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1. INTRODUCTION

Rough version of the notes!

These notes are intended to accompany the mini-course on Hurwitz
theory, Orbifold-Witten theory and applications to at BCIMR in Bei-
jing in July 2012. The goal of this course is to introduce a circle of ideas
in and around Hurwitz theory to an audience of students that have an
interest in geometry/ algebraic geometry but have not necessarily had
yet a prolong or in depth exposure to these areas. Hurwitz theory stud-
ies holomorphic/algebraic maps between Riemann surfaces/algebraic
curves. This is a classical subject of study that over the course of
the last century and a half has made contact and had applications
in several areas of mathematics, from algebraic/arithmetic/differential
geometry to representation theory, from combinatorics to the theory of
integrable systems. This mini-course intends to present an aspect of
Hurwitz theory which applies to the study of the geometry of moduli

spaces of curves, and of maps. Major goals of this course are:
1
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(1) To establish in an effective way a modern dictionary between
the classical theory of ramified covers of curves and the study of
orbifold maps to classifying spaces (and more general of global
quotients).

(2) To describe the interaction between Hurwitz numbers/loci and
tautological classes in the moduli space of curves.

(3) To present the algebraic/combinatorial structure of certain fam-
ilies of Hurwitz numbers/loci.

(4) To illustrate Atyiah-Bott localization as an effective tool for the
computation of Hurwitz-Hodge integrals.

The mini-course will assume a basic geometric/algebraic background.
We will start by quickly reviewing the fundamental facts of Riemann
surface/curve theory that will be needed throughout the course. We
will introduce the concept of a moduli space and describe a few example
of moduli spaces related to curves (moduli space of curves, of (relative)
stable maps, of admissible covers). We will introduce Atyiah-Bott lo-
calization as a tool to approach the intersection theory on moduli spaces
of maps endowed with a torus action. As an application we well com-
pute some generating functions for Hodge integrals on the hyperelliptic
locus, and we will prove the ELSV formula, establishing a connection
between simple Hurwitz numbers and Hodge integrals on the moduli
space of curves.

Next we will study the case of double Hurwitz loci/numbers, i.e.
maps to the projective line with two special (non generic) branch
points. Such numbers/loci exhibit interesting algebraic structure: fam-
ilies of such loci are piecewise polynomial in the special ramification
profiles, with modular wall crossing formulas. The study of these prop-
erties can be approached via a translation to algebraic combinatorics
involving graph counting. Again, the remarkable algebraic structure of
these classes suggests interesting connections to the tautological inter-
section theory of the moduli space of curves, or of some related moduli
spaces. At the end of the course we hope to have the time to discuss
some open problems, conjectures and observations on the matter.

This mini-course is going to be very much related, and yet somewhat
complementary, to the mini-course by Paul Johnson that will follow.

2. CrAssicAL HurwiTz THEORY

2.1. Curves/Riemann Surfaces 101. In this section we recall some
basic facts in the theory of algebraic curves and Riemann Surfaces.
There are several excellent references that can be looked at, for example
[ACGHS5], [Mir95], or [HM9S].
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The object of our study can be viewed equivalently as algebraic of
complex analytic objects. It is very useful to keep in mind this equiv-
alence.

Definition 2.1 (for algebraic geometers). A (projective) curve is
equivalently:

e a projective algebraic variety (over the complex numbers) of
dimension 1.
e a field extension of C of transcendence degree 1.

Note: For a passionately pure algebraic geometer there is no need to
have C as the ground field. Most features of the theory will hold over
k an algebraically closed field of characteristic 0. Many surprises make
the day of arithmetic geometers electing to work over finite fields or
fields of positive characteristics. Here we do not dare to venture into
this mysterious yet fascinating territory.

Definition 2.2 (for complex analysts). A (compact) Riemann Sur-
face is a compact complex analytic manifold of dimension 1.

We abuse of notation and allow Riemann Surface to have nodal sin-
gularities. It is a remarkable feature of the theory that we do not need
to consider any worse type of degenerations of the smooth objects to
have compact moduli spaces.

FExercise 1. A Riemann Surface is orientable. Check that the Cauchy-
Riemann equations imply that any holomorphic atlas is a positive atlas.

Topologically a smooth Riemann surface is just a connected sum of
g tori. The number g, the genus, is an important discrete invariant.
Simple things become extremely confusing when one starts to deal with
nodal or disconnected curves, so we spell out once and for all the rele-
vant definitions.

Definition 2.3.

