Huntington's Disease

Neuroscience 410 March 20, 2007

W. R. Wayne Martin, MD, FRCPC Division of Neurology University of Alberta

Huntington's Disease

- inherited neurodegenerative disorder
 - -autosomal dominant
- -100% penetrance
- age of onset: 35 45 yr
- juvenile variant
 -5-10% of affected individuals

Huntington's Disease

- motor, cognitive, and behavioural dysfunction
- inexorably progressive
 death 15 20 yr after symptom onset

Huntington's Disease

- prevalence
 - -10 / 100,000 population
- Movement Disorders Clinic
 about 65 symptomatic patients

Chorea

- irregular, unpredictable, purposeless, rapid movements that flow randomly from one body part to another
- Huntington's disease

Huntington's Disease Clinical Features - 1

- motor dysfunction
 - -chorea is usually the earliest sign
 - initially fingers, toes, face
 - progressive
 - -motor impersistence
 - -eye movement abnormalities
 - impaired initiation of saccades
 - slow saccades

Huntington's Disease Clinical Features - 2

motor dysfunction

-dystonia and parkinsonism

- progressive incoordination, unsteadiness, immobility, dysarthria, dysphagia
- -motor signs eventually appear in all

Huntington's Disease Clinical Features - 3

- juvenile onset
 - rigidity, dystonia, bradykinesia, myoclonus
 - -seizures
 - -rapidly progressive dementia

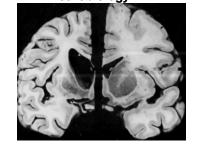
Huntington's Disease Clinical Features - 4

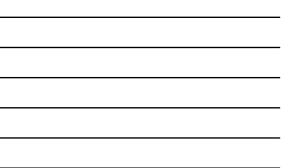
- cognitive impairment
 - executive function is thought to be selectively lost
 - -cortical deficits absent (aphasia, agnosia, apraxia)

Huntington's Disease Clinical Features - 5

- cognitive impairment
 - some degree of impairment is inevitable
 - -occasionally minimal
 - rate of progression varies considerably

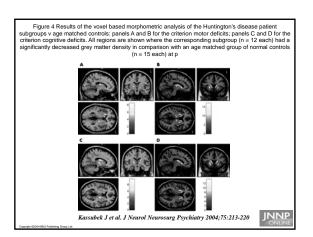
Huntington's Disease Clinical Features - 6

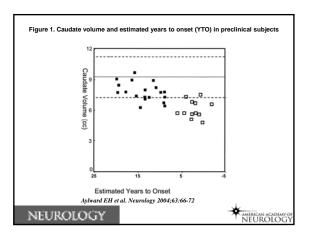

- behavioural changes
 - -gradual change in personality
 - -affective disorders in 30-40%
 - schizophrenia and other psychoses in 10%
 - -alcohol abuse; high suicide risk


Huntington's Disease Neurobiology - 1

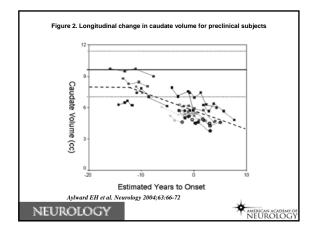
pathology

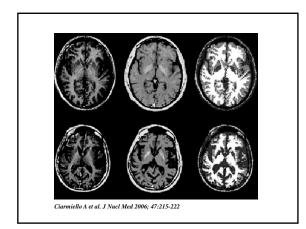
- -striatal atrophy
- -neuronal loss and gliosis
 - most striking in, but not limited to striatum
 - diffuse cortical changes, primarily frontal
- degree of pathology is related to the duration of symptomatic HD

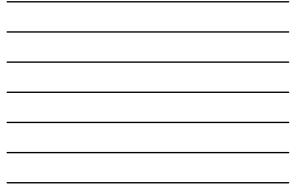

Huntington's Disease Neurobiology - 2

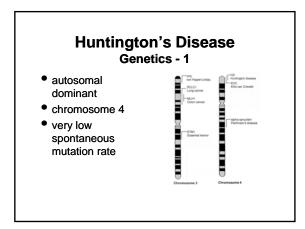


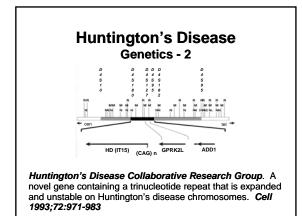
Huntington's Disease Neurobiology - 3

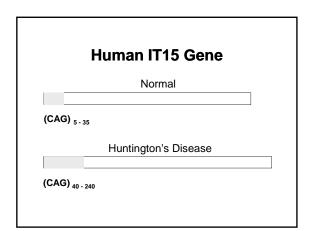

- selective neuronal loss
 - -striatal projection neurons are affected
 - medium spiny neurons (GABA)
 - striatal interneurons are spared
 - SS/NPY
 - cholinergic

