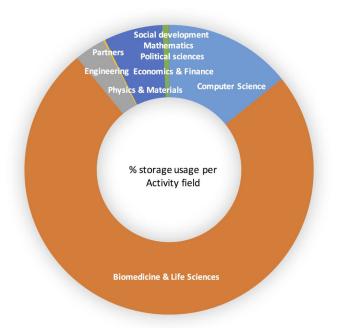
"How FinTech is shaping Financial Servila:

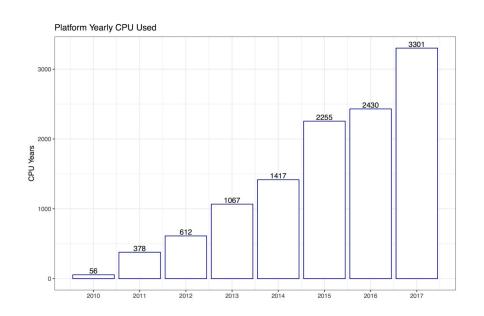
HPC Facility @ Uni.lu usage




Statistics extracted on HPC **active** users (submitted at least one job in the last year)

HPC Facility @ Uni.lu usage

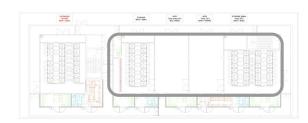



Statistics extracted on HPC **active** users (submitted at least one job in the last year)

HPC Facility @ Uni.lu usage

Statistics extracted on HPC **active** users (submitted at least one job in the last year)

Uni.lu CDC (Centre de Calcul): Toward Energy-Efficient HPC enabling DLC



Uni.lu CDC (Centre de Calcul): Toward Energy-Efficient HPC enabling DLC

- 2x500 m² deployed since 2015
 - Electric energy, ventilation and chilled water produced by Fonds Belval power plant (located basement MNO)
 - CDC managed by SIU, one *floor* **dedicated to HPC** developments
- 4 server rooms **ready and operational** in 2018
 - One room (CDC S-02-005) holds our (current) flagship HPC facility (iris)

Data center ready for DLC with a dedicated high temperature network for energy efficiency

Location	Cooling	Usage	Max Capacity [k	
CDC S-02-001	Airflow	Future extension	280 kW	(120 m ²)
CDC S-02-002	Airflow	Storage / Traditional HPC /Cloud/FPGA	280 kW	(88 m ²)
CDC S-02-003	DLC	High Density/Energy efficient HPC	1050 kW	(90 m ²)
CDC S-02-004	DLC	High Density/Energy efficient HPC	1050 kW	(92 m ²)
CDC S-02-005	Airflow	Storage / Traditional HPC (iris cluster)	300 kW	(128 m ²)

Education & Training

- COST NESUS Winter School on Data Science and Heterogeneous Computing
 - <u>Last edition</u> in January 2018 in Zagreb, Croatia
- PRACE
 - <u>Last edition</u> PRACE Days in May 2018: European HPC Summit Week 2018 in Ljubljana
 - H2020-INFRAEDI-2018-2020 PRACE-6IP
- Bachelor degree BICS/BINFO: AI & Middleware
- Master degree MICS: Parallel and Grid Computing
 - Master in Information and Computer Sciences see <u>misc.uni.lu</u>
 - Master 2 courses, lectured since 2008
 - Evaluation based on projects evaluated on the UL HPC platform. Ex:
 - Fault Tolerance and Performance of MPI toolchains over HPC Applications
 - Measurement and Optimization of Energy Consumption in HPC Applications
 - Parallelization of the Barnes-Hut N-Body Simulation Algorithm
 - Evaluation of Big Data Framework (Hadoop, Spark...)
 - Evaluation of [Parallel/Distributed] Deep/Machine Learning Framework (Pytorch, Tensorflow, caffee...)
- Lifelong-learning Smart-ICT for Business Innovation certificate: Cloud Computing/Big Data/IoT

Education & Training

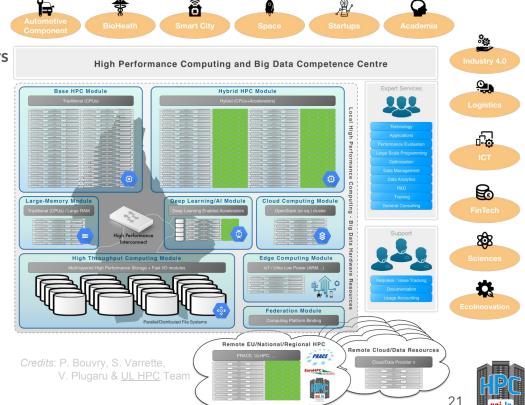
- **SC-Camp 2017** (Cadiz)
- Bi-annual **HPC School** @ **Uni.lu** (Part of the doctoral program)
 - o 7th edition June 12th 13th, 2018 in Belval
 - o Material publically available: <u>ulhpc-tutorials.rtfd.io</u>
 - Last edition joint event: UL-NSTDA workshop (EU-ASEAN E-READI)

