

Hue bridge-lighting automation engine : investigate lighting
control alternatives for the existing rule-engine
Citation for published version (APA):
Skoumpakis, S. (2016). Hue bridge-lighting automation engine : investigate lighting control alternatives for the
existing rule-engine. Technische Universiteit Eindhoven.

Document status and date:
Published: 28/09/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 20. Dec. 2022

https://research.tue.nl/en/publications/6eb6898b-df6a-4b1a-b67f-ca9c4f01bf7a

Hue Bridge –

Lighting Automation Engine

Spyridon Skoumpakis

September 2016

Hue Bridge – Lighting Automation Engine
Investigate lighting control alternatives for the existing rule-engine

Eindhoven University of Technology

Stan Ackermans Institute / Software Technology

Partners

Philips Lighting Eindhoven University of Technology

Steering Group Spyridon Skoumpakis

George Yianni

Daniel Goergen

Walter Slegers

Tanir Ozcelebi

Ad Aerts

Date

Document Status

September 2016

Public

The design described in this report has been carried out in accordance with the TU/e Code

of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.097B, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

SAI report no. Eindverslagen Stan Ackermans Instituut ; 2016/036

Abstract Philips Hue is an internet connected (wireless) lighting system designed to transform

how users experience light inside their homes. It is one of the leading and most installed

smart home / Internet of Things products in the world. Philips Hue enables color tunable

lights to be controlled from smartphones, web services or other control logic and devices

running in the system.

The brain of the Hue system is an embedded device called Hue bridge. The Philips Hue

bridge controls and monitors ZigBee lights, sensors, and switches; it acts as local home

lighting controller. The bridge communicates both in IP and ZigBee networks and actually

facilitates the message translation from one to another.

The bridge uses a rule engine, which receives switch, sensor, or timer triggers and then

sets a specific lighting scene as result. This engine is a software module responsible for the

automation logic of the bridge. With an increasing complexity of home lighting control use

cases the need of exploring more sophisticated automation engines was imperative. As the

first step, an investigation of alternative engines is conducted having a comparison table as

main output. Furthermore, a formal specification for a future Lighting Automation Engine

is developed, and coupled with a prototype. The specification describes ways to transcend

the strict limitations of the existing engine introducing the power of scripting languages.

The project also lists several suggestions for future improvements.

Keywords

Home automation, lighting automation, smart lighting, rule engine, scripting engine, auto-

mation engine, Philips Lighting, Philips Hue, TUE, Software Technology, PDEng

Preferred

reference

Hue Bridge – Lighting Automation Engine: Investigate lighting control alternatives for the

existing rule-engine. SAI Technical Report, September 2016. (Eindverslagen Stan Acker-

mans Instituut ; 2016/036)

Partnership This project was supported by Eindhoven University of Technology and Philips Lighting.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or Philips

Lighting. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the Eindhoven University of Technology or Philips Lighting, and shall not

be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report

is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-

sentation or undertaking whether expressed or implied, nor does it assume any legal liabil-

ity, whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness

of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the

intent to infringe the copyright of the respective owners.

Copyright Copyright © 2016. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-

ing, recording, or by any information storage or retrieval system, without the prior written

permission of the Eindhoven University of Technology and Philips Lighting.

Foreword
The Internet of Things and your whole home connected and automated is a predicted

future for which we see the first steps taking place with connected consumer devices.

Did you ever wonder what is the most common electronic device that is part of that,

one that is present in all your rooms? Your lights. A connected home needs connected

lighting. Control your lights with your smart phone. Define automated lighting behav-

ior with your smart phone, e.g., which lights to switch on when you enter a room. And

also if these lights should emit a warm white light, cold white light, or have a color.

The latter might depend on the time of day, the weather, your personal agenda, and so

on. We probably haven’t imagined the possibilities.

Philips Hue is a connected home lighting system, on a journey to discover the possi-

bilities. And to allow the world to discover the possibilities, the Philips Hue system is

an open system, it allows 3rd party application developers to build apps for Hue. Apps

to control your lights, but also to define and create lighting automation behavior. This

automation has limitations, some intentionally, some due to resource constraints. The

time has come to enable more.

How should a next step in lighting automation be designed? It should be open for other

app developers, but not cause users to be surprised on unexpected lighting behavior. A

home user should be in control and understand what’s happening. This document from

Spyridon Skoumpakis describes requirements for home lighting automation. It in-

cludes an inventory of what exists in the world today, to learn from others. It suggests

a direction for the Philips Hue system on how to improve its current lighting automa-

tion into one that allows more flexibility to handle the needs of the emerging IoT world

while preventing a loss of control. It serves as input on how to proceed with lighting

automation for Philips Hue.

W. Slegers

September 2016

iii

Preface
This report offers a detailed account of the graduation project for the PDEng

(Professional Doctorate in Engineering) Software Technology program on behalf

of the Eindhoven University of Technology and the Stan Ackermans Institute. This

project was carried out in Philips Lighting, a company that designs, develops, and

produces lighting solutions and applications both for professional and consumer

markets, over a period of nine months from January until September 2016.

The project’s goal is to evaluate the author as a software designer, while provid-

ing Philips Lighting with a modern specification proposal for a future Lighting Au-

tomation Engine that will be used in the Hue bridge v2. The original need was to

investigate engine alternatives in order to support sophisticated lighting automation

use cases. This report contains insights, the design as well as the description of the

process that led there. Therefore, in addition to the new design, the domain, project

management, conclusions, and retrospective are explained in corresponding chap-

ters.

This report is primarily intended for readers with a technical background. How-

ever, certain chapters may be interesting for non-technical readers, such as project

managers and home automation enthusiasts.

Spyridon Skoumpakis,

September 2016.

iv

v

Acknowledgements
A number of people have contributed to the successful completion of this pro-

ject. First, I would like to express my appreciation to Daniel Goergen and Walter

Slegers my supervisors from Philips Lighting. In the context of our weekly syn-

chronization meetings they provided guidance and support throughout all the

phases of this project. Furthermore, I would also like to thank Tanir Ozcelebi, my

TU/e supervisor, for his valuable contribution and meaningful feedback.

This project would not have been a success without the support from domain

experts, and there were many. The two best examples of such people are Ino Dek-

ker and Michel van de Wetering who despite their really busy agendas were willing

to answer every single of my questions, and there were many. I thank you for your

patience, critical thinking, advices, and continuous support during this project.

Additionally, I would also like to thank everyone involved in the PDEng pro-

gram, especially our program director Ad Aerts. Thank you for our conversations,

your understanding, your advices and everything; this program and my experience

would not be the same without you.

Last but not least, I would like to express my gratitude, from the bottom of my

heart, to three people for their continuous support during this program, and for be-

lieving in me. First and foremost, a special thank you goes to my mother, Eleni, for

her incredible patience and support. Second, a special thank you goes to my best

friend, Christos, for everything he has done for me and most importantly for being

physically present, and finally a special thank you goes to my cousin John for his

support in difficult times.

Spyridon Skoumpakis,

September 2016.

vi

vii

Executive Summary
Philips Hue is a personal wireless lighting system designed to transform how

users experience light inside their homes. It is one of the leading and most installed

smart home / Internet of Things products in the world. Philips Hue transforms how

users can experience light by enabling color tunable lights controlled from

smartphones, web services or other control logic and devices running in the system.

Furthermore, it is an open system, i.e., via standardized or published interfaces

other suppliers or developers can add components.

The brain of the Hue system is an embedded device called Hue bridge. The

Philips Hue bridge controls and monitors ZigBee lights (Hue lamps), sensors, and

switches; it acts as local home lighting controller. The bridge communicates both

in IP and ZigBee networks and actually facilitates the message translation from one

to another.

The bridge uses a rule engine, which receives switch, sensor, or timer triggers

and then sets a specific lighting scene (predefined light attributes state) as result.

This engine is a software module responsible for the automation logic of the bridge.

With an increasing complexity of home lighting control use cases the need of ex-

ploring more sophisticated automation engines was imperative.

Improving home lighting experience is of great importance to Philips Lighting.

The home automation environment is rapidly evolving and companies need to fol-

low and satisfy the new trends. Focusing on lighting, an important relevant criterion

is being able to explain to a user of the system why a light changed. The existing

Hue engine offers almost no information for its internal activities. Additionally, as

the lighting automation community grows the need of having abstraction layers for

different user categories is continuously emerging. Developers ask for flexibility

and functionality and end users ask for usability and simplicity. Besides these fun-

damental examples, there are many more that Philips Lighting wants to achieve in

order to maintain its leading position as a provider of lighting solutions and appli-

cations.

To address these challenges Philips Hue department initiated this project. In the

context of the project in question, a thorough investigation for existing Lighting

Automation Engines conducted and useful insights extracted. A comparison table

of open-source alternatives created and some important design decisions made and

documented.

A formal specification for a future Lighting Automation Engine is developed

using JSON Schema. The specification describes ways to transcend the strict limi-

tations of the existing engine introducing the power of scripting languages and ab-

straction layers. The specification is separated in three parts implementation, in-

stances and interface. The implementation scripts offer generic reusable behavior

to native and third-party applications, the instances offer real-world examples of

behavior and the interface provides a contract-bridge between the two. These three

pillars constitute the formal description of an engine capable to satisfy the most

important requirements and to serve as guideline for future implementation.

The architecture defined is modular and works in parallel with the existing sys-

tem as long as the interfaces between them remain the same. The benefits of script-

ing are countless and as long as the internal complexity is hidden and controlled

within the designed abstraction layers the end-user experience will be the desirable.

Many important features that the existing engine lacked such as the usage of vari-

ables, full Boolean logic, grouping and logging come practically out-of-the-box.

Last but not least, the project lists several suggestions for future improvements.

viii

ix

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context ... 1

1.2 Outline .. 1

2. Stakeholder Analysis ... 4

2.1 Eindhoven University of Technology (TU/e) 4

2.2 Software Technology Program... 4

2.3 Philips .. 4

2.4 Philips Lighting .. 5

2.5 Main stakeholders .. 6
2.5.1. TU/e ... 6
2.5.2. Philips Lighting ... 6

2.6 Stakeholder Analysis .. 7

3. Domain Analysis .. 9

3.1 Introduction .. 9

3.2 Home Automation ... 10
3.2.1. Home Automation Systems ... 12
3.2.2. Home Automation Protocols ... 14

3.3 Lighting Control ... 15

4. Problem Analysis ... 17

4.1 Context ... 17

4.2 Hue System ... 18
4.2.1. The Bridge ... 18
4.2.2. Hue API ... 19
4.2.3. Lights – Lamps .. 20
4.2.4. Apps... 20
4.2.5. SDK ... 20
4.2.6. Hue portal .. 21
4.2.7. Hue sensors and switches .. 21

x

4.2.8. More ZLL nodes .. 21
4.2.9. Third-party services ... 21
4.2.10. Browsers .. 21

4.3 Problem Description .. 22
4.3.1. Problem Statement in a nutshell .. 22

4.4 Design Opportunities ... 23

5. Feasibility Analysis .. 25

5.1 Challenges & Risks .. 25
5.1.1. Lack of domain knowledge ... 25
5.1.2. Distributed expert knowledge .. 25
5.1.3. Complexity of legacy system/code .. 25
5.1.4. Lack of documentation .. 26
5.1.5. Lack of resources ... 26
5.1.6. Time shortage – Converging vs. Diverging 26
5.1.7. Conflicting requirements and use-cases 26
5.1.8. Contradictory user categories .. 26
5.1.9. Dependency – Configuration issues .. 27

5.2 Risk Management ... 27

6. System Requirements .. 29

6.1 Introduction .. 29
6.1.1. Purpose and scope ... 29
6.1.2. Requirement Elicitation Process .. 29

6.2 Requirements .. 30
6.2.1. Non-Functional .. 30
6.2.2. Functional .. 30

6.3 Use Cases ... 31
6.3.1. User perspective .. 31
6.3.2. Mobile app / Internet service developer perspective 32
6.3.3. Hue (bridge/cloud/system) perspective 32

6.4 Design Criteria ... 33
6.4.1. Introduction ... 33
6.4.2. Criteria that apply .. 33
6.4.3. Criteria that do not apply ... 33
6.4.4. Criteria Analysis .. 34

7. Design Alternatives .. 37

7.1 Introduction .. 37

7.2 First Phase ... 37
7.2.1. OpenHAB .. 38
7.2.2. OpenRemote .. 39
7.2.3. Vera – OpenLuup .. 39
7.2.4. Domoticz ... 40
7.2.5. Easy Rules ... 41
7.2.6. Home Assistant .. 42
7.2.7. Drools .. 43
7.2.8. Z-Way Home Automation ... 45
7.2.9. Independent GitHub projects ... 47
7.2.10. Independent npm projects .. 47

xi

7.3 Second Phase ... 48
7.3.1. Comparison Criteria .. 48
7.3.2. Comparison table ... 50

7.4 Conclusions .. 51
7.4.1. Specific .. 51
7.4.2. Generic .. 51

8. Engine Specification .. 53

8.1 Introduction .. 53

8.2 JSON .. 53

8.3 JSON Schema and metadata .. 54
8.3.1. Approach ... 55
8.3.2. JSON Schema primitive types ... 55
8.3.3. Example – Product API ... 56
8.3.4. Why JSON Schema? ... 58

8.4 Implementation ... 59

9. Schema Validation ... 62

10. Conclusions - Results ... 65

11. Project Management .. 68

11.1 Introduction .. 68

11.2 Work-Breakdown Structure (WBS) ... 69
11.2.1. Initial ... 70
11.2.2. Final ... 70

11.3 Project Planning and Scheduling ... 70
11.3.1. Methodology ... 70
11.3.2. Timeline ... 71

11.4 Execution .. 72

12. Project Retrospective ... 74

12.1 Introduction .. 74

12.2 Good Practices ... 74

12.3 Improvement Points .. 75
12.3.1. Project Planning .. 75
12.3.2. Project Scope and Expectation Management 75

12.4 Design criteria revisited ... 75

Glossary ... 77

References .. 78

About the Author .. 83

xiii

List of Figures

Figure 3 Stakeholder power-interest diagram .. 7
Figure 4 History of Light Bulbs (oil, incandescent, fluorescent, LED) [7] 10
Figure 6 Home Automation Services [9] .. 11
Figure 7 Simple Lighting Control Use Case [19] ... 15
Figure 9 Hue system overview [21] ... 18
Figure 10 Hue Bridge v2 (rectangular) and v1 (circular) respectively 18
Figure 11 Hue Bridge as a gateway [22] ... 19
Figure 14 Testing tool – web application [25] ... 19
Figure 19 High level Use Case diagram .. 31
Figure 20 Information sources for alternative technologies 37
Figure 21 OpenHAB architecture overview – automation logic module [29] 38
Figure 22 Domoticz – Architecture Overview [32] ... 40
Figure 23 Example structure of Easy Rules Engine [33] 41
Figure 24 Overview of the Home Automation landscape [17] 42
Figure 25 Home Assistant core architecture [17] ... 42
Figure 26 Generic BRMS architecture [34] ... 43
Figure 27 High-level View of a Rule Engine [34] ... 44
Figure 28 Drools Rule Formats [34] ... 44
Figure 29 Z-Way Software structure [35] .. 46
Figure 30 Mqtt-smarthome architecture [38] ... 47
Figure 40 Instances of products [45]... 56
Figure 41 Set of Products Schema [45] ... 57
Figure 42 Basic views of behaviors ... 59
Figure 47 Validation of an example Instance [51] .. 63
Figure 52 An example of a Trello board .. 68
Figure 53 Project’s Work-Breakdown Structure ... 69
Figure 54 Snapshot of project’s timeline.. 71

file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052465
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052466
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052467
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052468
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052469
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052470
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052471
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052472
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052473
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052474
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052475
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052476
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052478
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052479
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052480
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052481
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052482
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052483
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052484
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052485
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052486
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052487
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052488
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052489
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052490
file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052491

xv

List of Tables

Table 2 Risk Management .. 27
Table 3 Comparison table of Alternatives .. 50
Table 5 Time allocation - created on 15 January 2016 70
Table 6 Time allocation - created on 15 July 2016 ... 70
Table 7 Glossary ... 77

file:///C:/Users/jredegel/Desktop/%5bPublic%5d%20(v3)%20Spiros%20Skoumpakis%20-%20PDEng%20Report.docx%23_Toc463052493

xvi

1

1.Introduction
In this chapter, the context of the project is presented alongside with a brief refer-

ence to the involved parties, followed by the outline of the project per chapter.

1.1 Context
The assignment described in this report is part of nine-month collaboration between

Eindhoven University of Technology and Philips Lighting B.V. under the auspices of

the Software Technology designer program. This Professional Doctorate in Engineer-

ing (PDEng) program is offered by Stan Ackermans Institute 4TU.School for Techno-

logical Design.

Stan Ackermans Institute (SAI) is a federation of four leading Dutch technical uni-

versities: TU Delft, TU Eindhoven, University of Twente, and Wageningen University.

The federation aims at maximizing innovation by concentrating the strengths in re-

search, education and knowledge transfer of all technical universities in the Nether-

lands. The SAI manages more than twenty post-graduate technical designer programs

across the four technical universities. Each designer program is intended to teach the

skills needed to design the complex systems needed in the high tech industry to new

master’s graduates who are starting their careers.

The goal of a PDEng program is to provide an additional dimension to a full mas-

ter’s program by extending it and adding new elements to it. A PDEng trainee further

develops skills for synthesis and interdisciplinary work, acquiring the competencies to

create innovative technological solutions for products, processes, and systems. The so-

lutions are based on functional requirements as well as on business and market require-

ments, within the context of society as a whole. The technological designer program

takes two years to complete. During the first year, extensive knowledge and experience

of the latest design methods and their applications gained through in-house team pro-

jects. The second year of the program is spent in industry where the PDEng trainee

works on an individual assignment. [1]

1.2 Outline
This report is organized in the following chapters:

 Chapter 2 – Stakeholder Analysis: presents the identified stakeholders. The

main stakeholders for this project were identified in the early phase of this

project based on different points of interest for the Lighting Automation En-

gine.

 Chapter 3 – Domain Analysis: describes the context of Home Automation

around Hue Lighting and important information about lighting control in gen-

eral. This information aims to provide the terms that will give the reader a

better understanding of the rest of the report.

 Chapter 4 – Problem Analysis: gives the overview of the problem at hand,

a more detailed analysis of the Hue ecosystem, and the expected outcome of

this project, i.e. a Lighting Automation Engine.

