Pune Vidyarthi Griha’s

———

il

COI_:I_-“EGE OF ENGINEERING, NASHIK - 3.

“CUDA ARCHITECTURE”

By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

20th July 2018

Topic Overview
CUDA Architecture

Using the CUDA Architecture
Applications of CUDA
Introduction to CUDA C-Write and launch CUDA C

kernels
Manage GPU memory
Manage communication and synchronization

Parallel programming in CUDA- C.

INTRODUCTION OF CUDA

CUDA is a set of developing tools to create applications that will perform

execution on GPU (Graphics Processing Unit).
CUDA compiler uses variation of C with future support of C++.

CUDA was developed by NVidia and can only run on NVidia GPUs of tesla and

Geforce series.
CUDA provides Heterogeneous serial-parallel computing Between CPU and GPU

CUDA is a platform for performing massively parallel computations on graphics

accelerators.

CUDA was developed by NVIDIA

It was first available with their G8X line of graphics cards

CUDA is supported on all of NVIDIA’s G8X and above graphics cards
The current CUDA GPU Architecture is branded Tesla

INTRODUCTION OF CUDA

CUDA provides ability to use high-level languages such as C to develop
application that can take advantage of high level performance and scalability that

GPUs architecture offer.

GPUs allow creation of very large number of concurrently executed threads at

very low system resource cost.

CUDA also exposes fast shared memory (16KB) that can be shared between

threads.
Full support for integer and bitwise operations.
Compiled code will run directly on GPU.

CUDA is a parallel computing platform and programming model developed by
Nvidia for general computing on its own GPUs (graphics processing units). CUDA
enables developers to speed up compute-intensive applications by harnessing the

power of GPUs for the parallelizable part of the computation

INTRODUCTION OF GPU

A Graphics Processing Unit (GPU) is a microprocessor that has been designed specifically

for the processing of 3D graphics.

The processor is built with integrated transform, lighting, triangle setup/clipping, and

rendering engines, capable of handling millions of math-intensive processes per second.

GPUs form the heart of modern graphics cards, relieving the CPU (central processing units)

of much of the graphics processing load.

GPUs allow products such as desktop PCs, portable computers, and game consoles to
process real-time 3D graphics that only a few years ago were only available on high-end

workstations.

Used primarily for 3-D applications, a graphics processing unit is a single-chip processor

that creates lighting effects and transforms objects every time a 3D scene is redrawn.

These are mathematically-intensive tasks, which otherwise, would put quite a strain on

the CPU. Lifting this burden from the CPU frees up cycles that can be used for other jobs.

CUDA ARCHITECTURE

« CUDA (Compute Unified Device Architecture) is a parallel computing platform and

application programming interface (API) model created by Nvidia.

« |t allows software developers and software engineers to use a CUDA-enabled graphics

processing unit (GPU) for general purpose processing.

« CUDA platform is a software layer that gives direct access to the GPU's virtual instruction

set and parallel computational elements, for the execution of compute kernels.

« The CUDA platform is designed to work with programming languages such as C, C++, and

Fortran.
Flow of Cuda Archirecture :
1. Copy data from main memory to GPU memory
2. CPU initiates the GPU compute kernel
3. GPU's CUDA cores execute the kernel in parallel

4. Copy the resulting data from GPU memory to main memory

CUDA ARCHITECTURE (FLow oF cuba)

Mam cPU

Execute parallel
in each core

Processing flow
on CUDA

CUDA ARCHITECTURE

The GPU is viewed as a compute device that:
= |s a coprocessor to the CPU or host
= Has its own DRAM (device memory)

= Runs many threads in parallel

Data-parallel portions of an application are executed on the device as kernels which

run in parallel on many threads

Differences between GPU and CPU threads
= GPU threads are extremely lightweight
= Very little creation overhead
= GPU needs 1000s of threads for full efficiency

= Multi-core CPU needs only a few

CPU VS GPU

Control

Cache

ALU | ALU [ALU | ALU | ALU

ALU

ALU

ALU

ALU

Control

Cache

ALU | ALU [ALU | ALU | ALU

ALU

ALU

ALU

ALU

Control

Cache

ALU | ALU [ALU | ALU | ALU

ALU

ALU

ALU

ALU

Control

Cache

ALU | ALU [ALU | ALU | ALU

ALU

ALU

ALU

ALU

DRAM

ALU ALU
Control
ALU ALU
Cache
DRAM
CPU

» Less than 20 cores
« 1-2threads per core

» Latency is hidden by large cache

GPU

More than 512 cores
10s to 100s of threads per core
Latency is hidden by fast context

switching

GPUs don’t run without CPUs

CPU VS GPU

S.N
CPU GPU
O
1 CPU stands for Central Processing | While GPU stands for Graphics
' Unit. Processing Unit.
5 CPU consumes or needs more While it consumes or requires less
' memory than GPU. memory than CPU.
3. ggleeezpeed of CPU1s less than GPU's While GPU is faster than CPU’s speed.
4, CPU contain minute powerful cores. | While it contain more weak cores.
5 CPU is suitable for serial instruction | While GPU is not suitable for serial
' processing. Instruction processing.
5 CPU is not suitable for parallel While GPU is suitable for parallel
' Instruction processing. Instruction processing.
7. CPU emphasis on low latency. A S L

throughput.

