CHAPTER 5

Elements and the Periodic Table

The Periodic Table

Are you made of star dust?

Are you made of star dust?

The Big Bang produced hydrogen and helium and a tiny bit of lithium

Are you made of star dust?

Other elements were created in the cores of exploding stars

Element	% by mole
Hydrogen	63.0
Oxygen	26.0
Carbon	9.0
Nitrogen	1.25
Calcium	0.25
Phosphorus	0.19
Potassium	0.06
Sulfur	0.06
Sodium	0.04
Chlorine	0.025
Magnesium	0.013
Iron	0.00004
Iodine	0.000002

99% of atoms in a human body come from only 4 elements

Essential elements

Н				Г	ma	oror	utri	onte									He
Li	Be			ł	trac		lem	ente	>			В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

macronutrients: elements needed in large quantities by your body.

trace elements: elements that are needed in very small quantities to maintain optimum health.

Metals, nonmetals and metalloids

ionic compound: one non-metal atom bonded with one metal atom

molecular compound: two non-metal atoms bonded with each other

Metals, nonmetals and metalloids

ionic compound: one non-metal atom bonded with one metal atom

molecular compound: two non-metal atoms bonded with each other

What does "periodic" in "periodic table" mean?

way to organize the elements known at the time.

Note that at this time, very little is known about atoms. Protons and atomic numbers were **not discovered yet**.

Dimitri Mendeleev

Mendeleev uses density (a physical property) of atoms, and organizes them in order of increasing atomic mass.

The **periodic** table contains patterns that repeat at regular intervals

periodic: repeating at regular intervals.

Atomic radius

Increasing atomic number

Like for density, there is a **repeating pattern** in atomic radii.

Atomic radius

Atomic radius

atomic radius: the distance from the center of an atom to its "outer edge."

Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

small

Electronegativity

electronegativity: the ability of an atom to attract another atom's electrons when bound to that other atom.

Н																	He
Li	Be											В	С	Ν	Ο	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

low

Ionization energy

ionization energy: the energy required to remove an electron from an atom.

Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	T	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

low

The first periodic table

Mendeleev placed the elements in order of increasing atomic mass and then noticed a repeating pattern in the oxide and hydride formula.

The first periodic table

Mendeleev placed the elements in order of increasing atomic mass and then noticed a repeating pattern in the oxide and hydride formula.

A new pattern was discovered!

The first periodic table

Oxides and hydrides sorted into rows:

Mendeleev left empty spaces for elements not yet discovered

Gallium was discovered 6 years later!

The modern periodic table

The modern periodic table arranges elements in order of **increasing atomic number**, not atomic mass.

Scientists have been adding elements to the periodic table, as more are discovered or created.

The last naturally occurring element to be discovered is Francium (Fr) in 1939.

70 years after Mendeleev, who had called it *eka-caesium*

The modern periodic table

Electron structure was discovered after the periodic table was developed...

Overlapping orbitals of boron

Electron structure was discovered after the periodic table was developed...

2009-2010

Element #117 was discovered through a Russian-US collaboration. The discovery still needs to be confirmed. It is temporarily named ununseptium (Uus).

Discoveries are made all the time!

Elements in the first periodic table were arranged in order of increasing atomic mass

Elements in the modern periodic table are arranged in order of increasing atomic number

The modern periodic table shows trends or repeating patterns in atomic radii, electronegativity and ionization energy

Increasing atomic number

Elements and the Periodic Table

Properties of Groups of Elements There are millions and millions of different kinds of matter (compounds) composed of the same 92 elements.

These elements are organized in a periodic table.

It is called "periodic" because there is a repeating pattern.

There are millions and millions of different kinds of matter (compounds) composed of the same 92 elements.

These elements are organized in a periodic table.

It is called "periodic" because there is a repeating pattern.

Elements that belong to the same column have similar chemical properties.