 Chapter 5 – Feasibility Analysis: presents the feasibility analysis of the

problem at hand. It shows the relation to the challenges and risks that were

identified in the early stages of the project.

 Chapter 6 – System Requirements: shows the process used to gather the

project’s requirements. Following this, the important scenarios that concern

2

the Lighting Engine together with the functional and non-functional require-

ments are described. Finally, the identified design criteria that are important

for the success of this project conclude this chapter.

 Chapter 7 – Design Alternatives: presents the investigation of alternative

engines and home automation systems along with its outcome. Additionally,

this chapter discusses some important design decisions. These decisions are

the foundations of the new Lighting Engine’s architecture.

 Chapter 8 – Engine Specification: focuses on the creation of a formal spec-

ification for the new engine. First, it describes the specification, starting from

defining what JSON is and then what JSON Schema is. Second, it continues

with Schema’s implementation for the new Lighting Automation Engine

which is one of the two major outputs of the project.

 Chapter 9 – Schema Validation: This chapter provides an account of the

suitability of the created JSON Schema to meet the system requirements as

listed in Chapter 6. This chapter discusses the various techniques for valida-

tion.

 Chapter 10 – Conclusions - Results: shows the results of this project. The

two main achievements are the outcome of the alternatives investigation and

the JSON Schema specification prototype.

 Chapter 11 – Project Management: presents an overview of the project

management techniques used in this project. The initial planning and how it

evolved is also explained using the Work-Breakdown Structure. Finally, the

planning methodology and timeline of the project are presented accompanied

with some explanatory information for its execution.

 Chapter 12 – Project Retrospective: offers a reflection on the project, look-

ing back into what proved to be good practices and what could have been

improved. Furthermore, the design criteria are revisited and their role on the

outcome of the project is reexamined.

3

4

2.Stakeholder Analysis
In this chapter, the identified stakeholders are mentioned. Detailed description of

the involved parties is given and a list of the main stakeholders per party follows ac-

companied with a table of all affiliates and a visual representation of the analysis.

2.1 Eindhoven University of Technology (TU/e)
The Eindhoven University of Technology is responsible for the educational aspect

of this project and fulfilling the requirements for a project of this type. That means

certain standards need to be met. The TU/e is concerned with the design process, pro-

ject management, and implementation.

2.2 Software Technology Program
The Professional Doctorate in Engineering (PDEng) degree program in Software

Technology is provided by the Department of Mathematics and Computer Science of

Eindhoven University of Technology (TU/e) in the context of the 4TU.School for

Technological Design, Stan Ackermans Institute.

This Professional Doctorate in Engineering program (PDEng) is an accredited and

challenging two-year, third-cycle (doctorate-level) engineering degree program during

which its trainees focus on strengthening their technical and non-technical competen-

cies related to the effective and efficient design and development of software for re-

source-constrained software-intensive systems, such as real-time embedded or distrib-

uted systems, in an industrial setting. In particular, the focus is large-scale project-

based design and development of this kind of software.

The Software Technology program is designed to prepare people for an industrial

career as a technological designer, and later on as a software or system architect. It

starts with 15 months of advanced training and education, including four small, indus-

try driven training projects, followed by a major design project of nine months in a

company. [2]

2.3 Philips
In 1891, Gerard Philips, together with his father Frederik Philips, founded the firm

Philips & Co. The company was established in empty business premises in Eindhoven.

There was already considerable competition in the lamp market at that time. Gerard’s

distinctive approach was to concentrate fully on the mass production of incandescent

lamps. In 1895 Gerard’s brother Anton Philips joined the firm to look after sales, a

move that proves successful. In 1895, 200,000 incandescent lamps were sold, and three

years later more than 1,000,000. By the end of the 1890s Philips & Co. was one of the

largest producers in the Netherlands and, with 1,000 employees, the country’s largest

industrial employer. [3]

Today, Koninklijke Philips N.V. (Royal Philips or the ‘Company’) is the parent

company of the Philips Group (‘Philips’ or the ‘Group’). The Company is managed by

the members of the Board of Management and Executive Committee under the super-

vision of the Supervisory Board. The Executive Committee operates under the chair-

manship of the Chief Executive Officer and shares responsibility for the deployment

of Philips’ strategy and policies, and the achievement of its objectives and results.

Headquartered in Amsterdam, the Netherlands, Philips employs over 112,000 em-

ployees (December 2015) with sales and services in more than 100 countries world-

wide. With sales of EUR 24.2 billion in 2015, the company is a market leader in cardiac

5

care, acute care and home healthcare, energy efficient lighting solutions and new light-

ing applications, as well as lifestyle products for personal well-being and pleasure (An-

nual Report 2015).[4]

In September 2014, Philips announced its plan to sharpen its strategic focus by

establishing two standalone companies focused on the HealthTech and Lighting op-

portunities respectively. A stand-alone structure for Philips Lighting has been estab-

lished within the Philips Group, effective February 1, 2016.

2.4 Philips Lighting
As of February 2016, two standalone operating companies emerged within Royal

Philips, focused on the HealthTech and Lighting opportunities respectively. While the

businesses in Lighting and HealthTech operate independently, Lighting remains a

wholly-owned Philips business and will be until the board of directors identifies and

executes the right strategic option for its future. The Royal Philips Executive Commit-

tee, of which both Frans van Houten (CEO of Royal Philips) and Eric Rondolat (CEO

of Philips Lighting) remain members, continues to oversee both businesses in Lighting

and HealthTech. Functional reporting lines into Royal Philips for Finance, Legal,

Communications, and HR will remain in place until full separation is achieved.

Philips Lighting Solutions B.V. is the leading provider of lighting solutions and

applications for both professional and consumer markets, pioneering in how lighting

is used to enhance the human experience in the places where people live and work.

Whether being at home, on the road, in the city, shopping, at work or at school, Philips

Lighting is creating lighting solutions that transform environments, create experiences,

and help shape identities. Philips Lighting serves its customers through a market seg-

ment approach, which encompasses Homes, Office and Outdoor, Industry, Retail, Hos-

pitality, Entertainment, Healthcare and Automotive. The company employed approxi-

mately 33,600 people worldwide with sales of EUR 7.4 billion in 2015. In 2015, Philips

Lighting spanned a full-service lighting value chain – from lamps, luminaires, elec-

tronics and controls to connected and application-specific systems and services.

Philips Lighting is a global market leader with recognized expertise in the devel-

opment, manufacture and application of innovative, energy-efficient lighting products,

systems and services that improve people’s lives. The company has pioneered many

of the key breakthroughs in lighting over the past 125 years, laying the basis for its

current strength and leading position in the digital transformation.

As of February 2016, the structure of the company changed considerably. Lighting

is a rapidly evolving environment and Philips as a global leader is dynamically shaping

its future. One of the main focuses of the company is home lighting automation. In the

context of this domain, Philips Lighting has many projects following the interest and

needs of the market. The current project is about a home Lighting Automation Engine.

6

2.5 Main stakeholders
The main group of people who were involved in the steering process of the project

are presented below:

2.5.1. TU/e

Ad Aerts (ST Program Director)
He is the general director of Software Technology PDEng program since 2008 and

thus he is responsible for supervising the collaboration of the two parties of each design

project.

Tanir Ozcelebi (TU/e supervisor)
He is an assistant professor in Security and Embedded Networked Systems at the

Department of Mathematics and Computer Science and the research program manager

for the Bright Environments research program of TU/e Intelligent Lighting Institute

since 2013. Besides his mentorship, his role included making sure that the design and

documentation met the standard of a PDEng project.

Spiros Skoumpakis (PDEng Philips Trainee)
He is a PDEng candidate responsible for the implementation of the project.

2.5.2. Philips Lighting

George Yianni (Project Owner)
He is the head of technology and creator of Philips Hue, responsible for the tech-

nology choices made in the connected lighting business of Philips, which includes the

hue product. This ranges from design of new features, architectures and products to

choices of which technology standards and platforms to adopt. He is the initiator and

owner of the project in question.

Daniel Goergen (Project Manager)
He is a System Architect in the Philips Hue department.

Walter Slegers (Project Mentor)
He is a Software Architect in the Philips Hue department. Walter, Daniel and Spiros

were the three main responsible people for the outcome of the project being in close

collaboration since its beginning.

7

2.6 Stakeholder Analysis
Different people were involved in different phases of the project and influenced its

outcome in various ways. An effort of visualizing their contribution is presented in the

following diagram.

 High power, interested people: these are the people you must fully engage

and make the greatest efforts with e.g., the direct supervisors of the project

who are actively steering the process.

 High power, less interested people: provide sufficient information to these

people to ensure that they are up to date but not overwhelmed with data e.g.,

the head of the department who initiated the project.

 Low power, interested people: keep these people adequately informed, talk

to them to ensure that no major issues arise. These people can help with the

detail of the project e.g., End Users, other Project Managers, and Business

Community.

 Low power, less interested people: provide these people with minimal com-

munication to prevent boredom e.g., other departmental members, teams un-

affected by the change.

Figure 1 Stakeholder power-interest diagram

9

3.Domain Analysis

In this chapter, we focus our interest inside the structure of Philips Lighting. The

domain around the Lighting Automation Engine is described and analyzed focusing

incrementally on the important constituents. To be more specific, we begin with a small

historical overview of lighting and we continue with explaining the concept of Home

Automation, some milestones, some related systems and protocols. Finally, we scratch

the surface of lighting control, the issue at hand.

3.1 Introduction
Since its creation in 1891, Philips has been a product-oriented company, selling

thousands of conventional lighting products such as incandescent, halogen, and fluo-

rescent technology bulbs around the world. However, new technologies, such as light

emitting diode (LED) devices, have completely changed the market and, therefore, the

business strategy. Since LED diodes are essentially a product from the semiconductor

(chips) industry, new entrants are coming to the lighting market, and lighting installa-

tions are expected to become more intelligent, dynamic, and personalized. To over-

come these challenges, Philips Lighting is transforming from being a largely product-

focused company to a solution-oriented company in which products are seen as build-

ing blocks.

As one can easily understand, a big company like Philips Lighting is involved in

many activities. In fact, the company serves a large and attractive market that is driven

by the need for more light, the need for energy-efficient lighting, and the need for

digital and connected lighting. The world’s population is forecast to grow from 7 bil-

lion today to over 9 billion by 2050. At the same time, we are witnessing rapid urban-

ization, with over 70% of the world’s population expected to live in urban areas by

2050. These trends will increase demand for light. In addition, in the face of resource

constraints and climate change, the world needs that light to be energy efficient; at the

same time, the lighting industry is moving from conventional to LED lighting, which

is changing the way people use, experience and interact with light. Digital technologies

enable connectivity and seamless integration in software architectures, systems, and

services. Connected lighting allows light points to be used as information pathways

opening up new functionalities and services based on the transmission and analysis of

data. [4]

The lighting market is expected to grow by 2 to 4% per annum between 2015 and

2019 (source: BCG). The majority of this growth will be driven by LED-based solu-

tions and applications – heading towards a 60 to 65% share by 2018.

10

The latest (2016) structure of the company presented in Chapter 1 illustrates the

wide span of areas of interest inside the Lighting domain. The specific domain of in-

terest for this project is the Home Business Group. This group inside Philips Lighting

is responsible for – among others – research and development of Home Automation

products. Within the home group, there are different business units and the one that

encompasses the scope of this project is the Home Systems Business Unit also known

as Philips Hue.

3.2 Home Automation
Home Automation is the use and control of home appliances remotely or automat-

ically. The same concept can be found with various names such as smart home, digital

home, e-home, intelligent household and domotics.

The idea of Home Automation is not a recent concept in any way but it has been

more of a case of technology catching up with the idea. Home Automation was a topic

of science fiction for many years and in Ray Bradbury’s short story “There Will Come

Soft Rains” (1950), he wrote about an automated home that continues to work despite

no one living in it. [8]

A brief list of milestones in the history of Home Automation follows:

 Remote controls – It all started with the wireless remote control, which was

first unveiled by Nikola Tesla in 1898 when he controlled a miniature boat by

sending radio waves.

 Domestic Appliances – The 20th century started with the boom in home ap-

pliances such as the vacuum cleaner engine in 1901 and the electric powered

vacuum six years later. Throughout the next two decades was the revolution

in home appliances with refrigerators, clothes dryers, washing machines,

irons, and toasters. However, these were expensive and only afforded as a

luxury for the wealthy.

 ECHO IV – The idea of Home Automation was flirted within the 1930’s

when the earliest working prototypes of automated houses debuted at the

World's Fairs in Chicago and New York City, but those homes were never

intended to be commercially available. It was not until 1966 that Jim Suther-

land developed the first Home Automation system “Echo IV”, which would

make a shopping list, control temperature and turn appliances on and off, but

this was also never commercially sold.

 Kitchen Computer – 1969 saw the Honeywell Kitchen Computer, which was

a computer that would create recipes, although this had no commercial suc-

cess due to the price.

 Microcontroller – The microprocessor came in 1971 and this meant a rapid

price fall in electronics; consequently, technologies became more accessible

to everyone.

 Smart Home – This term was first coined by the American Association of

Home Builders in 1984.

 Ubiquitous Computing – is a term coined around 1988 and refers to a soft-

ware engineering concept where computing is made to appear anytime, eve-

rywhere using any device in any format.

 Gerontechnology – Through the 1990’s there was a new focus on combining

gerontology with technology to help improve the lives of the elderly and less

able.

 Ambient Intelligence – (Aml) refers to electronic environments that are sen-

sitive and responsive to the presence of people. It was a vision on the future

of consumer electronics, telecommunications, and computing; it was origi-

nally developed in the late 1990s for the time frame 2010-2020.

Figure 2 History of Light Bulbs (oil, incandescent, fluorescent, LED) [7]

11

 Domotics – By the end of the century, this term was commonly used to de-

scribe how domestic appliances were now being combined with computers

and robots. Despite this development in making this technology more acces-

sible, it was still very expensive and lacked any widespread uptake, and was

left for the rich.

 Integer millennium house – Opened in 1998, this demonstration home in

Watford, England showcased how Home Automation could be integrated to

it a home with heating systems, automatic garden controlling soil, security

systems, lights and doors.

 Start of the technology revolution – Gradually as technology became more

affordable, these technologies slowly became integrated in our homes. As

these became more popular, there was more investment into making them ef-

ficient, cheaper, and thus more accessible.

 Internet of Things – (IoT) as a part of this revolution, this term is the new

domain “hype” and was coined in 1999 by a British entrepreneur. It is essen-

tially the network of physical objects (Things) – devices, vehicles, buildings

and other items – embedded with electronics, software, sensors, and network

connectivity that enables these objects to collect and exchange data.

 Now – Nowadays Home Automation is everywhere, and we are not always

aware of it. We can now control our TVs, heating, lights, alarms and doors all

via our smart phones and controllers.

 The future – Our imagination is our only limitation with technology as ad-

vanced as is it is today we can make almost anything such as mirrors that are

TVs, smart wardrobes, and smart ovens. [8]

In this context, Philips made a strategic choice to be the expert in Lighting (Auto-

mation) and not the center of smart homes. The existing knowledge of the company in

the specific domain was the main drive for that choice. Additionally, another main

reason was that lighting control is the most common usage scenario of a Home Auto-

mation system. Lighting is ubiquitous and the main gate of IoT (Internet of Things)

penetration in contemporary households.

Figure 3 Home Automation Services [9]

12

3.2.1. Home Automation Systems

Besides the abovementioned examples, there are several recent Home Automation

systems that are worth mentioning in the IoT context. The list is for sure not exhaustive

but the following systems came up repetitively during the meetings of the author with

various Philips’ experts. The systems are separated in two categories the commercial

and the Open Source. In a later section we will put more focus on the Open Source

solutions; here we give brief descriptions for both.

Commercial Systems

SmartThings
SmartThings is a company founded in 2012 and a proprietary Home Automation

system. SmartThings' primary products include a free SmartThings app, a SmartThings

Hub, as well as various sensors and smart devices.

The SmartThings native mobile application allows users to control, automate, and

monitor their home environment via mobile devices. Customers can use the app to

connect multiple devices at once or follow a dedicated path to configure one device at

a time.

The hub connects directly to a home's internet router and is compatible with com-

munication protocols such as ZigBee, Z-Wave, and IP-accessible devices. It serves to

connect sensors and devices to one another and to the cloud, allowing them to com-

municate with the SmartThings native app.

Last but not least, the company was acquired by Samsung in August 2014 [10].

HomeKit
Apple has no smart home devices of its own but it has HomeKit technology, a

proprietary software framework for controlling and interconnecting devices around a

household. The frontend of the system is both Siri and the Home app in iOS. HomeKit

provides integration between accessories that support Apple's Home Automation Pro-

tocol and iOS devices. A public API is offered for configuring and communicating

with those devices. HomeKit was first introduced in 2014 as a part of iOS 8 [11].

Fibaro
Fibar Group began as a spin-off from Poland in 2010 and they now have one of the

most powerful proprietary home automation platforms. The system offers its own hub,

smart accessories and applications for a household, but it can also be integrated with

other systems such as Philips Hue. Fibaro uses mainly Z-Wave protocol for its com-

munication. Additionally, it offers different abstraction layers for different user cate-

gories such as full Lua functionality for experienced users and a visual block interface

for less technical users [12].

Wink
Wink is a brand of software and hardware products that connect with and control

smart home devices from a consolidated user interface. Wink was founded in 2014 as

a spin-off but now is an independent subsidiary of another company named Flex. As

of 2016, Wink is connected to 1.3 million devices.

Furthermore, it connects with smart home devices associated with the Internet of

Things, such as thermostats and Wi-Fi-enabled lights, to provide a single user interface

on a mobile app or via a wall-mounted screen, called Relay. The mobile app is free,

while consumers pay for a Wink Hub, or Wink Relay, which connects with smart de-

vices in the home. The hubs integrate with competing software standards used by dif-

ferent manufacturers. All the processing activities are implemented in the Cloud. In

February 2016, new features were introduced to allow Wink to operate on the local

network, in case a user's internet connection is down. In June 2016, compatibility with

Uber, Fitbit, and IFTTT, was added to the Relay product. [13]

13

WeMo
WeMo is a series of commercial products from Belkin International first launched

in 2012. WeMo enables users to control home electronics from anywhere. The product

suite includes a switch, motion sensor, Insight Switch, light switch, camera and app.

