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2 Confessions of an  

Accidental Benchmarker 
•  Appendix B of the LINPACK Users’ Guide 

•  Designed to help users extrapolate execution                                time for 
LINPACK software package 

•  First benchmark report from 1977;  
•  Cray 1 to DEC PDP-10                                  

Started 36 Years Ago 
 
LINPACK code is based on  
“right-looking” algorithm: 
O(n3) Flop/s and  
O(n3) data movement 
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TOP500 
•  In 1986 Hans Meuer started a list of 

supercomputer around the world, they were 
ranked by peak performance.  

• Hans approached me in 1992 to put together 
our lists into the “TOP500”. 

•  The first TOP500 list was in June 1993. 
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HPL has a Number of Problems 
• HPL performance of computer systems are no longer so 

strongly correlated to real application performance, 
especially for the broad set of HPC applications governed 
by partial differential equations. 

 
• Designing a system for good HPL performance can 

actually lead to design choices that are wrong for the 
real application mix, or add unnecessary components or 
complexity to the system. 
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Concerns 
•  The gap between HPL predictions and real application 

performance will increase in the future.  
• A computer system with the potential to run HPL at an 

Exaflop is a design that may be very unattractive for 
real applications.  

•  Future architectures targeted toward good HPL 
performance will not be a good match for most 
applications. 

•  This leads us to a think about a different metric  
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HPL - Good Things 
• Easy to run 
• Easy to understand 
• Easy to check results 
• Stresses certain parts of the system 
• Historical database of performance information 
• Good community outreach tool 
•  “Understandable” to the outside world 
 
•  “If your computer doesn’t perform well on the LINPACK 

Benchmark, you will probably be disappointed with the 
performance of your application on the computer.” 
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HPL - Bad Things  
•  LINPACK Benchmark is 37 years old 

•  TOP500 (HPL)  is 21.5 years old 

•  Floating point-intensive performs O(n3) floating point 
operations and moves O(n2) data. 

• No longer so strongly correlated to real apps. 
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak) 
• Encourages poor choices in architectural features  
• Overall usability of a system is not measured 
• Used as a marketing tool 
• Decisions on acquisition made on one number 
• Benchmarking for days wastes a valuable resource 
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Ugly Things about HPL 
• Doesn’t probe the architecture; only one data point 
• Constrains the technology and architecture options for 

HPC system designers. 
•  Skews system design. 

•  Floating point benchmarks are not quite as valuable to 
some as data-intensive system measurements 
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Many Other Benchmarks 
• TOP500 
• Green 500 
• Graph 500 174 
• Green/Graph 
• Sustained Petascale 
Performance  

• HPC Challenge 
• Perfect 
• ParkBench 
• SPEC-hpc 

• Livermore Loops 
• EuroBen 
• NAS Parallel Benchmarks 
• Genesis 
• RAPS 
• SHOC 
• LAMMPS 
• Dhrystone  
• Whetstone 
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Goals for New Benchmark 
•  Augment the TOP500 listing with a benchmark that correlates with important 

scientific and technical apps not well represented by HPL 

 
•  Encourage vendors to focus on architecture features needed for high 

performance on those important scientific and technical apps. 
•  Stress a balance of floating point and communication bandwidth and latency 
•  Reward investment in high performance collective ops 
•  Reward investment in high performance point-to-point messages of various sizes 
•  Reward investment in local memory system performance 
•  Reward investment in parallel runtimes that facilitate intra-node parallelism 

•  Provide an outreach/communication tool 
•  Easy to understand 
•  Easy to optimize 
•  Easy to implement, run, and check results 

•  Provide a historical database of performance information 
•  The new benchmark should have longevity 
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Proposal: HPCG 
• High Performance Conjugate Gradient (HPCG). 
• Solves Ax=b, A large, sparse, b known, x computed. 
• An optimized implementation of PCG contains essential 

computational and communication patterns that are 
prevalent in a variety of methods for discretization and 
numerical solution of PDEs  

 
• Patterns: 

•  Dense and sparse computations. 
•  Dense and sparse collective. 
•  Multi-scale execution of kernels via MG (truncated) V cycle. 
•  Data-driven parallelism (unstructured sparse triangular solves). 

