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I
n machine learning, there are two distinct groups of learning methods for 
building pattern classifiers: generative learning and discriminative 
learning. The generative learning scheme aims to estimate the joint 
probability distribution of observation data and class label and 
then use the estimated distribution for classification according 

to the well-known Bayes decision rule. In generative learning, it 
is normal practice to adopt the so-called parametric modeling 
approach, where it is assumed that unknown probability dis-
tributions belong to computationally tractable function fami-
lies. In this way, the difficult density estimation problem 
becomes a more tractable parameter estimation problem. 
The advantage of generative learning is that some inherent 
dependency structures and/or independency assumptions 
applicable to the underlying data can be explicitly 
 exploited by choosing an appropriate statistical model, 
such as mixture models or even highly structured graphi-
cal models. On the other hand, the discriminative learn-
ing scheme makes no explicit attempt to model the data 
distribution and instead optimizes a mapping function 
from inputs to any desired outputs. As a result, only the 
decision boundary is adjusted without forming a data gen-
erator in the entire feature space. The advantage of dis-
criminative learning lies in that the mapping function can 
be estimated based on criteria that are more relevant to the 
ultimate classification and regression task. Because of their 
complementary nature, recent research work in machine learn-
ing [1], [9], [10], [12], [32] has shown the potential benefit of 
combining generative and discriminative learning methods.

One active research topic in speech and language processing is 
how to learn generative models using discriminative learning 
approaches. For example, discriminative training (DT) of hidden Markov 
models (HMMs) for automatic speech recognition (ASR) has been intensively 
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studied for several decades. 
The essential idea of DT is to 
apply a discriminative criterion 
to the training procedure of 
HMMs. Many discriminative 
criteria have been proposed for 
ASR, such as maximum mutu-
al information estimation 
(MMIE) [2], [35], minimum classification error (MCE) [18], 
minimum phone (word) error (MPE/MWE) [29], and large 
margin estimation (LME) [13], [20], [31], [40]. In a standard 
DT process, an objective function is first constructed accord-
ing to one of these discriminative criteria. Then, optimization 
methods are used to maximize/minimize the objective func-
tion with respect to the model parameters. The major difficulty 
of DT in ASR lies in the fact that normally the above-men-
tioned DT criteria result in large-scale nonconvex optimization 
problems. For example, in a state-of-the-art large vocabulary 
ASR system, these DT criteria normally lead to complex non-
convex objective functions involving over millions or even tens 
of millions of free variables. Generally speaking, optimizing 
nonconvex objective functions of such a large number of vari-
ables is extremely difficult since it is very easy to get trapped 
in a shallow local optimum point in the complicated surface of 
the objective functions. During the last two decades, a signifi-
cant amount of research effort in the speech community has 
been devoted to this problem. Many different optimization 
methods have been proposed and applied to DT of HMMs in 
ASR. For example, the extended Baum-Welch (EBW) method 
was proposed based on a growth function [7], which was first 
applied to MMIE [35] and then extended to other discrimina-
tive criteria including MCE and MPE/MWE [8]. Moreover, a 
stochastic approximation method called generalized probabi-
listic descent (GPD) [18] was first proposed for MCE, and then 
an approximate second-order Quasi-Newton method called 
quickprop was applied to MCE and other criteria [26]. More 
recently, constrained line search [21] and trust region [37], 
[22] methods have also been proposed for DT of HMMs in ASR. 
Generally speaking, all of these optimization methods are non-
convex in nature and normally lead to better recognition per-
formance only when carefully and skillfully implemented, such 
as in [35]. These nonconvex optimization methods, especially 
the EBW approach, remain popular optimization methods for 
DT of HMMs in ASR. Interested readers may refer to several 
recent survey articles [8], [17] for details. In this tutorial arti-
cle, as part of applications of convex optimization in signal 
processing, we focus on more recent research work that 
applies convex optimization methods to DT for speech and 
language processing applications.

INTRODUCTION
To the best of our knowledge, there have been at least two 
independent research efforts to apply convex optimization 
methods to the discriminative learning of HMMs for ASR. 
The advantage of convex optimization is that it does not 

 suffer from the local optimum 
problem because any local 
optimum is always globally 
optimal in convex optimiza-
tion problems. Both research 
groups have been motivated 
by advances of large-margin 
classifiers in machine learning 

and attempt to estimate Gaussian mixture HMMs for ASR 
based on large margin criterion. In [30] and [31], a large 
margin-based DT method was proposed to estimate Gaussian 
mixture models for multiclass pattern classification tasks and 
then extended to Gaussian mixture HMMs for sequential clas-
sification such as ASR. In this work, LME of Gaussians is for-
mulated as a regularized optimization problem where the 
regularization term is calculated based on traces of parameter 
matrices and a so-called reparamerization method is pro-
posed to relax multivariate Gaussian parameters to formulate 
LME as a convex optimization problem, which is solved by a 
customized gradient descent method for efficiency. In [13] 
and [15], a different strategy is applied to LME of Gaussian 
mixture HMMs for ASR, where LME of HMMs is directly for-
mulated as a minimax optimization problem based on the 
principle of maximizing the minimum margin of the HMM-
based classifiers. Then, an iterative optimization method, 
called approximation optimization (AM), is used to solve the 
original minimax optimization problem through a locality 
approximation. Convex relaxation methods may be used to 
convert the original nonconvex optimization into standard 
convex optimization problems, such as semidefinite program-
ming (SDP) [19], [39] and second-order cone programing 
(SOCP) [36], [38]. Even though this work was initially pro-
posed only for LME of mean parameters of Gaussian mixture 
HMMs, it can be easily extended to estimate other parameters 
of HMMs, such as covariance matrices and transition proba-
bilities, as well as other discriminative criteria, such as MMIE 
and MCE. As shown in [16], the proposed AM method is gen-
eral enough for DT of generative models from a wide class of 
statistical models, namely finite mixtures of exponential fam-
ily models, while the method in [30], [31] is specially tailored 
for Gaussians. Over the past few years, we have successfully 
applied a variety of convex optimization methods under the 
AM framework to solve some DT problems arising in speech 
and language processing tasks, initially starting with 
Gaussian mixture HMMs for speech recognition [19], [36], 
[38], [39] and more recently extending to multinomial-based 
models for language processing [25], [28]. Here, convex opti-
mization plays a critical role in solving the underlying large-
scale optimization problems in DT of the generative models. 
In this tutorial article, as an example of convex optimization 
for signal processing, we summarize recent research efforts 
that apply convex optimization to DT of various statistical 
models under the AM framework and highlight the emerging 
role of convex optimization in these traditional speech and 
language applications.

