
HPMMAP: Lightweight Memory Management for Commodity Operating Systems

Brian Kocoloski and John Lange
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

{briankoco,jacklange}@cs.pitt.edu

Abstract—Linux-based operating systems and runtimes (OS-
/Rs) have emerged as the environments of choice for the
majority of modern HPC systems. While Linux-based OS/Rs
have advantages such as extensive feature sets as well as devel-
oper familiarity, these features come at the cost of additional
overhead throughout the system. In contrast to Linux, there is
a substantial history of work in the HPC community focused
on lightweight OS/R architectures that provide scalable and
consistent performance for tightly coupled HPC applications,
but lack many of the features offered by commodity OS/Rs.
In this paper, we propose to bridge the gap between LWKs
and commodity OS/Rs by selectively providing a lightweight
memory subsystem for HPC applications in a commodity
OS/R environment. Our system HPMMAP provides isolated
and low overhead memory performance transparently to HPC
applications by bypassing Linux’s memory management layer.
Our approach is dynamically configurable at runtime, and adds
no additional overheads nor requires any resources when not
in use. We show that HPMMAP can decrease variance and
reduce application runtime by up to 50%.

Keywords-operating systems; high performance computing;
cloud computing

I. INTRODUCTION

While traditional HPC systems have typically followed
the practice of providing dedicated systems for a single
large scale application, current trends in both cloud envi-
ronments [1], [2] and supercomputing class systems point
to a future where that is no longer the case. Instead, as
cloud providers increase their HPC offerings and “in-situ”
application architectures [3], [4], [5] become more prevalent,
running HPC applications in a consolidated environment
concurrently with multiple competing workloads is likely to
become a common practice. While this movement towards
consolidation offers numerous opportunities for improving
access to cloud-based HPC resources [6], [7], [8], [9] and
enabling exascale class systems, it introduces a new set
of problems to HPC system design in the form of cross-
workload interference [10], [11] and resource contention.
This issue is exacerbated by the fact that the majority
of current and future HPC platforms will rely on some
form of a commodity operating system and runtime (OS/R)
architecture based on Linux. Such systems are designed from
a set of commodity design goals that are fundamentally
different from the goals of an HPC system, and often

result in behaviors under load that are not aligned with the
requirements of an HPC application.

Linux-based OS/Rs have emerged as the dominant en-
vironment for many modern HPC systems [12], [13], [14]
due to their support of extensive feature sets, ease of
programmability, familiarity to application developers, and
general ubiquity. Linux environments provide tangible ben-
efits to both usability and maintainability, while generally
offering acceptable performance in a dedicated and properly
configured HPC system. However, we argue that as HPC
systems continue to increase the degree of local workload
consolidation, a commodity OS/R architecture is ill-suited
to provide an appropriate level of performance for HPC-
class applications. This is because commodity systems, and
Linux in particular, are designed to maximize a set of design
goals that conflict with those required by HPC applications.
Specifically, commodity systems are almost always designed
to maximize resource utilization, ensure fairness, and most
importantly, gracefully degrade in the face of increasing
loads. These goals often directly conflict with those of HPC
environments that are generally characterized as requiring
consistent performance in the face of sustained heavy loads.

The deficiencies of commodity OS/Rs have led to the de-
velopment of a number of alternative architectures based on
a lightweight approach [15], [16]. These lightweight kernel
(LWK) OS/Rs provide optimized environments for HPC ap-
plications that avoid the pitfalls of commodity architectures.
In particular, LWK-based systems are designed to provide
consistent performance regardless of the current system load
while also removing as much overhead as possible. As a
result these systems eschew many of the features present in
a commodity system, and instead provide the bare minimum
of functionality needed to support a constrained set of HPC
applications. Thus, while these environments are capable
of providing superior performance at scale [17], [18], [19],
they are generally considered difficult to use and limited in
their functionality. As such they are not well suited to act
as a universal OS/R for a fully consolidated environment
executing a mix of HPC applications along with commodity
and/or other feature-rich workloads.

In order to provide effective consolidation for an HPC-
capable environment it is necessary to support both the
performance characteristics required by traditional HPC ap-
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Figure 1: A high-level view of HPMMAP memory partition-
ing

plications, as well as the extended features needed by both
commodity applications and in-situ analysis/visualization
workloads. Such an ideal system would combine the features
and behaviors of both a commodity and lightweight OS/R
into a single environment that supported the full range of
HPC and commodity applications. In this paper we focus on
providing such an architecture for node level memory man-
agement through an OS extension called HPMMAP (High
Performance Memory Mapping and Allocation Platform), a
secondary memory management layer designed specifically
for HPC environments running on commodity OS/Rs.