The WeMo Switch can be plugged into any home outlet, which can then be controlled

from an iOS or Android smartphone running the WeMo App, via home Wi-Fi or mo-

bile phone network.

 The WeMo Motion Sensor can be placed anywhere, as long as it can access

the same Wi-Fi network as the WeMo devices it is intended to control. It can

then turn on and off any of the WeMo devices connected to the Wi-Fi network

as people pass by.

 The WeMo Insight Switch provides information on power usage and cost es-

timation for devices plugged into the switch.

 The WeMo Light Switch is for use where a light is controlled by a single light

switch. Multi-way switching is not supported at this time.

 The WeMo App controls the WeMo devices from anywhere in the world as

long as the WeMo devices’ wireless network is connected to the Internet.

WeMo devices can also be controlled using IFTTT technology. WeMo de-

vices can also be controlled by voice through the Amazon Echo. [14]

Open Source Systems

OpenHAB
The Open Home Automation Bus is an open source, technology-agnostic home au-

tomation platform written in pure Java with an OSGi architecture for modularization.

Being hardware/protocol agnostic, OpenHAB allows users to integrate and connect a

variety of devices from classical home automation systems, such as KNX, Z-Wave,

Insteon, EnOcean,, to new Internet of Things (IoT) gadgets and devices, such as Kou-

bachi, Sonos, Nest Labs, Philips Hue, GE Link and custom built Arduino nodes and

sensors.

OpenHAB is controlled by a single user interface accessible from a standard web

browser or user created Android and iOS applications. Through this interface, users

can manage all aspects of their smart home by creating automation rules or scenes and

leveraging data from RESTful API's to control everything from lighting to irrigation,

and more.

OpenHAB was initially released in 2010 and today is a part of Eclipse Smart Home

project, the most active open source home automation community. [15]

OpenRemote
OpenRemote is an open source project, started in 2009, with the ambition to over-

come the challenges of integration between many different protocols and solutions

available for home automation, and offer visualization tools. OpenRemote Inc. was

created, to enable the sponsorship of the OpenRemote open source project – in the vein

of JBoss.

OpenRemote is software integration platform for residential and commercial build-

ing automation. OpenRemote platform is automation protocol agnostic, operates on

off-the-shelf hardware and is freely available under an open source license. Open-

Remote's architecture enables fully autonomous and user-independent intelligent

buildings. End-user control interfaces are available for iOS and Android devices, and

for devices with modern web browsers. User interface design, installation management

and configuration can be handled remotely with OpenRemote cloud-based design

tools. [16]

14

Home Assistant

Home Assistant is a relatively new (December 2014) open-source home automa-

tion platform running on Python 3. The goal of Home Assistant is to be able to track

and control all devices at home and offer a platform for automating control. Home

Assistant can be extended by components. Each component is responsible for a spe-

cific domain within Home Assistant. Components can listen for or trigger events, offer

services and maintain states. Exactly like OpenHAB Home Assistant, aims to be pro-

tocol agnostic and thus supports the integration of different technologies and devices

controlled by one application. [17]

There are various other relevant systems open source, proprietary or even inde-

pendent projects (e.g., GitHub and npm) that one can find online. Some of them were

documented separately due to lack of space and can be provided upon request.

3.2.2. Home Automation Protocols

There are several different Home Automation protocols (some of them already

mentioned above) and, based on the specific set up requirements, there is always one

best choice. The list is not exhaustive a brief description follows each one: [18]

 X10, developed in the 1970s, is the oldest Home Automation protocol. X10

is a simple system that uses the power lines in a home to allow communication

between devices and appliances. Since X10 uses the power lines, it is very

reliable but subject to interference from other electrical devices in the circuit.

Special noise filters can mitigate this interference. X10 is a primitive system

and can only perform about 16 commands, sent one at a time.

 Insteon combines wired and wireless communication into a single system

that offers great reliability and flexibility. The power line is typically used as

a backup to the RF frequency used by the system. This allows commands to

reach the proper destination with little to no interference. Insteon supports

over 65,000 different commands and is one of the best options for upgrading

the light switches in a home. Insteon offers limited compatibility with X10

devices, but with the proper equipment, one can streamline an older X10 sys-

tem with Insteon technology.

 UPB (Universal Powerline Bus) is a wired system developed in the late 1990s

as an improvement to the technology that undergirds X10. UPB reduces the

interference that sometimes plagues X10 by using high-power pulses to send

its commands over power line circuits. UPB sends commands faster and can

handle greater voltage loads than X10, enabling a broader range of applica-

tions. UPB is fully programmable beyond the simple commands of X10.

 KNX appeared in Europe in the late 1990s and early 2000s and spread from

there to over 100 countries. The system operates in much the same way as

Insteon, except that in addition to power lines and RF frequencies, the stand-

ard system also supports the transmission of commands over wireless infra-

red, twisted pair wiring and Ethernet cables. KNX is normally installed in a

twisted pair wiring setup, which effectively eliminates electrical interference.

 ZigBee was conceived in 1998, standardized in 2003, and revised in 2006.

The name refers to the waggle dance of honey bees after their return to the

beehive. ZigBee is an IEEE 802.15.4-based specification for a suite of high-

level communication protocols used to create personal area networks with

small, low-power digital radios. It is a type of wireless mesh network that is

completely unlike any of its predecessors. In a mesh network, every device

acts as a relay to send and receive information. Commands travel by relay

through the network of devices until they reach their intended destination.

Due to the nature of a mesh network's relay system, the wireless network can

become larger, stronger, and more reliable with each additional device added.

Its low power consumption limits transmission distances to 10–100 meters

line-of-sight, depending on power output and environmental characteristics.

ZigBee 3.0 is on the verge of being released at this writing.

15

 Z-Wave alliance was established in early 2005. This protocol uses the same

mesh networking strategy as ZigBee; devices can communicate to one an-

other by using intermediate nodes to actively route around and circumvent

household obstacles or radio dead spots that might occur in the multipath en-

vironment of a house. It is oriented to the residential control and automation

market and is intended to provide a simple and reliable method to wirelessly

control devices.

3.3 Lighting Control
It is the most common usage scenario of a Home Automation system based on the

omnipresence of Lighting. Lighting control is fairly easy to both explain and set up.

The simplest example and its main components follow: [19]

 A hardware controller, or central control unit

 An actuator

 A lamp

The actuator in this case is a device that controls the flow of current from a wall

socket to the lamp in question. It does so by being plugged into both the wall socket,

and the lamp. The control unit communicates with the actuator to tell how much current

to let through to the lamp. The control unit may be operated through a website, by

remote control, or something similar.

The setup is illustrated in Figure 7. The wireless communication between the re-

mote control, the control unit, and the actuator is implemented using a Home Automa-

tion communications protocol, e.g., ZigBee or Z-Wave (most common technologies).

Figure 4 Simple Lighting Control Use Case [19]

16

17

4.Problem Analysis
In this chapter, we go deeper inside Lighting Control and we introduce Philips Hue,

the low-level context of the problem at hand. By describing the constituents of the Hue

ecosystem, we can finally focus on the specific module in question, the Lighting En-

gine and its existing implementation, the rule engine.

4.1 Context
In the previous chapter, we explained the high level structure of Philips Lighting in

Business Groups and we mentioned that our focus is the Home Business Group and

inside that the Home Systems Business Unit. This business unit is publicly known as

Philips Hue.

This assignment mainly involves three people from Philips who are responsible for

creating and supervising the assignment in question. The structure inside the Philips

Hue department is as depicted on the following page.

The people who are responsible for this assignment are:

 George Yianni, Project Owner

 Daniel Goergen, Project Manager

 Walter Slegers, Project Mentor

Their roles and involvement are explained in the next chapter, Stakeholder Analysis.

Philips Hue is an internet connected (wireless) lighting system designed to trans-

form how users experience light inside their homes. It is one of the leading and most

installed smart home / Internet of Things products in the world. Philips Hue transforms

how users can experience light by enabling color tunable lights to be controlled from

smartphones, web services or other control logic and devices running in the system.

Furthermore, it is an open system, i.e., via standardized or published interfaces other

suppliers can add components.

Hue lamps communicate via a standardized ZigBee Light Link protocol allowing

integration with ZigBee Light Link based devices such as sensors and light switches.

Via a Hue bridge the ZigBee Light Link network is connected to the Internet. On the

Internet side, there are smart phones, web browsers, third-party services (like IFTTT)

and a Hue portal. All these components have software and use Hue interfaces or SDKs

provided for Hue application development. [20]

18

4.2 Hue System
In 2012, Philips launched the Philips Hue system. It was a set of three intelligent

lights that, along with the bridge connected to any home Wi-Fi system, allowed for

color and brightness control of the lights from a smartphone or tablet. Since then a lot

of things have been changed. The basic changes and components are described in the

following sections.

4.2.1. The Bridge

A Hue bridge is an interconnection between the ZigBee Light Link network and

the local residential network. Near the end of 2015, a new bridge was introduced (v2)

by Philips along with quite a few changes.

Within the Hue system, the bridge is responsible for Home Automation (e.g., lights

go on when you operate a Hue switch, or lights go off at a specified time), for operation

of the lights via IP (e.g., mobile applications or cloud services), for connection to Hue

Cloud/Portal, for software updates and last but not least for data logging. The Hue

lights and switches communicate via ZigBee, so the bridge interconnects between IP

and ZigBee networks.

Figure 5 Hue system overview [21]

Figure 6 Hue Bridge v2 (rectangular) and v1 (circular) respectively

19

From a bird’s-eye view, the Hue bridge v2.0 is a budget router enhanced with Apple

HomeKit communication and ZigBee. The implications for software development are

significant.

Hue system assumes there is only one bridge in a ZigBee Light Link network. The

bridge acts as a gateway for Internet communication (forwarding commands and re-

plies), acts as a programmable control center (execute commands based on schedules

and rules), and distributes software updates on the ZigBee network. Via the Home In-

ternet, it can also communicate via the Hue portal on the public Internet. The bridge

offers a publicly documented interface via the local Home Internet for (third party)

apps. Externally it is called Hue-API.

4.2.2. Hue API

The Hue API interface allows developers to interface with and make use of the

functionality of the Philips Hue system. Using this interface, they can find information

about the available devices in their local network, control these devices, and do much

more.

The Hue API is a RESTful JSON interface in which clients interact with resources

in the Philips Hue system. What this means is that every resource such as devices,

groups and lights in the Philips Hue system is represented by a unique URI that is

interacted with. This allows a user to control a resource (e.g., light) by sending a new

value to the corresponding URL. [24]

Philips offers a simple test web app built into every bridge. Once we know the Hue

bridge address we can load the test app by visiting the following address in our web

browser.

 http://<bridge IP address>/debug/clip.html

Figure 7 Hue Bridge as a gateway [22]

Figure 8 Testing tool – web application [25]

20

Using this debugger utility we can populate the components of an HTTP call – the

basis of all web traffic and of the Hue RESTful interface. [25]

1. URL: this is actually the local address of a specific resource (thing) inside the

Hue system. It could be light, a group of lights or many more things. This is

the object we will be interacting with in this command.

2. A body: this is the part of the message which describes what we want to

change and how. Here we enter, in JSON format, the resource name and value

we would like to change/add.

3. A method: here we have a choice of the four HTTP methods the Hue call can

use.

o GET: this is the command to fetch all information about the ad-

dressed resource

o PUT: this is the command to modify an addressed resource

o POST: this is the command to create a new resource inside the ad-

dressed resource

o DELETE: this is the command to deleted the addressed resource

4. Response: In this area we will see the response to our command. Also in

JSON format.

4.2.3. Lights – Lamps

This is the output of the system. The lights or lamps are ZigBee Light Link nodes

producing light in a range of colors and intensities. There are different kind of lights

in the current Hue system.

Lamps form a ZigBee Light Link mesh network for communication. ZigBee Light

Link is an open standard protocol, which means that other non-Hue nodes might be

part of the network, like another light or a remote control changing the color or inten-

sity of a lamp bypassing the Hue bridge. For the lamp, the Hue bridge is one of the

ZigBee Light Link nodes. [24]

4.2.4. Apps

Apps are (smartphone) applications to control the lights via Hue bridge and portal

interfaces. Multiple apps can control the same bridge and lights. Apps are not limited

to the Philips Hue app, although the latter might offer more features by using interfaces

that are not released to the public (e.g., Hue portal interfaces).

Apps can be used to configure Hue. In addition, they can be used for the bridge,

among others, to add and remove lamps and sensors/switches. Furthermore, they can

be used for the lamps, among others, to change light scheme definitions. Apps are not

restricted to smart phones or tablets they could also equally be a website or an Arduino

board. To support development of Apps on a smart phone, two SDKs are offered, an

iOS and Android SDK. [24]

4.2.5. SDK

The Hue SDK (Software Development Kit) is a tool for third-parties to use to ac-

cess the Hue system. It is provided in iOS and Android versions and builds a software

layer in front of the Hue API. This software layer provides an object based interface in

the native language (e.g., Objective-C) of the mobile device.

It is always possible to create apps purely using the Hue API. The aim of the Hue

SDK is to hide system complexity, ensure compliance with technical requirements and

make it easier to construct new Hue apps. [24]

21

4.2.6. Hue portal

The portal is a set of Hue Internet services running in the cloud. There is only one

(distributed) Hue portal for all users, apps, and bridges. The portal offers access to a

Hue bridge for a Hue app not connected via local network, a browser based “app” for

access to one’s Hue system, and software distribution to Hue systems. The portal also

offers services to stimulate Hue system usage such as light scene sharing, user FAQ,

Hue blog, app developer information, marketing and sales information. The portal of-

fers interfaces to trusted parties for access to Hue systems. [24]

4.2.7. Hue sensors and switches

Hue sensors and switches are ZigBee Light Link nodes providing their state to the

bridge. State changes from Hue sensors and switches, such as a switch toggle, can be

used to trigger actions, such as switching the lights on or off. A regular ZigBee Light

Link sensor or switch can directly send a command to a light. In order to be integrated

into a Hue system, the sensors and switches should be able to report their state to the

Hue bridge allowing the bridge to decide what happens with the event. [24]

4.2.8. More ZLL nodes

More ZigBee Light Link compliant nodes exist that do not commercially explicitly

target Hue. The ZigBee Light Link compliant nodes meant here are commercially not

part of the Hue system. If it is a ZLL switch, it might directly change the state of a light

independent of a Hue bridge. If it is a ZLL light, it could be controlled by a bridge but

it might have less functionality than a Hue light. These nodes typically do not partici-

pate in Hue software updates. [24]

4.2.9. Third-party services

Third-party services refer to Hue aware cloud based functionality developed by

others. A third-party service typically communicates with the Hue portal to get access

to bridges in order to control lights or detect events in the Hue system. An example is

IFTTT, which can be used to connect a Hue system to other Internet services. Cur-

rently, IFTTT and Nest are the only third-party services supported by Hue system. [24]

4.2.10. Browsers

This section is about the HTML browser on any device (PC, TV, tablet, mobile

phone, and so on). Via a browser, one can access the user interface of the Hue portal.

Users can see and control their light state; developers/maintainers can get access to

debugging logs, and so on. If the browser is used via the local home network, it can

also access the bridge. [24]

22

4.3 Problem Description
Now that we have a clearer view of the Hue system and its constituents, we need

to focus on the Hue bridge. Inside the Hue bridge there are different modules.

The bridge software module that is responsible for all lighting automation func-

tionality is the rule engine. In other words, the rule engine is currently the main way to

add smart behavior in the Hue system. The rule engine was created a few years ago

and served its purpose quite well until recently.

Lighting control as a part of Home Automation domain is an ever-changing envi-

ronment. In 2016, the market needs for smart configurable behavior are dramatically

different and still increasing in scope and complexity. Those observations led Philips

Lighting to start investigating lighting automation alternatives.

The existing engine is quite efficient in memory and execution but it is at the same

time inherently limited. There are known design limitations. These limitations were

essentially inevitable because at the creation time, it was impossible to foresee the evo-

lution of the lighting automation needs of the coming years

The term rule engine is quite ambiguous simply because it can be any system that

uses rules, in any form that can be applied to data to produce outcomes. Next, we define

what a rule engine is inside the context of Hue system using the presented functional

view of the bridge as a basis.

4.3.1. Problem Statement in a nutshell

Facts

 The Philips Hue bridge controls and monitors ZigBee lights, sensors, and

switches; it acts as local home lighting controller.

 The bridge uses a rule engine, which receives switch, sensor, or timer triggers

and then sets a specific lighting scene as result.

 The capabilities range from switching on lights on a button press, to delayed

switch off after sunrise, to small lighting state machines.

Goal
 With an increasing complexity of home lighting control use cases, the need

to explore more sophisticated Lighting Automation Engines is becoming im-

perative.

The assignment includes
1. Investigate alternatives for the currently used rule engine for lighting control,

2. Prototype one or more alternatives on the Hue bridge and suggest one. Op-

tions can be found in scripting or other rule based systems.

Challenges
An important criterion is being able to explain to a user of the system why a light

changed.

Other evaluation criteria include:

 Capabilities of the solution

 Complexity for developers/users using the solution

 Effort and fit with current Hue bridge hardware and software

23

4.4 Design Opportunities
After the end of the initial phase of the project, four alternative routes were identi-

fied as part of the follow up investigation and design phases. These four routes are

more or less the possible approaches to tackle the challenge at hand. Some preliminary

observations and accompanying comments are presented as follows:

1. Improve the current engine

o People in Philips Lighting have already been working on that for

quite some time. This group of people is dynamic and is called Fea-

ture Team(s). On the one hand, it is acknowledged as inefficient and

(time & resource) expensive to continuously improve the current

rule engine which is rather limited by design. From the research and

development point of view, it seems complicated and not such a

good trade-off to keep the same simple design and architecture and

try to follow the ever-changing environment of Home (Lighting) Au-

tomation solutions. On the other hand, compatibility is an advantage

for the continuous support and enhancement of the current solution.

2. Create a new one from scratch

o It seems to be the ideal solution in terms of following faithfully the

requirements but it is at the same time very time consuming and risky

(for the scope of this project).

3. Find available alternatives online and use an off-the-shelf solution or

modify it accordingly

o Searching for the existing related works and picking the best fit for

this specific case seems the best solution at first glance time-wise

and implementation-wise.

4. Hybrid solution

o In practice, things are rarely black and white; in that sense, the final

solution can be a combination of the above. The existing engine can

play the role of an interface to something new. Another example ap-

proach can be a mix of enhancing the current rule engine with a sub-

set of an off-the-shelf solution.