ONE ACTIVE RESEARCH TOPIC IN SPEECH 
AND LANGUAGE PROCESSING IS TO 
STUDY HOW TO LEARN GENERATIVE 

MODELS USING DISCRIMINATIVE 
LEARNING APPROACHES.
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GENERATIVE VERSUS 
DISCRIMINATIVE LEARNING
Pattern classification is the task 
of classifying an unknown 
object into one of a set of priori 
pattern classes based on some 
noisy observation data (also 
known as features). The genera-
tive learning scheme originates 
from the Bayes decision rule (also known as maximum a poste-
rior decision rule), which is guaranteed to achieve the mini-
mum classification error rate provided the underlying data 
distributions are known. For an unknown object, we assume its 
class label, S, and its observation data, X, are both random vari-
ables, if the true joint probability distribution of X and S is 
known as p 1X, S 2 5 p 1S 2 # p 1X|S 2 , the optimal pattern classifier 
can be built based on the MAP (maximum a posterior) decision 
rule. In other words, class label of an unknown observation X  is 
predicted as follows:

 Ŝ5 arg max
S

 p 1S | X 2 5 arg max
S

 p 1S 2 # p 1X|S 2 . (1)

As indicated in (1), constructing the optimal pattern classifier 
requires to compute two probability distributions, namely the 
prior probability p 1S 2  and the conditional probability p 1X|S 2 , 
which are usually unknown in practice. The essential problem 
in generative learning is how to estimate them from some 
available training data. To simplify the estimation problem, 
we adopt the so-called parametric modeling approach, where 
it is assumed that the unknown probability distributions 
belong to a computationally tractable function family, such as 
the exponential family [4]. Furthermore, some latent vari-
ables may be introduced to derive even more complex models. 
A rich family of multimodal distributions can be obtained by 
introducing discrete latent variables. In this way, the difficult 
density estimation problem turns into a more tractable 
parameter estimation problem. One major benefit of genera-
tive learning is that there exist efficient learning algorithms 
that can estimate rather complicated models based on the 
maximum likelihood (ML) criterion, e.g., the expectation-
maximization (EM) algorithm [6].

Discriminative learning uses a mapping function (from 
observation X  to class label S) to model class boundaries 
without forming data distribution in the entire feature space. 
The mapping function is estimated using criteria that are 
more relevant to the ultimate classification and regression 
task, such as maximum condition likelihood (MCL) estima-
tion [11], empirical risk minimization (ERM), or LME [41]. 
Traditionally, only some relatively simple models are consid-
ered in the discriminative learning scheme due to computa-
tional complexity issues, e.g., linear discriminant functions 
for support vector machines (SVMs). Other discriminative 
models include logistic regression and neural networks. It is 
an interesting topic to extend the discriminative learning 
scheme to other more complicated models, particularly mix-

ture models and latent graphi-
cal models widely adopted in 
the  generat ive  l earn ing 
scheme. Recent work in both 
machine learning [1], [9], [10], 
[12], [32] and speech recogni-
tion [2], [18], [35] has shown 
the benefit of learning genera-
tive models discriminatively. 

Discriminative learning of these generative models imposes a 
computational challenge since it normally leads to a compli-
cated nonconvex optimization problem. A significant amount 
of research effort has been devoted to this problem. In this 
article, we introduce one method proposed for discriminative 
learning of a wide class of generative models, i.e., mixtures of 
exponential family (e-family), and particularly underline the 
role of convex optimization in this method by using convex 
relaxation techniques.

In the next section, we first introduce notations for a general 
canonical form of the e-family and its mixtures since many pop-
ular generative models fall into this category. Following that, we 
will present a general framework to learn mixtures of exponen-
tial family models in a discriminative way.

STATISTICAL MODELS: THE E-FAMILY AND ITS MIXTURE
In practice, we normally choose generative models from a 
rather general family of statistical models, namely the e-fam-
ily, due to its highly computationally tractability in parame-
ter estimation.

THE E-FAMILY
As in [4], all statistical models in the e-family can be represent-
ed as the following general canonic form:

 p 1X|l 2 5 exp 5A 1x 2 1 xTl2K 1l 2 6,  
where l in bold denotes the natural parameter vector of the 
e-family distribution, and x in bold is called the sufficient statis-
tics. In most cases, the natural parameters l may take a differ-
ent form from the original model parameter l and sufficient 
statistics x can be represented as a function of original data X. 
Furthermore, K 1l 2  is called cumulant generating function, 
which is a convex function of the natural parameters l and 
independent of X. A 1x 2  is a function of sufficient statistics x and 
independent of l.

Many common probability distributions belong to the 
e-family, including Gaussian, multinomial, Bernoulli, expo-
nential, gamma, and poison. For example, one-dimensional 
Gaussian (with unknown mean and variance) can be repre-
sented in the canonic e-family form as

 N 1x|m, s 2 2 5 1

"2ps 2
e2

1x2m22
2s2 5 exp5A 1x 2 1 xTl2K 1l 26,  

where sufficient statistics x5 3x, 2 x2/2 4 , the natural param-
eters l5 3m/s2, 1/s2 4  and A 1x 2 52 11/2 2  ln 2p, and the 
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cumulant generating function 
K 1l 2 52 11/2 2 ln l21 l1

2/2l2 
(with the constraint l2 . 0), 
which is clearly a convex func-
tion of l. We can represent all 
other common probability dis-
tributions in a similar way. In 
Table 1, we have summarized the major results for multivari-
ant Gaussian and multinomial distributions since they are 
mostly relevant to the remainder of this article.

One important property of the e-family is that products of 
e-family distributions remain in the e-family. The natural 
parameters of the product distribution can be easily con-
structed by concatenating natural parameters of all member 
distributions.

MIXTURES OF THE E-FAMILY
All e-family distributions are computationally tractable in 
parameter estimation but they are normally too simple to 
model real-word data appropriately. A widely adopted strategy 
is to introduce latent variables to derive more complicated 
models from these simple e-family distributions. A rather rich 
family of multimodal distributions can be obtained by intro-
ducing discrete latent variables to derive the so-called finite 
mixture models.

Mixtures of the e-family are a generalization of the above 
simple e-family distribution by considering a convex combina-
tion of different e-family distributions with different parameters. 
In a very general form, mixtures of the e-family can be repre-
sented as the following form:

 p 1X|l 2 5 a
k

 wk
# exp5Ak 1xk 2 1 lTxk2Kk 1l 2 6, 

where l denotes the natural parameters of the mixture 
model that is concatenated from natural parameters of its 
component distributions, and sufficient statistics xk and 
Kk 1l 2  may vary in different mixture components, and wk 

stands for mixture weight and 
satisfies the sum-to-one con-
straint ak

 wk5 1.
Mixtures of the e-family 

represent a wide class of sta-
tistical models and are fre-
quently used in machine 

learning and pattern classification. Mixtures of the e-fami-
ly include the Gaussian mixture model (GMM), the multi-
nomial mixture model (MMM), and the HMM. In the HMM, 
the latent variable is a complete state sequence, xk repre-
sents sufficient statistics collected along a state sequence, 
and each mixture component is product of various e-fami-
ly  distributions.

In the generative learning scheme, statistical models are 
normally estimated from available training data based on the 
maximum likelihood (ML) criterion. Due to the convexity of 
the cumulant generating function K 1l 2 , ML estimation of an 
e-family model normally result in a simple solution. In many 
cases, ML estimation of e-family models can even be solved 
by a closed-form solution. Furthermore, ML estimation of 
mixtures of the e-family can also be iteratively derived in a rel-
atively easy manner, relying on the well-known EM algo-
rithm [6].