Here, we are going to go over these groups of elements

1 H 1.0079		Periodic table of the elements															² He 4.0028
3 Li 6.941 lithium	Be 9.0122							Non	meta	Is		5 B 10.811 boron	6 C 12.011 carbon	7 N 14.007 pitrogen	8 0 15.999	9 F 18.998 fluorine	10 Ne 20.180
11 Na 22.990 sodium	12 Mg 24.305 magnesium		Metals 13 14 15 16 17 A A 20582 23 24 25 26 27 28 29 30 31 32 33 34 35														
19 K 39.098	20 Ca 40.078 calcium	21 Sc 44.956 scandium	11 22 23 24 25 26 27 28 29 30 31 32 33 34 35 44955 47.867 50.942 51.996 58.455 86.93 63.246 65.386 67.23 72.61 72.02 78.06 70.074 35 35 36.97 63.246 65.386 67.23 72.61 70.22 78.06 70.074 2010 10.994 10														
37 Rb 85.468	38 Sr 87.62	39 Y 88.905	zardum titanum vanadum diversion maggarese ion cobit ticket copper zinc galum genmand seemic telenium bromine 19 40 41 42 43 45 46 47 48 49 50 51 52 53 X X Nb Mos T Ru Nb Pod Ag Cd In Nn Nn 12/2 12/													54 Xe 131.29	
55 Cs 132.91	56 Ba	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.559	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (267)	105 Db (268)	106 Sg (271)	107 Bh (272)	108 HS (270)	109 Mt (276)	110 DS (281)	111 Rg (280)	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (293)	astatine	118 Uuo (294)
francium	radium	lawrencium	57 I.a	58 Ce	59 Pr	60 Nd	hassium	62 Sm		64 Gd	65 Th		Financial diam		69 Tr	v Yb	ununoctium
			Lat Cec Fr INC Fill STIT EU Gd ID Dy Fill ST ET IT IT IT State Sta													173.06 ytterbium 102 NO (259)	n

1 H 1.0079 hydrogen	H Periodic table of the elements															2 He 4.0028 helium	
3 Li 6.941 lithium	1 9.(Alkalimetals Nonmetals Nonmetals															10 Ne 20.180 neon
¹¹ Na ^{22,990}	2 Mg 24.305 nagnesium	Metals 13 14 15 16 17 12 13 14 15 16 17 12 13 14 15 16 17 12 13 14 15 16 17 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 32.065 35.453 <th>18 Ar 39.948 argon</th>															18 Ar 39.948 argon
19 K 39.098	20 Ca 40.078 calcium	n 21 Scardium ditanium ditaniu															36 Kr 83.80 krypten
37 Rb 85.468 aubidium	38 Sr 87.62	39 Y 88.906 vttrium	40 Zr 91.224 zirronium	41 Nb 92.906 niohium	42 Mo 95.96 malybdenum	43 TC (98) technetium	44 Ru 101.07 ruthenium	45 Rh 102.91 rhodium	46 Pd 106.42 palladium	47 Ag 107.87 silver	48 Cd 112.41 cadmium	49 In 114.82 indium	50 Sn 118.71	51 Sb 121.76	52 Te 127.60 tellurium	53 I 126.90	54 Xe 131.29
55 CS 132.91	56 Ba	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.00	79 Au 196.97	80 Hg 200.559	81 204.38 thallium	82 Pb 207.2	83 Bi 200.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223) francium	BB Ra (226) radium	103 Lr (262) lawrencium	104 Rf (267) rutherfordium	105 Db (268) dubnium	106 Sg (271) seaborgium	107 Bh (272) bohrium	108 HS (270) hassium	109 Mt (276) meitnerium	110 DS (281) darmstadtium	111 Rg (280) roentgenium	112 Uub (285) ununbium	113 Uut (284) ununtrium	114 Uuq (289) ununquadium	115 Uup (288) ununpentium	116 Uuh (293) ununhexium	astaurie	118 Uuo (294) ununoctium
			57 La	58 Ce	59 Pr	60 Nd	(145)	1 50 36	63 Eu	64 Gd	65 Tb	66 Dy	67 HC	68 Er	69 Tm	1 70 173 06)
			Ianthanu 89 (227) actiniun	m cerium 90 Th 232.04 thorium	praseodymi 91 231.04 protactiniu	92 U 238.03 um uranium	93 NC (237) neptuniu	94 Pu (244) m plutoniu	n eruopiur 95 (243) americiu	n gadoliniu 96 Cm (247) m curium	m terbium 97 Bk (247) berkelium	dysprosiu 98 (251) californiu	m holmiun 99 Ess (252) m einsteiniu	100 erbium 100 Fm (257) m fermium	thulium 101 (258) mendelevi	tion tion tion tion tion tion tion tion	m •

