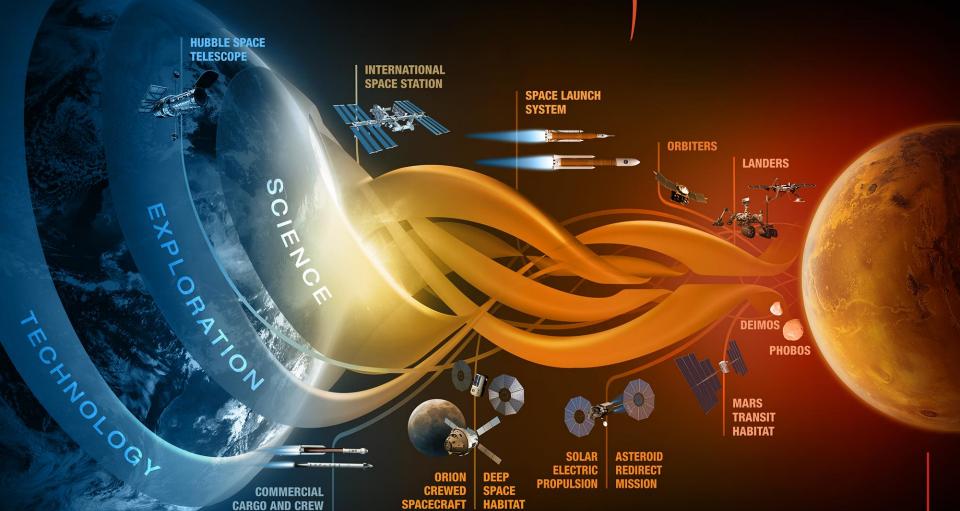
HSF Transition from ISS to cis-lunar space and ISS Status

Sam Scimemi

Director, International Space Station NASA Headquarters

HEOMD NAC November 4, 2015



Agenda

- > HSF transition from ISS to cis-lunar space
 - Goals, objectives and research perspective
- > ISS Overview Status
- Utilization Status
- Visiting Vehicle Status

JOURNEY TO MARS

MISSIONS: 6-12 MONTHS
RETURN: HOURS
EARTH RELIANT

MISSIONS: 1-12 MONTHS RETURN: DAYS MISSIONS: 2-3 YEARS RETURN: MONTHS

PROVING GROUND

EARTH INDEPENDENT

Transitioning HSF from ISS to Cis-Lunar Space (Earth Reliant to the Proving Ground)

Earth Reliant

Long Duration Human Health & Habitation Research and Demonstrations

* Currently building a plan to demonstration on ISS the Mars habitation systems.

Goal at the end of the 2020s: Mars ready -One year crewed mission(s) in cis-lunar space

Knowledge & Capabilities

Proving Ground

Short Duration Habitation & Transportation system validation

Long duration human health & habitation Validation for Mars transit

Knowledge & Capabilities

Learning how to be Earth Independent

- SLS/Orion performance validation
- Crew health and performance research and validation
- Habitation systems performance validation including EVA
- Radiation shielding characterization and validation
- Guidance and navigation in deep space
- Prox ops and docking in deep space
- Breaking the logistics chain
- Reduced reliance on the ground control
- Validating other spacecraft system validation (power, propulsion, communications, etc.)

Habitation Systems Objectives

System	Includes	Today	Cis-Lunar Goal
Life Support	Air revitalization, water recovery, waste collection and processing	42% recovery of O2 from CO2; 90% recovery of H2O; <6 mo MTBF for some components	>75% recovery of O2 from CO2; >98% recovery of H2O; >2 yr MTBF
Environmental Monitoring	atmosphere, water, microbial, particulate, and acoustic monitors	Limited, crew-intensive on-board capability; rely on sample return to Earth	On-board analysis capability with no sample return; identify and quantify species and organisms in air & water
Crew Health	exercise equipment, medical treatment and diagnostic equipment, long-duration food storage	Large, cumbersome exercise equipment, limited on-orbit medical capability, food system based on frequent resupply	Small, effective exercise equipment, on-board medical capabilities, long-duration food system
EVA	Exploration suit	ISS EMU's based on Shuttle heritage technology; not extensible to surface ops	Next generation spacesuit with greater mobility, reliability, enhanced life support, operational flexibility
Fire	Non-toxic portable fire extinguisher, emergency mask, combustion products monitor, fire cleanup device	Large CO2 suppressant tanks, 2- cartridge mask, obsolete fire products. No fire cleanup other than depress/repress	Unified fire safety approach that works across small and large architecture elements
Radiation Protection	Low atomic number materials including polyethylene, water, or any hydrogen-containing materials	Node 2 CQ's augmented with polyethylene to reduce the impacts of trapped proton irradiation for ISS crew members	Solar particle event storm shelter based on optimized position of onboard materials and CQ's with minimized upmass to eliminate major impact of solar particle event on total mission dose

Human Health and Performance Research Transition from ISS to cis-lunar space

ISS Goals for Space Exploration

- Fully utilize ISS to understand human health risks and verify capabilities to mitigate these risks
- Develop and test exploration biomedical technologies and tools
- Extend mission durations to one-year to validate six-month research and countermeasures
- Understand visual impairment/intracranial pressure risk and assess countermeasures
- Develop space radiation human protection& monitoring systems
- Investigate long-term spaceflight stressors and changes to the immune system and microbiome
- Develop and test exploration food system
- Develop, test, and verify crew habitation systems and models