A NEW FRAMEWORK FOR DT OF GENERATIVE MODELS
In this section, we consider the use of alternative discrimina-
tive learning approaches to estimate mixtures of e-family mod-
els. Unlike the conventional ML estimation, discriminative 
learning of these generative models faces significant computa-
tional challenges, no longer enjoying simple updating rules 
and relatively fast convergence of the EM algorithm. Generally 
speaking, discriminative learning of generative models is an 
optimization problem, where an objective function must be 
optimized in an iterative manner. The discriminative objective 
function is normally formulated according to some popular 
discriminative criteria, such as maximum mutual information 

[TABLE 1] CANONIC FORM OF E-FAMILY DISTRIBUTIONS: A) MULTIVARIATE GAUSSIAN WITH KNOWN PRECISION MATRIX; 
B) MULTIVARIATE GAUSSIAN WITH UNKNOWN MEAN AND PRECISION MATRIX; C) MULTINOMIAL IN A CONSTRAINED FORM; 
D) MULTINOMIAL IN AN UNCONSTRAINED FORM.

l x K 1l 2 CONSTRAINT

A) GAUSSIAN N 1m, S0 2  (MEAN) m S0
21x 1

2
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21l
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1
2
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1
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1
2
l1

Tl2
21l1
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C # q
D
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x d
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a
D

d51
eld5 1
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D

d51
md

x d

c ln m1
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d51 md
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12 a
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a
D
d51 xd

, c , 

            
xD21

a
D
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(MMI) [2], [35] (maximum 
conditional likelihood [11]), 
MCE [18], and LME [13], [31]. 
Historically, these discrimina-
tive criteria have been pro-
posed from different contexts, 
in the following, we first pres-
ent a unified view for discrimi-
native criteria, centering on 
the concept of margin. Following that, we discuss a general 
method to optimize these discriminative objective functions 
using locality approximation and convex optimization, named 
as the AM method.

A UNIFIED VIEW OF VARIOUS DT CRITERIA
In supervised learning, given a set of training samples, denoted 
as D5 5X1, X2, c , XT6, we usually know the true class labels 
for all training samples in D, denoted as L5 5S1, S2, c , ST6. 
For notational convenience, we use the uppercase letter St to 
represent the true transcription of each training sample Xt, and 
use lowercase st to denote a variable that may take all possible 
labels in a hypothesis space.

Following [5] and [34], a multiclass separation margin for 
each training sample Xt is defined as follows:

 d 1Xt | L 2 5 ln p 1St, Xt|L 2 2 max
st[Mt

 ln p 1st, Xt|L 2 , (2)

where L denotes the whole set of model parameters from all 
classes and max is taken over a particular hypothesis space, 
denoted as Mt. In many static pattern classification tasks, 
such as text categorization, Mt represents a set of all possible 
class labels including or excluding the correct label St. 
However, in sequential pattern classification tasks, such as 
continuous speech recognition, the size of Mt is prohibitively 
large, such as all possible word sequences consisting of N  or 
fewer words. In this case, Mt may be represented by either an 
N-best list or a word graph (or word lattice). An N-best list is 
simply a linear list of the top N-best label sequences st, as 
measured by probability score p 1st, Xt|L 2 . Word graph (lattice) 
is another more compact way to represent most likely label 
sequences as a graph, where each complete path in word graph 
constitutes a competing hypothesis for the given sentence. 
N-best lists and word graphs can be efficiently generated as a 
by product from the Viterbi decoding process (e.g., see [27] 
for details).

For computational convenience, a variant margin can be 
defined based on soft-max using log-sum as follows:

 d r 1Xt | L 2 5 ln p 1St, Xt|L 2 2 ln c a
st[M t

 p 1st, Xt|L 2 d . (3)

Obviously, according to the maximum a posteriori (MAP) 
decision rule in (1), d 1Xt | L 2 . 0 if and only if Xt is correctly 
recognized by the model set L. Moreover, margin d 1Xt | L 2  or 
d r 1Xt | L 2  can be intuitively viewed as a measure of distance 
from Xt to the current decision boundary.

Now let us define a discrim-
inative objective function based 
on the above margins so that 
model L can be estimated 
through optimizing the dis-
criminative objective function. 
Generally speaking, a discrimi-
native objective function can 
be represented as a function of 

margins of all training samples in D

 FDT 1L 2 5 f a1d 1X1 | L 2 , d 1X2 | L 2 , c , d 1XT | L 2b.  (4)

For the LME in [13], the function f 1 # 2  is a min function. The 
LME objective function can be written as

 FLME 1L 2 5min
Xt[D

 d 1Xi | L 2 ,  (5)

where margin d 1Xi | L 2  is calculated as in (2) with st summed 
only over all competing hypotheses (excluding the correct label 
St from Mt).

For the MCL estimation [11] or MMI [2], [35], the function 
f 1 # 2  is a sum function. The objective function for MCL or MMI 
estimation can be represented as

 FMMI 1L 2 5 a
Xt[D

 d r 1Xt | L 2 ,  (6)

where margin d r 1Xt | L 2  is calculated as in (3) with st summed 
over all possible hypotheses (including the correct label St 
in Mt).

For MCE [18], the function f 1 # 2  is a sum-exp function 
(see [17] for details), the MCE objective function can be 
expressed as

 FMCE 1L 2 5 a
Xt[D

 exp 3d r 1Xt | L 2 4, (7)

where margin d r 1Xt | L 2  is calculated as in (3) with st summed 
over all possible hypotheses (including the correct label St in 
Mt).

In summary, DT of statistical models can be formulated as 
an optimization problem to optimize the above discriminative 
objective function FDT 1L 2  with respect to model parameters 
L, where FDT 1L 2  is a function of margins of all training sam-
ples. In the following, we consider how to solve this optimiza-
tion problem using efficient algorithms.

DT AS CONSTRAINED OPTIMIZATION
As shown in [21], when optimizing FDT 1L 2  it is beneficial to 
impose a locality constraint on model parameters L to 
ensure that parameters do not deviate too much from their 
initial or current values. The locality constraint can be 
quantitatively computed based on Kullback-Leibler diver-
gence (KLD). Therefore, DT of model parameters, L, can be 
formulated as the following iterative constrained maximiza-
tion problem:

DISCRIMINATIVE LEARNING 
OF GENERATIVE MODELS 

IS A TYPICAL OPTIMIZATION 
PROBLEM, WHERE EFFICIENT 

OPTIMIZATION METHODS PLAY 
A CRITICAL ROLE.
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 L1n1125 arg max
L

  FDT 1L 2  (8)

 subject to  D 1L||L1n2 2 # r2,  (9)

where D 1L||L1n2 2  is the KLD between probability density 
functions specified by L and L1n2, and r . 0 is a preset con-
stant to control the search range. The constraint in (9) intui-
tively specifies a trust region for optimization in each 
iteration. As shown in [21], for some models, such as 
Gaussians, the KLD-based constraint in (9) can be further 
relaxed as quadratic form

 ||L2L1n2||2 # r2. (10)

