
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“CUDA ARCHITECTURE”

By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

20th July 2018
.

Topic Overview

• CUDA Architecture

• Using the CUDA Architecture

• Applications of CUDA

• Introduction to CUDA C-Write and launch CUDA C

kernels

• Manage GPU memory

• Manage communication and synchronization

• Parallel programming in CUDA- C.

INTRODUCTION OF CUDA

• CUDA is a set of developing tools to create applications that will perform

execution on GPU (Graphics Processing Unit).

• CUDA compiler uses variation of C with future support of C++.

• CUDA was developed by NVidia and can only run on NVidia GPUs of tesla and

Geforce series.

• CUDA provides Heterogeneous serial-parallel computing Between CPU and GPU

• CUDA is a platform for performing massively parallel computations on graphics

accelerators.

• CUDA was developed by NVIDIA

• It was first available with their G8X line of graphics cards

• CUDA is supported on all of NVIDIA’s G8X and above graphics cards

• The current CUDA GPU Architecture is branded Tesla

INTRODUCTION OF CUDA
• CUDA provides ability to use high-level languages such as C to develop

application that can take advantage of high level performance and scalability that

GPUs architecture offer.

• GPUs allow creation of very large number of concurrently executed threads at

very low system resource cost.

• CUDA also exposes fast shared memory (16KB) that can be shared between

threads.

• Full support for integer and bitwise operations.

• Compiled code will run directly on GPU.

• CUDA is a parallel computing platform and programming model developed by

Nvidia for general computing on its own GPUs (graphics processing units). CUDA

enables developers to speed up compute-intensive applications by harnessing the

power of GPUs for the parallelizable part of the computation

INTRODUCTION OF GPU

• A Graphics Processing Unit (GPU) is a microprocessor that has been designed specifically

for the processing of 3D graphics.

• The processor is built with integrated transform, lighting, triangle setup/clipping, and

rendering engines, capable of handling millions of math-intensive processes per second.

• GPUs form the heart of modern graphics cards, relieving the CPU (central processing units)

of much of the graphics processing load.

• GPUs allow products such as desktop PCs, portable computers, and game consoles to

process real-time 3D graphics that only a few years ago were only available on high-end

workstations.

• Used primarily for 3-D applications, a graphics processing unit is a single-chip processor

that creates lighting effects and transforms objects every time a 3D scene is redrawn.

• These are mathematically-intensive tasks, which otherwise, would put quite a strain on

the CPU. Lifting this burden from the CPU frees up cycles that can be used for other jobs.

CUDA ARCHITECTURE

• CUDA (Compute Unified Device Architecture) is a parallel computing platform and

application programming interface (API) model created by Nvidia.

• It allows software developers and software engineers to use a CUDA-enabled graphics

processing unit (GPU) for general purpose processing.

• CUDA platform is a software layer that gives direct access to the GPU's virtual instruction

set and parallel computational elements, for the execution of compute kernels.

• The CUDA platform is designed to work with programming languages such as C, C++, and

Fortran.

Flow of Cuda Archirecture :

1. Copy data from main memory to GPU memory

2. CPU initiates the GPU compute kernel

3. GPU's CUDA cores execute the kernel in parallel

4. Copy the resulting data from GPU memory to main memory

CUDA ARCHITECTURE (FLOW OF CUDA)

 CUDA ARCHITECTURE

• The GPU is viewed as a compute device that:

 Is a coprocessor to the CPU or host

 Has its own DRAM (device memory)

 Runs many threads in parallel

• Data-parallel portions of an application are executed on the device as kernels which

run in parallel on many threads

• Differences between GPU and CPU threads

 GPU threads are extremely lightweight

 Very little creation overhead

 GPU needs 1000s of threads for full efficiency

 Multi-core CPU needs only a few

CPU VS GPU

• A GPU is a processor with thousands of cores ,
ALUs and cache.

More than 512 cores
10s to 100s of threads per core
Latency is hidden by fast context
switching

• Less than 20 cores
• 1-‐2 threads per core

• Latency is hidden by large cache

GPUs don’t run without CPUs

CPU VS GPU

• A GPU is a processor with thousands of cores ,
ALUs and cache.

S.N

O
CPU GPU

1.
CPU stands for Central Processing

Unit.

While GPU stands for Graphics

Processing Unit.

2.
CPU consumes or needs more

memory than GPU.

While it consumes or requires less

memory than CPU.

3.
The speed of CPU is less than GPU’s

speed.
While GPU is faster than CPU’s speed.

4. CPU contain minute powerful cores. While it contain more weak cores.

5.
CPU is suitable for serial instruction

processing.

While GPU is not suitable for serial

instruction processing.

6.
CPU is not suitable for parallel

instruction processing.

While GPU is suitable for parallel

instruction processing.

7. CPU emphasis on low latency.
While GPU emphasis on high

throughput.

APPLICATIONS CUDA
1. Fast Video Transcoding

 Transcoding is a very common, and highly complex procedure which easily involves

trillions of parallel computations, many of which are floating point operations. Applications

such as Badaboom have been created which harness the raw computing power of GPUs in order

to transcode video much faster than ever before. For example, if you want to transcode a DVD

so it will play on your iPod, it may take several hours to fully transcode. However, with

Badaboom, it is possible to transcode the movie or any video file faster than real time.