• Strong verification and validation properties (via spectral 
properties of PCG). 
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Model Problem Description 
• Synthetic discretized 3D PDE (FEM, FVM, FDM). 
• Single DOF heat diffusion model. 
•  Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1. 
•  Local domain: 
• Process layout: 
• Global domain: 
• Sparse matrix:  

•  27 nonzeros/row interior.  
•  7 – 18 on boundary. 
•  Symmetric positive definite. 

(nx × ny × nz )

(npx × npy × npz )

(nx *npx )× (ny *npy )× (nz *npz )
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HPCG Design Philosophy 
• Relevance to broad collection of important apps. 
• Simple, single number. 
•  Few user-tunable parameters and algorithms: 

•  The system, not benchmarker skill, should be primary factor in result. 
•  Algorithmic tricks don’t give us relevant information. 

• Algorithm (PCG) is vehicle for organizing: 
•  Known set of kernels. 
•  Core compute and data patterns. 
•  Tunable over time (as was HPL). 

• Easy-to-modify: 
•  _ref kernels called by benchmark kernels. 
•  User can easily replace with custom versions. 
•  Clear policy: Only kernels with _ref versions can be modified. 
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Example 
•  Build HPCG with default MPI and OpenMP modes enabled. 

export OMP_NUM_THREADS=1 
mpiexec –n 96 ./xhpcg 70 80 90 

•  Results in: 

•  Global domain dimensions: 280-by-320-by-540 
•  Number of equations per MPI process: 504,000 
•  Global number of equations:     48,384,000 
•  Global number of nonzeros: 1,298,936,872 
•  Note: Changing OMP_NUM_THREADS does not change any 

of these values. 
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nx = 70,  ny = 80,  nz = 90

npx = 4,  npy = 4,  npz = 6
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PCG ALGORITHM 
u p0 := x0, r0 := b-Ap0 
u Loop i = 1, 2, … 

o  zi := M-1ri-1 
o  if i = 1 

§  pi := zi 
§  ai := dot_product(ri-1, z) 

o  else 
§  ai := dot_product(ri-1, z) 
§  bi := ai/ai-1 
§  pi := bi*pi-1+zi 

o  end if 
o  ai := dot_product(ri-1, zi) /dot_product(pi, A*pi) 
o  xi+1 := xi + ai*pi 
o  ri := ri-1 – ai*A*pi 
o  if ||ri||2 < tolerance then Stop 

u end Loop 
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Preconditioner 
•  Hybrid geometric/algebraic multigrid: 

•  Grid operators generated synthetically: 
•  Coarsen by 2 in each x, y, z dimension (total of 8 

reduction each level). 
•  Use same GenerateProblem() function for all levels. 

•  Grid transfer operators: 
•  Simple injection.  Crude but… 
•  Requires no new functions, no repeat use of other 

functions. 
•  Cheap. 

•  Smoother: 
•  Symmetric Gauss-Seidel [ComputeSymGS()]. 
•  Except, perform halo exchange prior to sweeps. 
•  Number of pre/post sweeps is tuning parameter. 

•  Bottom solve: 
•  Right now just a single call to ComputeSymGS(). 
•  If no coarse grids, has identical behavior as HPCG 1.X. 
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•  Symmetric Gauss-Seidel preconditioner  
•  In Matlab that might look like: 

 
LA = tril(A); UA = triu(A); DA = diag(diag(A)); 
 
x = LA\y; 
x1 = y - LA*x + DA*x; % Subtract off extra 

 diagonal contribution 
x = UA\x1; 

 
 



Problem Setup 

• Construct Geometry. 
• Generate Problem. 
• Setup Halo Exchange. 
• Initialize Sparse Meta-data. 
• Call user-defined 
OptimizeProblem function.  
This function permits the 
user to change data 
structures and perform 
permutation that can improve 
execution. 

Validation Testing 

• Perform spectral 
properties PCG Tests: 
• Convergence for 10 
distinct eigenvalues: 
•  No preconditioning. 
• With Preconditioning 

• Symmetry tests: 
• Sparse MV kernel. 
• MG kernel. 

Reference Sparse MV 
and Gauss-Seidel 
kernel timing. 

• Time calls to the 
reference versions 
of sparse MV and 
MG for inclusion in 
output report. 

Reference CG timing 
and residual 
reduction. 

• Time the execution 
of 50 iterations of 
the reference PCG 
implementation. 