HPMMAP is based on the memory management design
philosophy used by LWK OS/R architectures. Fundamen-
tally, HPMMAP provides the ability to dynamically parti-
tion a node’s physical memory and independently manage
partitions in a separate and isolated resource management
layer. As a result, HPC applications running on a consoli-
dated platform are able to bypass the underlying commod-
ity memory management layer and instead use a special-
ized lightweight memory management framework designed
specifically around the requirements of HPC applications.
Thus, HPMMAP not only avoids the overheads associated
with Linux’s commodity memory management architecture,
but also is able to isolate HPC applications from interference
caused by co-located commodity workloads. Furthermore,
HPMMAP is implemented entirely as a kernel module and
so does not require modifications to either the commodity
OS/R or the applications themselves, and so provides the
benefits of a lightweight memory management stack in a
way that is completely transparent to HPC applications.

The architecture of HPMMAP is based on the capability,
provided by modern Linux kernels, to selectively disable
hardware resources. A disabled resource is effectively re-
moved from Linux’s resource management subsystems while
still remaining accessible to some degree. This not only
allows a user to selectively confine Linux into a dynam-
ically configurable hardware partition, but also to assume
control of the disabled resources with their own selected
management frameworks. HPMMAP specifically utilizes the
memory offlining capabilities to take control of a physically
partitioned region of memory and manage it independently

from the rest of the Linux kernel. This allows HPMMAP
to not only isolate HPC applications from the effects of
competing commodity workloads, but also to provide op-
timizations unavailable in a commodity system such as low
overhead large (2MB/4MB) page allocations.

The contributions of our work are the following:
• We identify several issues in the Linux memory man-

agement architecture and examine their effects on HPC
application performance.

• We introduce and describe the HPMMAP architecture
and demonstrate how it can effectively provide LWK-
like memory performance on a commodity OS/R.

• We evaluate HPMMAP on a single node and at scale
and show that it is capable of improving performance
by up to 50% for a set of widely used HPC benchmarks
from the Mantevo1 and ASC Sequoia2 suites.

II. LINUX MEMORY MANAGEMENT

Historically, Linux has taken a somewhat conservative
approach to memory management that focuses on the needs
of commodity class systems. While features have been
added to benefit HPC-class applications, they are designed
as secondary components that either operate in the back-
ground (Transparent Huge Pages) or require explicit user
configuration (HugeTLBfs). Both of these approaches, each
of which are discussed in detail in sections II-B and II-C,
provide applications with large page (2MB/4MB) memory
mappings as opposed to the default (4KB), and so improve
performance through shorter page table walks and decreased
TLB pressure. While these existing approaches do provide
performance benefits, particularly to HPC applications, they
still exhibit problematic behaviors, especially when the
system is experiencing significant load. We enumerate some
of these issues below:

General Linux Design Issues
• Processes cannot be isolated from the effects of mem-

ory contention, even when mapped by large pages.
• Process address space organization is optimized for

small page allocations, which often prevent large page
mappings due to alignment issues and permission con-
flicts.

Transparent Huge Pages Limitations
• Merge operations are driven by OS-level heuristics

without knowledge of application requirements and can
occur randomly during process execution.

• Merge operations are mutually exclusive with other
address space operations, requiring all page faults to
block until merge completion.

• Memory pinning results in large page “splitting” in
which large pages are broken down into small pages.

1http://http://mantevo.org/
2https://asc.llnl.gov/sequoia/benchmarks/



Transparent Huge Pages
Added Fault Total Avg Stdev
Load Size Faults Cycles Cycles

No
Small 136,004 1,768 993
Large 1,060 367,675 65,663
Merge 30 1,005,412 503,422

Yes
Small 135,987 2,206 1,444
Large 1,060 757,598 61,439
Merge 45 3,360,292 4,017,001

Figure 2: Cycles needed to handle page faults using Trans-
parent Huge Pages for the miniMD benchmark. “Merge” is
a small page fault following a THP “merge” operation

HugeTLBfs
Added Fault Total Avg Stdev
Load Size Faults Cycles Cycles

No Small 1,310 1,350 1,683
Large 84 735,384 458,239

Yes Small 1,777 475,724 16,387,888
Large 75 615,162 225,726

Figure 3: Cycles needed to handle page faults using
HugeTLBfs for the miniMD benchmark

HugeTLBfs Limitations
• Processes experience significant numbers of page faults

despite the presence of preallocated memory pools.
• Page fault handling results in significant overheads

when there is memory pressure from competing work-
loads.