THE AM APPROACH
As shown above, DT of statistical models is an iterative optimiza-
tion process. In each iteration, we need to solve a constrained 
maximization problem shown in (8) and (9). Following [15]–
[17], in this section we introduce a general framework to solve 
this constrained maximization problem for one iteration. The 
key idea here is to find a simpler auxiliary function to approxi-
mate the original DT function in a close proximity of current 
model parameters if the original objective function is too com-
plicated to optimize directly. Then, the auxiliary function is 
optimized by using some efficient optimization algorithms. 
Because of the locality constraint in (9) or (10), we can apply a 
variety of approximation strategies to construct the auxiliary 
function with a simpler function form. Based on the proximity 
approximation, the optimal solution found for the approximate 
auxiliary functions is expected to improve the original objective 
function as well. Then, in the next iteration, the original objec-
tive function can be approximated in another close proximity of 
this newly found solution based on the same approximation 
principle. This process repeats until convergence conditions are 
met for the original objective function. If the locality approxima-
tion is good enough, convergence of the above process is guar-
anteed provided the trust region r in the locality constraint is 
sufficiently small. Analogous to the popular EM algorithm [6], 
each iteration consists of two separate steps: i) Approximation 
step (A-step): the original objective function is approximated by 
an auxiliary function in a close proximity of current model 
parameters; ii) optimization step (M-step): the approximate aux-
iliary function is optimized under the locality constraints in 
either (9) or (10). Analogously, we call this method the AM algo-
rithm. As explained below, the AM algorithm is more general 
than the EM algorithm since the expectation (E-step) in EM can 
be viewed as a proximity approximation method. More impor-
tantly, the AM algorithm can also deal with some more compli-
cated objective functions arising from DT of statistical models 
with latent variables, e.g, mixtures of the e-family.

A-STEP
There are many different methods available to construct auxil-
iary functions to approximate an objective function in a close 

proximity. As shown in the section “A Unified View of Various 
DT Criteria,” various DT objective functions can be viewed as a 
function of margins, which are defined as difference of two log 
likelihood functions, e.g., ln p 1St, Xt|L 2  and ln p 1st, Xt|L 2  as in 
(2) or (3), each of which is a log-sum term if model L belongs 
to mixtures of the e-family. As a result, the above DT objective 
functions, arising from DT of mixtures of e-family models, 
normally involves the difference of two log-sum terms so that 
they are nonconvex in nature and difficult to handle mathe-
matically. In the A-step, we need to construct an auxiliary 
function to approximate the original DT objective function in 
a close proximity.

First of all, let us consider two strategies to approximate a 
single log-sum term arising from log likelihood function of 
mixtures of e-family distributions. The first method is to use 
the dominant term to approximate sum by replacing sum with 
max, which is named as M-approx. The other one is to use the 
well-known Jensen’s inequality to approximate log-sum, 
named as E-approx. As shown below, both methods can 
approximate log-sum of e-family distributions by a lower-
bounded concave function.

Assume model L belongs to mixtures of the e-family, its 
log-likelihood function, ln p 1X, s|L 2 , can be represented as 
log-sum of a finite number of e-family distributions, i.e., 
ln p 1X, s|L 2 5 lnak

 fk 1L 2  w i t h  fk 1L 2 5wk exp5Ak 1xk 2 1  
l # xk2Kk 1l 2 6, where xk 1k5 1, c , K 2  stands for sufficient 
statistics collected based on data X and label s for kth mixture 
component.

M-Approx (Max-Based Approximation)
In M-approx, the above log-sum term is approximated by its 
dominant component identified by an initial model L0 as fol-
lows:

 ln p 1X, s|L 2 5 ln ca
K

k51
 fk 1L 2 d . ln fk̂ 1L 2  

 ; V 1L|L0 2 5 Ak̂ 1x k̂ 2 1 lTx k̂ 2Kk̂ 1l 2 , (11)

where the dominant term k̂ is selected based on an initial model 
L0 as k̂5 arg maxk fk 1L0 2 , and the auxiliary function V 1L|L0 2  
is a lower bound of the original log-sum.

E-Approx (Expectation-Based Approximation)
In E-approx, we first calculate the so-called posterior probabil-
ity of kth function based on an initial model L0 as: 
jk 1L0 2 5 fk 1L0 2 /aK

k51
fk 1L0 2 . Obviously, they satisfy the sum-

to-one constraint that a
K

k51
jk 1L0 2 5 1. According to the 

Jensen’s inequality, we have the following inequality held for 
ln p 1X, s|L 2 :

 ln p 1X, s|L 2 5 ln ca
K

k51
 fk 1L 2 d  

 5 ln ca
K

k51
jk 1L0 2 fk 1L 2

jk 1L0 2 d
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 $ a
K

k51
 jk 1L0 2 ln fk 1L 2

jk 1L0 2
 5 a

K

k51
 jk 1L 0 2 ln fk 1L 2 1H 1L0 2

 ; Q 1L|L0 2
 5 a

K

k51
 jk 1L0 2  # 5Ak 1xk 2 1 lTxk2Kk 1l 2 6

  1  H 1L0 2 , (12)

where H 1L0 2 52aK

k51
jk 1L0 2 lnjk 1L0 2  denotes entropy calcu-

lated based on the posterior probabilities of jk 1L0 2 . 
Furthermore, it is easy to verify that Q 1L|L0 2  serves as a tan-
gential lower bound of ln p 1X, s|L 2 :  ln p 1X, s|L 2  |L5L0

5 
Q 1L|L0 2 |L5L0

 and 'lnp 1X, s|L 2 /'L |L5L0
5 'Q 1L|L0 2 /'L |L5L0

.
If model L belongs to mixture of the e-family, either 

M-approx or E-approx leads to a concave approximation func-
tion to each log-sum term.

Second, we apply the similar locality approximation 
(M-approx or E-approx) to margin since margin is defined 
as difference of two log-sum terms. However, one difficulty 
arises in approximating margins. For example, if we use the 
above E-approx to approximate each of the terms, the resul-
tant E-approx margin involves difference of two Q func-
t i ons ,  denoted  as  d 1X|L 25 ln p 1X, s|L 22 ln p 1X, s r|L 2
< Q1 1L|L0 22Q2 1L|L0 2 ; d

| 1X|L 2 , where the approximate 
margin, d| 1X|L 2 , remains tangential to the real margin at L0 
but the lower bound property in (12) does not hold any-
more. Moreover, the approximate margin d| 1X|L 2  is neither 
convex nor concave because it is a difference of two concave 
functions. However, the E-approx margin can still be viewed 
as a close proximity approximation of d 1X|L 2  at L0 with 
accuracy up to the first order, as shown in Figure 1. It is 
clear that the E-approx margin d| 1X|L 2  remains as a good 
approximation to the true margin as long as trust region r 
is sufficiently small.

Finally, since the discriminative objective function FDT 1L 2  
is a function of margins as shown in (4), an auxiliary function 
of FDT 1L 2  can be constructed by substituting the approximate 
margins d| 1X|L 2  into (4) in place of the original margins. The 
auxiliary function is denoted as F|DT 1L 2 . Similarly to the 
approximate margins d| 1X|L 2 , the auxiliary function F|DT 1L 2  is 
neither concave nor convex. Moreover, F|DT 1L 2  does not serve 
as a strict lower bound of the original discriminative function 
FDT 1L 2 . If E-approx is used, it only remains tangential to 
FDT 1L 2  at L0, which is similar to margins in Figure 1.