APPLICATIONS CUDA

1. Fast Video Transcoding

Transcoding is a very common, and highly complex procedure which easily involves
trillions of parallel computations, many of which are floating point operations. Applications
such as Badaboom have been created which harness the raw computing power of GPUs in order
to transcode video much faster than ever before. For example, if you want to transcode a DVD
so it will play on your iPod, it may take several hours to fully transcode. However, with
Badaboom, it is possible to transcode the movie or any video file faster than real time.

(e.g. AVC - any video converter)

2. Medical Imaging

CUDA is a significant advancement for the field of medical imaging. Using CUDA,
MRI machines can now compute images faster than ever possible before, and for a lower price.
Before CUDA, it used to take an entire day to make a diagnosis of cancer or any other disease.
Now with CUDA, this can take 30 minutes. In fact, patients no longer need to wait 24 hours for

the results, which will benefit many people.

APPLICATIONS CUDA

3. Oil and Natural Resource Exploration

The first two topics | talked about had to do with video, which is naturally suited for
the video card. Now it’s time to talk about more serious technologies involving oil, gas, and
other natural resource exploration. Using a variety of techniques, it is overwhelmingly difficult
to construct a 3d view of what lies underground, expecially when the ground is deeply
submerged in a sea. Scientists used to work with very small sample sets, and low resolutions in
order to find possible sourses of oil. Because the ground reconstruction algorithms are highly
parallel, CUDA is perfectly suited to this type of challenge. Now CUDA is being used to find

oil sources quicker.
4, Computational Sciences

In the raw field of computational sciences, CUDA is very advantageous. For example,
it is now possible to use CUDA with MATLAB, which can increase computations by a great
amount. Other common tasks such as computing eigenvalues, or SVD decompositions, or other

matrix mathematics can use CUDA in order to speed up calculations.

APPLICATIONS CUDA

5. Neural Networks

they personally worked on a program which required the training of several thousand
neural networks to a large set of training data. Using the Core 2 Duo CPU that was available to
them, it would have taken over a month to get a solution. However, with CUDA, they were able

to reduce their time to solution to under 12 hours.
6. Gate-level VLSI Simulation

it is used simulate VVLSI circuit into modelling to appear on the screen. It is easy to

understand the concept of internal circuit.

7. Fluid Dynamics

Fluid dynamics simulations have also been created. These simulations require a huge

number of calculations, and are useful for wing design, and other engineering tasks.

Hetrogeneous Architecture in CUDA

Heterogeneous System Architecture (HSA) is a cross-vendor set of specifications
that allow for the integration of central processing units and graphics processors on

the same bus, with shared memory and tasks.

The HSA is being developed by the HSA Foundation, which includes (among
many others) AMD and ARM.

The platform's stated aim is to reduce communication latency between CPUs,

GPUs and other compute devices.

CUDA and OpenCL as well as most other fairly advanced programming languages

can use HSA to increase their execution performance.

Heterogeneous computing is widely used in system-on-chip devices such as

tablets, smartphones, other mobile devices, and video game consoles.

HSA allows programs to use the graphics processor for floating point calculations

without separate memory or scheduling.

Hetrogeneous Architecture in CUDA

ALU \ ALU I
Control , |
AL l AL I

, PCle Bus

CPU GPU

Hetrogeneous Architecture in CUDA

Heterogeneous computing refers to systems that use more than one kind of processor or cores.
These systems gain performance or energy efficiency not just by adding the same type of
processors, but by adding dissimilar coprocessors, usually incorporating specialized processing
capabilities to handle particular tasks.

What is Heterogeneous
Programming?

Compute-Intensive Functions

o
A few % of Code

Alarge % of Time

} Rest of Sequential
CPU Code

1 - 1

+ -

MEMORY ORGANIZATION IN CUDA
Block(0,0) Block(1,0)
Shared memory Shared memory
Registers I Registers I Registers Registers
y Y v v
Thread(0,0) Thread(1,0) Thread(0,0) Thread(1,0)
I : v
Local Local Local Local
Memory Memory Memory Memory
Y Y L] L]
Global memory
1 | 11 11
Constant memary

Texture memory

MEMORY ORGANIZATION IN CUDA

— %o unified '!mgd@m%_;_&mwl Hyreads fiv the
life g thod - %M{L&WMMM

accemn v 3&.0);;,1 ONEMEU o
- o »SY / re Memasy

N _he M.le‘_al__alﬁb_d NI .

