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Abstract

When people search for a target in a novel image they often
make use of eye movements to bring the relatively high acuity
fovea to bear on areas of interest. The strategies that control
these eye movements for visual search have been of substantial
scientific interest. In the current article we report a new com-
putational model that shows how strategies for visual search
are an emergent consequence of perceptual/motor constraints
and approximately optimal strategies. The model solves a Par-
tially Observable Markov Decision Process (POMDP) using
deep Q-learning to acquire strategies that optimise the trade-
off between speed and accuracy. Results are reported for the
Distractor-ratio task.
Keywords: Computational Rationality; Deep Reinforcement
Learning; Deep Q-Learning; Visual Attention.

Introduction
One of the many tasks for which people use vision is to search
for items in the environment. Visual search might be used to
locate a phone on a table, a car in a parking lot or a fam-
ily member in a crowd. In a typical laboratory visual search
task, participants are asked to find a visual target amongst dis-
tractors. For example, searching for a Gabor patch in a high
contrast noisy background (Najemnik & Geisler, 2008), or
searching for a red coloured letter O in a display that consists
of red Xs and green Os (Shen, Reingold, & Pomplun, 2000).
Many, though not all, visual search tasks require a number of
fixations and saccades before the target is found.

From a cognitive science perspective, visual search is in-
teresting because data from visual search experiments can be
used to inform theories of the underlying constraints on vision
(e.g (Geisler, 2011) and also to inform theories of how peo-
ple adapt eye movement strategies to these constraints (e.g
(Najemnik & Geisler, 2005). Human behaviour is a con-
sequence of both the constraints and the adapted strategies
and explanations of behaviour require both (Lewis, Howes,

& Singh, 2014). In fact, there is a long history of cognitive
science research on visual search and there are a number of
competing theoretical approaches.

First are the map-based approaches described by (Kowler,
2011), such as salience maps (Itti & Koch, 2000) and activa-
tion maps (Pomplun, Reingold, & Shen, 2003; Wolfe, 2007),
where the perceived visual information is represented as a
topological distribution in a graphical map form. The salient
area or peaks in the map represent items that significantly dif-
fer from their neighbouring items, that may contain attributes
of interest. These peaks in the map are then used to guide the
eyes through the display using some selection rules, such as
a greedy heuristic (Pomplun et al., 2003) or a winner-take-all
heuristic (Itti & Koch, 2000). To summarize, the map based
approach assumes that saccades are programmed to move the
fovea to those areas in the display that stand out from sur-
roundings.

Second are the Bayes optimal state estimation approaches
(Myers, Lewis, & Howes, 2013; Najemnik & Geisler, 2008),
in which it is assumed that visual information is recorded as
a Bayesian estimate of the state of the world. On each fix-
ation the estimated state is updated by optimally integrating
information (Bayes rule) from the previous state and from the
fovea and from the periphery according to its reliability. The
eye movements are then made using these states and apply-
ing a heuristic decision rule (e.g., ‘Maximum A Posteriori’
(MAP)) to navigate. This rule generates a behaviour in which
attention is directed to areas which have the highest proba-
bility of target present. Alternatively, Najemnik and Geisler
(2005) observed that the number, and spatial distribution, of
saccades could be better explained by a model in which each
saccade was directed to an ‘ideal’ location (i.e., a location
that maximises information gained). Their model was sensi-
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tive to known human constraints on vision, i.e., the accuracy
of perceiving a feature degrades with eccentricity.

Third are the optimal control approaches (Butko & Movel-
lan, 2008; Hayhoe & Ballard, 2014; Nunez-Varela & Wyatt,
2013; Sprague, Ballard, & Robinson, 2007), in which it is as-
sumed that the eye movements are not made to estimate some
statistics about the world but rather the goal is to maximize
the overall performance utility. The maximum reward/utility
an individual can attain throughout the task is bounded by
the noisy encoding of the visual information by the human
brain. In contrast to map-based and optimal state estimation
approaches, where prior assumptions about eye movement
decisions are made by heuristic rules, the control strategy
emerges as a consequence of bounds imposed by the human
visual system. To summarize, the optimal control approach
assumes that the saccades are programmed to move the fovea
so as to maximise task utility/reward.