24

25

5.Feasibility Analysis
In this chapter, the feasibility analysis of the problem in question is presented. The

issues and the risks identified in the early stages of the project are listed below together

with some brief explanation. Furthermore, a supportive table is depicted combining the

hierarchy of the risks and challenges (i.e., the impact) with some mitigation strategies.

5.1 Challenges & Risks
Risks are ubiquitous in any domain or discipline. A crucial part of every project is

to identify them as early as possible and try to mitigate their impact. Even from the

initial project description, one could identify some possible challenges and risks and

of course, many more were expected. Our effort in this section is focused on listing the

most important risks and challenges followed by a short explanation. On the one hand,

the goal is to give enough context for the reader to follow and on the other hand, to use

this as future improvement reference.

5.1.1. Lack of domain knowledge

The domain of the project was not obvious from the original description; only after

the first interview, it was more or less clear that embedded world knowledge would be

needed. The author had only basic academic knowledge about the specific field but no

real working experience. That was the main reason why extra effort was needed at the

early stages of the project in order to acquire the sufficient level of understanding to

proceed in designing a prototype. During that initial research phase, many meetings

were organized and domain experts were involved to help in this direction. That pro-

cess continued until the end of the project in a less intense manner.

5.1.2. Distributed expert knowledge

As already explained due to the lack of author’s domain knowledge, the need for

domain experts was imperative from the beginning. Many brainstorming meetings with

various people from different departments were organized in order to acquire useful

information and tips. The focus of the project was a module inside the main embedded

device (i.e. the bridge) but in order to understand how the module works one should

have sufficient understanding of the whole system. The knowledge about the specific

module was distributed amongst many people and even more people were involved in

the embedded device as a whole. Some of them were not even working for Philips

Lighting at the time of research and some were working for different modules during

the years. All in all, it was quite difficult to gather all the information needed from all

these people and merge it in one non-contradictory, useful knowledge stream.

5.1.3. Complexity of legacy system/code

The main system has different versions and different people from different back-

grounds were involved in its development and construction. The legacy module (i.e.,

rule engine) was also not new and relatively complex. The complexity of the whole

system lengthened the author’s learning curve and consequently the complexity of the

important sub-module. The main focus was to identify what the current rule engine

could do and what it could not do and at the same time to find the right places to put

changes. Due to the size of the code-base and the lack of documentation, this identifi-

cation process was quite long.

26

5.1.4. Lack of documentation

As already mentioned the technical complexity of the system was based on its size

but also on the lack of supportive documents. There were different repositories and

very few documents. For a new developer walkthrough guides, architectural docu-

ments/diagrams, and configuration and installation manuals can be invaluable espe-

cially as a starting point. Unfortunately, the existing documentation was scarce and

outdated in many cases.

5.1.5. Lack of resources

The deployment and installation of the development environment was delayed

based on two reasons. First was the lack of proper stepwise documentation and contra-

dictory expert advice (different people were using different set-ups) and second was

the lack of hardware resources. To be more specific, originally the laptop that was

provided from the company was intended for managerial use and was by no means

capable to support software development. The process of applying for new equipment

was quite long and caused an almost inevitable bottleneck.

Furthermore, in different stages of the project, different extra resources were

needed, such as a router, a switch, a debug cable and an extra bridge but the process of

getting them was not always straightforward.

Last but not least, sometimes lack of resources was combined with issues of mal-

functioning or wrong equipment. One of the best examples was that the bridge given

to the author was meant for production usage and not for development (which was not

communicated). On top of that, at some point in time, someone changed the IP part of

the bridge to development version and the ZigBee part remained as production version.

Consequently, a lot of inconsistencies and issues were caused by that problematic com-

bination until the point of actual realization and resolution.

5.1.6. Time shortage – Converging vs. Diverging

The nominal time span of the project was nine months. The actual working time

was much less if one would consider extra time such as holidays, meetings and come-

back days. The very purpose of those projects is to build a prototype beginning from

an ill-defined problem. The diverging vs. converging trade-off or in other words im-

plementation vs. research was almost inherent. We cannot do the one without the other

and for sure we cannot do both perfectly. The golden ratio is project-specific and re-

quires extensive and iterative deliberation with all involved parties.

5.1.7. Conflicting requirements and use-cases

The author participated in more than 20 meetings during the process of require-

ments elicitation. The document that was produced (including mainly non-functional,

functional requirements and use-cases) was quite extensive resulting in an increased

risk of conflicting requirements and user-stories. Prioritization had to be made and that

procedure was not straightforward introducing an obvious time overhead.

5.1.8. Contradictory user categories

Besides the conflicts introduced generally by the large list of stakeholders there

was another major source of contradictions. The prototype in question had basically

two main user-categories, the developers and the end-users. Those two categories in-

troduce many design trade-offs. The requirements and the use-cases that are connected

with each category are quite different and in many cases conflicting, introducing trade-

offs. For example, the developer needs a flexible Lighting Engine but this flexibility

inevitably introduces complexity for the end user. This complexity conflicts with the

need of (end) user-friendliness and so on and so forth.

27

5.1.9. Dependency – Configuration issues

One of the biggest challenges in this specific project were the dependencies of the

module in question combined with the configuration issues. As already explained, the

Lighting Automation Engine is merely a small part of a bigger system and in order to

build something similar (on top, in parallel, or in any way) one should understand basic

things for the system as a whole. Additionally, one should take care of all the depend-

encies of the specific module with other modules that it communicates with. Some of

them should be modified or notified when something new was introduced.

Furthermore, those dependencies were accompanied with configuration issues. In

order to build even small changes, one should re-build the entire system, manage all

the dependencies, and make sure that everything is linked in the right way. A lot of

things can go wrong and lack of modularity was making things even worse. Rather

simple tasks like memory usage measurement, addition of external libraries, and use

of older repository branches were introducing errors and thus experts were needed.

All in all, configuration issues took approximately one fourth of the total time of

the project and were intertwined with many if not all the above mentioned risks and

challenges.

5.2 Risk Management
The above mentioned risks & challenges are gathered in one table in combination

with their potential impact, probability and mitigation strategy.

Table 1 Risk Management

Risk - Challenge Impact Proba-

bility

Mitigation Strategy

Lack of domain

knowledge
High High

Read documentation, con-

sult experts

Distributed expert

knowledge
Medium High

Arrange meetings, keep

minutes

Complexity of legacy

system/code
High High

Start implementation early,

gather questions, involve

experts

Lack of documentation High High

Combine documents, cre-

ate my own, pair program-

ming

Lack of resources Medium High

Involve project owner, be

persistent, use worka-

rounds, backup solutions

Time shortage – Con-

verging vs. Diverging
High High

Involve supervisors in deci-

sions and make a good time

management plan

Conflicting require-

ments and use-cases
Medium High

Stakeholder analysis, prior-

itize inputs and use hierar-

chical scale, involve com-

pany supervisors at all

stages

Contradictory user -

categories
High High

Create abstraction layers

for different user categories

exposing different parts of

the solution.

Dependency – Configu-

ration issues
High High

Pole experts, expose to su-

pervisors, create own docu-

mentation for future refer-

ence

28

29

6.System Requirements
After the analysis of the domain and its problems, a set of requirements is extracted

and formulated, that have to be satisfied for this project. This chapter presents these

requirements, both functional and non-functional accompanied with relevant use cases.

6.1 Introduction

6.1.1. Purpose and scope

This section provides some concepts, which gradually will evolve into require-

ments combined with some use cases which the future proposed Home Automation

Lighting Engine should comply with.

 The part of the legacy system that we aim to improve is called rule engine.

 The rule engine is a software component intended to translate sensor events

into actions in the Hue system.

 This component is event driven and events are modeled as sensors events.

6.1.2. Requirement Elicitation Process

In the beginning of the project, a list of people that would be involved had to be

established. In order to create this list, some white board meetings were organized with

the help of the Philips Lighting supervisors. People who had any kind of interest or

relation with the current Lighting Engine (i.e., rule engine) were invited to discuss their

ideas about its past, present and possible future.

The goal was to have as many people as possible and eventually narrow the list

down to the most important stakeholders who could provide the best contribution. Af-

ter the first brainstorming sessions, a small list of concepts (requirements) was com-

posed as the first draft and presented below. The lists of affiliated and stakeholders

were presented in previous section.

In the context of the requirement elicitation phase, multiple meetings with the affiliates

were organized. Preferably, small group meetings took place in order to gather as much

information as possible in the area of expertise of each person. The goals of these

meetings were to:

 Create a first version of a requirement list that could be reviewed by all affil-

iates and lead to further refinement and discussion.

 Increase the familiarity between the author and the people. This would lead

to more information sources and assistance during the project and also higher

chances of adoption of the final solution.

 Establish a better understanding of the context in which the engine is used

from different points of view.

After this first round of meetings, a concept (requirement) list was created. This list

included most of the concepts (requirements) that were mentioned during the meetings.

The main aim of this phase was to create a concept list that would eventually lead to a

requirement list that would satisfy the most important stakeholders and allow the au-

thor to move forward to the design phase of the project. The list was not meant to be

final but relatively stable, since the research nature and duration of this project were

expected to cause changes. The non-functional requirements were given more empha-

sis during this phase. Most of the functional requirements were refined later during the

iterative prototype phase (creation of the specification).

30

6.2 Requirements

6.2.1. Non-Functional

 Understandability (end user)

The engine shall provide the proper metadata, explaining why something changed, in

order to facilitate app monitoring from the end user perspective.

 Traceability (developer)

The engine shall provide functionality on the bridge such that mechanisms will be

available for the UI (User Interface) developers to create (block-view) control and

monitoring features.

 Compatibility

The engine shall at least support all basic functionality (CRUD, etc.) of Hue interface.

 Modularity

The lighting engine should be comprised of decoupled units with proper interfaces.

It shall facilitate creating new individual modules and linking them together.

6.2.2. Functional

The following list is presented in hierarchical order. The hierarchy is not strict but

it reflects, in a way, the importance to include this specific functionality in the future

Lighting Automation Engine and its specification. Most of these requirements were

inspired by use cases which are described afterwards but formulated in advance.

1. The engine should be event-driven (included as a solution in Appendix A)

2. The engine should be able to create templates and reuse behavior. Behavior

that is commonly used (e.g., scene cycling, toggling, dim up/down) should be

offered in a generic format to other users.

3. It shall provide means to configure behavior. This is related with the above.

The behavior offered should not be static but to include variables and other

means of configurability.

4. It should offer different abstraction layers for different user categories. In

other words, different behavior should be exposed to different users. The end

user, the third-party app developer, the external script developer and the

Philips developer are some basic examples.

5. The engine shall provide the means to identify behavior by gathering

metadata (owner (app, user), unique identifier, name, description, timestamp,

etc.)

6. The engine shall be able to enable/disable behavior.

31

6.3 Use Cases
A first attempt to list user scenarios and needs for lighting automation is presented

as follows. The use cases were grouped in various categories. The first grouping level

includes three different user perspectives the end-user perspective, the developer per-

spective and the Hue system perspective. The second level is applied when needed and

it is grouping per lighting control topic. The current list consists of two examples for

each group.

The Requirements document is a separate document accompanied with related de-

sign questions which should be answered during the second and third phase of the

project or act as a reference for future implementers. The diagram 19 reflects the group-

ing and the different perspectives. The # symbol is used to signify a group (multiple)

of requirements instead of a single one.

6.3.1. User perspective

Basic Lighting Control
1. As a user I would like a switch on the ground floor and a switch on the 1st

floor both toggle (on/off) the light on the 1st floor (e.g., Hotel switch).

2. As a user I would like by pressing a button once to browse between different

scenes or light recipes (relax, energize, etc.), and by pressing it again after x

(=10) seconds to switch off.

Automate daily routines
1. As a user I don’t like to be woken up during the night so I like to automatically

get a more dimmed light when I switch on a light during that time.

2. As a user I want on weekdays the bedroom light to gradually dim up at 7:00

am, in the weekend not.

Figure 9 High level Use Case diagram

32

Data events – Soft Security
1. As a user I want to have a light bulb near the umbrella appear as blue light in

the morning when it might rain (Internet weather service).

2. As a user I want to be notified if door/window is open during night

Presence Events
1. As a user when I am approaching home (geolocation by phone) I want the

light in the hallway to switch on between sunset and sunrise.

2. As a user I want a garage presence sensor to trigger the garage lights to go on

when I am there and after my departure fade them out in 5 min.

Advanced Use Cases
1. As a user I want lighting control to include gradual dynamic effects.

2. As a user I want the lights in the house to follow the circadian rhythm.

6.3.2. Mobile app / Internet service developer perspective

1. As a developer I want to have an engine easy to understand (15 min of read-

ing) and easy to design the first home automation app for it. [to increase adop-

tion rate]

2. As a developer I want to have the means to explain to a user which behavior

is/has installed (in which room, for which lights, etc.), also if a second in-

stance of the app is running on a second phone.

6.3.3. Hue (bridge/cloud/system) perspective

1. As a system I want the new engine to (be able to) become an evolution (com-

patible with previous generation) or coexist nicely in parallel to the incumbent

lighting automation solution.

2. As a system I want an engine that could facilitate the support of a (Hue) app

that can “recover”, e.g., disable behavior installed by buggy app to help users

recover.

33

6.4 Design Criteria
TU/e provides a list of criteria as a measure of assessment of a technological design.

6.4.1. Introduction

Design criteria can be used for many different purposes. First, they can be used to

distinguish valid design assignments from invalid ones. This is important in selecting

and formulating design assignments – prior to their actual execution. One crucial as-

pect is, that there should be a clearly identifiable artefact that is to be designed or re-

designed. Second, the criteria can be used in assessing the design assignment after

completion. As an interesting side-effect, criteria will help shape the actual realization

of design assignments since, during the design process, both the designer and the su-

pervisors will aim for high scores in the upcoming assessment.

First and foremost we want to define what it is that is being designed. This we call

an artefact. An artefact can be either a product or a process that brings forward prod-

ucts. A product can be a physical product, but also a software product or even a service.

After deliberation with both Philips and TU/e parties a choice of criteria was made.

Three that apply and two that do not apply were picked in order to reflect on them

during different stages of the project. The following aspects of the artefact in question

(i.e., current project) need consideration:

6.4.2. Criteria that apply

The following criteria were carefully picked during the 2nd month of the project be-

cause they were considered relevant at that point in time. In the analysis paragraph we

will explain why. [28]

 Functionality: Which are the functions to be fulfilled by the artefact, and

how effective shall it be? Most often, these requirements are initially vague;

the role of the artefact in its context is usually described in a merely global

way. Together this forms the set of requirements. To a large extent, the de-

signer determines the functionality in the form of specifications, staying

within the envelope determined by the requirements. In case of a re-design,

finding the part that needs adjustment may form the main challenge.

 Complexity: Designing a complex artefact requires the knowledge of meth-

ods and techniques from various disciplines. A truly complex artefact, in gen-

eral, will be only realizable by a design team.

 Documentation and presentation: Is the description of the artefact sufficient

to check that the design has been carried out according to the rules; are the

models sufficient to demonstrate essential features of the artefact?

6.4.3. Criteria that do not apply

The following criteria were carefully picked during the 2nd month of the project be-

cause they were considered irrelevant at that point in time. In the analysis paragraph

we will explain why. [28]

 Impact: What is the economical and societal relevance of the artefact? Which

revenues are expected, and for whom? What is the societal purpose of the

artefact? Which risks are implied by the production, use and disassembly of

the artefact? In what respect does the artefact contribute to sustainable soci-

ety?

 Inventiveness: To what extent is the solution novel? ‘Novel’ may mean the

deployment of a novel technology, or an innovative combination of existing

technologies. In both cases, there can be the case of a creative invention; it

can also be a trivial compilation of existing elements. Inventiveness is there-

fore partially determined by the complexity of the artefact.

34

6.4.4. Criteria Analysis

Functionality
The functions to be fulfilled by the artefact are described in the Requirements doc-

ument. That document is quite extensive so we have extracted some generic topics with

pivotal role in the context of functionality. These topics are groups of use-cases and

can be named as pillars:

1) Basic Lighting Control

2) Automate daily routines

3) Data events

4) Presence events

5) Advanced (Dynamic) functionality

In addition, the various specifications of the artefact can be considered part of the

functionality. For example, we have already defined certain RAM & Flash memory

specifications-limitations presented (in detail) in the technology choice memory re-

quirements document.

Complexity
The artefact in question (lighting engine) is a very small part of a big system (Hue

bridge). The complexity of the entire system affects the complexity of its sub-modules.

In order to build something that is meant to be a natural part of the hue eco-system and

in particular become a sub-module of the hue bridge you have to have at least a vague

idea of how things work from inside. The collaboration-communication of the artefact

with the rest of the system even in the ideal scenario of complete modularity is imper-

ative.

Furthermore, the artefact itself should be considered complex based on the domain

knowledge needed. The embedded world requires experience and a lot of patience in

order to achieve tasks that in the “normal pc world” are considered easy. Expertise is

scarce and multi-disciplinary, methods, techniques and requirements from different

departments should be combined towards creating the final product. The existing sys-

tem (current rule engine) was created by a team and is currently considered limited,

the new engine is theoretically one’s man project thus the outcome will be a prototype.

Even though there is no team for the current project the goal is to improve the already

present functionality and that is increasing the complexity drastically.

Documentation
All the participants of this project agreed on the importance of documentation. Both

parties, TU/e and Philips have their own reasons for supporting the detailed documen-

tation as one of the most crucial outputs.

 TU/e requires a thesis; this thesis should be focused on the design of the arte-

fact. This design document should be backed up by sufficient number of mod-

els demonstrating essential features of that artefact.

 Philips Lighting is investing on a prototype project that will be future-proof.

In other words the company values an orthodox step-wise development pro-

cess following the entire software development cycle. Every step should be

well documented and reasoned in order to be available for future usage. Every

design decision, every requirement, every architectural or technological

choice matters.

Documentation is usually underestimated in big organizations comparing to func-

tionality. In our case a well-documented artefact that is not perfect is preferred than a

poor-documented artefact that is fully functional especially considering the fact that

(updated) documentation is truly scarce in our department.

35

Impact
This project is considered as a prototype and as such belongs to the pre-develop-

ment team of Hue department. Consequently, it is not difficult to concur that there is

no immediate societal or economical relevance. It is currently undefined whether the

artefact will be put to production or used just an example for future development. There

is no obvious business value for realizing this specific artefact from the marketing de-

partment’s point of view.