M-STEP
In the M-step, we need to consider two critical issues: how to 
optimize the nonconvex auxiliary function and how to ensure 
that the original objective function FDT 1L 2  also improves when 
the auxiliary function F|DT 1L 2  is optimized. Unlike in the EM 
algorithm, both issues are not straightforward to address in the 
AM algorithm.

As for the second issue, if we adopt the locality constraint 
in optimization as in (9) or (10), the found optimal point of 
F|DT 1L 2  is guaranteed to improve FDT 1L 2  when the trust 
region r is sufficiently small. In practice, this has also been 
observed in experiments on speech recognition and text cate-
gorization when a proper r is selected (see [19], [28], and [38] 
for experimental details).

Let us return to the first issue regarding optimization of 
the nonconvex auxiliary function. This is a major difference 
between the AM method and the conventional EM algorithm, 
where the auxiliary function is always concave for mixtures of 
e-family models. In fact, many different approaches have been 
proposed to optimize this nonconvex and nonconcave auxiliary 
function in the literature, such as the constrained line search 
[21] and trust-region methods [22], [37]. In this article, we 
focus on a group of methods to optimize the auxiliary function 
using convex optimization methods. More specifically, we 
apply convex relaxation techniques to convert the underlying 
problem into a convex optimization problem so that the global 
optimal point of the relaxed convex optimization problem can 
be efficiently found.

Depending on the underlying models, a variety of convex 
relaxation methods may be applied to convert the nonconvex 
optimization problem in the M-step into a standard convex 
optimization problem as in [19], [38], and [28], such as lin-
ear programming (LP), quadratic programming (QP), SOCP, 
and semidefinite programming (SDP) [23], so that some 
standard convex optimization algorithms can be applied to 
optimize the relaxed auxiliary functions under the proximity 
constraint in (9) or (10). Any local optimal point is always 
globally optimal in a convex optimization problem. Therefore, 
the advantage of using convex optimization in M-step is that 
optimization can be efficiently and reliably solved even for 
very large-scale models.

In the remainder of this article, we introduce three dif-
ferent convex relaxation techniques that have been success-
fully applied to speech recognition and text categorization. 
As shown in [15] and [19], the DT objective function of 
many Gaussian-derived statistical models, such as GMM and 
Gaussian mixture HMMs, can be approximated by either 

d (X ⎜ Λ) or FDT(Λ)

d (X ⎜ Λ) or FDT(Λ)
~

Λ
Λ0

~

[FIG1] Illustration of E-approx in the AM method.
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M-approx or E-approx as 
indefinite quadratic auxiliary 
 functions. As in [19], optimi-
zation of the quadratic auxil-
i a r y  f u n c t i o n s  c a n  b e 
re  presented as an equivalent 
matrix form. If the self-con-
strained matrix variables can be relaxed as positive semidefi-
nite matrices, the original nonconvex maximization problem 
in M-step can be converted into an SDP problem. We first 
discuss this work for large-margin-based DT in the section 
“Case Study 1: LME of CDHMMs Using SDP Based on N-Best 
Lists.” In [38] and [39], a different approach is taken to con-
vert maximization of indefinite quadratic form to convex 
optimization, where the indefinite Hessian matrix is decom-
posed based on eigenvectors with positive and negative 
eigenvalues. All quadratic terms related to negative eigen-
values are replaced by a linear term along with some relaxed 
convex constraints. In this way, the original maximization of 
indefinite quadratic form can be relaxed into another convex 
optimization problem, namely SOCP. As our second case 
study, we discuss this work for MMI-based DT in the section 
“Case Study 2: MMI Training of HMMs Using SOCP Based on 
Word Graphs.” As in [25] and [28], the DT objective func-
tions of various discrete statistical models based on multi-
nomial distributions, such as MMM, Markov chain model, 
discrete density HMMs and etc., can be approximated by 
either M-approx or E-approx as linear auxiliary functions. 
Then, in the M-step, optimization of these linear auxiliary 
functions can be converted into a standard linear program-
ming (LP) problem if the sum-to-one constraints are 
relaxed. We discuss this work in our third case study in the 
section “Case Study 3: Large Margin MMMs Using LP.”

CASE STUDY 1: LME OF CDHMMS USING 
SDP BASED ON N-BEST LISTS
As our first case study we use the above AM algorithm to 
perform LME of Gaussian mixture HMMs in ASR. We 
assume all competing hypotheses of each sentence are lin-
early encoded in an N-best list, which is applicable to 
small vocabulary ASR tasks. In the A-step, we use the 
M-approx method to construct the auxiliary function. Then, 
in the M-step, we showcase the use of a well-known convex 
relaxation technique to convert the LME problem into an 
SDP problem.

Assume all speech units are modeled by some Gaussian 
mixture HMMs, denoted as L. For a complete utterance, X, 
consisting of a sequence of feature vectors,  i .e. , 
X5 5x1, x2, c , xR6, let us examine the log-likelihood func-
tion of HMMs, i.e., ln p 1X|L 2 . Gaussian mixture HMMs have 
hidden variables s, the unobserved state sequence, and l, the 
unobserved Gaussian mixture labels. We have

 ln p 1X|L 2 5 ln ca
s, l

 p 1X, s, l | L 2 d ,  (13)

where p 1X, s, l|L 2  denotes the 
probability of X calculated along 
a single path s and l. In this 
case, p 1X, s, l|L 2  is the product 
of Gaussians and multinomials. 
Therefore, it can be represented 
in the standard form of e-family 

distribution, exp5Ksl 1l 2 1 l # xsl1 Asl 1xsl 2 6, where l denotes 
natural parameter of HMMs (to be explained later) and xs,l stands 
for sufficient statistics collected along a single path s, l. 
Therefore, HMMs belong to mixtures of the e-family.

Given a set of training data T5 5X1, X2, c , XT6, we know 
the true word transcriptions for all utterances in T, denoted as 
L5 5S1, S2, c , ST6. For each Xt, its competing hypotheses are 
encoded as a linear N-Best list, denoted as Mt, which is generat-
ed from an N-best Viterbi decoding process. If we accept the 
margin definition in (2), LME in (5) can be converted into the 
following maximin optimization problem subject to the locality 
constraint:

 L|5 arg max
L

 min
Xt[T, st[Mt, stZSt

3ln p 1Xt|St, L 22 ln p 1Xt|st, L 24.
 (14)

Conceptually speaking, LME attempts to reestimate the HMM 
parameters to make the decision boundary stay as far from 
training samples as possible. In case all of the training sam-
ples are not separable, as in [13], we may consider only a sub-
set of positive tokens in (14) instead of the whole training set 
T for each iteration. By doing so, we can avoid infeasibility 
caused by training errors and meanwhile significantly reduce 
optimization complexity. Another formal treatment is to fol-
low the soft margin concept in SVM and extend the above 
LME formulation to maximize a linear combination of mini-
mum margin and average training error rate, which results in 
the so-called soft LME method [14]. Since the soft LME has a 
similar mathematical formulation, we only introduce LME in 
this article and interested readers may refer to [14] for details 
on the soft LME.