In the current article we report a novel (approximately) op-
timal control model of the distractor ratio task. The purpose
of this model is to (1) explain phenomena not previously ex-
plained as optimal control, (2) to further elucidate the fram-
ing of visual search as a Partially Observable Markov De-
cision Process (POMDP) (Kaelbling, Littman, & Cassandra,
1998), and (3) to explore the role of deep Q-learning (Mnih
et al., 2015) in solving the tractability problems with previ-
ous optimal state estimation and optimal control approaches.
The model goes beyond the optimal state estimation model
of Myers in that it is applied to the full display size used by
(Shen, Reingold, & Pomplun, 2003). The model uses deep
Q-learning to solve a POMDP. It attempts to maximise a re-
ward signal given constraints imposed by the human visual
information processing system. We compare the performance
of the optimal control model to a model that uses MAP-like
heuristics. We show that the optimal control model offers
higher utility and better fits to the human data than the heuris-
tic model. Lastly, we use the model to explain phenom-
ena associated with the distractor ratio paradigm (Bacon &
Egeth, 1997; Shen et al., 2000; Zohary & Hochstein, 1989).
A phenomena that has previously been explained using the
salience-map based approach.

The Distractor Ratio Task
In the distractor ratio task the display consists of a target ob-
ject, which is randomly positioned amongst distractor objects
each of which shares at least one common feature with the
target. The goal is to respond whether the target is present or
absent. An example display is shown in Figure 1 where the
target is a red letter O. The distractors in this display share
either a same-colour or same-shape feature with the target.

In a number of studies it has been observed that people re-
spond more quickly, and with fewer eye movements, for ex-
treme ratios of same colour to same shape distractors (Egeth,
Virzi, & Garbart, 1984; Shen et al., 2003). In Figure 1, the
target – a red letter O – can be located easily in display (a)
and (c) with ratios 3:45 and 46:2 respectively as compared to

(a) (b) (c)

Figure 1: Distractor ratio stimuli with ratio distributions: (a)
3:45, (b) 24:24, (c) 46:2 and target stimuli: red coloured letter
O.

(a) (b)

Figure 2: (a) Average number of fixations per trial as a func-
tion of the number of distractors sharing colour with the
search target in target-absent trials and target-present trials
for high discriminability condition. (b) Saccadic bias (the
difference between the observed frequency and chance per-
formance) as a function of the number of same-colour distrac-
tors in target- absent trials for high discriminability condition
(Shen et al., 2003)

display (b), for which a response takes a relatively long time.
The distractor ratio effect reported by Shen et al. (2003) is
shown in Figure 2.

In addition to the distractor-ratio effect, Shen et al. (2003)
also observed a saccadic selectivity effect. In Figure 2, the
frequency of saccades to same-colour distractors is plotted
against the number of same-colour distractors. In the plot,
the saccade frequencies are higher for rare features (colour
or shape) than should be expected by chance (represented by
the horizontal line). When the same-colour distractors are
rare in the display, the participants were more likely to make
eye movements towards them than when they were common.
Conversely, when the number of same-colour distractors was
high, the participants were more likely to make eye move-
ment towards same-shape distractors.

The Model
In the following sections we describe the individual compo-
nents of the model for performing a 36-element distractor-
ratio task, and provide a walk-through of the model process
before presenting the model results.
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External Display
In the model, we represent the display by randomly distribut-
ing the target and the distractors in a grid, where each cell
consists of either a target object, a distractor object with com-
mon colour or a distractor object with common shape. In
the display, there is only one target object and the number of
distractors are determined by randomly sampling a ratio per
trail.

The display is represented by two feature vectors, one for
colour and one for shape. The presence or absence of a fea-
ture in each cell in the model is represented numerically by
the number 1 for presence and 0 for absence. The random
distribution of these features in the environment was achieved
by sampling randomly from the following set of ratios, r = R
(3:33, 6:30, 9:27, 12:24, 15:21, 18:18, 21:15, 24:12, 27:9,
30:6, 33:3).