Inventiveness
Building something entirely new or from scratch cannot be considered a design

goal. It could be a welcomed result but that is not the goal. The original goal of the

current project was to re-use existing knowledge (preferably off-the-shelf) modifying

it to Philips Lighting needs and ultimately build on top of that. Generally, innovation

is valued but it is not the top priority in the artefact design level. In that sense the

solution cannot be considered novel per se.

36

37

7.Design Alternatives
In this chapter, some important design decisions are discussed. These decisions

could serve as the foundations of the new engine’s architecture. Furthermore, infor-

mation for other relevant existing systems as well as the implementation language de-

cision can be found.

7.1 Introduction
Early in the project, the design opportunities and the context were defined (section

4.4 Design Opportunities). The main goal was to investigate and redesign the Hue

Lighting Automation Engine given the freedom to think outside the box. This gave the

project an exploratory nature and a broad range of choices. A large number of alterna-

tives would have to be investigated and few most suitable features kept in the final

solution as inspirations.

The original direction was to investigate open-source home automation systems or

engines that could ideally be modified to our needs.

The process of evaluating alternatives and deciding in favor of few was carried out

in two phases. The first phase was more theoretical and included documentation read-

ing, meetings with relevant stakeholders and thinking of applicability of similar solu-

tions from other domains. The second phase of evaluation was the creation of a large

scale comparison table based on a group of important criteria. The created table would

have some earlier decisions as foundations and incorporate more during the process.

Some alternatives were dependent on others, so that pointed the order of the investiga-

tion.

In this chapter, the decisions that acted as the foundations for the final direction are

described. This way the reader can have a better impression and understanding about

the rationale behind choices in the final design.

7.2 First Phase
A plethora of information sources were identified and presented in the following

picture. Home Automation is an evolving domain and as such there were many solu-

tions provided. The open-source software requirement ruled out many of the alterna-

tives but still the list was quite extensive.

Figure 10 Information sources for alternative technologies

38

A quite extensive research phase was initiated and all these sources were used with

different combinations of key words and phrases (e.g., rule engine, inference engine,

automation engine, scripting engine, lighting engine, finite state machine (FSM), and

domain specific language). Parts of the sources were also online communities (forums)

and individuals (independent developers) which were asked to provide ideas and sug-

gestions for possible solutions.

Furthermore, personal research was accompanied with various meetings with do-

main experts inside Philips Lighting and thus became more focused. The first draft list

of alternatives is shown below (more information can be found in separate document).

7.2.1. OpenHAB

The Open Home Automation Bus (OpenHAB) project aims at providing a universal

integration platform for all things around home automation. It is a pure Java solution,

fully based on OSGi[55]. As mentioned in the section 3.2.1, OpenHAB’s automation

engine is only a small part of an entire home automation system and its focus is far

beyond lighting.

Through an extensive email discussion with the founder of the project (Kai Kreu-

zer) it is understood that at the time of writing OpenHAB is part of Eclipse SmartHome

framework and moves towards a second version.

OpenHAB version 1 included a rule engine, using a domain specific language based

on java, but had various constraints:

 It required EMF/Xtext/Xbase on the runtime, which is not ideal for con-

strained devices

 It did not allow to build rule GUIs on top as all rules are purely textually

defined.

 It did not allow to reuse and share rules or logic blocks between users / solu-

tions.

They therefore introduced a new rule concept into Eclipse SmartHome (OpenHAB

version 2). The overall idea was to have reusable rule components that are formally

described, so that they can be handled in GUIs and combined into rules. These had to

be provided as a kind of template, that could easily be shared and instantiated by a user

through a UI. That very idea served as inspiration for our proposed solution. [29]

Figure 11 OpenHAB architecture overview – automation logic module [29]

39

7.2.2. OpenRemote

OpenRemote is a software integration platform for residential and commercial

building automation. In addition to the open source variant there is also a commercial

version of OpenRemote available.

The OpenRemote platform consists of three software components:

 The OpenRemote controller, an always-on (24/7) Linux, Windows or OS X

server application, which connects the mobile control devices (smartphones,

tablets) to building automation systems and devices under control. Control

devices can be building infrastructure (light switches, power outlets etc.), con-

sumer electronic devices, or home appliances. The OpenRemote controller

can also run scripts, which are called rules. These rules are automation se-

quences, which are implemented based on the open Drools event processing

language.

 The second component consists of the OpenRemote mobile clients (Open-

Remote Panels) for iOS or Android. Graphical user interface and functionality

of these apps can be fully customized using the third component of Open-

Remote, the OpenRemote Designer.

 OpenRemote Designer is an online, cloud based application, providing a

graphical user interface for crafting the mobile client interface and the related

commands, sensors, and switches. Once user interface and control functions

are designed, the OpenRemote Designer configuration files are synchronized

with the local controller installation. The smartphone client application is up-

dated automatically, when connecting to the controller, immediately reflect-

ing changes or updates made in the OpenRemote Designer project.

In the context of this system, an extensive way of describing behavior can be done

using Rules (system module). This is very useful for time-based actions, such as

switching on and off lights while on vacation; for activity-based actions reacting to the

presence of people detected by sensors; or for a combination of those such as smart

thermostats. The rules make use of the Drools language. Since Drools is also an alter-

native we will continue the analysis there. [30]

7.2.3. Vera – OpenLuup

Luup (Lua-UPnP) is Mi Casa Verde’s software engine which incorporates Lua, a

popular scripting language, and UPnP, the industry standard way to control devices.

Mi Casa Verde's core product, Vera, is a complete (proprietary) home automation

solution with a focus on energy conservation, yet powerful and flexible for the smar-

thome enthusiast. Vera is built with Luup, running on a modified Wi-Fi access point.

On top of Lua, Vera has developed an extension they have called Luup. Luup adds

functionality to Lua to allow users to interact with Vera.

OpenLuup is a pure-Lua open-source emulation of the Vera Luup environment.

OpenLuup is an environment which supports the running of some MiOS (Vera)

plugins on generic UNIX systems (or, indeed, Windows systems.) Processors such as

Raspberry Pi and BeagleBone Black are ideal for running this environment, although

it can also run on Apple Mac, Microsoft Windows PCs, anything, in fact, which can

run Lua code (most things can - even an Arduino Yún board.) The intention is to of-

fload processing (CPU and memory use) from a running Vera to a remote machine to

increase system reliability. [31]

40

7.2.4. Domoticz

Domoticz is an open source Home Automation system that lets users monitor and

configure various devices like: Lights, Switches, various sensors/meters like Temper-

ature, Rain, Wind, UV, Electra, Gas, Water and much more. Notifications/Alerts can

be sent to any mobile device. It is written in C++.

This system is designed to operate in various operating systems (Linux/Win-

dows/Embedded Devices). The user-interface is a scalable HTML5 web frontend, and

is automatically adapted for Desktop and Mobile Devices. It is compatible with all

recent browsers.

Domoticz helps users to add some intelligence to their home. A great deal of this

functionality can be reached with the available program options like timers and notifi-

cations. When things get more complicated scripting can be the solution. In Domoticz

two kinds of scripts are commonly used: Lua scripts and Bash shell scripts. The Lua

interpreter is integrated by the Domoticz developers (so is also available in Domoticz

on Windows) and the interpreter for the Bash shell scripts is built in to the Linux OS.

Domoticz provides one of the most detailed Lua implementation documentations.

 MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity

protocol. It was designed as an extremely lightweight publish/subscribe mes-

saging transport. MQTT provides a publish/subscribe message pattern to pro-

vide one-to-many message distribution and decoupling of applications.

 Node.js is a platform built on Chrome's JavaScript runtime for easily building

fast, scalable network applications.

 Node-RED is a tool running in the Node.js platform providing a browser-

based flow editor that makes it easy to wire together "flows". Flows can be

then deployed to the runtime in a single-click.

Domoticz supports a number of hardware devices natively (e.g., rfxtrx433, z-wave,

smartmeter). Using its native MQTT interface Domoticz can publish events from in-

side to the outside world. Domoticz can also respond to actions requested by anyone

(and passed on by the MQTT-broker).

Figure 12 Domoticz – Architecture Overview [32]

41

The Node-RED tool provides an alternative way to creating little programs (flows)

to interface with anything user wants. But maybe the user application can create

MQTT-messages on its own that can be understood by Domoticz. Or maybe user likes

to create programs in Node.js itself. So using Node-RED is not mandatory, it does

however provide an attractive way to handle messages. An alternative of using MQTT

is the internal LUA-engine. [32]

7.2.5. Easy Rules

Easy Rules is a Java rules engine inspired by an article called "Should I use a Rules

Engine?" by Martin Fowler in which he says:

“You can build a simple rules engine yourself. All you need is to create a bunch of

objects with conditions and actions, store them in a collection, and run through them

to evaluate the conditions and execute the actions.”

This is exactly what Easy Rules does, it provides the Rule abstraction to create rules

with conditions and actions, and the Rules Engine API that runs through a set of rules

to evaluate conditions and execute actions.

Core features:

 Lightweight library and easy to learn API (20k jar)

 Embeddable (in an application server, a servlet container or a dependency

injection container)

 POJO based development with annotation programming model

 Useful abstractions to define business rules and apply them easily with Java

 The ability to create composite rules from primitive ones

 Dynamic rule configuration at runtime using JMX

Figure 13 Example structure of Easy Rules Engine [33]

Why is Easy Rules called the "The stupid Java rules engine"?

The goal behind Easy Rules is to provide a lightweight rules engine without fea-

tures that 80% of application do not need. The term "stupid" is actually the perfect term

to describe how the engine works: It iterates over a set of ordered rules and execute

rules when their conditions are met. This what makes it easy to learn use and use fol-

lowing the KISS (Keep It Simple, Stupid) principle. [33]

42

7.2.6. Home Assistant

Home Assistant is an open-source home automation platform running on Python 3.

The goal of Home Assistant is to be able to track and control all devices at home and

offer a platform for automating control. [17]

The main parts of the system:

 Home Control is responsible for collecting information on- and controlling

devices.

 Home Automation triggers commands based on user configurations.

 Smart Home triggers commands based on previous behavior.

In order to better understand how this system works it would be nice to see the

bigger picture of Home Automation landscape and how Home Assistant fits in it.

The Home Assistant core is responsible for Home Control. It has four parts to make

this possible:

 The Event Bus facilitates the firing and listening of events. This is the beating

heart of Home Assistant.

 The State Machine keeps track of the states of things. Fires a state_changed

event when a state has been changed.

 The Service Registry listens on the event bus for call_service events and al-

lows other code to register services.

 The Timer will send a time_changed event every 1 second on the event bus.

Figure 14 Overview of the Home Automation landscape [17]

Figure 15 Home Assistant core architecture [17]

43

Home Assistant offers a few built-in automations but mainly you’ll be using the

automation component to set up your own rules.

The basics of automation: [17]

 Every automation rule consists of triggers, an action to be performed and op-

tional conditions.

 Triggers can be anything observed in Home Assistant. For example, it can be

a certain point in time or a person coming home, which can be observed by

the state changing from not_home to home.

 Actions will call services within Home Assistant. For example, turn a light

on, set the temperature on your thermostat or activate a scene.

 Conditions are used to prevent actions from firing unless certain conditions

are met. For example, it is possible to only turn on the light if someone comes

home and it is after a certain point in time.

 The difference between a condition and a trigger can be confusing. The dif-

ference is that the trigger looks at the event that is happening, e.g., a car engine

turning on. Conditions looks at the current state of the system, e.g., is the car

engine on.

7.2.7. Drools

Drools is an open source Business Rules Management System (BRMS) solution. It

provides a core Business Rules Engine (BRE), a web authoring and rules management

application (Drools Workbench) and an Eclipse IDE plugin for core development.

Drools is a BRMS with a forward and backward chaining inference based rules

engine, more correctly known as a production rule system, using an enhanced imple-

mentation of the Rete algorithm [34].

Figure 16 Generic BRMS architecture [34]

44

Drools Expert

Drools Expert is a component/subproject of the umbrella KIE (Knowledge Is Eve-

rything) project. It is a Java based rule engine DSL. The rule engine is the computer

program that delivers Knowledge Representation and Reasoning (KRR) functionality

to the developer. At a high level it has three components:

 Ontology (“Things” e.g. java Classes/Beans)

 Rules

 Data

 The rules are loaded into production memory and are available at all times

 Facts are asserted into the Working Memory where they may then be modi-

fied or retracted.

 The Agenda manages the execution order of the conflicting rules using a

conflict resolution strategy.

 The rules might be in conflict when more than 1 rule matches the same set

of facts in working memory

Drools 6 has an enhanced and optimized implementation of the Rete algorithm for

object oriented systems called as ReteOO (at the time of writing it is called PHREAK)

Drools Expert is a declarative, rule based, coding environment. Drools Rule Formats:

 Drools Rule Language (DRL)

 Domain-specific language (DSL)

 Decision tables

 Guided rule editor

 XML

Figure 17 High-level View of a Rule Engine [34]

Figure 18 Drools Rule Formats [34]

45

Domain Specific Languages:

Domain Specific Languages (or DSLs) are a way of creating a rule language that

is dedicated to user’s problem domain. A set of DSL definitions consists of transfor-

mations from DSL "sentences" to DRL constructs, which lets user use of all the under-

lying rule language and engine features. Given a DSL, user writes rules in DSL rule

(or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and user can use any text editor to create and

modify them. But there are also DSL and DSLR editors, both in the IDE as well as in

the web based BRMS, and the user can use those as well, although they may not pro-

vide you with the full DSL functionality.

When to use a DSL:

DSLs can serve as a layer of separation between rule authoring (and rule authors)

and the technical intricacies resulting from the modeling of domain object and the rule

engine's native language and methods. If one’s rules need to be read and validated by

domain experts (such as business analysts, for instance) who are not programmers, one

should consider using a DSL; it hides implementation details and focuses on the rule

logic proper. DSL sentences can also act as "templates" for conditional elements and

consequence actions that are used repeatedly in one’s rules, possibly with minor vari-

ations. One may define DSL sentences as being mapped to these repeated phrases, with

parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time

feature, requiring a special parser and transformer.

Drools is considered to be one of the most elaborate and powerful automation de-

scription mechanisms. OpenHAB first implementation was using drools but due to its

complexity was abandoned. [34]

7.2.8. Z-Way Home Automation

It is an extensible modular home automation system, based on JavaScript (using

v8) intended to be used within the Z-Wave.Me home automation controllers.

Z-Wave.Me is a proprietary company founded by a group of engineers with a vision

to provide stable, easy to use and highly powerful building blocks for a Z-Wave based

network to control light, climate, heating, security and safety in homes and offices [35].

RaZberry project:

RaZberry brings Z-Wave protocol to the Raspberry PI board. The Razberry plat-

form adds all the components needed to turn a Raspberry PI board into a fully opera-

tional and inexpensive Z-Wave gateway.

JavaScript Engine:

Z-Way uses the JavaScript engine provided by Google referred to as V8. V8 im-

plements JavaScript according to the specification ECMA 5 1. Z-Way extends the

basic functionality provided by V8 with plenty of application specific functions.

The Z-Way Software Architecture:

Z-Way is the portion of RaZberry that runs on the Rasberry Pi operating system

level. The code comes as Linux executable with libraries and is using certain configu-

ration and translation files that are described later.

Z-Way is a fully featured home automation controller supporting Z-Wave as com-

munication technology. It allows to:

 Include and exclude devices and configure these devices, manage the network

configuration and stability by visualizing the configuration and routing within

the network

 Switch actuators such as electrical switches, dimmers, motor controls for sun

blind, garage doors or venetian blind, door looks, heating thermostats and

many more

46

 Access sensor data such as motion detection, temperature, CO2, smoke etc.

 Visualization of all functions of the Z-Wave network mapped to the floor plan

or as tables simple to read

 Create logical connection between events created by sensors and actions per-

formed by actuators

Z-Way consists of several function blocks:

 The Job Queue: This is the core of Z-Way

 Function Classes: The implementation of all the commands to control the Z-

Wave transceiver chip and the Z-Wave network

 Command Classes: The application level commands used to control Z-Wave

devices in the network

 The JSON web server: It implements the application programmers interface

Translation Functions: They help to translate machine readable tokens into

human-readable strings

 The automation and scripting engine: This is the way to get the intelligence

into the system.

 For more information about Z-Way such as the user interface, the JSON API

structure refer to the Z-Way User and Developers Documentation available

online.

The automation sub-system:

The automation subsystem allows writing automation scripts using JavaScript. It

uses the ECMA compatible JavaScript Engine described previously. All the code real-

izing the automation engine is written in JavaScript itself and is available as open

source for further study and modification.

The automation engine performs different actions based on events. The actions are

either signal commands or scripts that can add additional logic and conditions. Events

are either generated from the Z-Wave network or from an outside sources such as the

Internet or even from a user interaction is causing certain actions, either within the Z-

Wave network (e.g. switching a light) or outside Z-Wave (e.g., sending an email). In

Z-Way all automation is organized in so called modules. [35]

It is important to note here that the core engine of this specific system is open-

source but the system itself is proprietary.

Figure 19 Z-Way Software structure [35]

47

7.2.9. Independent GitHub projects

GitHub is an endless source of valuable information. Various relevant independent

projects found but due to space limitations we will only name the most distinctive.

logic4mqtt
It is an open source logic and scripting engine for Smart Home automation, based

around MQTT as a central message bus.

It uses Java's generalized scripting interface (JSR-223) so scripts can be imple-

mented in any script language supported by this interface. By default, the JVM ships

with a JavaScript scripting engine (Rhino with Java 7, Nashorn with Java 8), but a

variety of other interfaces is available for languages like Groovy, Jython and others.

Logic4mqtt provides a scripting host and a support API which provides

 MQTT access

 Event handling, based on incoming MQTT messages

 Versatile Timer support with both Cron-alike and natural language syntax

 Support for Sunrise/Sunset calculations, also tied into timer support

 Utility functions for network access, Wake-On-Lan etc.

The API is organized in classes. [36]

7.2.10. Independent npm projects

Npm is the (online) package manager for JavaScript. To be more specific, npm is

a NodeJS package manager. As its name would imply, one can use it to install node

programs. Also, if one use it in development, it makes it easier to specify and link

dependencies.

