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Framework

Figure from: Volodymyr Mnih,	Koray Kavukcuoglu,	David	Silver,	et	al,	“Human-level	control	through	 deep	reinforcement	
learning”	[J],	Nature,	Vol.	518:	529–533,	February	2015.

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html



Framework

• Deep
• ConvolutionalNeural Networks (CNN)

• Q (Reinforcement)
• The network is used to approximate the Q*	function. In another word, each
dimensionof the output corresponds to the Q value of a certain action.



Framework

• Q Function
• What is Q?
• It is also called action-value function in a Markov Decision Process.
• The expected reward given observation s, action a and a certain strategy 𝜋	at
time t.

• What is Q*?
• The maximal expected reward given observation s and action a over strategy
𝜋	at time t.
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Framework

• Q Function
• What is R?
• The sum of the discounted rewards.

• What is r?
• Can be assigned manually.
• In our application, it is the re-scaled score in a game.
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Framework

• Bellman Equation
• Note that the formula of R involvesT, which is the time-step when the game
terminates. So that calculating Q*	directlymay notwork.
• The Q*	function obeys an important identity known as the Bellman Equation.

• In reinforcement learning, the formula above is usually used in an iterative
manner.
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Framework

• Parameterization
• Having the iterativelymannered Q*	function,we can learn the optimal
strategy for each sequence separately.
• But we need a general model to incorporatemultiple sequences. So that the
Q*	functionneeds to be parameterized by a function approximator.

• Typically, the function approximator should be linear. Deep Q Network,
however, uses a deep neural network.

*Q( , ; ) Q ( , )s a s aθ ≈



Framework

• Objective Function
• Now we know that Deep Q Network uses CNN as its model and Q values as its
output. And the input patterns are of course extracted from the game images.
If we have the objective functionand the parameter updatemethod, we get
all we need to train a model.
• The objective function is the mean-squared error between Q*	(in the Bellman
Equation form) and current CNN output.

2 2
, , ' , , , ' , , 'L ( ) E [(E [ | , ] Q( , ; )) ] E [( Q( , ; )) ] E [V [ ]]i i s a r s i s a r s i s a r sy s a s a y s a yθ θ θ= − = − +

'
maxQ( ', '; )ia

y r s aγ θ −= +



Framework

• Objective Function
• The objective function is worth seeing for a second time.

• Note that in a Deep Q Network, the targets depend on the parameters, which
are network weights in this case. This is in contrast with supervised learning,
where the targets are fixed before learning begins.
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Framework

• Parameter Update
• Now we get the objective function. How should we update parameters to
minimize it?
• Differentiating the objective function with respect to the parameters.

• Rather than computingthe full expectation in the above gradient, it is often
more computational expedient to use stochastic gradient descent.

, , , ' '
L( ) E [( maxQ( ', '; ) Q( , ; )) Q( , ; )]
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Remarks

• Many other tricks are exploited in the practical Deep Q Network.
• Experience replay
• Periodicalweights update
• Error term clip
• 𝜀-greedy action selection
• Image preprocessing
• Frame skipping



Remarks

• Back to the slide about parameterization, Q*	function is typically
parameterized using a linear approximator in reinforcement learning.
• The reason is that when using a nonlinear function approximator like
a neural network, the system tends to be unstable or even to diverge.
• There are several causes.
• The observations in a sequence are correlated.
• Small updates to Q may significantly change the policy and therefore change
the data distribution.
• The output values and target values are correlated.



Remarks

• Experience Replay
• For each iteration,a tuple <∅(st), at, rt, ∅(st+1)> is observed and stored in set D.
• At the networkweights update step, randomly pick up a tuple in D as the
training data.

• This method breaks the correlations in the sequence of observations.



Remarks

• Periodical Weights Updtate
• Use a separate network𝑄& to generate the targets.
• After every C updates we clone the network 𝑄 to the network 𝑄& and use 𝑄& to
generate targets for the followingC updates to 𝑄.

• This method adds a delay between the time an update to 𝑄 is made and the
time the update affects the targets.
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Experiment

• Experiment Setting
• Data: Atari 2600 games (210 *	160 color video at 60Hz)
• Training: A total of 50 million frames (around 38 days of game experience).
• Testing: Play each	game	30	times	for	up	to	5 min	each	time	with	different	
initial	random	conditionsand an 𝜀-greedy	policy	with 𝜀	= 0.05.



Experiment

• Result Presentation:
• Compare the performance with human players.
• The	human	performance	is	the	average	reward	achieved	from	around	20	
episodes	of	each	game	lasting	a	maximum	of	5 min	each,	following	around	2 h	
of	practice	playing	each	game.

• A random agent is also proposed.
• The random agent chooses an action at	10Hz, which	is	every	sixth	frame,	
repeating	its	last	action	on	intervening	frames.
• 10Hz	is	about	the	fastest	that	a	human	player	can	select	the	‘fire’	button.
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• The	above	two	figures	are	from	Volodymyr Mnih,	Koray Kavukcuoglu,	
David	Silver,	et	al,	“Human-level	control	through	deep	reinforcement	
learning”	[J],	Nature,	Vol.	518:	529–533,	February	2015.
http://www.nature.com/nature/journal/v518/n7540/full/nature1423
6.html

• The values shown in the figure are the normalized performances of
Deep Q Network, which is calculated as 100 × (DQN	score − random	
play	score)/(human	score − random	play	score).
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Discussion

• Deep Q Network combines reinforcement learning with deep neural
networks. So that the model doesn’t need fixed labels and is
expressive enough to approximate nonlinear Q*	function.
• Deep Q Network shows that by viewing neural networks as tools for
function approximating and embedding them into other learning
methods, we may get better learning machines.
• The ideas in Deep Q Network may be used in robust speech
recognition, where we can continuously modify our model through
interaction with the environment.



Appendix 1: Source Program

• The source program of Deep Q Network is provided on the website.
• Hardware settings
• A Linux server whose operating system uses apt-get command (I used a server
which has been installedUbuntu).
• The program can be run both on GPUs and CPUs.

• Software settings
• Need to install tools like LuaJIT, Torch 7.0, nngraph, Xitari and AleWrap.
• Need to download Atari game files.

• Scripts
• Changes of scripts are mainly in run_gpu/run_cpu in the root folder and
train_agent.lua in	the DQN folder.



Appendix 2: Reinforcement Learning

• For a quick start on Reinforcement Learning, you can use materials by
David Silver on
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html.
• For a detailed study, you may read “Reinforcement Learning: An
Introduction” by Richard S. Sutton and AndrewG. Barto. The online
version is on
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html.



Thank You！