• Process stacks cannot be mapped by large pages.
• Memory pinning is generally not possible for small

page regions due to a shortage of conventional memory.

A. General Linux Design Issues

Linux’s primary purpose as a commodity operating system
is evident by its reliance on an entirely demand-paged
memory allocation policy. All process memory allocation
requests result in the creation of a virtual memory area
(VMA) to account for the memory region, but do not lead
to the allocation of any physical memory. All physical
memory allocations are transparently handled by the page
fault handler as virtual pages are accessed by the process.
The primary design goal of this policy is not to maxi-
mize performance, but rather to optimize the utilization of
physical memory resources while also eliminating overheads
resulting from common commodity application behaviors
(e.g. fork/exec). Furthermore, this design yields a system
that can adequately support as many concurrent applications
as possible while avoiding resource exhaustion. In HPC
settings, these considerations are not nearly as important as
providing an environment that maximizes performance by
being simple and predictable, even if this means that the sys-

tem cannot overcommit physical resources. As we will show,
Linux’s policy decisions can lead to significant overheads
for HPC applications whose behavior differs substantially
from normal workloads, especially when compared to man-
agement schemes found in LWKs that are more concerned
with providing consistent performance than maximizing the
number of concurrent applications they can support.

Attempts to improve Linux’s memory performance for
HPC applications have focused on providing support for
large page allocations and page table mappings. It is gener-
ally accepted that large pages improve memory performance,
particularly for applications that have large memory foot-
prints and exhibit a high degree of memory locality. Large
page support is currently implemented using two separate
techniques: Transparent Huge Pages (THP) and HugeTLBfs.
However, each of these techniques still utilize the demand
paging policy from the default kernel architecture, and so
are unable to avoid many of the overheads that result from
repeated invocations of the kernel’s page fault handler.

Figures 2 and 3 demonstrate this behavior during execu-
tion of the miniMD benchmark from the Mantevo suite with
both THP and HugeTLBfs. As Figure 2 shows, with THP,
page faults resulting in large (2MB) page allocations take
over 350,000 more cycles to complete than those handled
with small (4KB) pages. Thus, the performance gains that
large pages provide are partially offset by the overhead
imposed by the page fault handler. This characteristic is
exacerbated when pressure is placed on the system from
additional workloads. As can be seen, when the system is put
under memory pressure from additional processes (in this
case, a parallel kernel build) the time that it takes to handle a
page fault with a large page nearly doubles. Figure 3 demon-
strates that HugeTLBfs suffers similarly from these effects.
While the ability to allocate large pages is not negatively
impacted by the additional workload, faults that are handled
by small pages experience an increase in page fault handling
time of roughly 475,000 cycles when a competing workload
is present. We will discuss the specific challenges that each
of these large page solutions presents in the coming sections,
but it is clear in both cases that the advantages of large page
allocations come at a significant cost as additional workloads
compete with the HPC application for resources.

The use of large pages in Linux is further complicated
by the fact that the system is primarily designed to operate
using small page allocations. Address space organization and
VMA layout decisions are made based on the assumption
that the process will be allocating memory at the 4KB
granularity. This often results in address space organizations
that are incompatible with large page mappings due to
alignment issues and permission conflicts, such as different
read/write/execute flags assigned to small and/or unaligned
VMAs. When the system encounters such configurations it
has no choice but to map them using small pages.



 0

 1
e+

07

 2
e+

07

P
ag

e 
fa

u
lt

 h
an

d
li

n
g
 t

im
e 

(c
y

cl
es

)

Application Duration
 0

 1
e+

07

 2
e+

07

P
ag

e 
fa

u
lt

 h
an

d
li

n
g
 t

im
e 

(c
y

cl
es

)

Application Duration

(a) No Competition (b) With Competition

 0

 2
.5

e+
06

 5
e+

06

P
ag

e 
fa

u
lt

 h
an

d
li

n
g
 t

im
e 

(c
y

cl
es

)

Application Duration
 0

 2
.5

e+
06

 5
e+

06
P

ag
e 

fa
u
lt

 h
an

d
li

n
g
 t

im
e 

(c
y

cl
es

)

Application Duration

(c) No Competition (d) With Competition

Figure 4: Impact of competing workloads on the page fault
handler using THP during the miniMD benchmark. Figures
(a) and (b) show all page faults taken, while Figures (c)
and (d) show the lower quarter of Figures (a) and (b),
respectively. Blue dots indicate 4KB faults following a THP
“merge” operation, while green dots indicate 2MB faults