Various relevant projects were found using Node.js but again we will mention the

most distinctive due to space limitations.

mqtt-scripts
It is a Node.js based script runner for use in MQTT based Smart Home environ-

ments. It is intended to be used as the "logic layer" in your smart home, and offers a

zero-boilerplate, straight forward scripting environment.

It follows the mqtt-smarthome architecture. Mqtt-scripts is quite similar to

logic4mqtt - but allows the usage of modules via the require command. Mqtt-scripts

could also be seen as something like "Node-RED without GUI". [37]

Figure 20 Mqtt-smarthome architecture [38]

48

7.3 Second Phase
After the first phase which was basically a thorough research of alternatives and

knowledge acquisition followed by a filtering process the second phase was initiated.

The systems described above present various common features such as language

choice, architectural patterns, design patterns and general technology choices, which

led to further investigation and to the extraction of useful conclusions.

The original goal was to find an off-the-shelf solution and possibly modify it to fit

the needs of the current project. In order to find that solution a comparison table had

to be created including all the filtered alternatives. For a table to make sense relevant

comparison criteria had to be found. After careful deliberation with the project’s stake-

holders and personal research the table of section 7.3.2 was created.

7.3.1. Comparison Criteria

 #Commits

One quantitative metric was the number of commits (in GitHub) for the specific system

in question (or more importantly for its automation engine when the number was avail-

able). This number shows the amount of work of a project.

 Last commit date

It is an indicator for how active is a project. The numbers shown in the table are just

snapshots.

 Need of resources

Indicator for whether each engine is embeddable and on which platforms.

 Code Size (zipped)

Related with the above, the size of the code gives an initial indication of the resources

needed.

 Technology size in the bridge

Each engine uses different technologies (e.g., programming languages). The lan-

guages’ impact was tested in the bridge for OpenWrt. The outcome was compared

against our project’s memory requirements. As it is shown in a later section this is the

decisive criterion for the final choice.

 Maturity

Maturity can be measured with different ways; in this case each system’s or engine’s

creation date was picked. The earlier the better (time in the market).

 Hue compatibility

Each system’s compatibility with Hue is examined. The main focus of the comparison

was each engine and not each entire system thus this criterion was not so meaningful.

The compatibility of the engine with ZigBee or OpenWrt could serve as better exam-

ples.

 Use of variables

One of the basic requirements for the future lighting engine is to support the usage of

variables so it is used as a metric against all alternatives.

 Security

It is quite broad as a criterion but some systems do not even consider this aspect. Se-

curity (e.g., sandboxing, filtering) is an important requirement for the future engine.

49

 Size of community

Based mostly on the number of (developers) contributors and size of online forums.

 Modularity

Some of the alternatives were entire systems, some standalone engines or a combina-

tion (i.e. a modular part of a bigger system). Very important criterion since the goal

was to be able to extract the engine and embedded to the Hue bridge.

 Documentation

How well documented is an engine or a system plays an important role on the under-

standability by a third-party user and thus on the final choice. That can be measured

from things such as user guides, manuals, wikis, faqs, live chats and api docs.

 Deployment – Portability

What is the intended deployment platform for the system or the engine and how easy

it is to embed it to another system.

 Learning Curve

That was a mainly personal metric for the author. Since the author will be the creator

of the system his familiarity with each technology is important. Additionally, the ge-

neric user friendliness of each system is crucial.

 Scalability

A generic software criterion based on each system’s review and documentation. Not

of high importance. In other words, this is the ability of each engine to withstand

growth.

 Extensibility

The ability to add functionality to the existing engine/system is measured.

 Type of license

Since the goal was to re-use existing software the type of license was really important.

Even if all the systems were initially identified as open-source the different licenses

have quite different limitations on usage, sharing and publication.

 Email communication

Last but not least, the author of the current project contacted every single creator of

each of the systems/engines in order to elicit more information. The speed of the re-

sponse and whether there was a response at all serve as indicators for picking the final

solution.

50

7.3.2. Comparison table

Vera

openluup

#Commits

8731 openhab,

2123 smarthome

(sys)

60 3007(sys), 85(dzVents) 263 5310 (sys)
10249 (expert &

fus ion)
1.642 78

Last Commit

Date

dec 2015 (old

engine), may 2016

(new engine)

march 2016 May 2016 (lua scripts) may 2016 may 2016 (sys) may 2016 apr-16 feb-16

Need of

Resources

resourceful

devices mostly

(PCs , ARMs,

rasberry pis)

not promis ing, not

much info, vera

a l ikes I guess

genera l ly resourceful , lua part

embeddable
very smal l

most l ikely a PC or

a raspberry Pi

high resource

requirements

mostly for

resourceful

devices

seems

embeddable

Code Size

(zipped)
? ~KBs ? 100 KB ? 9 MBs 1 MB 53 KBs

Technology size

in Bridge's

OpenWrt (7,3

MBs)

xtend - DSL (java

based)
Lua (0,3 MBs) Lua (0,3 MBs) Java Python (2+ MBs) Java - DSL Javascript

Java -

JavaScript

Maturity Feb 2010 (sys)
Oct 2015 (for

Openluup)
Dec 2012 (sys) feb-15 dec-14 2001 or 2005 >1year 1 year

Hue

Compatibility

yes - native

(binding)
yes (?) yes(!) N/A Yes

Not out of the box

but OpenRemote

did

Not natively

but poss ible

Yes , gateway

present

Use of Variables yes yes (lua) yes (lua) ? yes yes yes yes (script)

Security
yes , https &

authentication

upnp serious

securi ty i ssues
some kind of lua sandbox ? ?

yes , quite

deta i led

has some

issues
impl ici t

Size of

community

second largest

after drools

smal l (forum & 1

contr)
medium (71 contr for sys)

very smal l (6

contr)

quite large (>150

contr for the

system)

huge and active

(97 contr for

drools expert)

quite big (21

contr for

engine)

rea l ly smal l

(2 contr)

Modularity
new engine yes ,

but needs work

Not much info,

maybe

The Lua implementation is not

s tand-a lone. It i s a combination

of the Domoticz core, and the lua

interpreter - The Lua scripts are

reusable yes .

yes ,

s tandalone

probably not, does

not seem quite

modular

i f we cons ider

OpenRemote &

OpenHAB then

yes

seems

modular but

has l i cens ing

i ssues

by des ign

Documentation quite deta i led

there i s no officia l

doc for devs ,

l imited for

openluup

quite deta i led (especia l ly for lua) fa i r deta i led

probably the

most elaborate of

a l l (860 pages

documentation)

quite deta i led

and

comprehens ive

l imited

Deployment –

portability

s imi lar to need of

resources

s imi lar to need of

resources
s imi lar to need of resources

s imi lar to

need of

resources

s imi lar to need of

resources

s imi lar to need of

resources

s imi lar to need

of resources

s imi lar to

need of

resources

Learning Curve
long and s teep

(ds l+drl)
cons iderably short cons iderably short very easy medium (python)

the most complex

engine

medium to

di fficul t
very short

Scalability yes , on Rules ? multi -scripts
not

s igni ficantly

multiple

connected

instances master-

s lave(system)

yes poss ible poss ible

Extensibility bindings (high) ? seems poss ible // poss ible yes poss ible by des ign

Type of License EPL v1

Not present

(emulator of

proprietary

system)

GNU GPL v3 (dzVents r 3rdparty) MIT MIT
Apache Soft.

License 2.0
??? MIT 2014

Email

Communication

Real ly fast by

Founder
N/A Fast but brief by founder late but yes No No No

Detai led but

late

Z-Way HA Logic4mqttOpenHAB Domoticz Easy Rules Home Assistant Drools

Table 2 Comparison table of Alternatives

51

7.4 Conclusions
Some of the systems were eliminated before reaching the table. OpenRemote was

skipped due to the fact that is using Drools (as its engine) and it would be a duplication.

The npm project was quite similar with logic4mqtt so again in order to avoid overlap

it was omitted.

Reading the table is not an easy task for someone not involved in the project; that

is why specific and generic conclusions are listed below.

7.4.1. Specific

 OpenHAB is an entire system with an engine that it is not quite modular and

thus cannot be extracted and used out of the box. Nevertheless, it was together

with drools the most active and well documented system of all.

 Vera – OpenLuup is an emulator of a proprietary system, not well supported

and not modular so a lot of complications can arise.

 Domoticz (engine) licensing together with the lack of modularity were the

most important drawbacks.

 Easy rules served as inspiration but it was too simple for actual usage.

 Home assistant focus was not the engine and thus did not seem modular at all.

The functionality served by the rules seemed quite primitive too.

 Drools size and complexity were the main drawbacks.

 Z-Way turned out to be proprietary system using an open source foundation

for its engine.

 Logic4mqtt seemed promising but its support, documentation and language

were the main obstacles.

7.4.2. Generic

None of the alternatives can be used out of the box. The original goal to find an

off-the-shelf solution either as standalone engine or as a modular part of an entire sys-

tem and modify that to our project’s needs turned out to be unreachable. Some of the

reasons are mentioned as follows:

Most of the alternatives were home automation systems with no or small modular-

ity. Since, all the engines were focusing on the home level they were not lighting spe-

cific. Consequently, they lacked functionality or they were so complex and bundled

with their parent system that could not be separated.

Furthermore, most of the alternatives were requiring many more resources (mostly

memory) than those of Hue bridge v2 (Raspberry Pi resources were most of the times

the lowest limit).

After an extensive meeting with a representative of IP&S (Intellectual Property &

Standards) department of Philips it was obvious that the licensing would be one of the

most decisive criterion in the case of using third-party software. For example, the GPL

v3 license introduces problems with Philips patents and thus solutions with this license

could not be used (for the final product).

During the process of evaluating the abovementioned criteria the need of measuring

the programming language impact became imperative. The need of choosing a lan-

guage for the future Lighting Automation Engine goes beyond the comparison of al-

ternatives. All in all, it is quite clear that some possible languages should be picked

and compared in the real environment i.e., the Hue bridge v2.

52

53

8.Engine Specification
In this chapter, we are focusing on the creation of a formal specification for the

new engine. This is one of the two major outputs of this project (the other one was the

alternatives investigation). Having just explained the general architecture we will here

describe the mechanism of JSON Schema, starting from what is JSON and then what

is JSON Schema. We will continue with its implementation for the new Lighting Au-

tomation Engine.

8.1 Introduction
Hue bridge software is mainly written in C and is exposed through the app for end

users and through Hue API for third-party application developers. As was explained,

in Hue API, all responses and new values are sent and returned in JSON with UTF8

encoding so it is easy to generate or parse.

The Hue interface allows developers to interface with and make use of the func-

tionality of the Philips Hue system. Using this interface they can find information about

the available devices in their local network, control these devices and other.

The Hue API is a RESTful JSON interface in which clients interact with resources

in the Philips Hue system. What this means is that every device, group etc. in the

Philips Hue system is represented by a unique URI which is interacted with.

In other words, if a new third-party developer wants to interface his application

with Hue he needs to read the Hue API specification.

Up until now, Philips Lighting has offered a text-based, online specification which

is used by external developers. Internally, there is a similar document called Hue API

specification.

This specification describes the whole system and thus the rule engine too. It would

make a big difference to have something more than a human readable document. JSON

Schema serves exactly this purpose as it is explained in the following sections. [25]

8.2 JSON
To define what JSON Schema is, we should probably first define what JSON is.

JSON stands for “JavaScript Object Notation”, a simple data interchange format. It

began as a notation for the World Wide Web. Since JavaScript exists in most web

browsers, and JSON is based on JavaScript, it is s very easy to support there. However,

it has proven useful enough and simple enough that it is now used in many other con-

texts that do not involve web surfing. [43]

Additionally, JSON is an open-standard format that uses human-readable text to

transmit data objects consisting of attribute–value pairs. It is the most common data

format used for asynchronous browser/server communication (Asynchronous JavaS-

cript and JSON - AJAJ), largely replacing XML which is used by AJAX (Asynchro-

nous JavaScript and XML).

Furthermore, JSON is a language-independent data format. It derives from JavaS-

cript, but as of 2016, code to generate and parse JSON-format data is available in many

programming languages. [44]

54

At its heart, JSON is built on the following data structures:

 object:

o { "key1": "value1", "key2": "value2" }

 array:

o ["first", "second", "third"]

 number:

o 42

o 3.1415926

 string:

o “This is a string”

 boolean:

o true

o false

 null:

o null

With these simple data types, all kinds of structured data can be represented. With

that great flexibility comes great responsibility, however, as the same concept could

be represented in myriad ways. For example, you could imagine representing infor-

mation about a person in JSON in different ways: [43]

{
 "name": "George Washington",
 "birthday": "February 22, 1732",
 "address": "Mount Vernon, Virginia, United States"
}

{
 "first_name": "George",
 "last_name": "Washington",
 "birthday": "1732-02-22",
 "address": {
 "street_address": "3200 Mount Vernon Memorial Highway",
 "city": "Mount Vernon",
 "state": "Virginia",
 "country": "United States"
 }
}

Both representations are equally valid, though one is clearly more formal than the

other. The design of a record will largely depend on its intended use within the appli-

cation, so there’s no right or wrong answer here. However, when an application says

“give me a JSON record for a person”, it is important to know exactly how that record

should be organized. For example, we need to know what fields are expected, and how

the values are represented. That is where JSON Schema comes in.

8.3 JSON Schema and metadata
JSON Schema is a JSON media type for defining the structure of JSON data. JSON

Schema provides a contract for what JSON data is required for a given application

and how to interact with it. JSON Schema is intended to define validation, documen-

tation, hyperlink navigation, and interaction control of JSON data. [44]

55

The following JSON Schema fragment describes how the second example above is

structured. [44]

{
 "type": "object",
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" },
 "birthday": { "type": "string", "format": "date-time" },
 "address": {
 "type": "object",
 "properties": {
 "street_address": { "type": "string" },
 "city": { "type": "string" },
 "state": { "type": "string" },
 "country": { "type" : "string" }
 }
 }
 }
}

By “validating” the first example against this schema, you can see that it fails.
However, the second example passes. Schema validation is a topic thoroughly ex-

plained in the next chapter.

8.3.1. Approach

The orthodox way to create a JSON Schema is to first include all the information

that is needed and then incrementally start adding constraints. Not all constraints can

be expressed. JSON Schema limits itself to describing the structure of JSON data, it

cannot express functional constraints. [45]

8.3.2. JSON Schema primitive types

JSON Schema defines seven primitive types for JSON values: [46]

1. array

 A JSON array.

2. boolean

 A JSON boolean.

3. integer

 A JSON number without a fraction or exponent part.

4. number

 Any JSON number. Number includes integer.

5. null

 The JSON null value.

6. object

 A JSON object.

7. string

 A JSON string.

It is impossible to describe the full capabilities (specification) of JSON Schema in

the context of this document. For more definitive information one can search online.

Nevertheless, the best way to present schema’s power is via examples.

56

8.3.3. Example – Product API

Another more elaborate example follows. Pretend we are interacting with a JSON

based product catalog. This catalog has a product which has an id, a name, a price, and

an optional set of tags. [45]

Example JSON data for a product API

An example product in this API is:

{
 "id": 1,
 "name": "A green door",
 "price": 12.50,
 "tags": ["home", "green"]
}

While generally straightforward, that example leaves some open questions. One may

ask:

 What is id?

 Is name required?

 Can price be 0?

 Are all tags strings?

When we are talking about a data format, we want to have metadata about what

fields mean, and what valid inputs for those fields are. JSON schema is a specification

for standardizing how to answer those questions for JSON data.

A specification for an array of products follows, with the products now having 2

new properties. The first is a dimensions property for the size of the product, and the

second is a warehouseLocation field for where the warehouse that stores them is geo-

graphically located.

 Figure 21 Instances of products [45]

57

These are our data and now we want to create a formal description for them that

could be both machine and human readable. The outcome is shown in the figure 41.

Schema notation explained:

 The above schema has four properties called keywords. The title and descrip-

tion keywords are descriptive only, in that they do not add constraints to the

data being validated. The intent of the schema is stated with these two key-

words (that is, this schema describes a product set).

 The type keyword defines the first constraint on our JSON data: it has to be a

JSON array.

 Finally, the $schema keyword states that this schema is written according to

the draft v4 specification.

 Id is a numeric value that uniquely identifies a product. Since this is the ca-

nonical identifier for a product, it does not make sense to have a product with-

out one, so it is required (without it the Schema will not validate).

 Name is a string value that describes a product. Since there isn't much to a

product without a name, it also is required.

 There are no free products. In JSON schema a number can have a minimum.

By default this minimum is inclusive, so we need to specify exclusiveMini-

mum.

Figure 22 Set of Products Schema [45]

58

 Unlike the previous properties, tags have many values, and are represented as

a JSON array. According to our imagination, all tags must be strings, but we

are not required to specify tags. We simply leave tags out of the list of required

properties. However, we have to add two constraints:

o There must be at least one tag,

o All tags must be unique.

 The first constraint can be added with minItems, and the

second one by specifying uniqueItems as being true.

 And also, since JSON Schema defines a reference schema for a geographic

location, instead of coming up with our own, we will reference an existing

one using the pointer notation “$ref”.

The above example is by no means definitive of all the types of data JSON schema

can define. For more definitive information see the full standard draft. [47]

8.3.4. Why JSON Schema?

Having understood the usage of JSON Schema through the above mentioned ex-

amples now is the right time to explicitly list some of the main reasons why to use this

media type in the first place. [48]

 It describes your existing data format

 It is clear, human- and machine-readable documentation

 It offers complete structural validation, useful for

o automated testing

o validating client-submitted data

 It has the widest adoption among all standards for JSON validation

 It is very mature (current version is 4, there are proposals for version 5)

 It covers a big part of validation scenarios

 It uses easy-to-parse JSON documents for schemas

 It is platform independent

 It is easily extensible

 It has 30+ validators for different languages, including 10+ for JavaScript, so

no need for coding

Last but not least:

 It improves the existing text-based Hue API specification

59

8.4 Implementation
The fundamentals of JSON and JSON Schema were just explained so we are now

ready to dive in to the actual implementation in the context of this project. This section

presents the implementation of a formal specification describing a future Lighting Au-

tomation Engine. This specification is represented as JSON Schemas.

We would like to expose certain common behavior by offering templates in script

format and allowing the addition of new ones. We identified three characteristic, com-

mon behaviors:

 Toggle (Switch ON/OFF)

 Scene-Cycling

 Dim Up/Down

For these cases, we created three Lua scripts as proposals for the template behavior

layer (second from the bottom).