• Record reduction of 
residual using the 
reference 
implementation.  
The optimized code 
must attain the 
same residual 
reduction, even if 
more iterations are 
required. 

Optimized CG Setup.   

• Run one set of Optimized PCG 
solver to determine number of 
iterations required to reach residual 
reduction of reference PCG. 

• Record iteration count as 
numberOfOptCgIters. 

• Detect failure to converge. 
• Compute how many sets of 
Optimized PCG Solver are required 
to fill benchmark timespan. Record 
as numberOfCgSets 

Optimized CG timing and 
analysis. 

• Run numberOfCgSets 
calls to optimized PCG 
solver with 
numberOfOptCgIters 
iterations. 

• For each set, record 
residual norm. 

• Record total time. 
• Compute mean and 
variance of residual 
values. 

Report results 

• Write a log file for 
diagnostics and 
debugging. 

• Write a benchmark 
results file for reporting 
official information. 
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Example 
• Reference PCG: 50 iterations, residual drop of 1e-6. 
• Optimized PCG: Run one set of iterations 

•  Multicolor ordering for Symmetric Gauss-Seidel: 
•  Better vectorization, threading. 
•  But: Takes 55 iterations to reach residual drop of 1e-6. 

•  Overhead: 
•  Extra 5 iterations. 
•  Computing of multicolor ordering. 

•  Compute number of sets we must run to fill entire execution time: 
•  5h/time-to-compute-1-set. 
•  Results in thousands of CG set runs. 

• Run and record residual for each set. 
•  Report mean and variance (accounts for non-associativity of FP 

addition). 
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HPCG Parameters 
•  Iterations per set: 50. 
• Total benchmark time for official result: 

•  3600 seconds. 
• Anything less is reported as a “tuning” result. 
• Default time 60 seconds. 

• Coarsening: 2x – 2x – 2x (8x total). 
• Number of levels:  

•  4 (including finest level). 
• Requires nx, ny, nz divisible by 8. 

• Pre/post smoother sweeps: 1 each. 
• Setup time: Amortized over 500 iterations. 
19 
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Key Computation Data Patterns 
• Domain decomposition: 

•  SPMD (MPI): Across domains. 
•  Thread/vector (OpenMP, compiler): Within domains. 

• Vector ops: 
•  AXPY: Simple streaming memory ops. 
•  DOT/NRM2 : Blocking Collectives. 

• Matrix ops: 
•  SpMV: Classic sparse kernel (option to reformat). 
•  Symmetric Gauss-Seidel: sparse triangular sweep. 

•  Exposes real application tradeoffs:  
•  threading & convergence vs. SPMD and scaling. 

•  Enables leverage of new parallel patterns, e.g., futures. 
20 
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Merits of HPCG 
•  Includes major communication/computational patterns. 

•  Represents a minimal collection of the major patterns. 

• Rewards investment in: 
•  High-performance collective ops. 
•  Local memory system performance. 
•  Low latency cooperative threading. 

• Detects/measures variances from bitwise reproducibility. 
• Executes kernels at several (tunable) granularities: 

•  nx = ny = nz = 104 gives 
•  nlocal = 1,124,864; 140,608; 17,576; 2,197 
•  ComputeSymGS with multicoloring adds one more level: 

•  8 colors. 
•  Average size of color = 275.   
•  Size ratio (largest:smallest): 4096 

•  Provide a “natural” incentive to run a big problem. 21 
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User tuning options 

• MPI ranks vs. threads: 
•  MPI-only: Strong algorithmic incentive to use. 
•  MPI+X: Strong resource management incentive to use. 

• Data structures: 
•  Sparse and dense. 
•  May not use knowledge of special sparse structure. 
•  May not exploit regularity in data structures (x or y must be 

accessed indirectly when computing y = Ax). 
•  Overhead of analysis/transformation is counted against time for 

ten 50 iteration sets (500 iterations). 

22 
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User tuning options 

• Permutations: 
• Can permute matrix for ComputeSpMV or ComputeMG 

or both. 
• Overhead is counted as with data structure 

transformations. 

• Not permitted: 
• Algorithm changes to CG or MG that change behavior 

beyond permutations or FP arithmetic. 
• Change in FP precision. 
• Almost anything else not mentioned. 

23 
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HPCG and HPL 
• We are NOT proposing to eliminate HPL as a metric. 