As shown in [19], the above maximin optimization problem 
can be equivalently converted into the following constrained 
maximization problem by introducing a new variable 
u 1u . 0 2  as a common lower bound to represent min part of 
all terms in (14) along with the constraints that every item 
must be larger than or equal to u.

PROBLEM 1

 max
L,u

  u (15)

subject to:

 ln p 1Xt|St, L 2 2 ln p 1Xt|st, L 2 $ u (16)

 14Xt [ T and st [ Mt and st 2 St 2
 ||L2L1n2||2 # r2 and u $ 0. (17)

A UNIFIED VIEW FOR VARIOUS 
DISCRIMINATIVE CRITERIA IS 

PRESENTED, CENTERING ON THE 
CONCEPT OF MARGIN.
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In the following, we con-
sider how to convert the 
above optimization into an 
SDP problem. If we consider 
to estimate acoustic models 
only, we focus on acoustic 
score p 1Xt|St, L 2  in (13). 
Based on the concept of 
M-approx in (11), we use the 
best Viterbi path, ŝ and l̂, to approximate the above summa-
tion instead of summing over all possible paths. In each itera-
tion, the best Viterbi path can be derived based on the current 
model, L1n2, by the following max operation using the well-
known Viterbi algorithm as 5ŝ, l̂6 5 arg maxs,1   p 1X, s, l|L1n2 2  
Thus, the log-likelihood function can be approximated 
as follows:

 ln p 1X|S, L 2 . ln p 1X, ŝ, l̂|S, l 2 5  

 Aŝl̂
1xŝl̂
2 1 lTxŝl̂2Kŝl̂

1 1l 2 ; V1 1l 2 , (18)

where l denotes the natural parameters of HMM, and x ŝl̂  the 
sufficient statistics collected along the path 5ŝ, l̂6.

For simplicity, we only estimate Gaussian mean vectors of 
HMMs based on the large margin principle while keeping all 
other HMM parameters constant. It is possible to extend the 
method to estimate other parameters in CDHMMs, such as 
covariance matrices and mixtures weights. See [16] for details. 

Furthermore, we assume there are M  Gaussians in total 
in the whole HMM set L,  denoted as 51, 2, c, M6.  We 
denote each Gaussian as N 1mk, Sk 2  with k [ [1, M 4.  For 
notational convenience, the optimal Viterbi path ŝ  and l̂ 
can be equivalently represented as a sequence of Gaussian 
indices, i.e., j5 5 j1,  j2, c , jR6,  where jt [ [1, M 4  is the 
index of Gaussians along the optimal Viterbi path 5ŝ, l̂6. As 
in case A) of Table 1, the natural parameters of HMM, l, is 
a concatenated vector of all Gaussian mean vectors, i.e., 
l5 [m1, c , mM 4,  after some mathematical manipulation, 
V1 1l 2  in (18) can be represented as

 V1 1l 2 5 a
M

k51
 cmk

Txk
1 2

1
2
1x k
1 2Tx k

1 2Kk
1 1mk 2 d 1 c1, (19)

where c1 is a constant independent of all Gaussian means and 
x k
1  denotes sufficient statistics collected along the best path j 

for kth Gaussian 1k [ [1, M 4 2  as xk
1 5 a

R

r51
Sk
21xrd 1 jr2 k 2 ,  

with d 1 # 2  for Kronecker delta function, and the cumulant 
g e n e r a t i n g  f u n c t i o n  Kk

1 1mk 2 5 1/2mk
TFk

1mk  w i t h 
Fk
1 5 a

R

r51
Sk
21d 1 jr2 k 2 .

As in [39], assume we construct two matrices as follows: 

 Zk J a 1 mk
T

mk mkmk
Tb  (20)

 Ak
1 J

1
2
ax k

1Tx k
1 2 x k

1T

2 x k
1 Fk

1 b. (21)

It is easy to verify that 
V1 1 l 2 5 c1 2 ak

Tr 1 Ak
1Zk 2 . 

Based on the same idea of 
M-approx, lnp1Xt, st|L 2  in (16) 
can  be  approx imated  as 
V2 1 l 2 5 c2 2 ak

Tr 1 Ak
2Zk 2 . 

Therefore, the constraint in (16) 
can be approximated as

 ln p 1X|S, L 2 2 ln p 1X|s, L 2
 < V1 1l 2 2 V2 1l 2 5 c2 a

k
Tr 1Ak Zk 2 , (22)

where c5 c12 c2 and Ak5 Ak
1 2 Ak

2.
For the locality constraint in (17), we can rewrite it 

u s i n g  Zk  a s :  R 1L 2 5 a
K

k51
1mk2mk

1n2 2T 1mk2mk
1n2 2 5

a
M

k51
Tr 1Rk Zk 2 # r2, where matrix Rk is built as in (21) 

with x k
1  and Fk

1  replaced by mk
1n2  and identity matrix I, 

respectively.
In this way, we have a number of small variable matrices Zk 11 # k # M 2 , each of which is constructed from a Gaussian 

mean vector mk as in (20). Obviously, the rank of Zk is equal to 
one. Following [3] and [24], to transform this into an SDP prob-
lem, we relax the rank-one condition to a positive semi definite 
condition for all Zk as follows:

 rank 1Zk 2 5 1 1  Zk f 0  4k [ 11, 2, c , M 2 . (23) 

Moreover, we must impose another constraint that the 
top-left element of Zk is equal to unity, i.e., 5Zk61, 15 1. 
This constraint can be easily cast as a linear constraint in 
matrix form.

Finally, we can formulate the original LME problem as the 
following SDP problem after the relaxation in (23).

PROBLEM 2

 max
L, u

  u (24)

subject to

 a
M

k51
 Tr 1Ak

1t2Zk 2 1 u # ct   (25)

 (5Xt H T and st H Mt with st Z St)

 a
M

k51
 Tr 1RkZk 2 # r2 (26)

 u $ 0  and  Zk f 0  for all   k [ 11, 2, c , M 2  (27)

 5Zk61, 15 1  for all   k [ 11, 2, c , M 2 . (28)

Problem 2 is a standard SDP problem, where optimiza-
tion is performed with respect to all variable matrices Zk 

THE AM ALGORITHM CAN ALSO 
DEAL WITH MORE COMPLICATED 

OBJECTIVE FUNCTIONS ARISING FROM 
DISCRIMINATIVE LEARNING 

OF STATISTICAL MODELS WITH LATENT 
VARIABLES, E.G., MIXTURES 

OF E-FAMILY. 
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and u  using standard con-
vex  opt imizat ion  too ls . 
After that, Gaussian mean 
vector mk  can be updated 
based on the found SDP 
solution Zk

*.
In [19] and [39],  the 

above SDP-based LME meth-
od has been applied to a speaker-independent connected digit 
string recognition task using the standard TIDIGITS data-
base and it has achieved one of the best recognition perfor-
mance ever reported in this task. See [19] and [39] for 
experimental details.