1 H 1.0079 hydrogen	Periodic table of the elements															2 He 4.0028 helium
3 Li 6.941 lithium		411	(a	lin	e	69	nrt	h	m	eta	als	D11 bon	Z N 14.007 nitrogen	8 0 15.999 oxygen	9 F 18.998 fluorine	10 Ne 20.180 neon
11 Na 22.990 sodium magnesium		IVIGUAIS INIGUAIS INIGUAIS INIGUAIS INIGUAIS Al 26.982 aluminum 28.086 silicon 90.974 silicon 30.974 silicon 30.974 silicon 31.32 33.34 35														
19 20 Ca 39.098 40.078 potassium calcium	SC 44.956 scandium	47.867 titanium	23 50.942 vanadium	Cr 51.996 chromium	25 Mn 54.938 manganese	26 Fe 55.845 iron	27 Co 58.933 cobalt	28 Ni 58.693 nickel	29 Cu 63.546 copper	30 Zn 65.38 zinc	Ga 69.723 galium	32 T2.61 germanium	33 AS 79.922 arsenic	34 Se 78.96 selenium	35 Br 79.904 bromine	36 Kr 83.80 krypton
37 85 .468 rubidium 37 38 S7 87 .62 strontium	39 Y 88.906 yttrium	40 Zr 91.224 zirconium	92,906 niobium	42 Mo 95.96 molybdenum	43 TC (98) technetium	101.07 ruthenium	45 Rh 102.91 rhodium	Pd 106.42 palladium	47 Ag 107.87 silver	48 Cd 112.41 cadmium	49 In 114.82 indium	50 Sn 118.71 tin	SI 121.76 antimony	Te 127.60 tellurium	53 126.90 iodine	54 Xe 131.29 xenon
55 56 Ba 132.91 137.33 cesium barium	71 Lu 174.97 lutetium	72 Hf 178.49 hafnium	Ta 180.95 tantalum	74 W 183.84 tungsten	ntenium	76 OS 190.23 osmium	77 Ir 192.22 iridium	78 Pt 195.00 platinum	79 Au 196.97 gold	80 Hg 200.559 mercury	81 Tl 204.38 thallium	82 Pb 207.2 lead	83 Bi 208.98 bismuth	Po (209) polonium	85 (210) astatine	86 Rn (222) radon
87 Fr (223) francium	103 Lr (262) lawrencium	104 Rf (267) rutherfordium	105 Db (268) dubnium	106 Sg (271) seaborgium	107 Bh (272) bohrium	108 (270) hassium	109 Mt (276) meitnerium	110 DS (281) darmstadtium	111 Rg (280) roentgenium	112 Uub (285) ununbium	113 Uut (284) ununtrium	114 Uuq (289) ununquadium	Uup (288) ununpentium	(293) ununhexium		118 Uuo (294) ununoctium
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 HC	68 Er	69 Tm		
		AC (227) actinium	90 232.04 thorium	praseodymi 91 231.04 protactiniu	um neodymiu 92 U 238,03 um uranium	93 Npromethiu (237) neptuniu	m samariur 94 Pu (244) plutoniur	n eruopiun 95 (243) m americiu	gadoliniu 96 (247) m curium	m terbium 97 Bk (247) berkeliun	98 Cf (251) californiu	m holmium 99 Es (252) m einsteiniu	100 generation and the second	thulium 101 (258) mendeleviu	ytterbium 102 NC (259) m nobelium	m >

Alkali metals

Alkali metals

Electron configuration

Alkali metals

We will see why this happens after we discuss oxygen and chlorine.