•  The historical importance and community outreach value 
is too important to abandon. 

• HPCG will serve as an alternate ranking of the Top500. 
•  Or maybe top 50 for now. 

24 
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HPCG 3.X Features 
•  Truer C++ design:  

•  Have gradually moved in that direction. 
•  No one has complained. 

• Request permutation vectors: 
•  Permits explicit check again reference kernel results. 

• Kernels will remain the same: 
•  No disruption of vendor investments. 
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On Going Discussion and Feedback 
•  June 2013  

•  Discussed at ISC 

• November 2013  
•  Discussed at SC13 in Denver during Top500 BoF 

•  January 2014  
•  Discussed at DOE workshop 

• March 2014  
•  Discussed in DC at workshop 

•  June 2014  
•  ISC talk at session 
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Signs of Uptake 
• Discussions with and results from every vendor. 
• Major, deep technical discussions with several. 
• Same with most LCFs. 
• SC’14 BOF on Optimizing HPCG. 
• One ISC’14 and two SC’14 papers submitted. 

•  Nvidia and Intel. 2/3 accepted. 
• Optimized results for x86, MIC-based, Nvidia GPU-based 

systems. 

http://tiny.cc/hpcg 27 



HPL vs. HPCG: Bookends 
• Some see HPL and HPCG as “bookends” of a spectrum. 

•  Applications teams know where their codes lie on the spectrum. 
•  Can gauge performance on a system using both HPL and HPCG 

numbers. 

• Problem of HPL execution time still an issue: 
•  Need a lower cost option.  End-to-end HPL runs are too expensive. 
•  Work in progress. 
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Site Computer Cores 
HPL 
Rmax 

(Pflops) 
HPL 
Rank 

HPCG 
(Pflops) 

NSCC / Guangzhou 
Tianhe-2 NUDT,  

Xeon 12C 2.2GHz + Intel Xeon 
Phi 57C + Custom 

3,120,000 33.9 1 .580 

RIKEN Advanced Inst 
for Comp Sci 

K computer Fujitsu SPARC64 
VIIIfx 8C + Custom 705,024 10.5  4 .427 

DOE/OS                 
Oak Ridge Nat Lab 

Titan, Cray XK7 AMD 16C + 
Nvidia Kepler GPU 14C + Custom  560,640 17.6 2 .322 

DOE/OS   
Argonne Nat Lab 

Mira BlueGene/Q, Power BQC 16C 
1.60GHz + Custom 786,432 8.59 5 .101# 

Swiss CSCS Piz Daint, Cray XC30, Xeon 8C + 
Nvidia Kepler 14C + Custom  115,984 6.27 6 .099 

Leibniz 
Rechenzentrum SuperMUC, Intel 8C + IB 147,456 2.90  12 .0833 

CEA/TGCC-GENCI Curie tine nodes Bullx B510 Intel 
Xeon 8C 2.7 GHz + IB 79,504  1.36 26 .0491 

Exploration and 
Production  
Eni S.p.A. 

HPC2, Intel Xeon 10C 2.8 GHz + 
Nvidia Kepler 14C + IB 62,640 3.00 11 .0489 

DOE/OS  
L Berkeley Nat Lab 

Edison Cray XC30, Intel Xeon 12C 
2.4GHz + Custom 132,840 1.65 18 .0439 # 

Texas Advanced 
Computing Center 

Stampede, Dell Intel (8c) + Intel 
Xeon Phi (61c) + IB 78,848  .881* 7 .0161 

Meteo France Beaufix Bullx B710 Intel Xeon 
12C 2.7 GHz + IB 24,192 .469 

(.467*) 79 .0110 

Meteo France Prolix Bullx B710 Intel Xeon  
2.7 GHz 12C + IB 23,760 .464 

(.415*) 80 .00998 

U of Toulouse CALMIP Bullx DLC Intel Xeon 10C 
2.8 GHz + IB 12,240 .255 184 .00725 

Cambridge U Wilkes, Intel Xeon 6C 2.6 GHz + 
Nvidia Kepler 14C + IB 3584 .240 201 .00385 

TiTech TUSBAME-KFC Intel Xeon 6C  
2.1 GHz + IB 2720 .150 436 .00370 

HPL  
and  
HPCG 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HPL 
HPCG 
 
 
* scaled to reflect the same  
    number of cores 
# unoptimized implementation 



Site Computer Cores 
HPL 
Rmax 

(Pflops) 
HPL 
Rank 

HPCG 
(Pflops) 