B. Transparent Huge Pages

THP [20] was introduced to the kernel as a fully automatic
large page mechanism requiring no explicit application or
administrative cooperation. THP is implemented in two
separate components. First, the page fault handler will try to
fix faults by allocating and mapping in large pages whenever
possible. The success of a large page mapping is largely
dependent on the amount of free, contiguous memory in the
system, but it also depends on other characteristics, such
as the alignment of nearby VMAs in the address space.
Accordingly, the page fault handler may fail to fix the fault
with a large page, in which case it falls back and allocates
a small page to handle the fault. In addition, there is a
second component of THP implemented as a background
kernel thread, called khugepaged, that continuously attempts
to allocate a large page. Once successful, khugepaged maps
the freshly allocated large page into a valid area of the
address space of any process in the system that has requested
THP support. It should be noted that this “THP merging”
operation may require the unmapping of a number of small
pages currently mapped into the selected virtual address
range.

It is well-established in the HPC community that OS
noise can have a significant impact on HPC application
performance [21], [22]. Thus, while THP may be appropriate
for commodity use, its value to HPC applications is limited,
particularly due to the noise that can result from merging.
Merge operations are driven by OS-level heuristics that

are largely unaware of application requirements, and so
can have a substantial impact on HPC workloads. When
THP allocates a large page and begins to perform a merge,
it locks the page tables of the process that it decides to
assign the page to. While THP is performing the merge,
a relatively long operation compared to a typical page
fault, the process receiving the page is prevented from
servicing any page faults that occur. Only after the merge
has completed may the fault be handled. This behavior, as
reported in Figure 2 and illustrated in Figure 4(a), leads
to a roughly 1,000x increase in page fault handling time
for the miniMD benchmark. Furthermore, when the system
is under pressure from additional workloads, these merge
delays increase substantially, as demonstrated in Figure 4(b).
Finally, these merge operations are unsynchronized across
parallelized application ranks, thus introducing a significant
source of OS noise into the application’s execution.

In addition to the overhead of merging, general memory
fragmentation can be problematic for THP as well. An
often suggested optimization to provide protection from both
fragmentation and the effects of swapping under memory
contention is to pin all memory in RAM. Linux provides the
mlock and mlockall system calls that allow a process
to lock a specific memory region or its entire address
space, respectively, into RAM. However, this optimization
is largely incompatible with THP because THP does not
support the pinning of large pages. When a user specifies
that a region mapped by a large page be pinned in RAM,
the page is first split into small pages and then pinned.

C. HugeTLBfs

HugeTLBfs [23], the other large page mechanism, is a
RAM-based filesystem that allocates memory for each file
using a user-specified page size. HugeTLBfs requires the
presence of separate preallocated memory pools that must
be explicitly reserved by a system administrator. Access to
HugeTLBfs is generally managed through the libhugetlbfs
library. This library allows the virtual address space, with
the exception of the stack, to be mapped using large pages.
As previously demonstrated in Figure 3, HugeTLBfs still
requires a significant number of page faults to back an
application’s address space, even though it utilizes its own
preallocated memory pools and can essentially guarantee the
presence of available physical memory. Also, similarly to
THP, HugeTLBfs is constrained by the process address space
organization specified by the VMAs.

Figure 5 shows how the addition of competing workloads
affects the page fault handler on applications backed by
HugeTLBfs. While a lightly loaded system experiences
a fairly low amount of overhead with HugeTLBfs, the
presence of competing workloads imposes an immediate
effect on all applications. The graphs in the top row of
Figure 5 show the behavior of the page fault handler for a
single workload configuration running an HPC benchmark.
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Figure 5: Impact of additional workloads on the page fault handler using HugeTLBfs. The y-axis is the number of cycles to
handle a fault, while the x-axis is time. Each column is a separate benchmark. The top row is the benchmark running without
any additional workloads, while the bottow row is the same benchmark running concurrently with kernel compilations. Faults
fixed with small (4KB) pages and large (2MB) pages are red and green, respectively

The graphs on the bottom row show the same behavior
for a benchmark co-located with an additional competing
workload (parallel kernel build). In each of these figures,
we see that the addition of a competing workload results
in substantial increases in the time to handle page faults
in areas not managed directly by HugeTLBfs. Though this
behavior might seem counter-intuitive, it is largely explained
by the fact that HugeTLBfs requires a separate memory
pool that the default page fault handler is unable to allocate
memory from. Although sufficient memory is available
through HugeTLBfs, the page fault handler cannot use it
as it reserved explicitly for HugeTLBfs allocations. The
competing workloads saturate the remaining resources on
the system and force the benchmark process to contend for
now scarce small pages.