Cis-Lunar Space Goals

- Validate advanced countermeasures against deconditioning for transit vehicle (bone, muscle, cardiovascular capacity)
- Validate crew performance, psychological well-being, and intervention toolkit under long-duration flight operations
- Validate integrated exploration medical capabilities (autonomous medical capability for diagnosis and treatment)
- Validate human health, performance, and environmental health in a closed spacecraft environment (immune system, microbiome)
- Validate exploration food system
- Validate space radiation human protection and monitoring systems for exploration
- Validate crew habitation systems for exploration
- Validate robustness and reliability of crew exploration exercise systems

What could we accomplish along the way with humans in cis-lunar space

- > Research objectives origins of the universe
 - Asteroid Redirect Mission currently in formulation
 - Human/robotic Lunar exploration of far side and Shackleton crater
 - Some of the techniques and technologies/systems have been demonstrated on ISS already more could be done
 - Human assisted Lunar sample return
 - Point of departure for human missions to asteroids in their native orbit
- Research objectives search for life
 - Human/robotic construction of large diameter telescope at L2 (18-20m, ATLAS, Space Telescope Science Institute)
 - Some of the techniques and technologies/systems have been demonstrated on ISS already more could be done
- Earth/sun/moon environs monitoring
- Basic research for exploration
 - Deep space radiation exposure characterization of materials and biological samples – extension of current ISS research
 - Long term zero boil off technology
- Other basic research
 - Astrophysics follow on to CREAM and AMS-02?

International Space Station Status NASA esa Sam Scimemi Director, ISS NASA HQ **HEO NAC** November 2015

44S

9/2

61P

10/1

62P

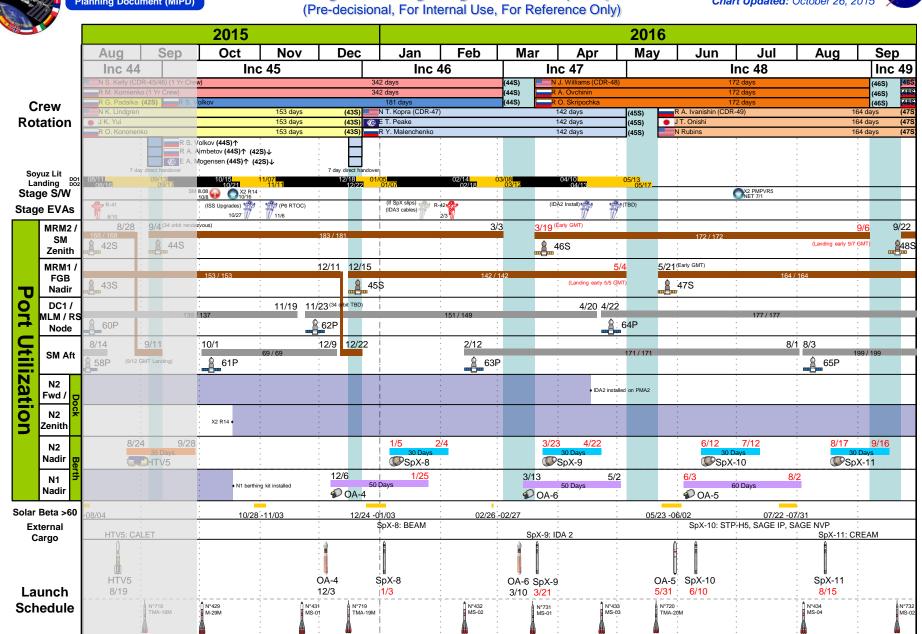
11/21 (U/R)

45S

12/15

ISS Flight Plan Flight Planning Integration Panel (FPIP)

MAPI: OP/Randy Morgan Chart Updated: October 26, 2015


65P

8/3

48S

9/22

NASA: OC4/John Coggeshall

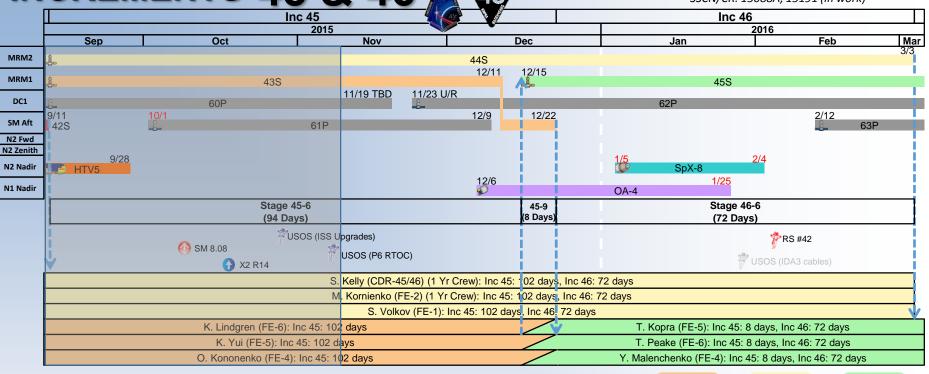
63P

2/12

64P

4/22

47S


5/20

46S

3/18

INCREMENTS 45 & 46

Updated 10/29/2015: All Dates GMT SSCN/CR: 15088A, 15191 (in work)