Alkaline earth metals

Alkaline earth metals

Electron configuration

1:1 ratio with oxygen 1:2 ratio with chlorine Cl Be Cl Be ()BeCl₂ BeO Cl Mg Cl Mg MgCl₂ MgO Ca Cl Ca CaCl₂ CaO

We will see why this happens after we discuss oxygen and chlorine.

Alkaline earth metals

Note how the 3p orbital gets filled before 3d

Electron configuration

Energy

Transition metals all have electrons in partly filled *d* orbitals.

1s ² , 2	s ² , 2 p ⁶ , 3s ²	² , 3p ⁶ , 4s ² , 3d ⁶
S	р	d
	000000	
-e-e-		
- e - e -(
- e -e-		
Iron: 2	6 electrons	

	1s²,	2s ² , 2p ⁶ , 3s ²	² , 3p ⁶ , 4s ² , 3d ¹⁰ , 5s ² ,	$4d^{9}$
	S	р	d	
	- e -e	-000000		
		$-\mathbf{e} \cdot \mathbf{e} \cdot \mathbf{e} \cdot \mathbf{e} \cdot \mathbf{e} \cdot \mathbf{e}$		
ł	- e ·e			
	- e -e			
	ee			
	ee			
	Silve	r: 47 electrons	5	

Bonding properties are complicated. For bonding with oxygen:

1:1, 2:3, 3:4 ratios for iron Rust (Fe₂O₃)

2:1 ratio for silver

Carbon, nitrogen, oxygen

Carbon, nitrogen, oxygen

The electron structures makes these elements very flexible in their chemistry.

Carbon can accept or donate electrons

Carbon, nitrogen, oxygen

The electron structures makes these elements very flexible in their chemistry.

Carbon can accept or donate electrons

Nitrogen and oxygen tend to accept electrons

Halogens

Halogens

Halogens have a single open quantum state in the highest energy *p* orbital.

Fluorine: 9 electrons

1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁵ S **eeeee** ee **eeeee**e -**e**-e <u>eeeee</u> ee ee

Bromine: 35 electrons

Halogens

In their pure forms:

Halogens form diatomic molecules (Cl_2 , F_2) They are highly reactive, and toxic to many organisms.

When combined with a metal: The resulting compound is generally

an ionic salt.

Noble gases

Electrons in completely filled energy levels do not make bonds.

Remember: Electrons are responsible for bonding properties.

By forming the ionic compound sodium chloride, both chloride and sodium ions achieve a noble gas electron structure!

energy level

Can you form a molecule with hydrogen and oxygen atoms?

Each hydrogen atom donates one electron to the oxygen atom

Oxygen now has 10 electrons, like neon (a noble gas)

Elements that belong to the same period in the periodic table have similar chemical properties.

This is because they have similar electron configurations, and electrons are responsible for bonding properties.

A noble gas electron structure is obtained through bond formation.

Elements and the Periodic Table

Valence

Only the electrons in the highest unfilled energy level form chemical bonds.

Does that mean we don't need to worry about electrons in filled energy levels?

Only the electrons in the highest unfilled energy level form chemical bonds.

Does that mean we don't need to worry about electrons in filled energy levels?

valence electrons: electrons in the highest unfilled energy level, responsible for making chemical bonds.

Oxygen and sulfur belong to the same group in the periodic table

Remember that elements that belong to the same group have similar chemical properties!

Sulfur and oxygen have the same number of valence electrons. They form similar chemical compounds.

Sulfur and oxygen have the same number of valence electrons. They form similar chemical compounds.