Day 1	Main Track (MSA 4.520)	Speaker
9h00	PS1a: Getting Started (part I: SSH)	C. Parisot
10h00	Coffee break	
10h30		S. Varrette
	Overview & Challenges of the UL HPC Facility at the EuroHPC Horizon	
11h45	PS1b: Getting Started (part II)	H. Cartiaux
12h30	LUNCH	
13h30	PS2: HPC workflow with sequential jobs	H. Cartiaux
14h30	PS4a: UL HPC Monitoring in practice	H. Cartiaux
15h30	Coffee break	
16h00	PS5: Parallel computations with OpenMP/MPI	S. Varrette
17h30	PS6: User environment and storage data management	S. Peter

Day 1	Parallel Track (MSA 4.410)	Speaker
10h30	Keynote in 4.520	
13h30	PS3a: Advanced scheduling (SLURM, OAR)	V. Plugaru
14h30	PS3b: Software environment management using Easybuild	S. Peter
15h30	Coffee break (in 4.520)	
16h00	PS4b: Performance engineering - HPC debugging and profilling	V. Plugaru

Day 2	Main Track (MSA 4.520)	Speaker
9h00	PS7: Multi-Physics workflows: test cases on CFD/MD/Chemistry applications	V. Plugaru
10h30	Coffee break	
11h00		
	Users' session: UL HPC experiences	
12h40	LUNCH	
13h30	PS9: [Basic + Advanced] Prototyping with Python	C. Parisot
15h30	Coffee break	
15h45	PS11: Big Data Applications	S. Varrette
17h15	PS13: Machine / Deep learning (Pytorch, Tensorflow, Caffe2)	S. Varrette
18h15	,,	S. Varrette
1010	Closing Keynote: Take Away Messages	O. Vallette

Day 2	Parallel Track (MSA 4.510)	Speaker
9h00	PS8: Bio-informatics workflows and applications	S. Peter
10h30	Coffee break (in 4.520)	
11h00	Users' session: UL HPC experiences (in 4.520)	
12h40	LUNCH	
13h30	PS10: Scientific computing using MATLAB	V. Plugaru
15h30	Coffee break	
15h45	PS12: R - statistical computing	A. Ginolhad
17h15	PS14: HPC Containers: Singularity	V. Plugaru
18h15	Closing Keynote in 4.520	S. Varrette



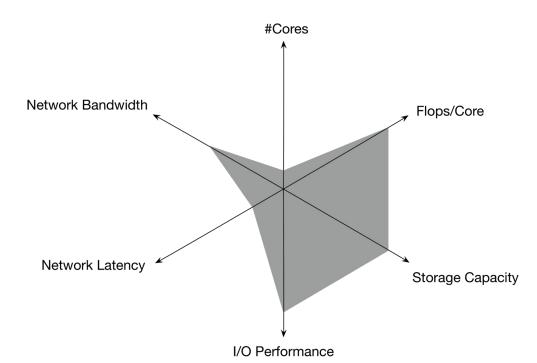
Next steps: National HPC-BD Competence Center

Built by ministerial, academic, industrial stakeholders

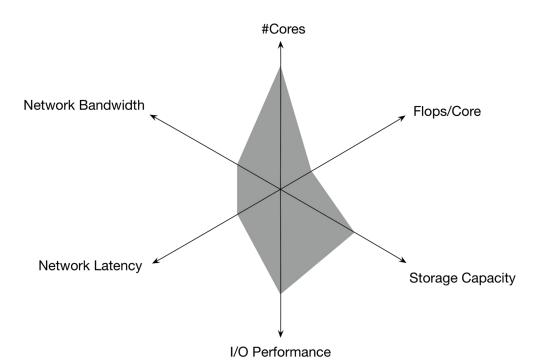
- Comprehensive centre:
 - HPC and data infrastructure
 - Expertise in technology
 - Domain knowledge in applications
- More than just computing services:
 - "Bring HPC and BD to the users"
- Creates twofold innovation:
 - Innovation in applications and
 - Innovation in technology



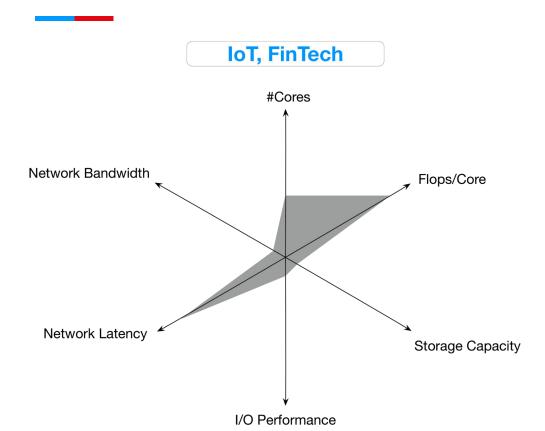
Appendix



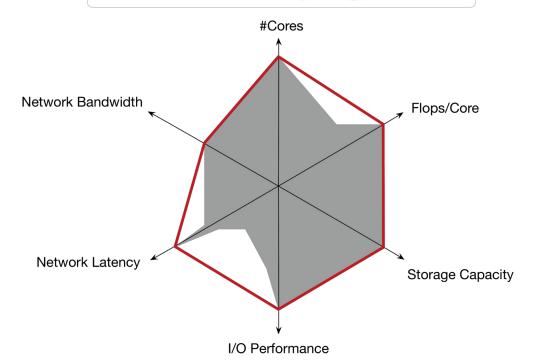
Material Science & Engineering



Biomedical Industry / Life Sciences



Deep Learning / Cognitive Computing



ALL Research Computing Domains

High Performance Computing & Big Data Services