	Increment 45	Increment 46
Utilization	✓ STP-H4, SMILES, MCE disposal (HTV5) ✓ JEM A/L: J-SSOD #4, NRCSD #6, ExHAM #2 ✓ RRM Phase 2 Science	 Complete 1 year crew science Rodent Research-3 (SpX-8) BEAM berth (SpX-8) Airway Monitoring JEM A/L: SIMPL, NRCSD #7
EVA, Robotics, Systems, Software	✓ SM 8.08 ✓ X2R14 Software Transition ✓ USOS ISS Upgrades EVA ✓ USOS P6 RTOC EVA ✓ USOS Reconfig: N1 Nadir prep for VV • NORS AIK installation ✓ Galley Rack transfer (HTV5) • RPCM P12B_A replacement	USOS IDA3 Cables EVA (Below the line) RS EVA #42 USOS Reconfig: Install C2V2 rack, comm units, perform C2V2 checkout USOS Reconfig: Install IMVs, VAPs

O. Kononenko, K. Yui, K. Lindgren
Crem

IM - Ryan Lien (x47284) IDM - Gaurang Patel (x30023) IE - Karen Engelauf (x40860), Jorge Salazar (x39663)

IDE David Cook (v16207)

Increment 45 Overview: Crew

42S Dock 3/28/15 44S Dock 9/2/15 44S Undock 3/3/16

Scott Kelly CDR (U) - 42S↑ / 44S↓

Oleg Kononenko FE (R) - 43S

43S Dock 7/23/15 43S Undock 12/22/15

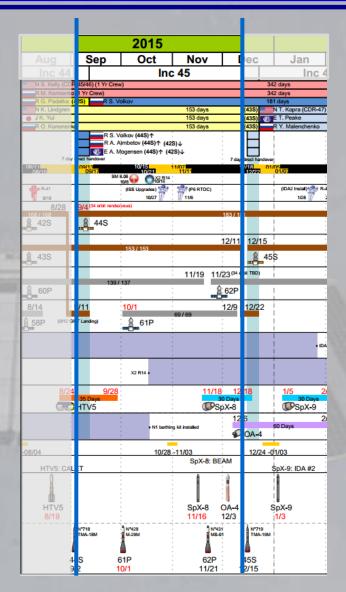
Mikhail Kornienko FE (R) - 42S↑ / 44S↓

Kimiya Yui FE (J) - 43S

Kjell Lindgren FE (U) - 43S

FE (R) - 44S 44S Undock 3/3/16

Sergei Volkov



Increment 45 Overview: Major Stage Objectives (Based on Final OOS Assumptions)

Increment 45:

- Stage 45-6: 42S Undock to 45S Dock: 94 days
- Stage 45-9: 45S Dock to 43S Undock: 8 days
- EVAs
 - ISS Upgrades October 28
 - P6 Return to Original Config Nov 6
- Cargo vehicles:
 - 61P Dock to SM Aft (10/1)
 - HTV-5 Unberth/Release (9/28)
 - SpX-8 (1/3 U/R)
 - 60P Undock from DC1 (11/19)
 - 62P Dock to DC1 (11/21 U/R)
 - OA-4 Capture/Berth (12/6)
- Science/Utilization:
 - Fluid Shifts FD150
 - RRM Phase II
- Software
 - SM 8.08 (10/8) successfully completed
 - X2R14 (10/16-10/21) successfully completed
- Stowage Ops
 - HTV left completely full
- Maintenance/Outfitting
 - N1 Nadir Prep for USOS Cargo VV Berthing
 - NORS AIK Install in airlock

ISS Reconfiguration Status

- Goal: Establish 2 docking ports and 2 berthing ports on ISS USOS to support crew and cargo vehicles
- ➤ Initial configuration : Berthing ports at Node 2 nadir, Node 2 zenith

PMA 2 on Node 2 forward, PMA 3 on Node 3 port

Final configuration : Berthing ports at Node 2 nadir, Node 1 nadir

Docking ports at Node 2 forward (PMA 2 / IDA 2), Node 2 Zenith

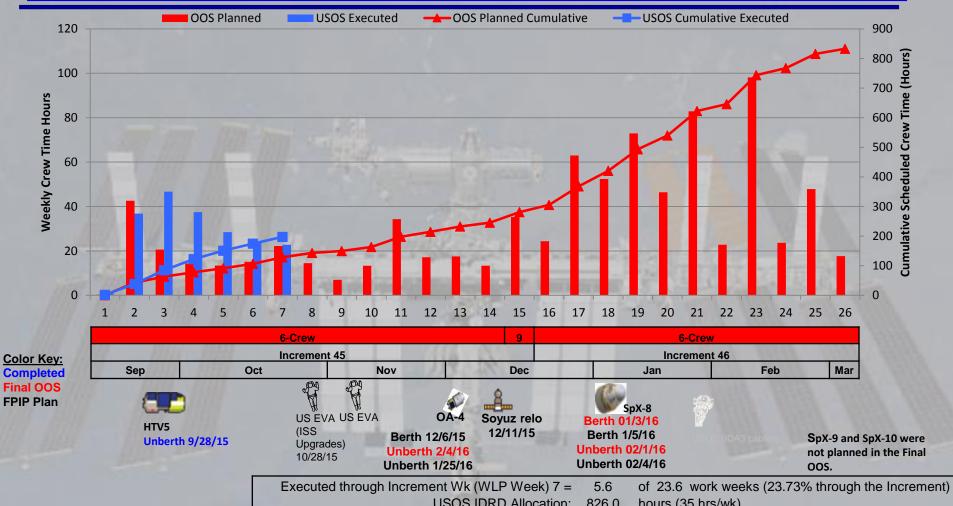
(PMA 3 / IDA 3)