In combination with the common behavior (templates) identification we also iden-

tified two basic views of each behavior and a contract between them.

1. The template implementation view

o This is the view of a script developer; the creators of template Lua

scripts are viewing the system from this perspective (e.g., toggle

script creation). They are allowed to create and upload template

scripts. Only authorized developers will be able to perform these ac-

tions.

o The (lighting) behaviors that can be useful in a home are limitless.

Philips would like to offer the opportunity to third-party audience to

create new template behavior for variety and for increasing the adop-

tion of the system.

o Philips will expose to these developers (behavior experts, see Figure

39) a Lua API which they will use to create their templates.

o The same developers upon creating their template behavior they will

also create a JSON Schema for it. Ideally, there will be a mechanism

to create Schemas from the Lua API (e.g., by parsing text manually

put in the beginning of each template or programmatically extract

information from each template and convert that to JSON Schema

structure).

Figure 23 Basic views of behaviors

60

2. The template instance view

o This is the view of the third-party app developers who want to use

our automation system but completely ignore the existence of the

underlying engine. For them the engine is a black box (e.g., toggle

instance usage).

o They are potentially UI creators and they want to instantiate the tem-

plate behavior offered. They will also be able to create or modify

instances.

o The Schemas will be exposed to them hiding the complexity of the

scripting engine. The Schemas will guide them describing the im-

portant information which will be exposed.

3. The template interface

o This is the “bridge” of the two previous views. The template imple-

mentation (Lua scripts) includes all functionality and information

but it cannot be exposed “as-is” to app developers.

o There are various reasons to the previous choice such as to avoid

exposing unnecessary complexity, to make creation of a UI easier,

to avoid abusage of the system and so on and so forth.

o We need a contract (interface) to formally define what kind of data

should be exposed and how they will look like. In other words, we

need JSON Schemas (e.g., toggle Schema).

o JSON Schema is both machine and human readable.

61

62

9. Schema Validation
This chapter provides an account of the suitability of the created JSON Schema to

meet the system requirements as listed in Chapter 6. This chapter discusses the various

techniques for validation.

JSON Schema allows applications to validate instances, either non-interactively or

interactively. For instance, an application may collect JSON data and check that this

data matches a given set of constraints; another application may use a JSON Schema

to build an interactive interface in order to collect user input according to constraints

described by JSON Schema. [50]

The validation of the Schema itself can be made against the actual code. In an ideal

scenario the future scripting engine will have on top of it a scripting API. From that

API we will generate programmatically the necessary Schemas. In this project, we cre-

ated the Schemas manually and thus we used online validators to validate instances

against the Schemas.

Before going into the validation of the created JSON Schema it is worth remem-

bering the example of the previous section. There we had two person-information

JSON instances and one Schema. The first instance did not validate but the second did.

One may notice that the JSON Schema itself is written in JSON. It is data itself,

not a computer program. It is just a declarative format for “describing the structure of

other data”. This is both its strength and its weakness (which it shares with other similar

schema languages). It is easy to concisely describe the surface structure of data, and

automate validating data against it. However, since a JSON Schema cannot contain

arbitrary code, there are certain constraints on the relationships between data elements

that cannot be expressed. Any “validation tool” for a sufficiently complex data format,

therefore, will likely have two phases of validation: one at the schema (or structural)

level, and one at the semantic level. The latter check will likely need to be implemented

using a more general-purpose programming language. [43]

In the context of this project we will focus only on the structural validation of the

created JSON Schema which will verify that the product was built in the right way.

The (online) validators are checking two things:

 If the instance and the Schema are (JSON) syntactically correct.

 If the instance is validating against the JSON Schema.

The former is considered to be relatively straightforward but the latter requires cer-

tain amount of experiments. Given the high degree of freedom provided inherently by

the JSON Schema we need to be very careful in the validation process.

JSON Schema is just a proposal for JSON structure; this means that as long as we

create instances that are syntactically correct and they are not included in any of the

Schema’s constraints they will validate successfully.

The point is to have enough constraints in order to cover the most important sce-

narios of instances and achieve the proper level of validation.

The design of the Lighting Automation Engine JSON Schema depends largely on

its intended use within the Hue bridge, so there is no right or wrong answer here. How-

ever, when an application says “give me the resources that are required for a specific

behavior”, it is important to know exactly how that resources should be organized.

The process followed was to create multiple common instances and try to validate

them against the Schema. When mismatches were encountered meant that the Schema

was not generic enough and should be modified (usually by adding more constraints).

At the time of writing the point of full coverage is reached and thus the proper level of

genericity is achieved.

To be more specific, we refer to the specification created as the JSON Schema but

in reality it consists of several sub-Schemas. So for all the Schemas we created separate

example instances and we validated them against the corresponding Schema.

63

Figure 24 Validation of an example Instance [51]

64

65

10. Conclusions - Results
This chapter elaborates the results achieved by this project and the added value to

the stakeholders. The two main achievements are the outcome of the alternatives in-

vestigation and the JSON Schema specification. Furthermore, future steps that Philips

Lighting can follow are listed as proposals.

Improving home lighting experience is of great importance to Philips Lighting. The

home automation environment is rapidly evolving and companies need to follow and

satisfy the new trends.

Focusing on lighting, a fundamental relevant criterion is being able to explain to a

user of the system why a light changed. The existing Hue engine offers almost no in-

formation for its internal activities. Additionally, as the lighting automation commu-

nity grows the need of having abstraction layers for different user categories is contin-

uously emerging. Developers ask for flexibility and functionality and end users ask for

usability and simplicity. Besides these examples, there are many more that Philips

Lighting wants to achieve in order to maintain its leading position as a provider of

lighting solutions and applications. To address these challenges Philips Hue depart-

ment initiated this project.

This document serves as input on how Philips Hue can further proceed in smart

lighting. The main results produced by the author follow:

A long series of meetings with Philips experts and online communities resulted in

a list of requirements and use cases capturing the needs and directions towards a

future Lighting Automation solution.

Moreover, no solution can be designed and applied before acquiring enough

knowledge for the question “what else is out there” (related projects). Consequently,

one of the two major outputs of this thesis was the exploration of sophisticated (light-

ing) automation engines triggered by the increasing complexity of home lighting con-

trol use-cases captured. Philips identified this knowledge acquisition imperative in or-

der to decide how a next step in lighting automation should be designed. A comparison

table of open-source alternatives was created and good practices were extracted from

these engines.

None of the alternatives can be used out of the box. The original goal to find an

off-the-shelf solution either as standalone engine or as a modular part of an entire sys-

tem and modify that to our project’s needs turned out to be unreachable.

When the investigation outcome was solidified a conscious choice was made by

the main stakeholders of this project. That choice was to focus on the conceptual design

and architecture of a future Lighting Automation Engine rather than start implementing

directly and blindly. As a result of this choice a high level architecture of a scripting

engine is presented reflecting the main requirements captured in the earlier stages. This

architecture can be a point of reference for a future implementation. It combines good

practices of existing alternatives and encapsulates basic functionality which is limited

or not even present in the incumbent Hue rule engine.

The benefits of scripting are countless and as long as the internal complexity is hid-

den the end-user experience will be the desirable. Many important features that the

existing engine lacked such as the usage of variables, full Boolean logic, grouping and

logging come practically out-of-the-box.

Philips Hue system is an open system. On one hand, it allows third party application

developers to build apps for Hue. Apps to control lights, but also to define and create

lighting automation behavior. On the other hand, it allows end users to interface with

Hue system via these apps. The different user categories introduce design trade-offs

and require extra abstraction layers on top of a scripting automation engine.

66

In order to solve these problems a formal specification for a future Lighting Au-

tomation Engine is developed using mainly JSON Schema. This specification is both

machine and human readable and was recognized by Hue as of great importance. It is

essentially a binding layer on top of the proposed scripting engine and describes ways

to expose metadata to third-party applications hiding the complexity of the underlying

engine. It is the second major output of this project and comes as a significantly im-

proved replacement of the existing textual specification that is publically available.

Philips Lighting is now able to offer valuable information to external developers in

order to create apps interfacing with Hue and broaden the openness of the system. Hue

is also enabled to easily update and extend the new specification, two features (updat-

ability and extendibility) inherently supported by JSON Schema.

The specification is separated in three parts implementation, instances and inter-

face. The implementation part consists of Lua scripts which offer generic reusable be-

havior to native and third-party applications under the hood. The instances offer real-

world examples of behavior and the interface (the actual Schemas) provides a contract-

bridge between the previous two. These three pillars constitute the formal description

of an engine capable to satisfy the most important requirements and to serve as guide-

line for a future implementation.

67

68

11. Project Management
This chapter gives an overview of the project management techniques used in the

context of this project. The initial planning and how it evolved through discussion and

reviewing.

11.1 Introduction
The project management approach used in this project is mainly based on Rationale

Unified Process (RUP) [52]. Following RUP using agile extensions, the project period

was split into four (iterative) phases.

• Inception

• Elaboration

• Construction.

• Finalization

The agile methodology suggests iterative and incremental development through so

called sprints. Sprint is a short time span of one week (in this case), where a deliverable

needs to be produced.

RUP was used as the backbone of the management process because it was found to

fit best with the Philips Lighting way of working. The stakeholders involved were more

positive in interacting with the process if these phases were clearly defined. This in-

cluded reviewing documents and attending meetings based on a linear plan. For the

purpose of planning, the main tool used was Trello. A visual web-based tool for project

management providing a Kanban/Scrum board [53].

The following sections dive into the details of the project, such as the work-break-

down structure, project plan and execution

Figure 25 An example of a Trello board

69

11.2 Work-Breakdown Structure (WBS)

The initial WBS for the project was implemented relatively early in the project. It

was an estimate of the time each phase would require and what it would include. Since

the knowledge of the domain and the project itself was limited at the time, changes

were expected to happen to this plan in later stages. The main deliverables for each of

the four project phases are depicted in the following figure. [54]

The time estimation for the initial plan as well as for the final plan were based on

the theory supporting RUP. These plans and the respective changes can be seen in the

following sections.

Figure 26 Project’s Work-Breakdown Structure

70

11.2.1. Initial

Table 3 Time allocation - created on 15 January 2016

Phase Period

Inception 4 – 5 weeks (5th of January)

Elaboration 10 weeks

Construction 10 weeks

Finalization 5 weeks (until mid of Septem-

ber 2016)

Vacations ~ 3 weeks

Total 33 weeks

11.2.2. Final

The biggest change in the planning was concerning the first phase of the project

and that happened because the learning curve of the existing system was quite longer

than originally thought. Additionally, the requirements elicitation process considered

to be quite important and as such required more time.

Table 4 Time allocation - created on 15 July 2016

Phase Period

Inception 10 weeks (5th of January)

Elaboration 11 weeks

Construction 9 weeks

Finalization 3 weeks (until mid of Septem-

ber 2016)

Vacations ~ 3 weeks

Total 36 weeks

11.3 Project Planning and Scheduling

11.3.1. Methodology

The (scrum) method is adjusted to the needs of the project having:

 A unified backlog

 Weekly sprints

 Weekly synch – progress meetings with the two Philips supervisors:

o Daniel Goergen, System Architecht

o Walter Slegers, Software Architect

 Monthly PSG (Progress Steering Group) meetings with the two company

supervisors and the TU/e mentor:

o Tanir Ozcelebi, T.Ozcelebi@tue.nl, Assistant Professor, Computer

Science

 Performance Evaluations every three months by the PSG members

mailto:T.Ozcelebi@tue.nl

71

11.3.2. Timeline

Figure 27 Snapshot of project’s timeline

72

11.4 Execution
The execution of the project followed a structured path based on the project plan-

ning. The first two months comprised of meetings with stakeholders and reading do-

main literature. They also included getting to know the high-level requirements of the

stakeholders and refining them.

Following the agile approach of iterative software development, every month a

Project Steering Group (PSG) meeting was held where the progress of the project was

presented by the trainee and the direction of the project was redefined. During these

meetings, the trainee presented the current status as well as parts of the final delivera-

ble. The stakeholders gave feedback and to some extent validation of the deliverable.

If it was deemed necessary, additional meetings were scheduled by the trainee in order

to obtain extra information regarding lighting specific or embedded domain

knowledge. For each meeting, notes were taken by the trainee (meeting minutes),

which were later put in documents and occasionally sent back to the stakeholders for

review and comments.

By following the project plan, stakeholders could transparently observe how the

project is progressing, and if the status satisfied their standards and requirements.

As mentioned in chapter 5, a number of risks were identified throughout the project

that caused few changes in the direction of development. These changes were clearly

presented to the stakeholders coupled with proposed mitigation strategies from the

trainee.

73

74

12. Project Retrospective
This chapter presents a reflection account of the author on the course of the project

in question. Starting from good practices, followed by improvement points the section

ends with revisiting the design criteria first mentioned in System Requirements section.

12.1 Introduction
This project was very challenging and interesting at the same time. Since the author

started with limited knowledge of the domain and technologies involved, at every step,

he learned something new. In the meantime, he discovered that each of the domains

that constitute this project (e.g., home automation, embedded, lighting, scripting) is

huge in its own right with many sub-domains. Achieving the right balance between

research depth (research into the domain specific) and width (research into a wide

range of domains) was a particular challenge.

The most challenging part include working with different departments within

Philips Lighting and experts, getting to know the domain, and translating their require-

ments into tangible results.

As with every project, a sufficient level of understanding of the domain is required

to be able to translate requirements into a result. Luckily, the stakeholders from Philips

Lighting were more than helpful and provided information and feedback whenever it

was requested. This was important because it gave a two-way feedback, for the candi-

date to understand them, and for them to understand whether the candidate understands

the domain.

One of the biggest concerns of the project was the formalization of the requirements

into a specification, and their applicability in a system. Significant time was spent on

this, especially in the last three months. An additional overhead was created by the fact

that the expert knowledge needed was distributed. In the beginning, this distribution

was quite an obstacle, but the continuous effort and brainstorming meetings mitigated

this problem. The outcome of course was constantly evaluated by the stakeholders

from Philips Lighting for preciseness and completeness.

Overall, the project was a great experience and a chance to exercise many skills

related to software design. Cooperating with people and managing expectations is cru-

cial and this was repeatedly exercised along the project. On top of that, several new

technologies were used that broadened the knowledge and opened new horizons for

the future.

■

12.2 Good Practices
The project provided a fertile ground to put the knowledge and skills that were

acquired throughout the OOTI program into practice. In addition, it helped the author

gain additional experience in a state-of-the-art environment and become a part of a

company that has a leading role in the Lighting domain. Some practical tasks were

deemed as important throughout the process and are worth mentioning.

 Frequent meetings with company supervisors and domain experts

 Make the most out of Progress Steering Group meetings

 Iterative implementation of the prototype

 Technology Learning

75

12.3 Improvement Points
When looking back on the project and reflecting upon the experience, there are

some aspects that could have been viewed in a way that would benefit the process

more. This retrospective is important and reveals the lessons learned and the situations

where more attention can be applied in the future.

12.3.1. Project Planning

The creation of a project plan introduced difficulties for the author. The main fac-

tors for this were the large duration of the project (nine months) and the unfamiliarity

with the embedded domain. These made estimations and work breakdown structure

less efficient. Since the duration could not be changed, the domain unfamiliarity issue

should have been dealt with more attention. The investigation for the solution started

from a very generic point and then focused on more applicable solutions. If this con-

vergence to more specific investigations had been initiated earlier, then the planning

would have been more efficient and insightful.

12.3.2. Project Scope and Expectation Management

The expected results of the project were very unclear in the beginning. The scope

of the project was broad and covered more than a simple Lighting Automation Engine

(the engine was a small part of a big system). This caused significant delay while in-

vestigating all the related parts. After discussions the scope was narrowed down and

that allowed the author to focus on the engine’s specification. This decision could have

been taken earlier so that less time would have been spent in investigating other parts.

Additionally, the large number of stakeholders and their different points of view

created a frequent shift of focus or even conflicts. This could have been handled

slightly more efficiently by earlier prioritizing the expectations and requirements of

each stakeholder.

12.4 Design criteria revisited
During the requirements analysis process, three design criteria were identified as ap-

plicable and two as not applicable.

Applicable criteria:

 Functionality

 Complexity

 Documentation and presentation

Not Applicable criteria:

 Impact

 Inventiveness

Since the goal of the project was to explore more sophisticated Lighting Automa-

tion Engines, the construction phase of the project was steered towards solidifying the

design rather than coding. The original choice of the 5 design criteria proved to be

correct.

The designer determines the functionality in the form of specifications, staying

within the envelope determined by the requirements. The main output of the project is

a formal specification (JSON Schemas) describing the functionality (template syntax,

instances, interface and implementation) of a future Lighting Automation Engine based

on scripting.

76

The technologies (e.g., embedded C, scripting, JSON) which were used for the de-

velopment of the formal specification together with the prototype introduce certain

complexity. The creation of an engine which meets all the important requirements can

only be realizable by a development team.

Last but not least, every step of the process was documented in detail and presented

with relevant supportive models when required. The investigation of Lighting Auto-

mation Engine alternatives in combination with the requirements and use cases elici-

tation phase were the longest in time and took proportional space in the documentation.

As expected, being part of the pre-development team, the author did not create any

economical or societal impact. The project was about experimenting and investigating

consequently the outcome could only be a prototype.

There were some innovative ideas during the formalization of the specification but

inventiveness was for sure not one of the main drives or characteristics of the final

proposal.

77

Glossary
This section presents the terminologies used throughout this report along with their

explanations.

Table 5 Glossary

Term Explanation

PDEng Professional Doctorate in Engineering

TU/e Eindhoven University of Technology

SAI Stan Ackermans Institute

OOTI Onwerpersopleiding Technische Informatica

Cloud
General term for anything that involves delivering hosted ser-

vices over the Internet.

API Application Programming Interface

Server
A computing platform whose purpose is to serve other compu-

ting platforms.

Web server Same as server, available over the Internet.

JSON JavaScript Object Notation

JSON Schema
JSON Schema is a JSON media type for defining the structure

of JSON data.

XML eXtensible Markup Language

HTTP HyperText Transfer Protocol

REST Representational State Transfer (architectural style)

RESTful APIs Interfaces that adhere to the REST style

EDA Event Driven Architecture (architectural style)

URI Uniform Resource Identifier

URL Uniform Resource Locator

CLIP Connected Lighting Interface Protocol

SDK Software Development Kit

ZLL ZigBee Light Link

IP Internet Protocol

OpenHAB Open Home Automation Bus

npm Node.js Package Manager

WBS Work-Breakdown Structure

RUP Rational Unified Process

Scrum

An iterative and incremental agile software development frame-

work for managing software projects and product or application

development.