(1) If X is a smooth curve, the genus of X is equivalently:
e the number of holes/handles of the corresponding topolog-
ical surface.
e 19(X, Kx): the dimension of the space of global sections
of the canonical line bundle.
[ ] hl (X s @) X)-
(2) If X is a nodal, connected curve, the geometric genus of X
is the genus of the normalization of X (i.e. the genus of the
smooth curve obtained by pulling the nodes apart).
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FIGURE 1. A (disconnected) curve of arithmetic genus
4 and geometric genus 5.

(3) If X is a nodal, connected curve, the arithmetic genus of X
is h'(X,0x) = h°(X,wx) (i.e. the genus of the curve obtained
by smoothing the node).

(4) If X is a disconnected curve, the geometric genus is the sum
of the genera of the connected components.

(5) If X is a disconnected curve, the arithmetic genus

g:=1—x(0x)=1-h"X,0x) +h'(X,0x).

In other words, one subtracts one for every additional connected
component beyond the first.

The arithmetic genus is constant in families, and therefore we like it
best. Unless otherwise specified genus will always mean arithmetic
genus. See figure 2.1 for an illustration.

FEzercise 2. Check that all definitions are consistent when X is a smooth
connected curve.

Fact. If L“ ="0O(D) is a line bundle (or invertible sheaf) on a smooth
curve X, then:

Serre duality for curves:
H'(X,0x(D)) =~ H(X,0x(Kx — D))"
Riemann-Roch theorem for curves:
R*(X,Ox(D)) — h'(X,0x (D)) = deg(D) +1—g
or equivalently:
X(0x(D)) = x(Ox) = a1(L)

Ezercise 3. For X a smooth connected curve, check that Kx has degree
2g — 2.
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FIGURE 2. A ramified cover of degree 3.

2.2. Maps of Curves. Of the several excellent references for this sec-
tion, my favorite is [Ful95]. It is a simple fact from complex analy-
sis that any map of Riemann Surfaces can be given local expression
2+ 2% with k > 1 only at a finite number of points.

Definition 2.4. A map f : X — Y of Riemann Surfaces is a ramified
cover(see Figure 2):

e B C Y is a finite set called branch locus;

* fix \ s fH(B) = Y\ Bis adegree d topological covering
map;

e for € f~1(B) the local expression of f at z is F(z) = 2*; the
number k := r¢(z) is the ramification order of f at x.

e RC f"B) :={z € X s.t. ry(x) > 1} is called the ramifica-
tion locus.

Viceversa, every branched cover identifies a unique map of Riemann
Surfaces:

Fact (Riemann Existence Theorem). If Y is a compact Riemann Sur-
face and f° : X° — Y \ B a topological cover, then there exist a
unique smooth compact Riemann Surface X, obtained from the topo-
logical surface X° by adding a finite number of points and a unique
map f of Riemann Surfaces extending f°.

Finally, a theorem which is fundamental for us and relates the various
discrete invariants of curves and maps introduced so far.

Theorem 2.5 (Riemann-Hurwitz). For a map of smooth Riemann
Surfaces f: X —Y:

(1) 2gx —2=d(29v —2)+ Y _(rs(z) - 1).

zeX
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Ezercise 4. Prove the Riemann Hurwitz theorem in two ways:

(1) Topologically: compute the euler characteristic of X by lifting
a triangulation on Y where the branch locus is contained in the
set of vertices of the triangulation.

(2) Analytically/Algebro Geometrically: compute the degree of the
divisor of the pullback via f of a meromorphic one-form on Y.
Note that this gives the degree of K.

Definition 2.6. Let f : X — Y be a map of Riemann Surfaces, y €
Y, {x1,...,2,} = f~}(z), then the (unordered) collection of integers
{re(x1),...,rs(x,)} is called the ramification profile of f at y. We
think of this set as a partition of d and denote it n(v) (or simply 7).
If n(y) =(2,1,...,1), then f has simple ramification over y.

We are ready for our first definition of Hurwitz numbers.

Definition 2.7 (Geometry). Let (Y, p1,...,pr, q1, ..., qs) be an (r+s)-
marked smooth Riemann Surface of genus h. Let n = (1y,...,7s) be a

vector of partitions of the integer d. We define the Hurwitz number:

(
degree d covers

X L5V such that -

e X is connected of genus g;
o f is unramified over

r — wei XA\NAPL - Dy Q1 - -+ Gs
Hg%h’d(ﬂ) = weighted number of of ram>f{ies with profile n; gver Qi
e f has simple ramification over p;;
o preimages of each q; with same

rama fication are distinguished by

appropriate markings.

\

Each cover is weighted by the number of its automorphisms.

Figure 3 might help visualize the features of this definition.
Remarks:

(1) For a Hurwitz number to be nonzero, r,g, h and n must satisfy
the Riemann Hurwitz formula (1). The above notation is al-
ways redundant, and it is common practice to omit appropriate
unnecessary invariants.