~ "The read onka dechind me? . yesidesr 1n same loc = 3&0'563
mem . and J»n odee cnched .

THREAD ORGANIZATIONN CUDA

Host

- |
Block (1, 1)

THREAD ORGANIZATION CUDA

o 0 :
-. Tk__OQQme:ﬂ_mdz-gw WA @,}@Mm
B kowd iy otualy) o Bub-dsshne 1 min-pieg .

-\ dotha ikt NVIDIA goaphiss cod wed inaide Hae.

g
a

[l et 1 i
= Thew ane .m.&bgm_%_pnh&b;m_ﬂnads_m anwd
— Al tread hloks: b Hvead plock odewy o Speafic v
— 4 mifven Mead, chojen Horcd ow He amolet 4
—avedleble Ehotd wonus 0 et 0o wume lakentd hidig
> it o
oK ehauhiSA desed

THREAD ORGANIZATION CUDA

_f,,TEe N e Hnead Tn Hwead bBlode & alce limibed ‘9 N
aichi: To dphd 9 S12 4dtacad —perplode- Seack Moead Oibir-
tead block @ Communicalc- LffCien¥) _.usx_vﬁ _Shawe d pemay
 Broped Ao ead _Hnoad block -

Usicq MHaua slaced amem, ed MQJ__M_\Q___%N:L
_ oiHn Hwmeod block -
- %&g‘_tmead Dithin MHmeod block has 3 owon Hueod TO-

“Fweacd hlodks ‘are _;zrqan.iu.-‘ il 1D, 2D o 3P axrcs -

- BAS Shaon 1In ﬁq o @i_uzh‘_%.m m!l&m__a;'mgg___
blodc g 4he fome qu_@_b‘q;_gumw

Ae M&,Yodc ore plhysically Wolled 4p §1% thieads pes Bk .

& b2 g M_ﬁ_ag'ddls are tned T Conpuhed a [ouge nes -9
Hrread blodk g 121 - s
— Thece blodt in gnd amay nol Synchronne Wit~ one
Mmmm%_ng__@mmd‘ ade &Q&A_‘Mgﬂﬂ«t_g}
— Tne diag~ Shads -the Hmead Werardy - A ﬂ@»&we -
a %\@__guag! covdalin 3X2 apd QLMrea.é Liselc -
- ’D«\eu are Avted F2 Hyweads execudrq in Hee Reaid kel
(ohere eacl HWpead block s a 4:-X3 -

CUDA PROGRAMMING MODEL

| N DMQ&LAB_Q_MJ_
khndge beP gupph and (1S 1mokm an_avalloble Wid-.

;a}&m_@%_mmw ber Ha prog- and
pre’ model Lmplementufran

ComPHUz/Ub?ay I . 3
> Use [8YS+ bounda
| opewabng Sysim |

> H/w /S)u) bounqu

l " Pochiledu ?L

CUDA PROGRAMMING MODEL
~The WWMM@M

b Lompil mJJmm»«m Uning Sys. tells- dy am_kmmm

1€ prd dels. i+ hm .mm._m!m_% MMMW

® PAmahm g (ODA Clctt Popplicalon*

- 'T!M_'__Qp?]\ —fm Hag Qvchite- Combnivvy senal and |19 code
____mgn n Aq

—The gerial Chsi-l__?-ﬂ&d&m_a_ha&t_(g&u)_tmg@_umtaa

e |18l Code exeus® In many deices (GPU) Aatade amem

———mulhple pocening elemenb-

| Cop# C/om 04’!@

__Rented code = E— — j
= De,/ia.';([gg .
©Larallel codo et 14 = P
i IR S s lusuths— o]
—fetiat (pds L__;&—Ho&—%@u.}] .
- — e = GPU- .
| ‘j@mnuuw&-x-iéx }uq}:-—-i]”#

o NVIDIA TESLA GPU
_QPU(Qqumm_memq M_MMQ_M 3D apphicahtm

MMM@M_W fo pmmdz_l.ghnng_ﬁemb_

NVIDIA TESLA GPU

GPU PROGRAMMING MODEL

CPU
CPU main memory
Copy from Copy from
CPU to GPU to
GPU CPU

F _
GPU global memory

GPU

GPU PROGRAMMING I\/IODEL

JLMM@MM_MM y
e UO(Q’
—CUDR %08 ncdp.) e

~The Code exoeuted in hosh SHz o the_pat g_LJQ .exeaacd'
—On the CPU. 4 Huy (il In(tude QAM Qﬂd_L’det.cK

- oty imp mn@m;em i shinds ﬁxjﬁm
 peimed g memmmmm e host
=M _ode dehned In Hae Kenel 1] be perfomed in_ 1€ uff
. "’3 -an_amey g ttad
el A3 shaws how (U pod fmm oy