III. HPMMAP

In this section, we present HPMMAP (High Performance
Memory Mapping and Allocation Platform). HPMMAP
seeks to provide low overhead memory management for
HPC applications by adopting a lightweight design philoso-
phy that bypasses the default memory management system
provided by the OS. In addition, HPMMAP is able to pro-
vide isolated memory partitioning capabilities that prevent
cross-workload interference from affecting the performance
of HPC applications. Section III-A will provide a high-level
overview of HPMMAP, including a discussion of the theory

motivating its design. We will demonstrate how applications
make use of HPMMAP and discuss the implementation in
section III-B.

A. Overview

In contrast to commodity operating systems, lightweight
kernels (LWKs) are specifically built to provide an envi-
ronment that can optimize HPC application performance.
LWKs, such as Kitten [15] from Sandia National Labs and
Blue Gene’s CNK [16], generally aim to accomplish this by
providing low-overhead, consistent, and predictable access
to hardware resources. Such goals lead to design decisions
that sacrifice things like resource sharing and fine-grained
resource allocation, and instead favor more simple, coarse-
grained resource management strategies. The goals of the
individual subsystems found in lightweight kernels then nec-
essarily conflict with those that exist in commodity operating
environments, such as maximizing resource utilization and
sharing, fairness, and security.

In this work, our goal is to provide a lightweight memory
subsystem that can exist in the context of a full-fledged
commodity Linux kernel in a way that can transparently
but effectively support HPC application workloads. Our
solution takes the form of HPMMAP, which is designed to
allow a lightweight kernel memory subsystem to plug into
a commodity operating system and support HPC applica-
tions. HPMMAP does not attempt to replace or augment



any existing memory management techniques, but instead
installs an additional lightweight subsystem that can exist in
parallel with any commodity subsystems that the OS already
employs. Thus, both commodity and HPC workloads can
co-exist on the same machine, but need not share a memory
management interface that is necessarily better at supporting
one than the other.

HPMMAP has been implemented as a Linux kernel mod-
ule that can be loaded into a running kernel and thus does not
require kernel re-compilation or system reconfiguration to
install. HPMMAP provides a lightweight memory subsystem
and removes overheads at both the software and hardware
levels by providing its own virtual memory management and
physical memory management layers. HPMMAP’s memory
management layers borrow heavily from those found in the
Kitten LWK. We have shown in previous work that Kitten
provides a very high degree of memory performance and
isolation and can support HPC applications more effectively
than commodity environments [15], [24].

HPMMAP is optimized to support HPC application per-
formance. For example, HPMMAP treats large pages (2MB
by default, but up to 1GB where supported by hardware) as
the fundamental unit of memory allocation, which allows it
to overcome the issues that result from commodity layouts
that are optimized for small page allocations. As a result,
processes mapped by HPMMAP have their entire address
spaces mapped by large pages by default. Furthermore, HP-
MMAP provides an “on-request” memory allocation policy.
As opposed to the demand paging scheme found in Linux
and other commodity systems, when a process requests
memory from the operating system, all virtual memory
regions that are created are immediately mapped to physical
memory regions. This means that valid accesses to these
virtual regions will generate no page faults, and thus will
completely avoid overhead costs imposed by the page fault
handler. The combination of default large page allocations
and the elimination of page fault handling means that
processes mapped by HPMMAP have almost no exposure to
any overheads that can be generated from more heavyweight
memory management models.

By enabling a Linux configuration feature called Memory
Hot Remove, HPMMAP can offline memory from Linux
and impose its own management schemes over it. Offlined
memory will never be allocated by Linux, but it remains
physically addressable by the CPU. HPMMAP again bor-
rows from Kitten by using Kitten’s buddy allocator to man-
age offlined memory. Memory offlining allows HPMMAP
to isolate processes by preventing the effects of memory
contention on the commodity memory regions from spilling
over into the HPMMAP regions. Furthermore, the fact that
offlined memory is available in sufficiently large contiguous
blocks (no less than 128MB, and generally much more)
ensures that HPMMAP can always allocate large pages,
never needing to default to a smaller page size.

User Space Kernel Space

Application Launch

System Call Invocation

PID Hash 

Table

Insert 

Search
PID Found?