(2) The last condition o was recently introduced in [GJV03], and it
is well tuned to the applications we have in mind. These Hur-
witz numbers differ by a factor of [ [ Aut(n;) from the classically
defined ones where such condition is omitted.

(3) One might want to drop the condition of X being connected,
and count covers with disconnected domain. Such Hurwitz
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FiGURE 3. The covers contributing to a given Hurwitz Number.

numbers are denoted by H® (To my knowledge Okounkov and
Pandharipande started the now common convention of using e
to denote a disconnected theory).

Example 2.8.
[ ]
0 1
H(Ho,d((d)7 (d)) = E
[ ]
1
Hf‘—m,z = 5
[ ]

H?—>0,2((2)7 (17 1)) =1
This is a very beautiful geometric definition, but it is extremely

impractical. A reasonably simple Hurwitz number such as H{_,,5((3))
is already out of our reach.

2.3. Representation Theory. The problem of computing Hurwitz
numbers is in fact a discrete problem and it can be approached using
the representation theory of the symmetric group. A standard reference
here is [FHO1].

Given a branched cover f : X — Y, pick a point yo not in the branch
locus, and label the preimages 1,...,d. Then one can naturally define
a group homomorphism:

o m((Y \ B,y) — Sd
N (e}
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(12) (123)

FI1GURE 4. Sketch of the construction of the monodromy
representation for the cover f.

where 7; is the lift of 7 starting at ¢ (7;(0) = 7). This homomorphism
is called the monodromy representation, and its construction is
illustrated in Figure 4.
Remarks:

(1) A different choice of labelling of the preimages of 3, corresponds
to composing ¢ with an inner automorphism of Sy.

(2) If p € m (Y \ B, yo) is alittle loop winding once around a branch
point with profile n, then o, is a permutation of cycle type 7.

Viceversa, the monodromy representation contains enough informa-
tion to recover the topological cover of Y \ B, and therefore, by the
Riemann existence theorem, the map of Riemann surfaces. To count
covers we can count instead (equivalence classes of) monodromy repre-
sentations. This leads us to the second definition of Hurwitz numbers.

Definition 2.9 (Representation Theory). Let (Y,p1,...,0r, q1,- -+, qs)
be an (r + s)-marked smooth Riemann Surface of genus g, and n =
(m1,...,ms) a vector of partitions of the integer d:

[{n-monodromy representations ¢"}|
|Sd| H Autnia

where an n-monodromy representation is a group homomorphism

el (Y \ B,yo) = Sq

(2) ;—>h,d(ﬂ) =

such that:
o for p,, a little loop winding around ¢; once, ¢(p,,) has cycle type 7;.



HURWITZ THEORY, ORBIFOLD GW THEORY AND APPLICATIONS 9

e for p,, a little loop winding around p; once, ¢2(p,,) is a transposition.
* Im(p2(p,,)) acts transitively on the set {1,...,d}.

Remarks:

(1) To count disconnected Hurwitz numbers just remove the last
condition .

(2) Dividing by d! accounts simoultaneously for automorphisms of
the covers and the possible relabellings of the preimages of .

(3) JT[Autn; is non-classical and it corresponds to condition o in
Definition 2.7.

Exercise 5. Check with this definition the Hurwitz numbers in Example
2.8. Compute H{ ,;5((3)) =9 and Hj o5 = 4.

2.4. h = 0, Disconnected, Unlabelled. We restrict our attention
to the target genus 0, disconnected theory, where the connection with
representation theory can be carried even further. Also, it is more
convenient to work with the classical definition of Hurwitz numbers,
so in this section we drop condition o of Definition 2.7. In this case
Definition 2.9 can be reformulated:

1
(3) Hy(n) = E|{(01,...,05,71,...,TT) st.oy...05m ... T, = Id}|,
where:

e 0; has cycle type 7;;

e 7, is a transposition.
Equation (3) recasts the computation of Hurwitz numbers as a multipli-
cation problem in the class algebra of the symmetric group. Recall that
Z(C[Sy)) is a vector space of dimension equal the number of partitions
of d, with a natural basis indexed by conjugacy classes of permutations.