1. Write down the electron configuration.

1. Write down the electron configuration.

$CI = 1s^22s^22p^63s^23p^5$

- 1. Write down the electron configuration.
- 2. Count how many electrons are in the highest *s* and *p* orbitals (it should be between 1 and 8).

$$CI = 1s^2 2s^2 2p^6 3s^2 3p^5$$

Level 3 is the highest energy level

- 1. Write down the electron configuration.
- 2. Count how many electrons are in the highest *s* and *p* orbitals (it should be between 1 and 8).
- 3. These are the valence electrons.

 $CI = 1s^22s^22p^63s^23p^5$

1. Write down the electron configuration.
Determining valence electrons

1. Write down the electron configuration.

$Ga = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$

Determining valence electrons

- 1. Write down the electron configuration.
- 2. Count how many electrons are in the highest *s* and *p* orbitals (it should be between 1 and 8).

$$Ga = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$$

Level 4 is the highest energy level

Determining valence electrons

- 1. Write down the electron configuration.
- 2. Count how many electrons are in the highest *s* and *p* orbitals (it should be between 1 and 8).
- 3. These are the valence electrons.

$$Ga = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{1}$$

Lewis dot diagram

Filled d orbitals do not contribute valence electrons!

1	2	Valence electrons											4	5	6	7	8
1A												8A					
1 H				Ma	in g	roup						² He					
1.0079 hydrogen	2A						3A	4 A	5A	6A	7A	4.0028 helium					
³ т;	4 Po						⁵ D	6 C	7 NT	8	9 E	10 NIO					
6.941	9.0122		Tran	sitic	on m	etal		10.811	12.011	14.007	15.999	Г 18.998	20.180				
lithium 11	beryllium 12	()	(valence electrons vary)											nitrogen 15	oxygen 16	fluorine	neon
Na	Mg		. –					8B		. –		Al	Si	P	S	Cl	Ar
22.990 sodium	24.305 magnesium	3B	4B	5B	6B	7B		\sim		1B	2B	26.982 aluminu	28.086 n silicon	30.974 phosphorous	32.065 sulfur	35.453 chlorine	39.948 argon
19 12	20	21 So	22 Ti	23 17	24	25 M D	26	27	28	29	$\frac{30}{7n}$	31	32	33 A C	34 So	35 D n	36 Vr
N 39.098	40.078	44.956	47.867	V 50.942	51.996	54.938	ге 55.845	58.933	58.693	63.546	65.38	69.723	72.61	79.922	78.96	DI 79.904	83.80
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	galium	germanium	arsenic	selenium	bromine	krypton
Řb	Ŝr	Ϋ́Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Åg	Cd	In	Sn	Sb	Ťe	Ĩ	Xe
85.468 rubidium	87.62 strontium	88.906 vttrium	91.224 zirconium	92.906 niobium	95.96 molybdenum	(98) technetium	101.07 ruthenium	102.91 rhodium	106.42 palladium	107.87 silver	112.41 cadmium	114.82 indium	118.71 tin	121.76 antimony	127.60 tellurium	126.90 iodine	131.29 xenon
55	56	71	72	73	74	75	76	77_	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T	Pb	Bı	Po	At	Rn
132.91 cesium	137.33 barium	174.97 lutetium	178.49 hafnium	180.95 tantalum	183.84 tungsten	186.21 rhenium	190.23 osmium	192.22 iridium	195.08 platinum	196.97 gold	200.559 mercury	204.38 thallium	207.2 lead	208.98 bismuth	(209) polonium	(210) astatine	(222) radon