IDE Integrated Development Environment

IFTTT

"If This Then That" is a free web-based service that allows users

to create chains of simple conditional statements, called "reci-

pes", which are triggered based on changes to other web services

such as Gmail, Facebook, Instagram, and Pinterest.

FAQ Frequently Asked Questions

HTML
Hyper Text Markup Language is a markup language for describ-

ing web documents (web pages).

DSL Domain Specific Language

FSM Finite-state machine

UPnP Universal Plug and Play, a set of networking protocols

M2M Machine to machine

POJO Plain Old Java Object

BRMS Business Rules Management System

SIM Strategy Innovation Marketing meeting (Philips internal)

BRE Business Rules Engine

MQTT

formerly known as MQ Telemetry Transport is an ISO standard

publish-subscribe-based "lightweight" messaging protocol for

use on top of the TCP/IP protocol

SoC System On Chip

78

References
 [1] PDEng programs [Online]. Available: https://www.4tu.nl/sai/en/ [Last ac-

cessed: September 2016]

 [2] Software Technology [Online]. Available: https://www.tue.nl/en/univer-

sity/departments/mathematics-and-computer-science/education/graduate-

programs/pdeng-programs/software-technology/ [Last accessed: September

2016]

 [3] Philips, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Philips [Last accessed: June 2016]

 [4] Philips Annual Report 2015 [Online]. Available:

http://www.philips.com/corporate/resources/annualre-

sults/2015/PhilipsFullAnnualReport2015_English.pdf [Last accessed: May

2016]

 [5] Philips Intranet [Online]. Available: https://intranet.philips.com/ [Last ac-

cessed: April 2016]

 [6] Philips Lighting Intranet [Online]. Available: http://pww.light-

ing.philips.com/ [Last accessed: April 2016]

 [7] History of Light Bulbs, Google images [Online]. Available:

https://www.google.nl [Last accessed: September 2016]

 [8] History of Home Automation [Online]. Available:

http://betanews.com/2015/08/24/the-history-of-home-automation-from-the-

beginning/ [Last accessed: April 2016]

 [9] Home Automation, Google images [Online]. Available:

https://www.google.nl [Last accessed: September 2016]

 [10] SmartThings, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/SmartThings [Last accessed: September 2016]

 [11] HomeKit [Online]. Available: http://www.pocket-

lint.com/news/129922-apple-homekit-and-home-app-what-are-they-and-

how-do-they-work [Last accessed: September 2016]

 [12] Fibaro, Wikipedia [Online]. Available: https://pl.wikipedia.org/wiki/Fi-

bar_Group (translated) [Last accessed: September 2016]

 [13] Wink, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Wink_(platform) [Last accessed: September 2016]

 [14] WeMo, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Belkin_Wemo [Last accessed: September 2016]

 [15] OpenHAB, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Draft:OpenHAB [Last accessed: September 2016]

 [16] OpenRemote, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/OpenRemote [Last accessed: September 2016]

 [17] Home Assistant [Online]. Available: https://home-assistant.io/ [Last ac-

cessed: September 2016]

https://www.4tu.nl/sai/en/
https://www.tue.nl/en/university/departments/mathematics-and-computer-science/education/graduate-programs/pdeng-programs/software-technology/
https://www.tue.nl/en/university/departments/mathematics-and-computer-science/education/graduate-programs/pdeng-programs/software-technology/
https://www.tue.nl/en/university/departments/mathematics-and-computer-science/education/graduate-programs/pdeng-programs/software-technology/
https://en.wikipedia.org/wiki/Philips
https://en.wikipedia.org/wiki/Philips
http://www.philips.com/corporate/resources/annualresults/2015/PhilipsFullAnnualReport2015_English.pdf
http://www.philips.com/corporate/resources/annualresults/2015/PhilipsFullAnnualReport2015_English.pdf
https://intranet.philips.com/
http://pww.lighting.philips.com/
http://pww.lighting.philips.com/
https://www.google.nl/
http://betanews.com/2015/08/24/the-history-of-home-automation-from-the-beginning/
http://betanews.com/2015/08/24/the-history-of-home-automation-from-the-beginning/
https://www.google.nl/
https://en.wikipedia.org/wiki/SmartThings
https://en.wikipedia.org/wiki/SmartThings
http://www.pocket-lint.com/news/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
http://www.pocket-lint.com/news/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
http://www.pocket-lint.com/news/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
https://pl.wikipedia.org/wiki/Fibar_Group
https://pl.wikipedia.org/wiki/Fibar_Group
https://en.wikipedia.org/wiki/Wink_(platform)
https://en.wikipedia.org/wiki/Wink_(platform)
https://en.wikipedia.org/wiki/Belkin_Wemo
https://en.wikipedia.org/wiki/Belkin_Wemo
https://en.wikipedia.org/wiki/Draft:OpenHAB
https://en.wikipedia.org/wiki/Draft:OpenHAB
https://en.wikipedia.org/wiki/OpenRemote
https://en.wikipedia.org/wiki/OpenRemote
https://home-assistant.io/

79

 [18] Home Automation Protocols [Online]. Available: http://www.topten-

reviews.com/home/articles/a-guide-to-home-automation-protocols/ [Last ac-

cessed: April 2016]

 [19] Tim M. Madsen, Home Automation Systems Integration, Integrating

home automation systems to promote openness and adoption. Department of

Computer Science

 Aalborg University, Software Engineering Master Thesis, spring 2010.

 [20] Philips Hue [Online]. Available: http://www2.meethue.com/en-us/

[Last accessed: May 2016]

 [21] Hue System Overview [Restricted]. Available: https://pww.trac-

pl.philips.com/svn/intelligentlamps/Systems/Hue/trunk/ArchitectureDe-

sign/System/System%20Overview-%20oneslider.pptx [Last accessed: Sep-

tember 2016]

 [22] Hue Specification [Restricted]. Available:

https://pww.trac.philips.com/trac/intelligentlamps/browser/intelligent-

lamps/Systems/Hue/trunk/ArchitectureDesign/Features/Bridge v2/bridge-

v2.docx [Last accessed: May 2016]

 [23] Hue bridge platform [Restricted]. Available: https://pww.trac-

pl.philips.com/svn/intelligentlamps/Systems/Hue/trunk/ArchitectureDe-

sign/Features/Bridge%20platform/hue%20bridge%20platform.docx [Last

accessed: May 2016]

 [24] Hue system and software architecture overview [Restricted]. Available:

https://pww.trac-pl.philips.com/svn/intelligentlamps/Systems/Hue/trunk/Ar-

chitectureDesign/System/Hue%20system%20and%20software%20architec-

ture%20overview.docx [Last accessed: May 2016]

 [25] Public Hue API specification [Online]. Available: http://www.develop-

ers.meethue.com/ [Last Accessed: September 2016]

 [26] Philips Hue Wiki [Restricted]. Available: https://pww.trac-

pl.philips.com/svn/intelligentlamps/ [Last accessed: September 2016]

 [27] Hue Rule Engine [Restricted]. Available: https://pww.trac-

pl.philips.com/trac/intelligentlamps/browser/intelligentlamps/Sys-

tems/Hue/trunk/ArchitectureDesign/Bridge/rule%20engine [Last accessed:

September 2016]

 [28] K. v. H. a. K. v. Overveld, "Criteria for assessing a technological de-

sign", March 2010

 [29] OpenHAB [Online]. Available: http://www.openhab.org/ [Last ac-

cessed: September 2016]

 [30] OpenRemote [Online]. Available: http://www.openremote.org/dis-

play/HOME/Home [Last accessed: September 2016]

 [31] Vera - OpenLuup [Online]. Available: https://github.com/ak-

booer/openLuup [Last accessed: September 2016]

 [32] Domoticz [Online]. Available: https://domoticz.com/ [Last accessed:

September 2016]

http://www.toptenreviews.com/home/articles/a-guide-to-home-automation-protocols/
http://www.toptenreviews.com/home/articles/a-guide-to-home-automation-protocols/
http://www2.meethue.com/en-us/
http://www.developers.meethue.com/
http://www.developers.meethue.com/
http://www.openhab.org/
http://www.openremote.org/display/HOME/Home
http://www.openremote.org/display/HOME/Home
https://github.com/akbooer/openLuup
https://github.com/akbooer/openLuup
https://domoticz.com/

80

 [33] Easy Rules [Online]. Available: http://www.easyrules.org/ [Last ac-

cessed: September 2016]

 [34] Drools [Online]. Available: http://www.drools.org/ [Last accessed: Sep-

tember 2016]

 [35] Z-Way Home Automation [Online]. Available: https://z-wave.me/ [Last

accessed: September 2016]

 [36] logic4mqtt, GitHub project [Online]. Available:

https://github.com/owagner/logic4mqtt [Last accessed: September 2016]

 [37] mqtt-scripts, npm project [Online]. Available:

https://www.npmjs.com/package/mqtt-scripts [Last accessed: September

2016]

 [38] MQTT architecture, GitHub project [Online]. Available:

https://github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Architec-

ture.md [Last accessed: September 2016]

 [39] Advantages of scripting languages [Online]. Available:

http://www.sqa.org.uk/e-learning/ClientSide01CD/page_22.htm [Last ac-

cessed: September 2016]

 [40] OpenWrt [Online]. Available: https://openwrt.org/ [Last accessed: July

2016]

 [41] L. Bass, P. Clements and R. Kazman, “Software Architecture in Prac-

tice”, Second Edition, Addison Wesley, 2003.

 [42] Event-Driven architecture, Wikipedia [Online]. Available:

https://en.wikipedia.org/wiki/Event-driven_architecture [Last accessed: Sep-

tember 2016]

 [43] Understanding JSON Schema [Online]. Available: https://spacetele-

scope.github.io/understanding-json-schema/about.html#about [Last ac-

cessed: September 2016]

 [44] JSON, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/JSON [Last accessed: September 2016]

 [45] JSON Schema basic info [Online]. Available: http://json-

schema.org/example1.html [Last accessed: September 2016]

 [46] JSON Schema core definitions [Online]. Available: http://json-

schema.org/latest/json-schema-core.html [Last accessed: September 2016]

 [47] Full JSON schema definitions [Online]. Available: http://json-

schema.org/draft-04/schema#definitions [Last accessed: September 2016]

 [48] Why JSON Schema [Online]. Available: http://code.tutsplus.com/tuto-

rials/validating-data-with-json-schema-part-1--cms-25343 [Last accessed:

September 2016]

 [49] Software Verification & Validation, Wikipedia [Online]. Available:

https://en.wikipedia.org/wiki/Software_verification_and_validation [Last

accessed: September 2016]

http://www.easyrules.org/
http://www.drools.org/
https://z-wave.me/
https://github.com/owagner/logic4mqtt
https://www.npmjs.com/package/mqtt-scripts
https://github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Architecture.md
https://github.com/mqtt-smarthome/mqtt-smarthome/blob/master/Architecture.md
http://www.sqa.org.uk/e-learning/ClientSide01CD/page_22.htm
https://openwrt.org/
https://en.wikipedia.org/wiki/Event-driven_architecture
https://spacetelescope.github.io/understanding-json-schema/about.html#about
https://spacetelescope.github.io/understanding-json-schema/about.html#about
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
http://json-schema.org/example1.html
http://json-schema.org/example1.html
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/draft-04/schema#definitions
http://json-schema.org/draft-04/schema#definitions
http://code.tutsplus.com/tutorials/validating-data-with-json-schema-part-1--cms-25343
http://code.tutsplus.com/tutorials/validating-data-with-json-schema-part-1--cms-25343
https://en.wikipedia.org/wiki/Software_verification_and_validation

81

 [50] JSON Schema validation [Online]. Available: http://json-

schema.org/latest/json-schema-validation.html [Last accessed: September

2016]

 [51] Web JSON Schema validator [Online]. Available:

http://www.jsonschemavalidator.net/ [Last accessed: September 2016]

 [52] RUP, Wikipedia [Online]. Available: https://en.wikipedia.org/wiki/Ra-

tional_Unified_Process [Last accessed: September 2016]

 [53] Trello, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Trello [Last accessed: September 2016]

 [54] WBS, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/Work_breakdown_structure [Last accessed: September 2016]

 [55] OSGi, Wikipedia [Online]. Available: https://en.wikipe-

dia.org/wiki/OSGi [Last accessed: September 2016]

http://json-schema.org/latest/json-schema-validation.html
http://json-schema.org/latest/json-schema-validation.html
http://www.jsonschemavalidator.net/
https://en.wikipedia.org/wiki/Rational_Unified_Process
https://en.wikipedia.org/wiki/Rational_Unified_Process
https://en.wikipedia.org/wiki/Trello
https://en.wikipedia.org/wiki/Trello
https://en.wikipedia.org/wiki/Work_breakdown_structure
https://en.wikipedia.org/wiki/Work_breakdown_structure
https://en.wikipedia.org/wiki/OSGi
https://en.wikipedia.org/wiki/OSGi

83

About the Author

Spyridon Skoumpakis received his diploma

in Electrical and Computer Engineering from

the Aristotle University of Thessaloniki,

Greece in 2013. During his studies he has

specialized in Software Engineering, Data

Mining and Computer Vision, resulting in his

Master’s thesis “Workflow Extraction from

UML Activity Diagrams.” The main objec-

tive of the thesis was the conceptual decom-

position of UML images in a form that can

be processed by both humans and machines.

Furthermore, his working experience spans

from IT support in Hellenic Telecommunica-

tions Organization S.A (Greece) to Software

development as a member of a professional

team engaged mostly in designing and main-

taining websites. Furthermore, he partici-

pated in an EU Lifelong Learning Program

concerning Computer Science as a Tutor.

From September 2014 until September 2016,

he worked at the Eindhoven University of

Technology, as a PDEng trainee in the Soft-

ware Technology program from the

4TU.Stan Ackermans Institute. During his

graduation project, he worked for the Hue

department of Philips Lighting on a project

focused on sophisticated home lighting auto-

mation use cases.

84

	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 Outline

	2. Stakeholder Analysis
	2.1 Eindhoven University of Technology (TU/e)
	2.2 Software Technology Program
	2.3 Philips
	2.4 Philips Lighting
	2.5 Main stakeholders
	2.5.1. TU/e
	Ad Aerts (ST Program Director)
	Tanir Ozcelebi (TU/e supervisor)
	Spiros Skoumpakis (PDEng Philips Trainee)

	2.5.2. Philips Lighting
	George Yianni (Project Owner)
	Daniel Goergen (Project Manager)
	Walter Slegers (Project Mentor)

	2.6 Stakeholder Analysis

	3. Domain Analysis
	3.1 Introduction
	3.2 Home Automation
	3.2.1. Home Automation Systems
	Commercial Systems
	SmartThings
	HomeKit
	Fibaro
	Wink
	WeMo

	Open Source Systems
	OpenHAB
	OpenRemote
	Home Assistant

	3.2.2. Home Automation Protocols

	3.3 Lighting Control

	4. Problem Analysis
	4.1 Context
	4.2 Hue System
	4.2.1. The Bridge
	4.2.2. Hue API
	4.2.3. Lights – Lamps
	4.2.4. Apps
	4.2.5. SDK
	4.2.6. Hue portal
	4.2.7. Hue sensors and switches
	4.2.8. More ZLL nodes
	4.2.9. Third-party services
	4.2.10. Browsers

	4.3 Problem Description
	4.3.1. Problem Statement in a nutshell
	Facts
	Goal
	The assignment includes
	Challenges

	4.4 Design Opportunities

	5. Feasibility Analysis
	5.1 Challenges & Risks
	5.1.1. Lack of domain knowledge
	5.1.2. Distributed expert knowledge
	5.1.3. Complexity of legacy system/code
	5.1.4. Lack of documentation
	5.1.5. Lack of resources
	5.1.6. Time shortage – Converging vs. Diverging
	5.1.7. Conflicting requirements and use-cases
	5.1.8. Contradictory user categories
	5.1.9. Dependency – Configuration issues

	5.2 Risk Management

	6. System Requirements
	6.1 Introduction
	6.1.1. Purpose and scope
	6.1.2. Requirement Elicitation Process

	6.2 Requirements
	6.2.1. Non-Functional
	6.2.2. Functional

	6.3 Use Cases
	6.3.1. User perspective
	Basic Lighting Control
	Automate daily routines
	Data events – Soft Security
	Presence Events
	Advanced Use Cases

	6.3.2. Mobile app / Internet service developer perspective
	6.3.3. Hue (bridge/cloud/system) perspective

	6.4 Design Criteria
	6.4.1. Introduction
	6.4.2. Criteria that apply
	6.4.3. Criteria that do not apply
	6.4.4. Criteria Analysis
	Functionality
	Complexity
	Documentation
	Impact
	Inventiveness

	7. Design Alternatives
	7.1 Introduction
	7.2 First Phase
	7.2.1. OpenHAB
	7.2.2. OpenRemote
	7.2.3. Vera – OpenLuup
	7.2.4. Domoticz
	7.2.5. Easy Rules
	7.2.6. Home Assistant
	7.2.7. Drools
	7.2.8. Z-Way Home Automation
	7.2.9. Independent GitHub projects
	logic4mqtt

	7.2.10. Independent npm projects
	mqtt-scripts

	7.3 Second Phase
	7.3.1. Comparison Criteria
	7.3.2. Comparison table

	7.4 Conclusions
	7.4.1. Specific
	7.4.2. Generic

	8. Engine Specification
	8.1 Introduction
	8.2 JSON
	8.3 JSON Schema and metadata
	8.3.1. Approach
	8.3.2. JSON Schema primitive types
	8.3.3. Example – Product API
	8.3.4. Why JSON Schema?

	8.4 Implementation

	9. Schema Validation
	10. Conclusions - Results
	11. Project Management
	11.1 Introduction
	11.2 Work-Breakdown Structure (WBS)
	11.2.1. Initial
	11.2.2. Final

	11.3 Project Planning and Scheduling
	11.3.1. Methodology
	11.3.2. Timeline

	11.4 Execution

	12. Project Retrospective
	12.1 Introduction
	12.2 Good Practices
	12.3 Improvement Points
	12.3.1. Project Planning
	12.3.2. Project Scope and Expectation Management

	12.4 Design criteria revisited

	Glossary
	References
	About the Author