- Move PMM from Node 1 nadir to Node 3 forward (completed)
- Configure Node 1 nadir to support berthing (completed)
- Move PMA-3 from Node 3 port to Node 2 zenith (required EVA deferred with loss of IDA 1)
- → Install IDA 1 on PMA 2 (Node 2 forward) SpaceX-7 (IDA 1 lost)
- Install IDA 2 on PMA 2 (Node 2 forward) SpaceX-9
- ➤ Install IDA 3 on PMA 3 (Node 2 zenith) SpaceX-14 (new IDA 3)
- Install C2V2 antenna system on truss elements P3 and S3 (completed)
- Configure Node 3 aft to support BEAM (completed)
- Move ARED configuration in Node 3 (completed)

ISS ready to receive IDA 2, EVA Oct 28 to route cables in support of PMA-3 relocate Node 1 nadir and Node 2 nadir ready to receive CRS vehicles

Increment 44/45 Overview: EVAs

cal Nature	des & Install	Egress / Set up	AMS Cover Install	MBSU MLI & Skirt Tie Down (0:45)	LEE B Lube Lube (02:45)		NPV	' Install	an up gress
No Time Critical	ISS Upgrades & PMA3 Cable Inst	Egress / Set up		ver Install & AN CS Pump MLI (1:30)	PMA3 / IDA3 Cables Route • w2260 – white/ORANGE (PMA 3 / IDA2)	PMA3 Pow Rout • W2289 WHIT	e	PORT CETA Cart (0:30)	an up gress

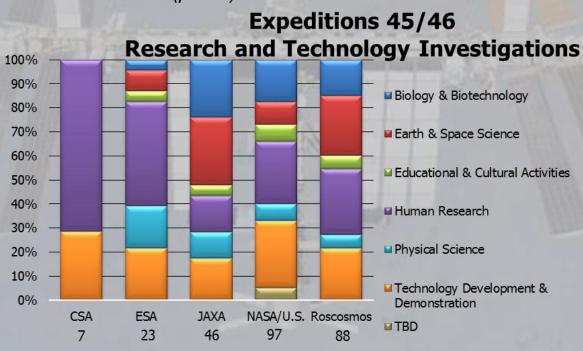

No Road to Items (Thomason, Wray)	EVA S RTOC	EV1 (FF)	Egress / Setup (0:30)	Vent Tool Setup (0:45)	PVR FQDC OPEN	P5/P6 Mate/Op (0:45)	en Re		EAS Jumper Reconfig (0:20)	P1-P5 Vent (0:15)	31110	Vent - Cleanup		TTCR Stow (1:30)	ATA Vent Panel Reconfig (0:30) Clean up / Ingress (0:10)
		EV2 (FF)	Egress / Setup (0:30)	P3/P4 NH3 Jumper Install (0:45)	PVR FQDC OPEN	ATA Vent Panel (0:30)		CE ⁻ Reco	TA Cai		AJIS STRUT #4 (0:20)	P3/P4 Jumper Stow (0:30)	VENT TOOL CLEAN UP	TTCR Stow (1:30)	Cleanup / Ingress (0:40)

Needed for IDA2
Needed for PMM Relocate
Needed for IDA3
Needed for PMA3 Relocate
ROBO MNVRs
Get Aheads
ISS Upgrades
P6 Reconfig/ TTCR Stow
LEE Lube
AMS MLI

Inc 45 - 46 Utilization Crew Time

USOS IDRD Allocation: 826.0 hours (35 hrs/wk) OOS USOS Planned Total: 832.91 hours USOS Actuals: 197.42 hours 23.90% through IDRD Allocation 23.70% through OOS Planned Total hours/work week Total USOS Average Per Work Week: 35.25 Voluntary Science Totals to Date: 0.00 hours (Not included in the above totals or graph) RSA/NASA Joint Utilization to Date: 4.50 Hours (not included in the above totals or graph)

ISS Research Statistics



Number of Investigations for ISS Increments 45 & 46: 261

- 97 NASA/U.S.-led investigations
- 164 International-led investigations
- 49 New investigations
 - 3 CSA
 - 2 ESA
 - 7 JAXA
 - 35 NASA/U.S.
 - 2 Roscosmos (prelim)

- · Over 800 Investigators represented
- Over 1200 scientific results publications (Exp 0 – present)

Estimated Number of Investigations Expedition 0-46: 2053*

Plant Biology APEX-04

Auxin Transport

Plant Rotation

SpX-10 (↑)

