
http://tiny.cc/hpcg

HPCG: ONE YEAR LATER
Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

1

http://tiny.cc/hpcg
2 Confessions of an

Accidental Benchmarker
•  Appendix B of the LINPACK Users’ Guide

•  Designed to help users extrapolate execution time for
LINPACK software package

•  First benchmark report from 1977;
•  Cray 1 to DEC PDP-10

Started 36 Years Ago

LINPACK code is based on
“right-looking” algorithm:
O(n3) Flop/s and
O(n3) data movement

http://tiny.cc/hpcg

TOP500
•  In 1986 Hans Meuer started a list of

supercomputer around the world, they were
ranked by peak performance.

• Hans approached me in 1992 to put together
our lists into the “TOP500”.

•  The first TOP500 list was in June 1993.

3

http://tiny.cc/hpcg

HPL has a Number of Problems
• HPL performance of computer systems are no longer so

strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

• Designing a system for good HPL performance can

actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.

4

http://tiny.cc/hpcg

Concerns
•  The gap between HPL predictions and real application

performance will increase in the future.
• A computer system with the potential to run HPL at an

Exaflop is a design that may be very unattractive for
real applications.

•  Future architectures targeted toward good HPL
performance will not be a good match for most
applications.

•  This leads us to a think about a different metric

5

http://tiny.cc/hpcg

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
•  “Understandable” to the outside world

•  “If your computer doesn’t perform well on the LINPACK

Benchmark, you will probably be disappointed with the
performance of your application on the computer.”

6

http://tiny.cc/hpcg

HPL - Bad Things
•  LINPACK Benchmark is 37 years old

•  TOP500 (HPL) is 21.5 years old

•  Floating point-intensive performs O(n3) floating point
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)
• Encourages poor choices in architectural features
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

7

http://tiny.cc/hpcg

Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for

HPC system designers.
•  Skews system design.

•  Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements

8

http://tiny.cc/hpcg

Many Other Benchmarks
• TOP500
• Green 500
• Graph 500 174
• Green/Graph
• Sustained Petascale
Performance

• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc

• Livermore Loops
• EuroBen
• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone
• Whetstone

9

http://tiny.cc/hpcg

Goals for New Benchmark
•  Augment the TOP500 listing with a benchmark that correlates with important

scientific and technical apps not well represented by HPL

•  Encourage vendors to focus on architecture features needed for high

performance on those important scientific and technical apps.
•  Stress a balance of floating point and communication bandwidth and latency
•  Reward investment in high performance collective ops
•  Reward investment in high performance point-to-point messages of various sizes
•  Reward investment in local memory system performance
•  Reward investment in parallel runtimes that facilitate intra-node parallelism

•  Provide an outreach/communication tool
•  Easy to understand
•  Easy to optimize
•  Easy to implement, run, and check results

•  Provide a historical database of performance information
•  The new benchmark should have longevity

http://tiny.cc/hpcg 10

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:

•  Dense and sparse computations.
•  Dense and sparse collective.
•  Multi-scale execution of kernels via MG (truncated) V cycle.
•  Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral
properties of PCG).

http://tiny.cc/hpcg 11

Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
•  Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
•  Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

•  27 nonzeros/row interior.
•  7 – 18 on boundary.
•  Symmetric positive definite.

(nx × ny × nz)

(npx × npy × npz)

(nx *npx)× (ny *npy)× (nz *npz)

http://tiny.cc/hpcg

HPCG Design Philosophy
• Relevance to broad collection of important apps.
• Simple, single number.
•  Few user-tunable parameters and algorithms:

•  The system, not benchmarker skill, should be primary factor in result.
•  Algorithmic tricks don’t give us relevant information.

• Algorithm (PCG) is vehicle for organizing:
•  Known set of kernels.
•  Core compute and data patterns.
•  Tunable over time (as was HPL).