CASE STUDY 2: MMI TRAINING OF HMMs 
USING SOCP BASED ON WORD GRAPHS
In this section, as another case study, we consider to use the 
MMI criterion in (6) to estimate Gaussian mean vectors of 
HMMs for large vocabulary continuous speech recognition 
(LVCSR), where competing hypotheses for each training sen-
tence are encoded in a word graph. We introduce a different 
convex relaxation method in [38] to convert DT problem into a 
different convex optimization problem, i.e., SOCP, for better 
computational efficiency.

For each training utterance Xt5 5xt1, c , xtR6 in a train-
ing set T, assume its true transcription is St and its compet-
ing hypotheses are represented in a word graph, denoted as 
Mt. The MMI objective function can be viewed as a sum of 
margins, as defined in (3). In this work, we assume language 
model scores p 1St 2  and p 1st 2  are constant. As a result, we 
focus on acoustic model scores p 1Xt|St, L 2  and p 1Xt|st, L 2 , 
and consider how to approximate them using the E-approx 
method. As in the previous section, we only consider to esti-
mate Gaussian mean vectors and assume there are in total M 
Gaussians in L.

Based on E-approx in (12), we have

 ln p 1Xt|St, L 2 5 lna
s, l

 p 1Xt, s, l|St, L 2
 $ a

s,l
 ln p 1Xt, s, l|St, L 2 # Pr 1s, l | Xt, St, L

1n2 2

 5 a
M

k51
 cmk

Txtk
1 2

1
2
1xtk
1 2Txtk

1 2
1
2
mk

TQtk
1mk d 1 b1

 ; Qt
1 1L|L1n2 2 , (29)

where x tk
1 5 a

R

r51
 Sk
21xtr

# jk
1 1 t, r 2  and Qtk

1 5 a
R
r51

 Sk
21 #

jk
1 1t, r 2  with jk

1 1t, r 2  denotes posterior probability of residing 
in kth Gaussian given rth feature vector, xtr of Xt, which can 
be calculated efficiently by running the forward-backward 
 algorithm against HMMs of reference St.

Similarly, we can apply E-approx to approximate 
ln a st[Mt

 p 1Xt, st|L 2  in (3) as follows:

 
ln a

st[Mt

 p 1Xt, st|L 2 $ Qt
2 1L|L1n2 2

 5 a
M

k51
 cmk

Txtk
2 2

1
2
1xtk
2 2Txtk

2

 2
1
2
mtk

T Qtk
2mk d 1 b2, (30)

where xtk
2 5 a

R

r51
 Sk
21xtr

# jk
2 1t, r 2  and Qtk

2 5 a
R

r51
 Sk
21 #

jk
2 1t, r 2  with jk

2 1t, r 2  denotes posterior probability of residing 
in kth Gaussian given rth feature vector, xtr, of Xt, which can 
be calculated efficiently by running the forward-backward algo-
rithm in word graph Mt for all relevant HMMs. Refer to [33] 
for details on running the forward-backward algorithm on a 
word graph.

Based on (6), given a training set D, the MMI objective func-
tion FMMI 1L 2  can be approximated by an auxiliary function that 
involves difference of Qt

1  and Qt
2  as follows:

 FMMI 1L 2 < aXt[D
 3Qt

1 1L|L1n2 2 2Qt
2 1L|L1n2 2 41 hr

 5 lTQl1 qTl1 g, (31)

where l denotes natural parameters of models, which is a 
super-vector constructed by concatenating all Gaussian mean 
vectors l5 [m1, c , mM 4, Q is a block diagonal matrix with all 
matrices, Qk5 2 1/2aXt[D

[Qtk
1 2Qtk

2 4  for all k5 1, c , M, 
aligned diagonally, and q is another super-vector constructed by 
concatenating vectors qk5 a

Xt[D

[xtk
1 2 xtk

2 4  for k5 1, c , M, 
and g is a constant. 

The locality constraint in (9) can also be represented as a 
spheral constraint of l as ||L2L1n2||25 ||l2 l1n2||2. 

Therefore, the MMI training of HMMs can be converted 
into the following iterative constrained maximization 
 problem.

PROBLEM 3

 max
l

 lTQl1 qTl1 g (32)

subject to:

 R 1l 2 5 ||l2 l1n2||2 # r2. (33)

The constraint in (33) is a convex constraint. The objec-
tive function is in standard quadratic form but it is not con-
vex since we cannot guarantee matrix Q  to be positive 
semidefinite. To deal with this problem, using the convex 
relaxation technique in [38], we first decompose the matrix 
Q according to its eigenvalues and eigenvectors, lm and vm 
1m [M 2 ,  as :  Q5Q1 1 g

m[M,lm,0
lm

# vm 1vm 2T, where 
Q1 5 g

m[M,lm.0
lm

# vm 1vm 2T is a positive semidefinite matrix 
since it is constructed only from all eigenvectors with positive 
eigenvalues. As in [38], the quadratic term in (32) can be decom-
posed as two terms: lTQl5 lTQ1l1 g

m[M, lm,0
lm zm, where 

UNDER SOME MINOR APPROXIMATION 
AND RELAXATION CONDITIONS, 

DISCRIMINATIVE LEARNING OF MMMS 
CAN BE FORMULATED AS LP PROBLEMS, 

WHICH CAN BE SOLVED FAIRLY EFFICIENTLY 
FOR VERY LARGE-SCALE TASKS.
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all eigenvectors with negative 
eigenvalues are replaced by some 
new variables, zm, subject to some 
nonconvex equality constraints: 
zm5 l

Tvm 1vm 2Tl.
Following [38], the above 

nonconvex equality constraints 
are relaxed as the following convex inequality constraints: 

 lTvm 1vm 2Tl # zm # 2mm
1n2mm2mm

1n2mm
1n21r2, (34)

for all m [M and lm , 0.
The above SOCP relaxation can be intuitively illustrated 

in Figure 2. The original MMIE problem can be viewed as 
optimizing the objective function along the solid quadratic 
curve segment, which is not a convex set. After relaxation, 
optimization is performed within the shaded area under the 
linear upper bound, which becomes a convex set.

Finally, Problem 3 can be relaxed and converted into the fol-
lowing convex optimization problem. 

PROBLEM 4

 max
l, zm

 clTQ1l1 a
m[M, lm,0

lm zm1 qTl1 g d  (35)

subject to:

 R 1L 2 5 ||l2 l1n2|| # r2 (36)

 lTvm 1vm 2Tl # zm # 2mm
1n2mm2m

|
m
1n2mm

1n21r2 (37)

 for all m [M and    lm , 0.

As shown in [38], Problem 4 is a convex quadratic programming 
problem and it can be easily converted into an SOCP problem so 
that it can be solved by any SOCP solver. 

In [36], this SOCP-based MMI training has been successfully 
applied to a large vocabulary continuous speech recognition 
task using the WSJ-5k data set and it has been shown to outper-
form some conventional DT methods. 

CASE STUDY 3: LARGE-MARGIN MMMs USING LP
In this section, we apply the AM-based DT to a different type 
of generative models, derived from multinomial distribu-
tions. This type of statistical models is normally used to 
model discrete data, such as text and symbolic data. As our 
third case study, we consider to apply LME to MMMs for text 
categorization using the AM algorithm. Under some minor 
approximation and relaxation conditions, discriminative 
learning of MMMs can be formulated as LP problems, which 
can be solved fairly efficiently for very large-scale tasks. 