SpX-9, SpX-10

Increments 45 & 46 Research Complement Snapshot

	Biology & Biotechnology		gy Development		Human R	Physical Science		
Animal Biology	1.1	Air, Water & Surface Monitoring	Repair/Fabrication Technologies		Bone & Muscle Physiology	Human Microbiome	Combustion Science	
Rodent Research-3-Ei	SpX-8 (↑↓), SpX-9 (↓)		3D Printing In Zero-G		Bisphosphonates	Microbiome	FLEX-2J	
_illy		Avionics & Software	Robotics		Hip QCT (P)	Immune System	BASS-M	SpX-8
Micro-10	SpX-8 (↑↓)	SNFM	Robonaut (RJR)		Intervertebral Disc Damage (P)	Salivary Markers	ACME	SpX-9 (↑), SpX-10 (↑
Embryo Rad	SpX-8 (1)	Telescience Resource Kit	RRM-P2 (Ext)		Sprint	Multi-Omics HTV5, SpX-9	ATOMIZATION	
Mouse Epigenetics	HTV5, SpX-9 (↑↓)	Characterizing Expt Hardware	SUPVIS-E		CARTILAGE (P)	IMMUNO-2	Group Combustion	HTV5, Orb-4
. •	SpX-10	POP 3D Orb-4	Small Satellites Technologies	Orb-4	EDOS-2	Integrated Physiology & Nutrition	Complex Fluids	
Cellular Biology	Op/C TO	ESA-Haptics-1 MVIS Controller-1	NanoRacks MicroSat Deployer NanoRacks-MicroSat-SIMPL	Orb-4	MUSCLE BIOPSY (P)	Biochem Profile	ACE-H2	SpX-8
	0.1/ 0 (+1)	Communication & Navigation	NRCSD#6	HTV5	Marrow Thone (P)	Dose Tracker	ACE-T1	SpX-9
	SpX-9 (↑↓)	Maritime Awareness SpX-9	NRCSD#7	Orb-4	Cardiovascular & Respiratory Systems	Field Test (P) Functional Task Test (P)	LMM Biophysics 1	SpX-10 (↑)
	SpX-9 (↑↓)	OPALS (Ext)	Space Structures	010-4	Cardio Ox	Repository	LMM Biophysics 3	SpX-10 (↑)
	SpX-9 (↑↓)	SCAN Testbed (Ext)	BEAM (Ext)	SpX-8	IPVI	Telomeres	(RJR) OASIS	SpX-8 (↓)
NanoRacks SyNRGE	SpX-8 (↑↓)	Vessel ID System (Ext)	Spacecraft & Orbital Environmts		IPVI for 1YM (P)	Twins Study	PK-4	
Stem Cells	SpX-9 (↑↓)	3D VIT	ISS External Leak Locator	Orb-4	AIRWAY MONITORING	Biological Rhythms 48hrs	Fluid Physics	
SPHEROIDS	SpX-8 (↑↓)	Food & Clothing Systems	STP-H4 (Ext)	HTV5 (↓)	BP Rea	Biological Rhythms 48hrs for 1YM	ARTE (Thermal Exchange)	SpX-9
Macromolecular Crystal (Growth	Skinsuit	STP-H5 APS (Ext)	SpX-10	Vascular Echo 61P, SpX-8	Energy	PBRE	SpX-8
CASIS PCG 4	SpX-8 (↑↓)	Imaging Technology	Spacecraft Materials		Crew Healthcare Systems	Nervous & Vestibular Systems	ZBOT	SpX-10
	SpX-10	3DA1 Camcorder	MISSE-8 FSE	SpX-10 (1)	Skin-B	NeuroMapping	Microchannel Diffusion	SpX-8 (↓)
	SpX-9, SpX-10	HDEV (Ext)	ExHAM-CFRP Mirror (Ext)	SpX-9 (↓)	Habitability and Human Factors	V-C REFLEX (P)	Dynamic Surf	
PCG Crystal Hotel Validation			ExHAM-MDM2 (Ext)	SpX-9 (↓)	Body Measures	Straight Ahead in Microgravity (P)	Marangoni-UVP	
JAXA PCG	OII	Life Support Systems	ExHAM-PEEK (Ext)	SpX-9 (↓)	Fine Motor Skills	Space Headaches	Two-Phase Flow	SpX-9 (↑)
	CnV 0 (41)	UBNT (RJR)	ExHAM-Solar Sail (Ext)	SpX-9 (↓)	Habitability	Vision	Fundamental Physics	
	SpX-8 (↑↓)	UPA SpX-9 (↑) LDST SpX-10 (↑)	Radiation & Shielding Radiation Environment Monitor	396	Human Behavior & Performance	Fluid Shifts	DOSIS-3D	45S
<u>Microbiology</u>		LDST SpX-10 (†)	Area PADLES		Cognition	Ocular Health	Materials Science	
RJR) Microbial Sampling			PS-TEPC		Journals	<u>TBD</u>	MSL 2b - NASA SCA	SpX-9 (↑↓)
Microbial Observatory-1	SpX-9 (↑↓)	NanoRacks-Gumstix SpX-8	Radi-N2		Reaction Self Test	Interactions-2	NanoRacks-LECN Maquette	
Microbial Observatory-2	SpX-9 (↑↓), SpX-10	Translative Op/2-0	Nau-142	MALE STREET	Sleep ISS-12	Pilot-T	Interfacial Energy 1	Orb-4
DIO ND	0.1/ 0 (4.1)	0 8000			Synergy (P)		JAXA ELF	HTV5, Orb-4
BRIC-NP	SpX-9 (↑↓)	430771111			Circadian Rhythms		EML Batch 1	
Microbe-IV	SpX-8 (↓), SpX-9 (↑)	11111111					MSL Batch 2b	SpX-10
Myco (for 1YM)	ορπο (φ), ορπο (γ)	0.0000						

Earth & Spac	e Science
Astrobiology & Astro	physics
AMS-02 (Ext)	
Meteor	Orb-4
CALET (Ext)	HTV5 (↑)
MAXI (Ext)	
MCE (Ext)	HTV5 (↓)
Earth Remote Sensir	<u>1g</u>
CATS (Ext)	
HREP-RAIDS (Ext)	
ISS RanidScat	