• Easy-to-modify:
•  _ref kernels called by benchmark kernels.
•  User can easily replace with custom versions.
•  Clear policy: Only kernels with _ref versions can be modified.

http://tiny.cc/hpcg 13

Example
•  Build HPCG with default MPI and OpenMP modes enabled.

export OMP_NUM_THREADS=1
mpiexec –n 96 ./xhpcg 70 80 90

•  Results in:

•  Global domain dimensions: 280-by-320-by-540
•  Number of equations per MPI process: 504,000
•  Global number of equations: 48,384,000
•  Global number of nonzeros: 1,298,936,872
•  Note: Changing OMP_NUM_THREADS does not change any

of these values.

14

nx = 70, ny = 80, nz = 90

npx = 4, npy = 4, npz = 6

http://tiny.cc/hpcg

PCG ALGORITHM
u p0 := x0, r0 := b-Ap0
u Loop i = 1, 2, …

o  zi := M-1ri-1
o  if i = 1

§  pi := zi
§  ai := dot_product(ri-1, z)

o  else
§  ai := dot_product(ri-1, z)
§  bi := ai/ai-1
§  pi := bi*pi-1+zi

o  end if
o  ai := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o  xi+1 := xi + ai*pi
o  ri := ri-1 – ai*A*pi
o  if ||ri||2 < tolerance then Stop

u end Loop
	
 	

	
 	

	
 	

http://tiny.cc/hpcg 15

Preconditioner
•  Hybrid geometric/algebraic multigrid:

•  Grid operators generated synthetically:
•  Coarsen by 2 in each x, y, z dimension (total of 8

reduction each level).
•  Use same GenerateProblem() function for all levels.

•  Grid transfer operators:
•  Simple injection. Crude but…
•  Requires no new functions, no repeat use of other

functions.
•  Cheap.

•  Smoother:
•  Symmetric Gauss-Seidel [ComputeSymGS()].
•  Except, perform halo exchange prior to sweeps.
•  Number of pre/post sweeps is tuning parameter.

•  Bottom solve:
•  Right now just a single call to ComputeSymGS().
•  If no coarse grids, has identical behavior as HPCG 1.X.

16

http://tiny.cc/hpcg 16

•  Symmetric Gauss-Seidel preconditioner
•  In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA\y;
x1 = y - LA*x + DA*x; % Subtract off extra

 diagonal contribution
x = UA\x1;

Problem Setup

• Construct Geometry.
• Generate Problem.
• Setup Halo Exchange.
• Initialize Sparse Meta-data.
• Call user-defined
OptimizeProblem function.
This function permits the
user to change data
structures and perform
permutation that can improve
execution.

Validation Testing

• Perform spectral
properties PCG Tests:
• Convergence for 10
distinct eigenvalues:
•  No preconditioning.
• With Preconditioning

• Symmetry tests:
• Sparse MV kernel.
• MG kernel.

Reference Sparse MV
and Gauss-Seidel
kernel timing.

• Time calls to the
reference versions
of sparse MV and
MG for inclusion in
output report.

Reference CG timing
and residual
reduction.

• Time the execution
of 50 iterations of
the reference PCG
implementation.

• Record reduction of
residual using the
reference
implementation.
The optimized code
must attain the
same residual
reduction, even if
more iterations are
required.

Optimized CG Setup.

• Run one set of Optimized PCG
solver to determine number of
iterations required to reach residual
reduction of reference PCG.

• Record iteration count as
numberOfOptCgIters.

• Detect failure to converge.
• Compute how many sets of
Optimized PCG Solver are required
to fill benchmark timespan. Record
as numberOfCgSets

Optimized CG timing and
analysis.

• Run numberOfCgSets
calls to optimized PCG
solver with
numberOfOptCgIters
iterations.

• For each set, record
residual norm.

• Record total time.
• Compute mean and
variance of residual
values.

Report results

• Write a log file for
diagnostics and
debugging.