HPMMAP 

System Call
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Application Exit
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Hardware
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Figure 6: Application Interaction with HPMMAP

B. HPMMAP Implementation

HPMMAP is designed to operate transparently to the
applications using it, and thus requires no modifications
or special compile time options in order to run. User-level
interaction with HPMMAP is diagrammed in Figure 6. The
left side of the figure illustrates user-level operations while
the right side contains operations executed in the kernel by
the HPMMAP subsystem. A special user-level tool is used
to both launch and register applications with the HPMMAP
service. Registration is done by inserting each process ID
number (PID) into an internal hash table. The hash table
entry remains valid for the entire lifetime of the process and
is only removed when the process exits.

HPMMAP’s interface is based on system call interposi-
tioning. When any process makes a system call that requires
modifications to its virtual address space, a check is made
against the hash table to determine if the process is handled
by HPMMAP. If the PID is not found, this indicates that
the process has not requested HPMMAP support, and so
the default Linux system call handler is invoked as normal.
However, if the PID is present, the system call is redirected
to an internal implementation provided by HPMMAP. HP-
MMAP then performs the specified operation on its internal
state, allocating and freeing memory from its internal pools
as necessary and updating the process page tables directly.

Page table modifications are implemented internally to
HPMMAP and are based on a lightweight paging scheme
that takes advantage of the fact that processes on 64-bit
operating systems generally only use a very small portion of
their virtual address space. Typically, at least 256 terabytes
of virtual memory are available for the process to use, but in
our experience Linux only maps a very small percentage of
this memory. HPMMAP locates and maps memory into an
unused memory region, with the result that these mappings



are entirely independent from the virtual memory state
handled by Linux. This ensures that Linux will not interfere
either directly or indirectly in the operation of HPMMAP.

Our implementation of the lightweight memory manager
consists of roughly 3,000 lines of C code. This includes code
that implements the mmap, munmap, mprotect and brk
system calls,3 page table management code, and the buddy
allocator.

IV. EXPERIMENTAL EVALUATION

To evaluate the efficacy of HPMMAP, we compared
the performance of HPMMAP to that of a commodity
Linux environment using both Transparent Huge Pages and
HugeTLBfs. The goal of these experiments was to evaluate
the performance of HPC applications executing concur-
rently with commodity workloads on the same system. Our
evaluation is split into two parts. First, we ran a set of
benchmarks on a single node and scaled up the amount of
co-located commodity work in order to determine the effects
of resource contention on HPC application performance.
Second, we performed a multi-node scaling study on an 8-
node HPC testbed in which each node executed co-located
HPC and commodity workloads to determine whether or
not the effects of contention on a single node were serious
enough to result in discernible performance impacts at larger
scales.

For each experiment we used the same system config-
uration, changing only the memory manager supporting
the workloads. For the THP tests, THP managed both the
HPC and commodity workloads. For the HugeTLBfs tests,
HugeTLBfs managed only the HPC workload, while THP
was disabled and Linux had no large page support for
the commodity workload. For the HPMMAP tests, HP-
MMAP managed the HPC workload while THP managed
the commodity workload. For the single node tests we used
a dedicated Dell R415 server configured with two 6-core
Opteron 4174 CPUs and 16GB of RAM. The memory layout
consisted of two NUMA zones equally shared between the
processors with memory interleaving disabled. The operating
system was a standard Fedora 15 environment running an
unmodified 2.6.43.8 (3.3.8) kernel. For the THP tests, the
full system memory was available to the operating system
to use. For the HugeTLBfs tests, 12GB of the 16GB was
reserved at system boot time for large pages. This memory
was reserved evenly across the two NUMA zones. For the
HPMMAP tests, 12GB of memory was offlined, again split
evenly across the two NUMA zones. The scaling tests were
conducted on an 8 node experimental cluster located at
Sandia National Labs. Each node was configured with two
4-core Intel Xeon X5570 CPUs, 24GB of RAM, and a
1Gbit NIC. The memory layout consisted of two NUMA

3There are additional system calls that modify a process’ virtual address
space. We have found that HPC applications do not use these calls in
practice, so we have not yet implemented them.

zones equally shared between the processors with memory
interleaving disabled. The operating system on each node
was an unmodified 3.5.7 kernel built from source. For the
HPMMAP tests, 20GB of memory was offlined, split evenly
across the two NUMA zones.