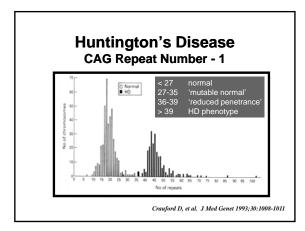


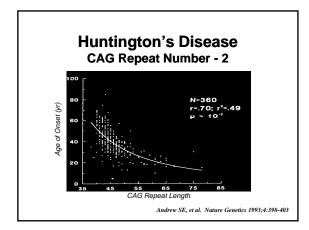


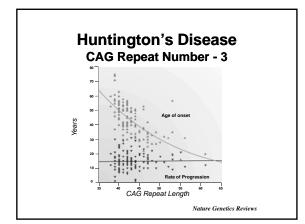












Huntington's Disease Diagnosis

- CAG repeat analysis
 > determine the presence of the gene
- diagnosis of symptomatic HD is based on the clinical features

• supportive counselling is crucial before, during, and after DNA testing, regardless of whether or not the patient is symptomatic

IT15

- universal expression in multiple tissues
- new class of protein important to neuronal function
 - huntingtin
 - 3144 amino acids, m.w. = 348 kDa
- no evidence of regional selectivity in brain
 - neurons and glia

huntingtin

- transgenic mouse models
 - significantly reduced levels associated with aberrant brain development and perinatal lethality
 - normal levels, even of mutant huntingtin, is associated with normal brain development
- critical role in neurogenesis

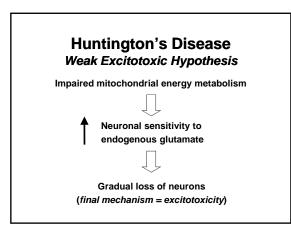
Huntington's Disease Cellular Mechanisms

- huntingtin normally localized in cytoplasm
- *in HD* neuronal intranuclear inclusions
 - -huntingtin and ubiquitin
 - associated nuclear membrane changes
 - precedes phenotypic changes (transgenic mice)

Huntington's Disease Cellular Mechanisms

 translocation of mutant huntingtin from cytoplasm to nucleus may represent the dominant gain of function

Huntington's Disease Pathophysiology


• animal models

-intrastriatal kainic acid

- McGeer EG, McGeer PL. Nature 1976;263:517-519
- Coyle JT, Schwarcz R. Nature 1976;263:244-246
- -intrastriatal quinolinic acid
 - Beal F and others

Huntington's Disease Pathophysiology

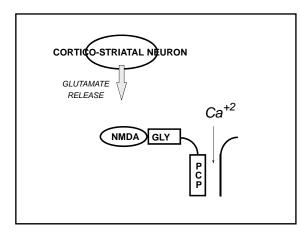
- excitotoxic hypothesis
 - intrastriatal injection of excitotoxic amino acids mimics the characteristic pathology of HD
 - toxicity can be prevented by NMDA antagonists
 - <u>but</u> acute striatal lesion is unlike the slow insidious cell loss associated with neurodegenerative disease

Weak Excitotoxic Hypothesis

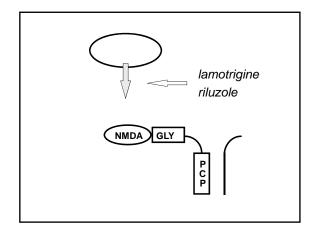
- 3-NPA
 - inhibits succinate dehydrogenase and complex II
 - associated with striatal pathology similar to HD
 - -blocked by NMDA antagonists

Huntington's Disease Current Treatment

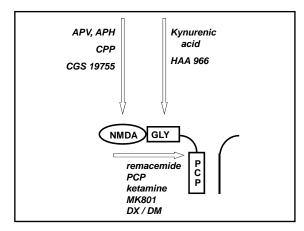
• symptomatic

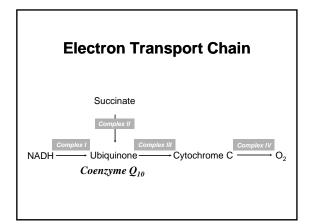

Huntington's Disease Experimental Treatment

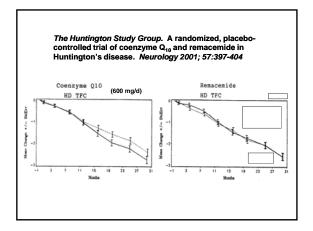
• goal


 to delay or prevent the onset of symptomatic HD in the asymptomatic individual

Huntington's Disease Experimental Treatment


- postulated mechanisms
 excitotoxicity
 - -impaired mitochondrial metabolism





CARE - HD (Co-enzyme Q₁₀ and Remacemide in HD)

- multi-centre, placebo-controlled, randomized, prospective trial
- 2 x 2 factorial design
- 347 patients with symptomatic HD
- 30 month follow-up, using validated clinical rating scales (UHDRS)
- Huntington Study Group; NIH funded

CARE - HD (Co-enzyme Q₁₀ and Remacemide in HD) • end-point = total functional capacity

Huntington's Disease Experimental Treatment

• 2CARE

– Co Q₁₀ 2400 mg/d

Huntington's Disease Experimental Treatment

minocycline
 – caspase I inhibition