• Write a benchmark
results file for reporting
official information.

http://tiny.cc/hpcg 17

Example
• Reference PCG: 50 iterations, residual drop of 1e-6.
• Optimized PCG: Run one set of iterations

•  Multicolor ordering for Symmetric Gauss-Seidel:
•  Better vectorization, threading.
•  But: Takes 55 iterations to reach residual drop of 1e-6.

•  Overhead:
•  Extra 5 iterations.
•  Computing of multicolor ordering.

•  Compute number of sets we must run to fill entire execution time:
•  5h/time-to-compute-1-set.
•  Results in thousands of CG set runs.

• Run and record residual for each set.
•  Report mean and variance (accounts for non-associativity of FP

addition).

http://tiny.cc/hpcg 18

HPCG Parameters
•  Iterations per set: 50.
• Total benchmark time for official result:

•  3600 seconds.
• Anything less is reported as a “tuning” result.
• Default time 60 seconds.

• Coarsening: 2x – 2x – 2x (8x total).
• Number of levels:

•  4 (including finest level).
• Requires nx, ny, nz divisible by 8.

• Pre/post smoother sweeps: 1 each.
• Setup time: Amortized over 500 iterations.
19

http://tiny.cc/hpcg 19

Key Computation Data Patterns
• Domain decomposition:

•  SPMD (MPI): Across domains.
•  Thread/vector (OpenMP, compiler): Within domains.

• Vector ops:
•  AXPY: Simple streaming memory ops.
•  DOT/NRM2 : Blocking Collectives.

• Matrix ops:
•  SpMV: Classic sparse kernel (option to reformat).
•  Symmetric Gauss-Seidel: sparse triangular sweep.

•  Exposes real application tradeoffs:
•  threading & convergence vs. SPMD and scaling.

•  Enables leverage of new parallel patterns, e.g., futures.
20

http://tiny.cc/hpcg 20

Merits of HPCG
•  Includes major communication/computational patterns.

•  Represents a minimal collection of the major patterns.

• Rewards investment in:
•  High-performance collective ops.
•  Local memory system performance.
•  Low latency cooperative threading.

• Detects/measures variances from bitwise reproducibility.
• Executes kernels at several (tunable) granularities:

•  nx = ny = nz = 104 gives
•  nlocal = 1,124,864; 140,608; 17,576; 2,197
•  ComputeSymGS with multicoloring adds one more level:

•  8 colors.
•  Average size of color = 275.
•  Size ratio (largest:smallest): 4096

•  Provide a “natural” incentive to run a big problem. 21

http://tiny.cc/hpcg 21

User tuning options

• MPI ranks vs. threads:
•  MPI-only: Strong algorithmic incentive to use.
•  MPI+X: Strong resource management incentive to use.

• Data structures:
•  Sparse and dense.
•  May not use knowledge of special sparse structure.
•  May not exploit regularity in data structures (x or y must be

accessed indirectly when computing y = Ax).
•  Overhead of analysis/transformation is counted against time for

ten 50 iteration sets (500 iterations).

22

http://tiny.cc/hpcg 22

User tuning options

• Permutations:
• Can permute matrix for ComputeSpMV or ComputeMG

or both.
• Overhead is counted as with data structure

transformations.

• Not permitted:
• Algorithm changes to CG or MG that change behavior

beyond permutations or FP arithmetic.
• Change in FP precision.
• Almost anything else not mentioned.

23

http://tiny.cc/hpcg 23

HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

•  The historical importance and community outreach value
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
•  Or maybe top 50 for now.

24

http://tiny.cc/hpcg 24

HPCG 3.X Features
•  Truer C++ design:

•  Have gradually moved in that direction.
•  No one has complained.

• Request permutation vectors:
•  Permits explicit check again reference kernel results.