Earth & Space	Science	Education &	Outreach		
Astrobiology & Astro		Commercial Demonstrations			
AMS-02 (Ext)	<u> </u>	JAXA-Commercial	HTV5		
Meteor	Orb-4	Cultural Activities			
CALET (Ext)	HTV5 (↑)	NanoRacks Module-48	SpX-9 (↑↓)		
MAXI (Ext)	(17	Educational Competition	<u>is</u>		
MCE (Ext)	HTV5 (↓)	SPHERES-Zero-Robotics	(RJR)		
Earth Remote Sensin		NanoRacks Module-9	SpX-9 (↑↓), SpX-10 (↑↓)		
CATS (Ext)		Educational Demonstrati	ons		
HREP-RAIDS (Ext)		(RJR) Sally Ride EarthKA	AM		
ISS RapidScat		ISS Ham Radio			
SAGE III-ISS (Ext)	SpX-10 (↑)	Story Time From Space	Orb-4		
SMILES (Ext)	HTV5 (1)	JAXA EPO	HTV5		
Heliophysics	(*/	Try Zero-G for Asia			
Solar-SOLACES		ESA-EPO-Peake	44S		
Solar-SOLSPEC		Student-Developed Inves	tigations		
Near-Earth Space En	vironment	Genes in Space-1	SpX-9 (↑↓)		
SEDA-AP (Ext)	_				

TBD Category						
CASIS Dev 11	SpX-10					
NanoRacks-SMiLE	SpX-9					
Payload Card Multilab-X	SpX-9					
Payload Card-X	SpX-10					
Content						

Key					
NASA	(P) = Pre/Post BDC only				
National Lab	(Ext) = External				
JAXA	(RJR) = Russian Joint Research				
ESA	(↑) = Launch only				
CSA	(↓) = Return only				
	(↑⊥) = Crossover				

Total ISS Consumables Status

	T1: Curren	nt Capability	T2: Current Capab	oility + 62P + OA-4			
Consumable – based on current, ISS system status	Date to Reserve Level	Date to zero supplies	Date to Reserve Level	Date to zero supplies			
Food - 100%	February 09, 2016	April 02, 2016	May 28, 2016	July 15, 2016			
кто	February 07, 2016	March 31, 2016	June 26, 2016	August 10, 2016			
Filter Inserts	October 28, 2016	December 19, 2016	Dec <mark>ember 19, 2016</mark>	> December 31, 2016			
Toilet (ACY) Inserts	May 28, 2016	July 12, 2016	June 22, 2016	August 06, 2016			
EDV + TUBSS (UPA Operable)	June 28, 2016	October 07, 2016	September 30, 2016	> December 31, 2016			
Pre-Treat Tank	March 23, 2016	May 11, 2016	August 14, 2016	October 06, 2016			
Water (Nominal Usage)	June 02, 2016	September 11, 2016	July 20, 2016	November 07, 2016			
Consumable - based on system failure							
EDV + TUBSS (UPA Failed)	March 13, 2016	May 02, 2016	May 04, 2016	June 27, 2016			
Water, if no WPA (Ag & lodinated)	March 05, 2016	May 23, 2016	April 12, 2016	June 24, 2016			
O ₂ if Elektron supporting 3 crew & no OGA	November 28, 2015	March 31, 2016	December 26, 2015	May 21, 2016			
O ₂ if neither Elektron or OGA	November 09, 2015	January 02, 2016	November 09, 2015	January 20, 2016			
LiOH (CDRAs and Vozdukh off)	~0 Days	~14 Days	~0 Days	~14 Days			

USOS Consumables Status

	U1: Current	nt Capability	U2: Current Capal	bility + 62P + OA-4		
Consumable – based on current, ISS system status	Date to Reserve Level	Date to zero supplies	Date to Reserve Level	Date to zero supplies		
Food - 100%	February 23, 2016	April 13, 2016	June 16, 2016	August 06, 2016		
кто	March 09, 2016	April 26, 2016	August 28, 2016	October 17, 2016		
Filter Inserts	> December 31, 2016					
Toilet (ACY) Inserts	November 30, 2016	> December 31, 2016	November 30, 2016	> December 31, 2016		
EDV + TUBSS (UPA Operable)	December 13, 2015	June 29, 2016	February 16, 2016	September 08, 2016		
Pre-Treat Tanks	April 19, 2016	June 14, 2016	November 05, 2016	December 26, 2016		
Water (Nominal Usage)	November 08, 2016	> December 31, 2016	November 08, 2016	> December 31, 2016		
Consumable - based on system failure		119=10				
EDV + TUBSS (UPA Failed)	November 06, 2015	December 28, 2015	November 06, 2015	January 18, 2016		
Water, if no WPA (Ag & lodinated)	December 23, 2015	February 16, 2016	December 23, 2015	February 16, 2016		
O ₂ if neither Elektron or OGA	November 11, 2015	January 15, 2016	November 11, 2015	January 30, 2016		
LiOH (CDRAs and Vozdukh off)	~0 Days	~13.3 Days	~0 Days	~13.3 Days		