GPU PROGRAMMING MODEL

INTRODUCTION TO CUDA C
__._@a;bamqu_pzméﬂ o ll€l mmPUbAj Platform & IF hey

1S own_ 8M[C %...;L&Lmodd for ¥ applicaben
= CODR:_Gwofelln tmall_fel~q oxjen o4 C. P07, lanquage,

1¢" appl?_can_pe deieloped_using. CUPA_on WVLDLA GO
- CODA o tsed. develop appl? for vaviaw. desices - like.
Y hbm_dma Iwhnps A,@hdnf § _b@b_gmmggw

=32

P ’\1 &uchnq ‘C mﬁ_dafe(ofmmb hm; bayﬁ beer exdended.
o edit EéJouq and fy overall m?J&ﬂ@m_umd& o
_ di¥kwent d&’V\C(‘

% COPP w03 model -

- —— — - . e e l— - —_— -— —

. alveady explained (Sbj ;rau_ﬂm W@@

@ pufing ardhlfe -
e nq i j q\ﬂad~f fxplalhecf
CUDA -

HOW TO I\/IANAGE GPU MEMORY

e —— — _E}_
r gk | pumoyl [
R AL = r—ﬁ-m_P_
Sha d ™M

) -w.&4@f¢l{0bd = Lonstan f) \

e Aexhiu memon 7

HOW TO MANAGE GPU MEMORY

— large globe! devict wmwAmMLe 4 oedsible by
A m\mmﬁcmcz_:ﬁpr botly fathor 3 Sttt operabion .

— Thin_mem. dogd nof MMdQ (acheing 4 hene bt Gy gl -
— M wopavd D doviet_ghay ¢d Memn i fust- 4 it dape
Beune ama&{t’“l hmA qov—mwvtd to e tm ryeqjgm

_—, Rhawed ,mm_ia_am called @8 peval e darfu Cache (PPe)
Mza& miooproamM U willle deuice memor

inde 48D Many Part R 84 gbmn'fZa_/gQ

———

—

——

ADVANTAGES OF CUDA

Programming interface of CUDA applications is based on the
standard C language with extensions, which facilitates the learning
curve of CUDA

. CUDA provides access to 16 KB of memory (per multiprocessor)
shared between threads, which can be used to setup cache with
higher bandwidth than texture lookups

More efficient data transfers between system and video memory
No need in graphics APIs with their redundancy and overheads
Linear memory addressing, gather and scatter, writing to arbitrary
addresses

Hardware support for integer and bit operations

LIMITATIONS OF CUDA

No recursive functions

Minimum unit block of 32 threads

Bus bandwidth and latency between CPU & GPU may be
bottleneck.

. Only supported on NVIDIA GPU’s

. Closed CUDA architecture, it belongs to NVIDIA.

synchronization between | nreads

The CUDA API has a method, _ syncthreads() to synchronize
threads. When the method is encountered in the kernel, all threads in
a block will be blocked at the calling location until each of them
reaches the location.

What is the need for it? It ensure phase synchronization. That is, all
the threads of a block will now start executing their next phase only
after they have finished the previous one.

For example, if a __ syncthreads statement, is present in the kernel, it
must be executed by all threads of a block.

If it Is present inside an if statement, then either all the threads in the
block go through the if statement, or none of them does.

Synchronization between thread

 |If an if-then-else statement is present inside the kernel, then either all

the threads will take the if path, or all the threads will take the else
path.

« This is implied. As all the threads of a block have to execute the sync
method call, if threads took different paths, then they will be blocked
forever.

It is the duty of the programmer to be wary of such conditions that
may arise.

Synchronization between thread

CPU Synchronization

Host Device
Kernel Launch

Computation

Return

VS.

Barrier

Computation

Kernel Launch

Barrier

Return
< :]
W

Return

Computation

<

}

for() {
__kernel_func<<<grid, block>>>();

Applications

e =

TRA

Applications

*3D image analysis
*Adaptiveradigion therapy
*Astronomy
*Automobilevision

*Bio informatics
*Biologicalsimulation
*Broadcast

Computational Fluid Dynamics
*ComputerVison
*Cryptography

*CT reconstruction

*Data Mining
*Eiectromagnetic simulation
*Equitytraining

*Finanagal- lotsof areas
*Mathematicsresearch

*Military (lots)

*Mine planning
*Molecular dynamics
*MRI reconstruction
*Network processing
*Neural network
*Proteinfoiding
*Quantumchemistry
*Raytracing

*Radar

*Reservoir simulation
*Robotic vision/Al
*Roboticsurgery
*Sateliite data analysis
*Seismic imaging
*Surgery simuiation

THANK YOU

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

PROF. ANAND GHARU

https://anandgharu.wordpress.com/