(e.g. AVC – any video converter)

2. Medical Imaging

 CUDA is a significant advancement for the field of medical imaging. Using CUDA,

MRI machines can now compute images faster than ever possible before, and for a lower price.

Before CUDA, it used to take an entire day to make a diagnosis of cancer or any other disease.

Now with CUDA, this can take 30 minutes. In fact, patients no longer need to wait 24 hours for

the results, which will benefit many people.

.

APPLICATIONS CUDA

3. Oil and Natural Resource Exploration

 The first two topics I talked about had to do with video, which is naturally suited for

the video card. Now it’s time to talk about more serious technologies involving oil, gas, and

other natural resource exploration. Using a variety of techniques, it is overwhelmingly difficult

to construct a 3d view of what lies underground, expecially when the ground is deeply

submerged in a sea. Scientists used to work with very small sample sets, and low resolutions in

order to find possible sourses of oil. Because the ground reconstruction algorithms are highly

parallel, CUDA is perfectly suited to this type of challenge. Now CUDA is being used to find

oil sources quicker.

4. Computational Sciences

 In the raw field of computational sciences, CUDA is very advantageous. For example,

it is now possible to use CUDA with MATLAB, which can increase computations by a great

amount. Other common tasks such as computing eigenvalues, or SVD decompositions, or other

matrix mathematics can use CUDA in order to speed up calculations.

APPLICATIONS CUDA

5. Neural Networks

 they personally worked on a program which required the training of several thousand

neural networks to a large set of training data. Using the Core 2 Duo CPU that was available to

them, it would have taken over a month to get a solution. However, with CUDA, they were able

to reduce their time to solution to under 12 hours.

6. Gate-level VLSI Simulation

 it is used simulate VLSI circuit into modelling to appear on the screen. It is easy to

understand the concept of internal circuit.

.

7. Fluid Dynamics

 Fluid dynamics simulations have also been created. These simulations require a huge

number of calculations, and are useful for wing design, and other engineering tasks.

Hetrogeneous Architecture in CUDA
• Heterogeneous System Architecture (HSA) is a cross-vendor set of specifications

that allow for the integration of central processing units and graphics processors on

the same bus, with shared memory and tasks.

• The HSA is being developed by the HSA Foundation, which includes (among

many others) AMD and ARM.

• The platform's stated aim is to reduce communication latency between CPUs,

GPUs and other compute devices.

• CUDA and OpenCL as well as most other fairly advanced programming languages

can use HSA to increase their execution performance.

• Heterogeneous computing is widely used in system-on-chip devices such as

tablets, smartphones, other mobile devices, and video game consoles.

• HSA allows programs to use the graphics processor for floating point calculations

without separate memory or scheduling.

Hetrogeneous Architecture in CUDA

Hetrogeneous Architecture in CUDA
Heterogeneous computing refers to systems that use more than one kind of processor or cores.

These systems gain performance or energy efficiency not just by adding the same type of

processors, but by adding dissimilar coprocessors, usually incorporating specialized processing

capabilities to handle particular tasks.

MEMORY ORGANIZATION IN CUDA

MEMORY ORGANIZATION IN CUDA

THREAD ORGANIZATIONN CUDA

THREAD ORGANIZATION CUDA

THREAD ORGANIZATION CUDA

CUDA PROGRAMMING MODEL

CUDA PROGRAMMING MODEL

CUDA PROGRAMMING MODEL

NVIDIA TESLA GPU

NVIDIA TESLA GPU

GPU PROGRAMMING MODEL

GPU PROGRAMMING MODEL

GPU PROGRAMMING MODEL

INTRODUCTION TO CUDA C

HOW TO MANAGE GPU MEMORY

HOW TO MANAGE GPU MEMORY

ADVANTAGES OF CUDA

1. Programming interface of CUDA applications is based on the

standard C language with extensions, which facilitates the learning

curve of CUDA

2. CUDA provides access to 16 KB of memory (per multiprocessor)

shared between threads, which can be used to setup cache with

higher bandwidth than texture lookups

3. More efficient data transfers between system and video memory

4. No need in graphics APIs with their redundancy and overheads

5. Linear memory addressing, gather and scatter, writing to arbitrary

addresses

6. Hardware support for integer and bit operations

LIMITATIONS OF CUDA

1. No recursive functions

2. Minimum unit block of 32 threads

3. Bus bandwidth and latency between CPU & GPU may be

bottleneck.

4. Only supported on NVIDIA GPU’s

5. Closed CUDA architecture, it belongs to NVIDIA.

Synchronization between Threads

 • The CUDA API has a method, __syncthreads() to synchronize

threads. When the method is encountered in the kernel, all threads in

a block will be blocked at the calling location until each of them

reaches the location.

• What is the need for it? It ensure phase synchronization. That is, all

the threads of a block will now start executing their next phase only

after they have finished the previous one.

• For example, if a __syncthreads statement, is present in the kernel, it

must be executed by all threads of a block.

• If it is present inside an if statement, then either all the threads in the

block go through the if statement, or none of them does.

Synchronization between thread

• If an if-then-else statement is present inside the kernel, then either all

the threads will take the if path, or all the threads will take the else

path.

• This is implied. As all the threads of a block have to execute the sync

method call, if threads took different paths, then they will be blocked

forever.

• It is the duty of the programmer to be wary of such conditions that

may arise.

Synchronization between thread

Applications

3
8

THANK YOU !!!!

31

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

PROF. ANAND GHARU

https://anandgharu.wordpress.com/