1	2	Valence electrons 3 4													
1A 1 1.0079 hydrogen	2A	Main group elements How many valence electrons does													
³ Li 6.941 lithium ¹¹ Na 22.990 sodium	4 Be 9.0122 beryllium 12 Mg 24.305 maonesium	(\ 3B	Tran valend 4B	ce ele 5B	on m ectror 6B	etals ns vai 7B	s ry)	8B	n	nag 1B	2B		ר (I∿	1g)	have?
19 K 39.098 potassium	20 Ca 40.078 calcium	21 Sc 44.956 scandium	22 Ti 47.867 titanium	23 V 50.942 vanadium	24 Cr 51.996 chromium	25 Mn 54.938 manganese	26 Fe 55.845 iron	27 CO 58.933 cobalt	28 Ni 58.693 nickel	29 Cu 63.546 copper					
37 Rb ^{85.468} rubidium	38 Sr 87.62 strontium 56	39 Y 88.905 yttrium 71	40 Zr 91.224 zirconium 72	41 Nb 92.906 niobium 73	42 Mo 95.96 molybdenum 74	43 TC (98) technetium 75	44 Ru 101.07 ruthenium 76	45 Rh 102.91 rhodium 77	46 Pd 105.42 palladium 78	47 Ag 107.87 silver 79					
CS 132.91 cesium	Ba 137.33 barium	Lu 174.97 lutetium	HT 178,49 hafnium	180.95 tantalum	183.84 tungsten	Re 186.21 rhenium	US 190.23 osmium	lr 192.22 iridium	Pt 195.08 platinum	Au 196.97 gold					

1	2	Valence electrons 3 4													
1A 1 1.0079 hydrogen	2A	Main group elements How many valence electrons does													
³ Li ^{6.941} lithium ¹¹ Na 22.990 sodium	4 Be 9.0122 eryillor 12 Mg 24.305 magnesium	Transition metals (valence electrons vary) 3B 4B 5B 6B 7B 1B 2B	?												
19 K		¹ ²² ²³ ²⁴ ²⁵ ²⁶ ²⁶ ²⁷ ⁴ ¹ ¹ ¹ ²⁵ ²⁶ ²⁷ ¹ ¹ ¹ ¹ ¹ ¹ ²⁵ ²⁶ ²⁷ ¹													
39.098 potassium	40,078 calcium	44.956 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.38 69.723 72.01 scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc galum <td< th=""><th></th></td<>													
37 Rb 85.468 rubidium	38 Sr 87.62 strontium	⁹ Y ⁴⁰ ^{88,905} ^{91,224} ^{91,224} ^{91,224} ^{92,906} ^{92,906} ^{95,96} ⁴³ ⁴⁴ ⁴⁵ ⁴⁵ ⁴⁶ ¹⁶ ¹⁶ ⁴⁶ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁸ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹ ⁴⁹													
55 Cs	Ba	Lu ⁷² Hf ⁷³ Ta ⁷⁴ W ⁷⁵ Re ⁷⁶ Os ⁷⁷ Ir ⁷⁸ Pt ⁷⁹ Au ⁸⁰ Hg ⁸¹ T ⁸²													
cesium	barium	lutetium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallum													

Lewis dot diagram: a diagram showing one dot for each valence electron an atom has, these dots surround the element symbol of the atom.

Lewis dot diagram: a diagram showing one dot for each valence electron an atom has, these dots surround the element symbol of the atom.

Lewis dot diagram

Lewis dot diagram

Lewis dot diagrams											
Li	•Be	• B •	٠ç٠	۰N	: <u>0</u> •	F	Ne:				
1	2	3	4	5	6	7	8				
Valence electrons											

Valence electrons are the most loosely bound electrons in an atom. They are easiest to share or transfer.

Lewis dot diagrams											
Ŀi	•Be	• B •	٠Ç٠	٠N	: <u>0</u> •	F	:Ne:				
1	2	3	4	5	6	7	8				
Valence electrons											

Valence electrons are the most loosely bound electrons in an atom. They are easiest to share or transfer.

Is the periodic table just an organizational system? Can it be used as a tool?

Elements from the same group (column) have similar chemical properties, so they interact with neighboring atoms in a similar way.

Normal glass can be made stronger by replacing Na with K on its surface

- Elements that belong to the same group in the periodic table have the same number of valence electrons
- Only valence electrons are involved in chemical bonding
- The Lewis dot diagram is a way to show valence electrons for an atom

Carbon has 4 valence electrons