• Kernels will remain the same:
•  No disruption of vendor investments.

http://tiny.cc/hpcg 25

On Going Discussion and Feedback
•  June 2013

•  Discussed at ISC

• November 2013
•  Discussed at SC13 in Denver during Top500 BoF

•  January 2014
•  Discussed at DOE workshop

• March 2014
•  Discussed in DC at workshop

•  June 2014
•  ISC talk at session

http://tiny.cc/hpcg 26

Signs of Uptake
• Discussions with and results from every vendor.
• Major, deep technical discussions with several.
• Same with most LCFs.
• SC’14 BOF on Optimizing HPCG.
• One ISC’14 and two SC’14 papers submitted.

•  Nvidia and Intel. 2/3 accepted.
• Optimized results for x86, MIC-based, Nvidia GPU-based

systems.

http://tiny.cc/hpcg 27

HPL vs. HPCG: Bookends
• Some see HPL and HPCG as “bookends” of a spectrum.

•  Applications teams know where their codes lie on the spectrum.
•  Can gauge performance on a system using both HPL and HPCG

numbers.

• Problem of HPL execution time still an issue:
•  Need a lower cost option. End-to-end HPL runs are too expensive.
•  Work in progress.

http://tiny.cc/hpcg 28

Site Computer Cores
HPL
Rmax

(Pflops)
HPL
Rank

HPCG
(Pflops)

NSCC / Guangzhou
Tianhe-2 NUDT,

Xeon 12C 2.2GHz + Intel Xeon
Phi 57C + Custom

3,120,000 33.9 1 .580

RIKEN Advanced Inst
for Comp Sci

K computer Fujitsu SPARC64
VIIIfx 8C + Custom 705,024 10.5 4 .427

DOE/OS
Oak Ridge Nat Lab

Titan, Cray XK7 AMD 16C +
Nvidia Kepler GPU 14C + Custom 560,640 17.6 2 .322

DOE/OS
Argonne Nat Lab

Mira BlueGene/Q, Power BQC 16C
1.60GHz + Custom 786,432 8.59 5 .101#

Swiss CSCS Piz Daint, Cray XC30, Xeon 8C +
Nvidia Kepler 14C + Custom 115,984 6.27 6 .099

Leibniz
Rechenzentrum SuperMUC, Intel 8C + IB 147,456 2.90 12 .0833

CEA/TGCC-GENCI Curie tine nodes Bullx B510 Intel
Xeon 8C 2.7 GHz + IB 79,504 1.36 26 .0491

Exploration and
Production
Eni S.p.A.

HPC2, Intel Xeon 10C 2.8 GHz +
Nvidia Kepler 14C + IB 62,640 3.00 11 .0489

DOE/OS
L Berkeley Nat Lab

Edison Cray XC30, Intel Xeon 12C
2.4GHz + Custom 132,840 1.65 18 .0439 #

Texas Advanced
Computing Center

Stampede, Dell Intel (8c) + Intel
Xeon Phi (61c) + IB 78,848 .881* 7 .0161

Meteo France Beaufix Bullx B710 Intel Xeon
12C 2.7 GHz + IB 24,192 .469

(.467*) 79 .0110

Meteo France Prolix Bullx B710 Intel Xeon
2.7 GHz 12C + IB 23,760 .464

(.415*) 80 .00998

U of Toulouse CALMIP Bullx DLC Intel Xeon 10C
2.8 GHz + IB 12,240 .255 184 .00725

Cambridge U Wilkes, Intel Xeon 6C 2.6 GHz +
Nvidia Kepler 14C + IB 3584 .240 201 .00385

TiTech TUSBAME-KFC Intel Xeon 6C
2.1 GHz + IB 2720 .150 436 .00370

HPL
and
HPCG

HPL
HPCG

* scaled to reflect the same
 number of cores
unoptimized implementation

Site Computer Cores
HPL
Rmax

(Pflops)
HPL
Rank

HPCG
(Pflops)

HPCG/
HPL

NSCC / Guangzhou
Tianhe-2 NUDT,

Xeon 12C 2.2GHz + Intel Xeon
Phi 57C + Custom

3,120,000 33.9 1 .580 1.7%

RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64
VIIIfx 8C + Custom 705,024 10.5 4 .427 4.1%