A. Benchmarks

The benchmarks we selected for our evaluation were
taken from the Mantevo MiniApps benchmark suite from
Sandia National Labs. These benchmarks are a set of “proxy
applications” that exhibit the core kernel behavior common
to real world HPC applications. They are generally small
but are designed to exhibit the behavior of large-scale HPC
applications. Each benchmark was compiled using OpenMPI
(version 1.7.2) for parallel execution. We also evaluated the
performance of the LAMMPS benchmark from the ASC
Sequoia benchmark suite provided by Lawrence Livermore
National Lab. We chose the following benchmarks for these
experiments:

• HPCCG: A conjugate gradient solver whose workload
is representative of many HPC applications (single node
and scaling study)

• CoMD: A set of classical molecular dynamics algo-
rithms used in materials science (single node)

• miniMD: A proxy for the force computations in a
typical molecular dynamics application (single node)

• miniFE: An unstructured implicit finite element code
(single node and scaling study)

• LAMMPS: Classical molecular dynamics simulation
code (scaling study)

B. Single Node Experiments

For each experiment, we ran the benchmark in weak
scaling mode. We configured each benchmark so that it
would use most of the system’s resources. Some of the
benchmarks require that the number of processors devoted to
the application is a power of two, so we limited the scaling
to 8 of the system’s 12 cores. The input sizes for each
benchmark were then set so that roughly 12GB of the 16GB
of memory on the system were allocated to the application,
as this was the amount reserved for the HugeTLBfs and
HPMMAP memory pools.

For each memory manager, each benchmark was executed
in two different environments that represent varying levels
of competing commodity workloads. The first, which we
refer to as commodity profile A, consisted of a single parallel
kernel build. When the HPC application was running on 1, 2,
or 4 cores, this kernel build was configured to run on 8 cores.
Conversely, when the HPC application was running on 8
cores, we limited the parallel kernel build to 4 cores so as to
not overcommit the cores. However, the second commodity
environment we tested, referred to as commodity profile B,
consisted of a duplicate of the parallel kernel build. In both
cases, the kernel builds were not pinned to any memory or
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Figure 7: Results of the single node experiments. The left
column shows the benchmarks running with commodity
profile A, while the right column shows them running with
commodity profile B

cores, while the HPC application was configured to pin half
of its cores on each NUMA zone, while exactly half its
memory was allocated from each NUMA zone (for 1 core
tests, all memory came from 1 zone).

The results of these experiments are shown in Figure 7.
The results of commodity profile A are shown in the left
column while commodity profile B is in the right column.
Each data point in these figures reports both the average and
standard deviation of 10 runs of the benchmark, with the
standard deviation represented by error bars. These figures
clearly demonstrate that, for commodity profile A, HPMMAP
provides superior performance for the HPC benchmarks,
reducing the runtime by an average of 15% compared
with THP and 9% compared with HugeTLBfs across all
benchmarks. In addition, the HPC benchmarks exhibit sub-

stantial consistency improvements with runtime variance
decreasing by a wide margin. In every experiment we ran,
HPMMAP provided better performance than either Linux
mechanism, and avoided interference from the commodity
workload (seen by the low runtime variance) even as the
benchmark scaled up to 8 cores. For these experiments,
THP in particular showed substantial degradation as the
core count increased, and in each experiment exhibited
dramatically less consistency than the other configurations.

The right column of Figure 7 shows the results of the
experiments when running with commodity profile B. Again,
these results show strong evidence that HPMMAP provides
a substantially better environment for HPC applications
than both HugeTLBfs and THP. On average HPMMAP
improves performance by 16% over THP and 36% over
HugeTLBfs, and just as in the earlier experiments the
runtime variance is dramatically lower as well. For these
configurations HugeTLBfs was the notable outlier in that
it showed significant performance degradation as the core
count increased to 8. The reason for this is due to the fact
that the memory pressure reached a threshold at 8 cores
due to the weak scaling properties of each benchmark. As
we described earlier, HugeTLBfs is especially susceptible
to situations where the system is under significant memory
pressure. In this case, even though enough memory was
available to satisfy requests (as evidenced by the results
of THP and HPMMAP), HugeTLBfs introduced significant
overheads due to its effect on the allocation policy.

C. Scaling Experiments

In addition to the single node experiments we conducted
on a local machine, we also conducted a set of experiments
to determine the impact of memory performance on appli-
cation scalability. For this study we omitted HugeTLBfs
experiments due to the feature not being available in the
system’s kernel configuration. Nevertheless, given the results
from the single node tests, we believe that HugeTLBfs would
continue to provide poor results when scaled up to multiple
nodes. As in the single node test, we ran each benchmark
in weak scaling mode.

Due to the fact that we were constrained to a Gigabit
Ethernet network, we chose to limit the application to 4
cores per node instead of 8 to try to reduce the effects that
limited network bandwidth would have on the benchmark
performance. This allowed us to scale the benchmarks up to
32 ranks (8 nodes with 4 cores each). For these tests, we
ran each benchmark with 4, 8, 16, and 32 application ranks
across 1, 2, 4, and 8 nodes in order to maximize the memory
utilization.