Z(Clsq)) =P,

n-d

C, = Z o.

ogeSy of cycle type n

where

We use |C))| to denote the number of permutations of cycle type n. We
also use the notation C7y = Id and C; = C(y1a-2). Then the Hurwitz
number is the coefficient of the identity in the appropriate product of
elements of the class algebra:

. 1 T
(4) H3(n) = E[C[d]Cm Gy - CL
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It is a classical fact that Z(C[Sy]) is a semisimple algebra with
semisimple basis indexed by irreducible representations of Sy, and change
of bases essentially given by the character table:

dimA\
) e = TS v ),
nkd
and
X\(n)
(6) C”] - |O77| . Z dlm>\ 155
A irrep. of Sy

Assuming without loss of generality that » = 0, we can finally rewrite

equation (4):
dun/\ )

H; () = ZlCu ZH (I i

- d,;g( Vo) i 000
) - (1) > ama T 1o o)

Example 2.10. Let us revisit the computation of H;((3)). In this case
the condition of a point with full ramification forces all covers to be
connected, so H = H®. The symmetric group S35 has three irreducible
representations, the trivial and alternating one dimensional represen-
tations, and a two dimensional representation obtained by quotienting
the permutation representation by the invariant small diagonal line. In
Table 2.4 we recall the character table of S3 and the transformations
from the conjugacy class basis to the representation basis.
We have:

Hi((3) = S(C1C

1
= E[C’M](Q 3te; +2-(=3)%e_y)
B 1 2-34+2-34 9
N 6\ 6 6 -

2.5. Disconnected to Connected: the Hurwitz Potential. The
character formula is an efficient way to describe disconnected Hurwitz
numbers (provided one has a good handle on the characters of the ap-
propriate symmetric group, which is in itself a complicated matter).
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X(C) | Cra Cr O
1 1 1 1 e1= +(Crq+Cr+Cs) Cra= ei+e_1+ep

(C[d - C; + 0(3)) C.= 3e;—3e_1

=

-1 1 -1 1 C_1=

P 2 0 1 ep= 3(2Ca  —C(3) Ciay= 2e1+2_1—ep

TABLE 1. All you have always wanted to know about Ss3
(and never dared to ask).

We now investigate how to relate the disconnected theory to the con-
nected theory. Let us begin by observing a simple example:

Example 2.11. We have seen in Exercise 5 that Hy3 = 4. From the

character formula:

1 9 1
—(2.-3HY =2 =44+ =
36( 3) 2 +2

The last % is the contribution of disconnected covers, consisting of an
ellyptic curve mapping to the line as a double cover and of a line map-
ping isomorphically. The relationship between connected and discon-
nected Hurwitz numbers is systematized in the language of generating
functions.

. —_—
H0,3 -

Definition 2.12. The Hurwitz Potential is a generating function
for Hurwitz numbers. As usual we present it with as many variables
as possible, keeping in mind that in almost all applications one makes
a choice of the appropriate variables to mantain:

r u o,
H<pi’j7 %, q) = Z H9—>07d<ﬁ) Pim o - Psyns le qua

where:

® p;;, for i and j varying among non-negative integers, index
ramification profiles. The first index ¢ keeps track of the branch
point, the second of the profile. For a partition 1 the notation
Piy means [] i Dig;-

e u is a variable for unmarked simple ramification. Division by 7!
reflects the fact that these points are not marked.

e > indexes the genus of the cover (more precisely it indexes the
euler characteristic, which is additive under disjoint unions).

o ¢ keeps track of degree.

Similarly one can define a disconnected Hurwitz potential H*® encoding
all disconnected Hurwitz numbers.
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Silly but Important Convention: we choose to set p;; = 1 for all
7. This means that an unramified poing sitting above a branch point
is not “recorded”. With this convention, the monomial in p;’s (for a
fixed 7) has weighted degree at most (but not necessarily equal) the
exponent of the variable q.

Fact. The connected and disconnected potentials are related by expo-
nentiation:

(8) 1+ H* = e

FEzercise 6. Convince yourself of equation (8). To me, this is one of
those things that are absolutely mysterious until you stare at it long
enough that, all of a sudden, it becomes absolutely obvious...

Example 2.11 revisited: the information we observed before is en-
coded in the coefficient of u*z¢® in equation (8):
u u u

1
H63 4' HO 3]2(]3 + 2 <H124' q ) (Ho’qu).

Ezercise 7. Check equation (8) in the cases of H*, ,, H*,((2,1,1),(2,1,1))

and H*,((2,1,1),(2,1,1),(2,1,1),(2,1,1). All these Hurwitz numbers
3
equal 3.

Remark 2.13. Unfortunately I don’t know of any particulary efficient
reference for this section. The book [Wil06] contains more information
that one might want to start with on generating functions; early papers
of various subsets of Goulden, Jackson and Vakil contain the definitions
and basic properties of the Hurwitz potential.

2.6. Higher Genus Target. Hurwitz numbers for higher genus tar-
gets are determined by genus 0 Hurwitz numbers. In fact something
much stronger holds true, i.e. target genus 0, 3-pointed Hurwitz num-
bers suffice to determine the whole theory. The key observation here
are the degeneration formulas.