DOE/OS
Oak Ridge Nat Lab

Titan, Cray XK7 AMD 16C +
Nvidia Kepler GPU 14C +

Custom
560,640 17.6 2 .322 1.8%

DOE/OS
Argonne Nat Lab

Mira BlueGene/Q, Power BQC
16C 1.60GHz + Custom 786,432 8.59 5 .101# 1.2%

Swiss CSCS Piz Daint, Cray XC30, Xeon 8C
+ Nvidia Kepler 14C + Custom 115,984 6.27 6 .099 1.6%

Leibniz
Rechenzentrum SuperMUC, Intel 8C + IB 147,456 2.90 12 .0833 2.9%

CEA/TGCC-GENCI Curie tine nodes Bullx B510
Intel Xeon 8C 2.7 GHz + IB 79,504 1.36 26 .0491 3.6%

Exploration and
Production
Eni S.p.A.

HPC2, Intel Xeon 10C 2.8 GHz
+ Nvidia Kepler 14C + IB 62,640 3.00 11 .0489 1.6%

DOE/OS
L Berkeley Nat Lab

Edison Cray XC30, Intel Xeon
12C 2.4GHz + Custom 132,840 1.65 18 .0439 # 2.7%

Texas Advanced
Computing Center

Stampede, Dell Intel (8c) +
Intel Xeon Phi (61c) + IB 78,848 .881* 7 .0161 1.8%

Meteo France Beaufix Bullx B710 Intel Xeon
12C 2.7 GHz + IB 24,192 .469

(.467*) 79 .0110 2.4%

Meteo France Prolix Bullx B710 Intel Xeon
2.7 GHz 12C + IB 23,760 .464

(.415*) 80 .00998 2.4%

U of Toulouse CALMIP Bullx DLC Intel Xeon
10C 2.8 GHz + IB 12,240 .255 184 .00725 2.8%

Cambridge U Wilkes, Intel Xeon 6C 2.6 GHz
+ Nvidia Kepler 14C + IB 3584 .240 201 .00385 1.6%

TiTech TUSBAME-KFC Intel Xeon 6C
2.1 GHz + IB 2720 .150 436 .00370 2.5%

HPL
and
HPCG

HPL
HPCG

* scaled to reflect the same
 number of cores
unoptimized implementation

31

32

10000#

100000#

1000000#

10000000#

100000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# 19# 20#

Fl
op

/s
'

Rank'

Comparison'HPL'&'HPCG'
Peak,#HPL,#HPCG#

Rpeak'

HPL'

33

10000#

100000#

1000000#

10000000#

100000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# 19# 20#

Fl
op

/s
'

Rank'

Comparison'HPL'&'HPCG'
Peak,'HPL,'HPCG'

Rpeak'

HPL'

HPCG'

Optimized Versions of HPCG
¨  Intel

Ø MKL has packaged CPU version of HPCG
Ø See: http://bit.ly/hpcg-intel

Ø In the process of packaging Xeon Phi version
to be released soon.

¨  Nvidia
Ø Massimiliano Fatica and Evertt Phillips
Ø Binary available

Ø Contact Massimiliano mfatica@nvidia.com

¨  Bull
Ø Developed by CEA requesting the release

07
34

Nvidia has it on their ARM64+K20

07
35

HPCG Tech Reports
Toward a New Metric for Ranking
High Performance Computing Systems

•  Jack Dongarra and Michael Heroux
HPCG Technical Specification
•  Jack Dongarra, Michael Heroux,

Piotr Luszczek

•  http://tiny.cc/hpcg

36

http://tiny.cc/hpcg 36

SANDIA REPORT
SAND2013-!8752
Unlimited Release
Printed October 2013

HPCG Technical Specification

Michael A. Heroux, Sandia National Laboratories1
Jack Dongarra and Piotr Luszczek, University of Tennessee

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

!

!!
1 Corresponding Author, maherou@sandia.gov