Actions
The action space consists of (1) fixate on a cell, (2) respond
present and (3) respond absent. In our study there was a grid
of 6x6 coloured shapes and there were therefore a total of 36
possible fixation actions. A trial was terminated by the choice
of the present or absent action.

Reward
A reward was given after choosing a present or absent ac-
tion. The reward distribution was defined as a value 10 for
a correct response, a value of −10 for an incorrect response
and a value of−1 for each fixation. The penalty on each fixa-
tion imposes a speed-accuracy trade-off. More fixations gives
greater accuracy but at a cost.

Observation Model
Every time the model fixates, it also makes an observation.
The observation obtained by the model is constrained by the
noise in the human visual system. Two types of noise are
added to the signal: spatial smearing noise and feature noise.

1. Feature Noise: The human eye’s ability to discriminate
and perceive object features degrades with eccentricity ac-
cording to a hyperbolic function (Strasburger, Rentschler,
& Jüttner, 2011). To model this function we added Gaus-
sian white noise with mean 0 and standard deviation as ec-
centricity, i.e., a function of visual angle ‘θ’ between the
fovea and the given location, and a scalar weight ‘w f eatural’
to scale the effect of distance to the fovea for feature noise.
Therefore, the equation for the observation after adding
feature noise at location j given that the eye is focused on
location k is as follows,

δ f eatural(St , j) = v[st ]+N(θ,σ f (θ jk,w f eatural))

σ f eatural(θ jk,w f eatural) =
θ jk

(w f eatural)
+ c

where, v[st ] = 1 if the location st contains a target feature,
else v[st ] = 0, c is a constant with value 10−4 to avoid 0

variance in the model, σ f (θ,w f ) is the variance to simulate
the degrading eccentricity and ‘θ’ is the distance between
the fixated cell and location j.

2. Spatial Smearing: Another source of uncertainty in the
human visual system is the localization error (Levi, 2008),
where information in the parafovea may erroneously com-
bine features from one location with adjacent locations.
Therefore, for each location in the colour and shape vector
a weighted sum is calculated for the location and its adja-
cent eight locations. For example, If a red X is surrounded
by green Os in the parafovea then, as a consequence of spa-
tial smearing, the participant would be uncertain whether
they are actually looking at a red X or a green O.

In the model, spatial smearing is represented by a weight-
ing function (Gaussian kernel) with standard deviation as
a function of visual angle ‘θ’ between the fovea and the
given location, and a scalar weight ‘wspatial’ to scale the ef-
fect of distance to the fovea for spatial noise. The weight-
ing function here is a normalised function. As ‘θ’ (dis-
tance) increases the acuity decreases and the standard de-
viation of the Gaussian kernel increases, this means that the
percept of the item at a given location suffers greater inter-
ference from surrounding items. This encoding is done for
each location in the display. Thus, the equation for the ob-
servation after adding spatial noise at location j given that
the target features are at location St ∈ (1,2, ...,n) and the
eye is focused on location k is as follows,

δpercept(St , j) = K(s,σs(θ jk,wspatial))×δ f eatural(St , j)

σspatial(θ jk,wspatial) =
θ jk

(wspatial)
+ c

where, K is the Gaussian kernel with kernel size s = 1,
σs(θ jk,ws) is the variance. δpercept(St , j) is calculated sep-
arately for both shape and colour feature vectors. c is a
constant with value 10−4 to avoid 0 variance in the model.

Now each percept (δpercept ) (one for colour and one for
shape) is represented as a vector of noisy observations for
each location. A consequence of introducing the noise is
uncertainty in the content of the location.

State Estimation
At each time step t on which a fixation is made the model
receives a noisy observation for each location. The values for
perceived colour and shape are then combined (Hadamard
product) for each location [i, j]. We refer to these combined
values as relevance scores, where a higher score in a loca-
tion signifies high relevance to the task. These scores are
then integrated across fixations, using naive Bayesian infer-
ence (Kalman filter), to get the current state Bt which is a
vector of estimated relevance scores across fixations1.

1The integration of information across fixation is a local update
for each cell.
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Heuristic Control Model

The Heuristic control model makes fixations and observations
as described above. In order to decide which fixations to use
and when to respond it makes use of two heuristics. The first
uses a MAP-like strategy to determine where to fixate next,
and the second uses a thresholded stopping rule.