The goal of text categorization is the automatic classifi-
cation of text documents into one of the predefined catego-
ries. In text processing, we normally select a set of features 
to represent each text document. Some widely used features 

include occurrence fre-
quency of a particular word 
or an n-gram or a phrase or 
even a given syntax struc-
ture in a text document. 
Each of these is called a fea-
ture. In this way, each text 

 document can be represented as a feature vector, 
X5 1x1, c , xD 2 ,  where D  stands for the total number of 
selected features and each xd  represents frequency of d th 
feature in the document.

In MMM, each class is modeled by several multinomial 
models. The contributions from these multinomial models 
are linearly combined as in other finite mixture models. In 
an MMM, denoted as li5 5mikd, wik | 4k, d6,  given a docu-
ment with its feature vector Xt5 1xt1, c , xtD 2 , the proba-
bility of observing the document from this class is 
computed as

 Pr 1Xt | li 2 5 a
K

k51
 c  wik

# Ct
# q

D

d51
m ikd

xtd  d , (38)

where mikd  denotes the conditional probability of the dth fea-
ture in kth mixture of model li. Obviously, the conditional 
probabilities and mixture weights satisfy the sum-to-one con-
straint as follows: 

 a
d

 mikd5 1 14i, k 2   and  a
k

 wik5 1 14i 2 . (39)

For simplicity, we use L to denote all MMMs representing all 
classes. MMM also belongs to mixtures of the e-family. Each com-
ponent can be represented as the canonic form in either case C) 
or D) in Table 1. In the generative learning framework, the MMM 
parameters can be estimated from available training based on ML 
estimation using the EM algorithm [6]. In the following we use 
the LME method in (5) to estimate MMMs for document classifi-
cation based on the principle of maximizing the minimum sepa-
ration margin. 

Assume the entire training set for all classes is given as 
5Xt|t5 1, c , T6  along with class labels for all documents, 
denoted as 5St|t5 1, c , T6,  where each document is 

[FIG2] Conceptual illustration (one-dimensional case) of the 
proposed SOCP relaxation in DT of HMMs.
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 represented by its feature 
vector Xt  and its class label 
is known as St.  Assume we 
accept the margin definition 
in (2). We have

    
 d 1Xt|L 2 5min

st2St

 c ln Pr 1Xt|lSt
2 2 ln Pr 1Xt|lst

2 d
 5min

st2St

 dStst
1Xt 2 , (40)

where dSt st
1Xt 2 5 ln Pr 1Xt|lSt

2 2 ln Pr 1Xt|lst
2  is called decision 

margin of Xt between models lSt
 and lst

.
As in the previous sections, LME in (5) leads to the following 

constrained maximization problem.

PROBLEM 5

 max
L, u

  u  1u . 0 2
subject to

 ln Pr 1Xt|lSt
2 2 ln Pr 1Xt|lst

2 $ u,  4Xt, St  and  4 st 1st 2 St 2 .
As in case C) of Table 1, the natural parameters of MMMs are 
represented in the logarithm scale as follows: cik ; lnwik and 
wikd ; lnmikd. If we represent each multinomial as the con-
strained e-family form in case C) of Table 1, the E-approx in 
(12) can be applied to approximate ln Pr 1Xt|li 2  as

 ln Pr 1Xt|li 2 5 lna
K

k51
 c  wik

# Ct
# q

D

d51
m ikd

xtd d

 $ a
K

k51
a
D

d51
 3gtik xtd4 # wikd1 a

K

k51
gtik

# cik1 hti

 ; Qt 1li|li
1n2 2 , (41)

where gtik is the so-called responsibility of kth component in 
ith model given Xt, and hti is a constant independent of MMM 
parameters. In the same way, the decision margin dj1j2

1Xt|L 2  can 
be approximated based on E-approx as a linear function of all 
cik and fikd  as follows:

 dj1j2
1Xt|L 2 5 ln Pr 1Xt|lj1

2 2 ln Pr 1Xt|lj2
2

 < Qt 1l j1
|l j1

, Xt 2 2Qt 1l j2
|l j2

, Xt 2
 5 a

i
a
K

k51
eik

j1j2 # cik1 a
i
a
K

k51
a
D

d51
fikd

j1j2

 # fikd1 gtj1j2
, (42)

where  a l l  coe f f i c i ents  a re  computed  as :  eik
j1j25

gtj1 k
# d 1 i2 j1 2 2gtj2k

# d 1 i2 j2 2 , and fikd
j1 j25gtj1k xtd

# d 1 i2 j1 2 2
gtj2k xtd

# d 1 i2 j2 2 , and gtj1j2
5 htj1

2 htj2
.

We need to  impose a 
 locality constraint for all 
parameters during the LME 
optimization. One simple 
choice is to use the follow-
i n g  b o x  c o n s t r a i n t s : 
fikd
1n2 2 t1 # fikd # f ikd

1n2 1 t1, 
4i, k, d, and cik

1n22t2 # cik # cik
1n21t2, 4i, k,  where t1  and 

t2 are two constants to control box size.
After relaxing all sum-to-one constraints in (39), under 

E-approx, LME of MMM can be formulated as the following LP 
problem.

PROBLEM 6

 max
L, u

  u  1u . 0 2  (43)

subject to

 fikd
1n2 2t1 # fikd # fikd

1n2 1t1  4i, k, d,  (44)

 cik
1n22t2 # cik # cik

1n21t2  4i, k. (45)

 a
i
a
K

k51
eik

lt j # cik1 a
i
a
K

k51
a
D

d51
fikd

ltj # fikd1 gijt
ltj $ u  (46)

for all Xt [ S  (with correct model llt
) and other models lj 

( j 2 lt).
Problem 6 can be solved using many general optimization 

tools. Then, all MMM parameters can be updated with the 
found solution with the sum-to-one constraints relaxed. If 
training data are not separable, following the same soft LME 
method, the above LME formulation can be extended to consid-
er training errors [28]. In [28], the above LME method has 
been applied to a text categorization task using the standard 
RCV1 text database and it has achieved much lower classifica-
tion error rates than other conventional methods, such as SVM 
and the EM-trained MMMs. 

FINAL REMARKS
Discriminative learning methods have achieved many suc-
cesses in speech and language processing during the past 
decades. Discriminative learning of generative models is a 
typical optimization problem, where efficient optimization 
methods play a critical role. For many widely used statistical 
models, discriminative learning normally leads to nonconvex 
optimization problems. In this article we used three repre-
sentative examples to showcase how to use a proper convex 
relaxation method to convert discriminative learning of HMMs 
and MMMs into standard convex optimization problem so that 
it can be solved effectively and efficiently even for large-scale 
statistical models. We believe convex optimization will con-
tinue to play important role in discriminative learning of 
other statistical models in other application domains, such as 
statistical machine translation, computer vision, biometrics, 
and informatics.

DISCRIMINATIVE LEARNING METHODS 
HAVE ACHIEVED MANY SUCCESSES IN 
SPEECH AND LANGUAGE PROCESSING 

DURING THE PAST DECADES.
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