HPCG/
HPL 

NSCC / Guangzhou 
Tianhe-2 NUDT,  

Xeon 12C 2.2GHz + Intel Xeon 
Phi 57C + Custom 

3,120,000 33.9 1 .580 1.7% 

RIKEN Advanced 
Inst for Comp Sci 

K computer Fujitsu SPARC64 
VIIIfx 8C + Custom 705,024 10.5  4 .427 4.1% 

DOE/OS                 
Oak Ridge Nat Lab 

Titan, Cray XK7 AMD 16C + 
Nvidia Kepler GPU 14C + 

Custom  
560,640 17.6 2 .322 1.8% 

DOE/OS   
Argonne Nat Lab 

Mira BlueGene/Q, Power BQC 
16C 1.60GHz + Custom 786,432 8.59 5 .101# 1.2% 

Swiss CSCS Piz Daint, Cray XC30, Xeon 8C 
+ Nvidia Kepler 14C + Custom  115,984 6.27 6 .099 1.6% 

Leibniz 
Rechenzentrum SuperMUC, Intel 8C + IB 147,456 2.90  12 .0833 2.9% 

CEA/TGCC-GENCI Curie tine nodes Bullx B510 
Intel Xeon 8C 2.7 GHz + IB 79,504  1.36 26 .0491 3.6% 

Exploration and 
Production  
Eni S.p.A. 

HPC2, Intel Xeon 10C 2.8 GHz 
+ Nvidia Kepler 14C + IB 62,640 3.00 11 .0489 1.6% 

DOE/OS  
L Berkeley Nat Lab 

Edison Cray XC30, Intel Xeon 
12C 2.4GHz + Custom 132,840 1.65 18 .0439 # 2.7% 

Texas Advanced 
Computing Center 

Stampede, Dell Intel (8c) + 
Intel Xeon Phi (61c) + IB 78,848  .881* 7 .0161 1.8% 

Meteo France Beaufix Bullx B710 Intel Xeon 
12C 2.7 GHz + IB 24,192 .469 

(.467*) 79 .0110 2.4% 

Meteo France Prolix Bullx B710 Intel Xeon  
2.7 GHz 12C + IB 23,760 .464 

(.415*) 80 .00998 2.4% 

U of Toulouse CALMIP Bullx DLC Intel Xeon 
10C 2.8 GHz + IB 12,240 .255 184 .00725 2.8% 

Cambridge U Wilkes, Intel Xeon 6C 2.6 GHz 
+ Nvidia Kepler 14C + IB 3584 .240 201 .00385 1.6% 

TiTech TUSBAME-KFC Intel Xeon 6C  
2.1 GHz + IB 2720 .150 436 .00370 2.5% 

HPL  
and  
HPCG 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HPL 
HPCG 
 
 
* scaled to reflect the same  
    number of cores 
# unoptimized implementation 



31 



32 

10000#

100000#

1000000#

10000000#

100000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# 19# 20#

Fl
op

/s
'

Rank'

Comparison'HPL'&'HPCG'
Peak,#HPL,#HPCG#

Rpeak'

HPL'



33 

10000#

100000#

1000000#

10000000#

100000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# 19# 20#

Fl
op

/s
'

Rank'

Comparison'HPL'&'HPCG'
Peak,'HPL,'HPCG'

Rpeak'

HPL'

HPCG'



Optimized Versions of HPCG 
¨  Intel 

Ø MKL has packaged CPU version of HPCG 
Ø See: http://bit.ly/hpcg-intel  

Ø In the process of packaging Xeon Phi version 
to be released soon. 

¨  Nvidia 
Ø Massimiliano Fatica and Evertt Phillips 
Ø Binary available 

Ø Contact Massimiliano mfatica@nvidia.com 

¨  Bull 
Ø Developed by CEA requesting the release 

07 
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Nvidia has it on their ARM64+K20 
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HPCG Tech Reports  
Toward a New Metric for Ranking  
High Performance Computing Systems 

•  Jack Dongarra and Michael Heroux 
HPCG Technical Specification 
•  Jack Dongarra, Michael Heroux,  

Piotr Luszczek 
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