Optimal Control Model

As we have said, at each point in time, the model observes
the external environment through a noisy percept with a high
resolution fovea and low resolution parafovea and receives an
observation ot . The model then extract the high resolution lo-
cal information from the environment by taking actions at ∈A
(A is the set of actions) to move the fovea (e.g., choose where
to move the fovea). Since the environment is only partially
observed the model needs to integrate information over time
in order to determine how to act and how to make eye move-
ments most effectively. It does this using the Bayesian state
estimator described above.

At each step, the model receives a scalar reward rt (which
depends on the action taken by the agent), and the goal of
the agent is to maximize the total sum of such rewards R =
E[∑γt−1rt ], where γ ∈ (0,1) is the discount factor.

The most important aspect of the Optimal Control model
is that rather than using heuristics to choose what to do next,
it learns an approximately optimal policy using Deep Q-
learning.

Deep Q-learning The Deep Q-learner made use of the fol-
lowing network architecture.

The relevance score estimate Bt (36 element vector) from
the state estimator (above) was taken as the input. This input
was connected to a fully connected hidden layer consisting of
nodes equivalent to number of elements in the display, i.e.,
36, with rectifier activation function. This is followed by a
second fully connected hidden layer consisting of again nodes
equivalent to number of elements in the display, i.e., 36, with
sigmoid activation function. Finally, the output layer was a
fully connected linear layer of 38 nodes with single output for
each action in the task. To avoid over-fitting of the network
l2 regularization of the weights was applied with value 10−5.

During the training process a fixed size batch of transitions
< s,a,r,s′ > were sampled from a replay memory and used
for learning. For each time step (t), the deep Q-network (with
parameters θ) is trained to approximate the action-value (Q-
value) function from the sampled transitions by minimizing
the loss functions L(θi):

L(θi) = Es,a∼πθ
[(yi−Q(s,a;θ))2]

where yi = r+γmaxa′Q(s′,a′;θ′) is the target Q-value esti-
mated from a target Q-network (θ′). The parameters of target
Q-network (θ′) is copied over from the learned network (θ)
after a fixed number of iterations.

Algorithm 1 Deep Q Network Algorithm

1: initialize replay memory D, weights of the main network
θ and target network θ′.

2: observe the initial state s.
3: repeat
4: select an action a
5: with probability epsilon select a random action.
6: otherwise select a = argmaxa′Q(s,a′;θ).
7: perform the action a.
8: observe the reward r and new state s′ for action a.
9: store transition < s,a,r,s > in the replay memory D.

10: sample random transitions < s,a,r,s > from the re-
play memory D.

11: calculate the target value t for each sampled transi-
tion.

12: if s′ is the terminal state then
13: t = r
14: else
15: t = r+ γQ(s′,maxa′Q(s′,a′;θ);θ′)
16: end if
17: update the network using (t−Q(s,a;θ))2 as the loss.
18: s = s′

19: after every fixed steps θ′ = θ

20: until terminal state

Model Results
The Heuristic control model was run for 30,000 trials and 10
regression runs to check for consistency. The Optimal con-
trol model was run for 20 million trials. We first tested the
accuracy of the models. Accuracy is the proportion of tri-
als on which the model correctly responded either present or
absent. The best fitting optimal control model achieved an ac-
curacy of 96% in its last 50000 trials. In comparison, human
participants achieved 98% accuracy. The accuracy of the best
fitting Heuristic control model was 94%. Accuracy and utility
of both models is plotted in Figure 3. The plots show a clear
advantage of the Optimal control model for all explored pa-
rameter settings. In other words, the approximately Optimal
control model outperforms the Heuristic control model in all
cases.