Theorem 2.14. Let 3(v) denote the order of the centralizer of a per-
mutation of cycle type v. Then:

(1)
HO
vhHd
with g1 + go + L(v) — 1 = g.
(2)

H;)—:l(nb s anS) - Zﬁ(V)HSSg(V)ﬁo(nla sy Nsy Y, V)'
v-d

g—>0(7717"'7778au1a"'7#t 23 gl—)[) 771a' <y N, V )HSQ_A)(VaMla---

7:ut>
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T
| t f
P e o)
2

FIGURE 5. Degeneration of a cover to a nodal cover.
Note that source and target degenerate simoultaneously
and the ramification orders on both sides of the node
match.

Ho
=]

These formulas are called degeneration formulas because geometri-
cally they correspond to simoultaneously degenerating the source and
the target curve, as illustrated in Figure 5. Proving the degeneration
formulas geometrically however gives rise to subtle issues of infinitesi-
mal automorphisms (that explain the factor of 3v). However a combi-
natorial proof is straightforward.

Proof of (1): recall that

0, ~ ~
dUH S0 (s - Mss s ooy fie) = {00,000 06,01,. ., 4},
where the permutations have the appropriate cycle type, and the prod-

uct of all permutations is the identity. Deﬁne T=01...0, then

o, ... 007 L, 61,....61} = Z|

o {o1,...,o6,m {72, 01, .., 5}
14

where in the RHS m; and m, have cycle type v and we require the
products of the permutations in the two sets to equal the identity.
We must divide by |C,| because in the LHS we want the two newly
introduced permutations to be inverses of each other, and not just in

the same conjugacy class. But now we recognize that the term on the

RHS is:
Z d'Hgl;O(nh'-'unm )d Hg HO(”v/Ll?"'uu’t)

The proof is finally concluded by observing the identity |C,|3(v) = d!.
FEzercise 8. Prove part (2) of Theorem 5.

It is now immediate to observe that applying iteratively the two re-
cursions above one can describe a formula for all Hurwitz numbers.
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Combining this with formula (7) one obtains the general character
formula for Hurwitz numbers, sometimes referred in the literature as
Burnside’s formula:

0,0 _ d! e ‘CzX)\nz
Hynm) = z/\: (dim)\ H dimA\

3. MoDULI SPACES

3.1. Quick and Dirty Introduction. The concept of moduli space
is central in algebraic geometry. In a sense, the point of view of modern
algebraic geometry is that every space should be thought as a moduli
space. While it is impossible to do justice to such a rich subject in a few
pages, I wish to give some intuitive ideas that might help read the more
rigorous literature on the field. Another very friendly introduction is
given by the first chapter of [HM98].

Informally, a moduli space for (equivalence classes of) geometric ob-
jects of a given type consists of:

(1) a set M whose points are in bijective correspondence with the
objects we wish to parameterize;

(2) the notion of functions to M, described (functorially) in terms
of families of objects. For any B:

X, — X
Hom(B,M) <« l {
b — B

Definition 3.1. A family over the base B is a morphism 7 : X — B
in the category the objects live in such that the preimage of every point
b € B belongs to the class of objects parameterized.

Remark 3.2. In modern language we are describing the (scheme) struc-
ture of M by describing its functor of points.

A family of objects naturally gives rise to a function to M, but the
other implication is much trickier. When this is the case we say that
M is a fine moduli space.

Ezercise 9. If M is a fine moduli space there is a family &/ — M (called
universal family) such that the fiber over each m € M is the object
parameterized by m. Also, every family is obtained by pullback from
the universal family.

It is often the case that it is not possible to obtain a fine moduli
space for a given moduli problem (this typically happens when the
objects one wishes to parameterize have automorphisms). In this case
one must make a choice:
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(1)

be satisfied with a scheme M whose points are in bijective cor-
respondence with the objects to parameterize, plus some uni-
versality condition (for any other space N' whose points have
such a property, there exists a unique map M — N). In this
case we say M is a coarse moduli space.

forget the idea of M being a scheme, and allow it to be some
categorical monstruosity (in modern language called a stack!),
that has the property of recovering the equivalence between
families and functions to M. The mantra here is that to do
(a good amount of) geometry on a stack one very seldom has
to meddle with the categorical definitions but uses the above
equivalence to translate geometric questions from the stack to
families of objects.

Exercise 10. Familiarize yourself with these concepts by looking at the
following more or less silly examples/exercises.

(1)
(2)

(3)

Any scheme X is a fine moduli space...for itself, i.e. for the
functor describing families of points of X.

Note that the points of the cuspidal cubic X = {y? = z*} are
in bijection with the points of P!, but X is not a coarse moduli
space for “families of points of P1”.

Consider the moduli space for equivalence classes of unit length
segments in the real plane up to rigid motions. What is the
coarse moduli space? Show that this is not a fine moduli space
by constructing two non-isomorphic families of segments. Un-
derstand that the lack of fine-ness comes from the fact that you
can flip the segment.