New Pertinent ISS Vehicle Issues

Issue	Impact to Stage Ops	Rationale
SSRMS LEE B Safing Event	No	 During HTV-5 release on GMT 271 (9/28/2015) the SSRMS LEE B experienced a safing event at the beginning of the Auto Release (start of derigidization). This resulted in a 1 orbit delay to HTV departure Second attempt was successful. Following HTV release, LEE-B completed a nominal grapple at MBS PDGF-1 High Speed Data of the safing event was gathered and is currently under review by CSA Leading theory is that the LEE carriage experienced an over speed condition while trying to overcome initial tension LEE-B will be lubed in upcoming US EVAs
MELFI-2	No	On GMT 250 (9/7/15), MEFLI-2 (JEM) lost health and status with corresponding decrease in power draw and decrease in LTL out temp (in family with loss of Brayton motor) • Science samples were relocated to MELFI-1 (Lab) • Troubleshooting isolated failed ORU to the Rack Interface Unit (RIU) • 1 RIU was replaces. Nominal ops returned

Pertinent ISS Vehicle Issues

TOC Status	Yes	 The Total Organic Carbon (TOC) Status: High TOC indicates that the WPA MF Beds are saturated The R&R of Ion Exchange Bed, Multifiltration Beds, and External Filter Assembly completed on Oct 2 TOC readings now under detectable limits
		TOC Readings • July 15 – 2379 μg/L • Aug 19 – 446 μg/L • Sep 15 – 1943 μg/L

Pertinent ISS Vehicle Issues (cont)

Issue	Impact to Stage Ops	Rationale
Node 3 CDRA Status	No	 Node 3 CDRA blower air leak Post the N3 CDRA blower R&R (5/14/15) a leak was identified through troubleshooting at the V-Band Clamp (blower connection) The leak does impact to CO2 removal or Sabatier Operations N3 CDRA has no constraints to operate and is currently operational
Lab CDRA RPC Trip (LAD62B-A, RPC 12)	Yes	RPCM LAD62B-A, RPC 12, provides power to the Lab CDRA selector valves, continued true overcurrent trips affects power to valves RPCM replaced on GMT 205 (7/24/15) First RPC trip occurrence on new RPCM on GMT 235 (8/23/15) Second RPC trip event on GMT 273 (9/30/15) Good ABIT following trip and re-closure of RPC Troubleshooting cable to be developed and flown

Pertinent ISS Vehicle Issues (cont)

Issue	Impact to Stage Ops	Rationale
SPDM Arm 2 joint position issue	Yes	 On GMT 281 (10/8/15), during Special Purpose Dexterous Manipulator (SPDM) Arm 2 power up, the shoulder yaw measured 0.0 degrees when the last known position was +3.9 degrees. Robotics Refueling Mission (RRM) operations were completed with Arm 1, Multi-Function Tool was stowed with joint unpowered and brakes applied. A quick turnaround diagnostic patch was uplinked on Wed 10/14/15 to gather additional data on SPDM Arm 2. Preliminary investigation indicated issue with Joint Electronics Unit ability to read motor/joint resolver data. SPDM Arm 2 ok for unloaded operations using Degraded Joint Ops. Contact ops require analysis to verify no break slippage or joint loads violations. Next MART scheduled for 11/5/2015. Next potential SPDM Operation is the RPCM P12B_A R&R in early December.

HTV5 Mission Status

Mission Planning

- Stage Operations Readiness Review (SORR) completed on 7/27/15
- Successful launch on 8/19/15 and berthing on 8/24/15
- No major issues tracked during mission
- Successful departure on 9/28/15

> Cargo

- Pressurized cargo included Node 1 galley rack, MSPR-2 (JAXA rack), 30 Contingency Water Container – Iodine (CWC-I), and additional soft-stow cargo
- MPSR 2 was removed from HTV and installed in JEM in Aug
- Late load shipments #1 and #2 arrives at TNSC on 7/27/15 and 7/30/15 (NASA 992)
- Outstanding coordination post SpaceX-7 failure to adjust and add capability (MPSR front rack)
- Late load #1 and #2 completed on 8/13/15
- Vehicle launched ~ 8000 lbs pressurized, 1450 lbs external
- > Trash Removed: 4,350 pounds

External Cargo

- CALorimetric Electron Telescope (CALET) which will investigate the high energy universe was removed from the HTV5 Exposed Pallet (EP) and installed to ISS
- MCE, SMILES and STP-H4 experiments were installed on EP for disposal; EP was returned to HTV5 on 9/15/15

HTV5 berthed on 8/24/15

OA-4 (Orb-4) Mission Status

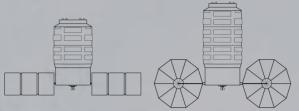
Mission Planning

- Orbital has contracted with United Launch Alliance (ULA) for an Atlas V launch of Cygnus
- First use of Atlas V401 with the Cygnus spacecraft
- Cargo Integration Review (CIR) was conducted on 7/29/15
- Safety Review Panel (SRP) TIMs on 8/5/15 and 9/15/15
- Chief Engineer Readiness Review was completed on 9/1/15
- SRP Phase 3 is planned for completion on 10/13/15

Pressurized Cargo complement

- NASA delivered ISS cargo manifest in June
- Planned Upmass: 7,730 pounds

Cygnus Status


- First enhanced Cygnus with a longer Pressurized Cargo Module (PCM) and lightweight solar arrays
- Service Module (SM) will accommodate changes to the TriDAR/LIDAR configuration
- PCM completed FE1410 testing at the Cape on 8/20/15
- SM completed Final Integrated Systems Test (FIST) and scheduled to arrive at the Cape on 10/15/15
- ➤ Initial cargo arrival is planned for 10/16/15

> Atlas V 401

- Payload Adapter has been manufactured and is ready for integration
- Booster ship to CCAFS is planned for 10/30/15