Plots of fixation frequency versus same colour distractor-
ratio at different levels of spatial and feature noise are shown
in Figure 5. The results show that both model Heuristic
and Optimal control model generate similar distractor ratio
curves to humans (Figure 2) for target absent, where more
fixations are required for ratios close to 1. While the RM-
SEs for the Heuristic control model were smaller than for the
Optimal control model (Optimal: RMSE = 0.81; Heuristic
RMSE = 0.41), the goodness of fit against Human perfor-
mance for the Heuristic control model was R2 = 0.95 and for
the Optimal control model was R2 = 0.98. A weakness of the
Heuristic control model was that it produced DR effects for
both target present and target absent. In contrast, the Optimal
control model predicted a DR effect in the absent condition
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(a) (b)

Figure 3: (a) Mean accuracy achieved by both models plotted
against different noise parameter settings. (b) Mean utility
gained by both models plotted against different noise param-
eter settings. Where, FN is Feature noise, SN is Spatial Noise
and TH is the threshold set for heuristic control model.

(a) Heuristic Control model (b) Optimal Control model

Figure 4: Saccadic bias as a function of the number of same
colour distractors for Target Absent.

only. In terms of the shape of the DR curve and saccadic se-
lectivity curve, the similarity between humans and Optimal
control model is greater than the similarity between Heuristic
control model and humans (see Figure 2).

The saccadic bias effect is shown in Figure 4. For the ex-
plored parameter settings, the Heuristic control model gen-
erated higher levels of saccadic bias than generated by the
Optimal control model and these levels were nearer to those
generated by humans (Optimal: RMSE = 8.93; Heuristic
RMSE = 6.93). However, the Optimal control model ex-
plained more of the variance. The goodness of fit of the best
fitting Heuristic control model was R2 = .94. In contrast, the
best fitting Optimal control model had a goodness of fit of
R2 = 0.97. While the Heuristic control model predicts a mag-
nitude of saccadic bias that corresponds to that of humans at
extreme levels of same-color (around 30%), it is the Optimal
control model that has the better fit. This is likely due to
the extreme curvature (sinusoidal) of the saccadic bias for the
Heuristic model which is not present in the humans.

One of the effects in the human data that is not captured by
either the Optimal or the Heuristic control model is the asym-
metric effect of shape and colour (see Figure 2). This is very

(a) Heuristic Control Present (b) Optimal Control Present

(c) Heuristic Control Absent (d) Optimal Control Absent

Figure 5: Number of fixations as a function of same-colour
distractors for (a) the Heuristic model with target present, (b)
the Control model with target present, (c) the Heuristic model
with target absent, (d) the Heuristic model with target present.

likely due to the fact that we used the same noise parameter
values for both shape and colour in the model’s observation
function. Further work is needed to explore the effect of the
known differences in acuity functions for shape and colour
(Kieras & Hornof, 2014).

Discussion and Conclusion
While the results presented here are preliminary, they offer
some evidence that the distractor-ratio effect is the conse-
quence of an approximately optimal adaptation to the con-
straints imposed by the human visual information processing
system. Unlike previous work, including Myers et al. (2013),
our results are based on a model that makes approximately
optimal control decisions to choose fixation locations rather
than a model that uses MAP-like heuristics.

Achieving these results required two contributions to cog-
nitive modeling. The first is the novel application of POMDPs
to the framing of the distractor-ratio problem, further extend-
ing the work of Butko and Movellan (2008). The POMDP
framing is important because it provides a rigorous basis
for exploring the computationally rational adaptation of hu-
man strategies to known information processing constraints
(Lewis et al., 2014; Howes, Lewis, & Vera, 2009). It thereby
helps make the crucial link between cognitive mechanism and
rationality that supports deep explanations of behaviour.

The second contribution is the novel application of Deep
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Q-Learning (Mnih et al., 2015) to determine the optimal pol-
icy given a theory of human visual information processing
capacities. The role of reinforcement learning based algo-
rithm’s have previously been proposed as means of explaining
human learning processes (Dayan & Daw, 2008) and also, as
means of deriving rational analyses of what a person should
do in particular task (Chater, 2009). Our work is more aligned
with the goals of (Chater, 2009). The purpose of our rein-
forcement learner was not to model the step-by-step learn-
ing process, but rather to model the rational outcome of the
learning process – an approximately optimal adaptation to in-
formation processing limits.