Let us introduce, given a group G, the fine moduli stack BG of
principal G bundles. We do not define what it is, but remark
that functions B — BG correspond to principal G-bundles P —
B. Convince yourself that the moduli space considered in (3)
is BZQ

3.2. Various Moduli Spaces Related to Curves. We are con-
cerned with the interactions among different moduli spaces that have
to do with curves. Here we introduce the characters. In general M
denotes a moduli space parameterizing smooth objects and M denotes

1T am of course exaggerating here, stacks are not all that monstrous - if for no
other reason that they have become a necessary and hence standard notion in the
study of moduli spaces. At this point there are both friendly introductory references
such as [Fan01], or comprehensive ones such as [BCET06] or [dJa] to be found at
least in the ether.
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some suitable compactification obtained by allowing mild degenera-
tions of the objects. Curves can acquire only nodal singularities, and
stable always means “with finitely many automorphisms”. These mod-
uli spaces are typically (Deligne-Mumford) stacks (hence denoted with
script letters). We use non-script fonts to emphasize the cases that are
actually schemes.

M, .2 the moduli space of (isomorphism classes of) stable curves
of genus g with n marked points. Here stability means that
every rational component must have at least three special points
(nodes or marks), and that a smooth ellptic curve needs to have
at least one mark. This is a smooth stack of dimension 3g—3+n,
connected, irreducible. See [HM98] for more.

M, (ay,...,a,): in weighted stable curves ([Has03]) one tweaks

the stability of a pointed curve (X = U,;X;,p1,...,p,) by as-
signing weights a; to the marked points and requiring the re-
striction to each X of wx + > a;p; to be ample (this amounts
to the combinatorial condition that _ x, & +ny > 2= 2g;,
where n; is the number of shadows of nodes on the j-th com-
ponent of the normalization of X and g; is the geometric genus
of such component). In these spaces “light” points can collide
with each other until a “critical mass” is reached that forces the
sprouting of new components.
When g = 0, two points are given weight 1 and all other
points very small weight, the space Moo, (1,1,¢,...,¢) is clas-
sically known as the Losev-Manin space [LMO0]: it parame-
terizes chains of PY’s with the heavy points on the two termi-
nal components and light points (possibly overlapping amongst
themselves) in the smooth locus of the chain.

M, (X, 3): the space of stable maps to X of degree 3 € Hy(X). A
map is stable if every contracted rational component has three
special points. If ¢ = 0 and X is convex then these are smooth
schemes, but in general these are nasty creatures even as stacks.
They are singular and typically non-equidimensional. Luckily
deformation theory experts can construct a Chow class of degree
in the expected dimension, and many of the formal properties
of the fundamental class, called a virtual fundamental class.
Intersection theory on these spaces is then rescued by capping
all classes with the virtual fundamental class. Good references
for people interested in these spaces are [KV07] and [FP97].

Hurwg_,pq(n) C Admg_pq(n): the Hurwitz spaces parameterize de-

gree d covers of smooth curves of genus h by smooth curves
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of genus g. A vector of partitions of d specifies the ramifica-
tion profiles over marked points on the base. All other rami-
fication is required to be simple. Hurwitz spaces are typically
smooth schemes (unless the ramification profiles are chosen in
very particular ways so as to allow automorphisms), but they
are obviously non compact. The admissible cover compact-
ification, consisting of degenerating simoultaneosly target and
cover curves, was introduced in [HM82]. In [ACVO01], the nor-
malization of such space is interpreted as a (component of a)
space of stable maps to the stack BS;. Without going into the
subtleties of stable maps to a stack, we understand that by
admissible cover we always denote the corresponding smooth
stack.

M, (X, B;aD): spaces of relative stable maps relative to a divi-
sor D with prescribed tangency conditions([LRO1, Li02]). We
are especially interested in the case when X is itself a curve.
In this case giving relative conditions is equivalent to specify-
ing ramification profiles over some marked points of the target:
spaces of relative stable maps are a “hybrid” compactification
that behaves like admissible covers over the relative points and
as stable maps elsewhere. See [Vak08] for a more detailed de-
scription of the boundary degenerations.

Remark 3.3. When the target space is P!, an important variation of
spaces of (relative) stable maps is the so called space of rubber maps,
or maps to an unparameterized P!, where two maps are considered
equivalent when they agree up to an automorphism of the base P!
preserving 0 and oo (in other words a C* scaling of the base). It will
be clear later why we care about these spaces.