OA-6 (Orb-5) Mission Status

Mission Planning

- ULA/Orbital ATK customer kickoff meeting was held on 8/21/15
- Ground Operations Readiness Review (GORR) is planned for mid Oct
- Cargo Integration Review (CIR) is planned for Nov

Pressurized Cargo complement

- Final ISS cargo manifest planned for delivery in Oct to support CIR
- Spacecraft Fire Experiment (Saffire) #1 payload will be integrated into Cygnus
- Planned Upmass: 7,730 pounds

Cygnus Status

- > Schedule rework is in progress to support an Service Module (SM) flight on an Atlas launch vehicle
- SM has been in storage and will undergo Return to Flight (RTF) regression testing in Dec after TAS-E radio delivery
- Pressurized Cargo Module (PCM) is planned for delivery to KSC in Jan 2016

> Atlas V 401

Payload Adapter planned for manufacturing

OA-5 (Orb-6) Mission Status

Mission Planning

First enhanced Cygnus on the upgraded Antares Launch Vehicle launched from WFF Pad 0A

> Pressurized Cargo complement

- ISS cargo manifest planned in support of Cargo Integration Review (CIR)
- Spacecraft Fire Experiment (Saffire) #2 payload will be integrated into Cygnus
- Planned Upmass: 7,050 Pounds

Cygnus Status

- Service Module (SM) in storage having completed integrated testing
- SM plan for post-storage testing is approximately 3 months before launch

Antares Status

- ➤ Hardware Acceptance Review (HAR) for the RD-181 engines was conducted from 7/7/15 7/9/15 with delivery to WFF on 7/20/15
- Antares 230 Stage 1 Core delta Critical Design Review (CDR) was conducted from 7/15/15 7/17/15
- WFF range/FAA Antares 230 status briefing was conducted on 7/23/15
- > Engines 2A and 3A were attached to the Stage Test Article (STA) for fit check
- ➤ RD-181 Certification Test Review was conducted from 9/2/15 9/4/15
- Core is at WFF; modifications to support Antares 230 configuration are nearly complete
- Engines are being prepared for hot fire test

Launch Pad Status

Pad 0A rebuild completion and re-certification planed for Oct.

SpaceX-8 Mission Status

Mission Planning

- Cargo Integration Review (CIR) Part 1 completed on 5/28/15 with Part 2 planned for Oct
- > Safety Review Panel (SRP) Phase 3 review is planned to be complete by 10/7/15
- Post Qualification Review (PQR) is planned for Nov
- Stage Operations Readiness Review (SORR) is planned for Dec

Pressurized Cargo

- ➤ 1 Animal Enclosure Module-Transporter (AEM-T), 3 Polars (2 powered), and a NORS O2 Tank
- ➤ Planned Upmass: 3,810 pounds. Planned Return: 4,100 pounds

External Cargo

➤ Bigelow Expandable Activity Module (BEAM) arrived at KSC on 7/23/15 and is dwelling in the SSPF until SpX is ready to integrate

Dragon Status

- Capsule and trunk stacking for integrated checkouts at Hawthorne was completed on 7/27/15
- > Final hatch blowdown and Acceptance Test Procedure (ATP) was completed on 8/25/15
- Vehicle in the Loop (VITL) and polarity testing was completed on 8/31/15
- Trunk and capsule are planned to be shipped by 10/9/15

> Falcon 9 Status

- > SpX-8 will be first CRS Falcon flight with full thrust capability (2nd or 3rd Falcon flight with full thrust)
- > Interstage in final assembly preparing for Stage 1 mate
- > M1D qualification completion is planned for Oct with MVac qualification planned for Nov
- Stage 1 and 2 are planned to ship to TX by Nov for ATP

SpaceX-9 Mission Status

Mission Planning

Cargo Integration Review (CIR) is planned for L-4 mo., Dec. 2015

Pressurized Cargo

- ➤ 1 JAXA Rodent Module (first flight including live mice return), 1 Bioculture, 3 Polar, Short Extravehicular Mobility Unit (SEMU), and 2 NORS Tanks
- Planned Upmass: 4,620 pounds Planned Return: 4,100 pounds

External Cargo

International Docking Adapter (IDA) #2

Dragon Status

- Capsule pressure and service section integration mate was completed on 7/15/15
- > All tank welds were completed in Sep
- Prop tank installation is currently underway
- Capsule and trunk stacking at Hawthorne for integrated checkouts is planned for 11/3/15

Falcon 9 Status

- Engine Octaweb currently in final assembly
- Production for other elements is planned to begin in Oct; engines to begin production and ATP in Oct

62P Progress-MS

- 62P is the first Progress MS vehicle
 - A number of updates to the Progress included in this version of the vehicle
 - MMOD shielding modified on the Orbital compartment (matches Soyuz vehicle updates)
 - Utilizes Kurs-NA rendezvous system instead of Kurs-A
 - > GLONASS/GPS satellite navigation system added and previous orbital navigation hardware
 - Kvant radio replaced with S-band satellite communication system
- First Progress flight on Soyuz 2.1A booster since 59P accident
 - Russian specialists conducted coupled loads analysis with the Progress updates and the Soyuz 2.1A Booster
 - NASA has requested Russian specialist to present special topic from this analysis at upcoming reviews
 - NASA has requested a special topic on this at the Vehicle Assessment Review, SORR and FRR.
- Next Steps
 - ▶ 62P Vehicle Assessment Review 10-15-15
 - > 62P SORR under review
 - > 62P FRR under review