There is a substantial amount of work to be done. While the
best fitting Optimal control model explained 98% of the vari-
ance, to be fully confident that it is better than the Heuristic
control model, we need to more fully explore the parameter
space of both models. For example, for the Heuristic control
model, it might be the case that even higher feature noise,
and lower spatial noise, might further improve the fit. We
also need to find a fit that reduces the RMSE of the Optimal
control model.

In conclusion, we have demonstrated that framing the vi-
sual search problem as a POMDP and solving this problem
with deep Q-learning is a viable approach to explaining ef-
fects such as distractor-ratio and saccadic selectivity.

References
Bacon, W. F., & Egeth, H. E. (1997). Goal-directed guid-

ance of attention: evidence from conjunctive visual search.
Journal of Experimental Psychology: Human Perception
and Performance, 23(4), 948.

Butko, N. J., & Movellan, J. R. (2008). I-pomdp: An infomax
model of eye movement. In Development and learning,
2008. icdl 2008. 7th ieee international conference on (pp.
139–144).

Chater, N. (2009). Rational and mechanistic perspectives on
reinforcement learning. Cognition, 113(3), 350–364.

Dayan, P., & Daw, N. D. (2008). Decision theory, reinforce-
ment learning, and the brain. Cognitive, Affective, & Be-
havioral Neuroscience, 8(4), 429–453.

Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching
for conjunctively defined targets. Journal of Experimental
Psychology: Human Perception and Performance, 10(1),
32.

Geisler, W. S. (2011). Contributions of ideal observer theory
to vision research. Vision research, 51(7), 771–781.

Hayhoe, M., & Ballard, D. (2014). Modeling task control of
eye movements. Current Biology, 24(13), R622–R628.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational adap-
tation under task and processing constraints: implications
for testing theories of cognition and action. Psychological
review, 116(4), 717.

Itti, L., & Koch, C. (2000). A saliency-based search mecha-
nism for overt and covert shifts of visual attention. Vision
research, 40(10), 1489–1506.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1), 99–134.

Kieras, D. E., & Hornof, A. J. (2014). Towards accurate
and practical predictive models of active-vision-based vi-
sual search. In Proceedings of the 32nd annual acm con-
ference on human factors in computing systems (pp. 3875–
3884).

Kowler, E. (2011). Eye movements: The past 25years. Vision
research, 51(13), 1457–1483.

Levi, D. M. (2008). Crowdingan essential bottleneck for
object recognition: A mini-review. Vision research, 48(5),
635–654.

Lewis, R. L., Howes, A., & Singh, S. (2014). Com-
putational rationality: Linking mechanism and behavior
through bounded utility maximization. Topics in cognitive
science, 6(2), 279–311.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., . . . others (2015). Human-
level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Myers, C. W., Lewis, R. L., & Howes, A. (2013). Bounded
optimal state estimation and control in visual search: Ex-
plaining distractor ratio effects. In Proc. cogsci.

Najemnik, J., & Geisler, W. S. (2005). Optimal eye move-
ment strategies in visual search. Nature, 434(7031), 387–
391.

Najemnik, J., & Geisler, W. S. (2008). Eye movement statis-
tics in humans are consistent with an optimal search strat-
egy. Journal of Vision, 8(3), 4–4.

Nunez-Varela, J., & Wyatt, J. L. (2013). Models of gaze con-
trol for manipulation tasks. ACM Transactions on Applied
Perception (TAP), 10(4), 20.

Pomplun, M., Reingold, E. M., & Shen, J. (2003). Area
activation: A computational model of saccadic selectivity
in visual search. Cognitive Science, 27(2), 299–312.

Shen, J., Reingold, E. M., & Pomplun, M. (2000). Distractor
ratio influences patterns of eye movements during visual
search. Perception, 29(2), 241–250.

Shen, J., Reingold, E. M., & Pomplun, M. (2003). Guid-
ance of eye movements during conjunctive visual search:
the distractor-ratio effect. Canadian Journal of Ex-
perimental Psychology/Revue canadienne de psychologie
expérimentale, 57(2), 76.

Sprague, N., Ballard, D., & Robinson, A. (2007). Modeling
embodied visual behaviors. ACM Transactions on Applied
Perception (TAP), 4(2), 11.

Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Periph-
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