Remark 3.4. If these many moduli spaces already feel a bit overwhelm-
ing, imagine that the possibilities increase when mixing the various
features and variations introduced above (weighted relative stable maps
to a rubber P'? No problem). However this should not be considered a
confusing feature but rather part of the richness of this theory, as one
can fine tune the choice of moduli space to the geometric question he
is intending to study. The geometry of these moduli spaces is richly
interlaced by a number of natural maps, such as evaluation maps at
marked points, gluing maps, maps that forget points, functions, target,
source etc... we will introduce these maps as the need arises.

Ezercise 11. What is M 3 (by this meaning what scheme represents the
functor of stable families of three labelled points on a rational curve)?
What is M 4? And their universal families?
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Ezercise 12. Convince yourself that M, is isomorphic to a moduli
space of weighted stable curves where all the points have weight 1. Fur-
ther, understand that there are morphisms (called reduction maps)
among spaces of weighted stable maps when the weights decrease, but
not (necessarily) when the weights increase. How do these maps behave
geometrically? (Hint: they contract some boundary strata...)

Exercise 13. A nice feature of all these spaces is that the boundary is
modular, i.e. it is built up of similar types of moduli spaces, but with
smaller type of invariants. Understand this statement for the spaces
we introduced.

Ezercise 14. Familiarize yourself with the statement that the universal
family for My, is isomorphic to M, ,,+1. Describe the (n + 1)-pointed

curves parameterized by the image of a section o; : My, — U. We
call this (boundary!) divisor D,.

Ezercise 15. Observe that there are natural branch morphisms from
spaces of admissible covers and spaces of (relative) stable maps to a
target curve P!, recording the branch divisor of the covering. Where do
these branch maps take value? Or rather, for each of those spaces what
is the most appropriate(i.e. the one that retains the most information)
moduli space where these maps can take value? What is the degree of
these branch maps?

Ezercise 16. Describe the moduli space M (P!, 1) and the stable maps
compactification M, (P!, 1).

Ezercise 17. The hyperelliptic locus is the subspace of M, param-
eterizing curves that admit a double cover to P'. Understand the hy-
perelliptic locus as the moduli space Adm,_,02((2), ..., (2)) and subse-
quently as a stack quotient of M0729+2 by the trivial action of Z,.

3.3. Tautological Bundles on Moduli Spaces. We define bundles
on our moduli spaces by describing them in terms of the geometry of
families of objects. In other words, for any family X — B, we give
a bundle on B constructed in some canonical way from the family X.
This insures that this assignment is compatible with pullbacks (morally
means that we are thinking of B as a chart and that the bundle patches
along various charts). This is the premium example of the philosophy
of doing geometry with stacks. We focus on two particular bundles
that will be important for our applications.

3.3.1. The Cotangent Line Bundle and v classes. An excellent refer-
ence for this section, albeit unfinished and unpublished, is [Koc01].
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Definition 3.5. The i-th cotangent line bundle L; — ﬂg,n is
globally defined as the restriction to the i-th section of the relative
dualizing sheaf from the universal family:

L; := o/ (wy).
The first Chern class of the cotangent line bundle is called v class:
¢i = (]L’z)

This definition is slick but unenlightening, so let us chew on it a bit.
Given a family of marked curves f : X — B(= ¢; : B — M,,), the
cotangent spaces of the fibers X}, at the i-th mark naturally fit together
to define a line bundle on the image of the i-th section, which is then
isomorphic to the base B. This line bundle is the pullback %(IL;).
Therefore informally one says that the cotangent line bundle is the line
bundle whose fiber over a moduli point is the cotangent line of the
parameterized curve at the i-th mark.

The cotangent line bundle arises naturally when studying the ge-
ometry of the moduli spaces, as we quickly explore in the following
exercises.

Exercise 18. Convince yourself that the normal bundle to the image of
the i-th section in the universal family is naturally isomorphic to L}
(This is sometimes called the i-th tangent line bundle and denoted T;).

Ezercise 19. Consider an irreducible boundary divisor D 2 M, ,,, +e X
M g, 1y ix- Then the normal bundle of D in the moduli space is naturally
isomorphic to the tensor product of the tangent line bundles of the
components at the shadows of the node:

Npjit,. = L/XL/
Is this statement consistent with the previous exercise? Why?

When two moduli spaces admitting ¢ classes are related by natural
morphisms, a natural question to ask is how the corresponding v classes
compare (more precisely, how a ¢ class in one space compares with the
pull-back via the natural morphism of the corresponding ¢ class on the
other space). The answer is provided by the following Lemma.

Lemma 3.6. The following comparisons of 1 classes hold.

(1) Let w41 : ﬂg,nﬂ — Mg,n be the natural forgetful morphism,
and i #n+1. Then

Y = Vi + Dy,
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where D; 11 is the boundary divisor parameterizing curves where
the i-th and the n+1-th mark are the only two marks on a ratio-
nal tail (or the image of the i-th section, if you think Ofm97n+1
as the universal family of ﬂgm ).