Each benchmark was again executed with two different
profiles of competing workload. The first, which we refer to
as commodity profile C, consisted of a single parallel kernel
build that consumed the remaining 4 cores of the node. This
workload was executed on each node that was executing the
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Figure 8: Results of the scaling experiments. The left column
shows the benchmarks running with commodity profile C,
while the right column shows them running with commodity
profile D

HPC application. The second commodity environment we
tested, referred to as commodity profile D, consisted of 2
parallel kernel builds which each ran on 4 cores. In both
cases, the kernel builds were not pinned to any memory or
cores, while the HPC application was configured to pin 2
cores on each NUMA zone, while exactly half its memory
was allocated from each NUMA zone.

The results are shown in Figure 8. For 32 rank runs,
HPMMAP improves performance over THP by 12% for
HPCCG, 9% for miniFE, and 2% for LAMMPS on com-
modity profile C, as well as by 11% for HPCCG, 6%
for minFE and 4% for LAMMPS on commodity profile
D. Additionally, the variance in performance provided by
HPMMAP was generally less than that provided by THP for
each of these benchmarks, and significantly less for HPCCG,
which suggests that continued scaling of these applications
would yield increasing levels of divergence between the
memory managers.

The miniFE results are particularly interesting because
they demonstrate the effects of single node variability
on scaling behavior. As these figures show, on a single
node THP performs comparably to HPMMAP, and perhaps
slightly better under commodity profile C. However, as soon
as the application scales past a single node, the improve-

ment in single node consistency that HPMMAP provided
translates into a significant improvement in average runtime.
Although the benchmark does not scale particularly well
from 1 to 2 nodes on either memory manager, this is almost
certainly due to the network overhead that is introduced
only after the 2nd node is added. Finally, the LAMMPS
benchmark results also show steadily superior performance
for HPMMAP over THP. In particular, commodity profile
D begins to show divergence between the memory man-
agement layers. We also see that the performance provided
by HPMMAP for each of these benchmarks remains very
consistent.

V. RELATED WORK

A number of research projects have provided LWKs to
support HPC application execution [25], [16], [24]. While
these projects have demonstrated the effectiveness of the
LWK approach, our approach is not to replace commodity
OSes entirely but rather to replace an individual management
layer with a lightweight version. FusedOS [26] attempts
to consolidate a lightweight kernel and a fullweight kernel
(FWK) on the same node by partitioning the resources of a
heterogeneous multi-core system and deploying a LWK to
handle HPC workloads, while maintaining the benefits of a
FWK environment. Though the high-level motivation for this
project is similar to ours, our approach is much more com-
patible in commodity architectures and cloud-based systems
as it is not specifically tailored to supercomputing hardware.

Other research has focused not on replacing commodity
OSes but rather on fixing the subsystems that make them
problematic for HPC workloads. The ZeptoOS [27] project
took the approach of modifying the Linux virtual memory
management layer to eliminate the overheads that it imposes.
Their solution consisted of preallocating very large regions
of memory from the OS at boot time and providing a
single HPC-execution environment that maps these regions
with large pages. This approach effectively eliminates all
overheads associated with virtual memory management, but
as the developers themselves admit [12], Big Memory is
not a reasonable solution for general purpose OSes. Cray’s
CNL [13] is another approach focused on optimizing Linux
for HPC workloads. CNL provides a runtime environment
based on a highly-modified version of the Linux kernel.
In comparison to these approaches, our approach is more
amenable to commodity environments as it does not modify
existing memory management schemes that are optimized
for commodity workloads, but rather creates an additional
lightweight memory management layer that can exist in
parallel with existing subsystems.

VI. CONCLUSION

In this work, we proposed HPMMAP (High Performance
Memory Mapping and Allocation Platform) and showed that
the lightweight memory management it provides is capable



of yielding a level of performance typically unattainable
in commodity OS/Rs. HPMMAP borrows heavily from the
LWK research community to impose a memory management
system over partitioned hardware that provides low overhead
and consistent access even in the face of significant pressure
from competing application workloads. Further, HPMMAP
does not modify the Linux memory subsystem but inserts
itself in a way that can exist in parallel with Linux. The result
is that its installation requires no system re-configuration or
application modification. We demonstrated that applications
using HPMMAP experience up to 50% reduction in runtime
and execute in a significantly less variable environment in
the face of competing commodity workloads.
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