(2) Let m: My1(X,8) — M, be the natural forgetful morphism.
Then

Y1 = 7Y + Dy,

where Dy is the divisor of maps where the mark lies on a con-
tracting rational tail.

(3) Let v : Myn(au,...,an) = Myn(dh,...,al) be the natural
reduction morphism. Then

Y, = r*; + D,

where D is the boundary divisor parameterizing curves where the

i-th mark lies on a component that is contracted in My, (o, ..., ).

In all cases the intuitive idea is that the “difference” in the cotangent
line bundles is supported on the locus where the mark lives on a curve
in the first space that gets contracted in the second space. To make a
formal proof one has to observe how the universal family of the first
space is obtained by appropriately blowing up the pull-back of the
universal family on the second space, and what effect that has on the
normal bundle to a section. Since we are lazy and it’s a hot summer,
we leave the details as an exercise.

FEzercise 20. Prove Lemma 3.6

Exercise 21. Show that Lemma 3.6 gives sufficient information to deter-
mine 1 classes for every Mo,n- In particular show it gives the following
useful combinatorial boundary description of a v class. Let i, j, k be
three distinct marks. The class ¢; is the sum of all boundary divisors
parameterizing curves where the ¢-th mark is on one component, the
j-th and k-th marks are on the other. Note that such a boundary
description is not unique, as it depends on the choice of j and k!

3.3.2. The Hodge Bundle.

Definition 3.7. The Hodge bundle E(=E, ) is a rank g bundle on
M, ., defined as the pushforward of the relative dualizing sheaf from
the universal family. Over a curve X, the fiber is canonically H°(X, wy)
(i.e. the vector space of holomorphic 1-forms if X is smooth). The
Chern classes of E are called A classes:

i = (E).
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We recall the following properties([Mum83)):

Vanishing: ch; can be written as a homogeneous quadratic polynomial
in A classes. Thus:

(9) ch; =0 for i > 2g.

Mumford Relation: the total Chern class of the sum of the Hodge
bundle with its dual is trivial:

(10) c(E@EY)=1.

Hence chy; = 0 if ¢ > 0.
Separating nodes:

(11) L* S(E) = Esh,m D EQQ,nw

91,92,
where with abuse of notation we omit pulling back via the pro-
jection maps from Mg, ,,, 11 X Mg, »,41 onto the factors.
Non-separating nodes:

(12) G (E) 2 E, 1, & 0.

Remark 3.8. We define the Hodge bundle and A classes on moduli

spaces of stable maps and Hurwitz spaces by pulling back via the ap-
propriate forgetful morphisms.

Exercise 22. Use the above properties to show vanishing properties of
A-classes:

(1) A3:Oifg>0.

(2) A\yA\,_1 vanishes on the boundary of M,. If now we allow
marked points, then the vanishing holds on “almost all” the
boundary, but one needs to be more careful. Describe the van-
ishing locus of AjA,_; in this case.

(3) Ay vanishes on the locus of curves not of compact type (i.e.
where the geometric and arithmetic genera are different).

4. ORBIFOLDS

Although we have been dealing with orbifolds (even though we called
them “DM stacks” %) throughout the last section, we now take a quick
look at the foundations in order to develop Gromov-Witten theory for
orbifolds.

2The word stack is closer to the heart of algebraic geometers, while pretty much
the rest of the world prefers orbifold. Usually when using the word orbifold one
insists on finite isotropy in codimension at least one. Technically then gerbes are
not orbifolds, while they are perfectly legit DM stacks. The lines are blurring as
we speak though, perhaps thanks to the physicists.
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Ever since the times of Klein and Hilbert mathematicians have been
studying quotients of spaces by the action of groups by studying in-
variant functions. Orbifolds are a modern take on the subject that
allow such quotients to be local charts. Just armed with the slogan
an orbifold is a space locally modelled as the quotient of a manifold by
the (smooth) action of a finite group, any mathematician familiar with
manifolds and groups could easily recover the correct foundations of
orbifold theory by generalizing the notion of an atlas to charts of the
form C"/G and making all functions that appear in the process equi-
variant with respect to the relevant groups. Such formulation turns out
to be very intuitive but also unfortunately very clumsy to work with,
as it is laden with interminable compatibility conditions that one has
to carry around throughout the process. The categorical language of
Lie groupoids turns out to be a much more efficient way of encoding
all such compatibilities to study global geometry. We will leave the
task of developing this language to Paul (and for those of you who are
too impatient to wait you can look up the handy reference [ALRO7]),
and focus here just on some strictly necessary aspects of theory.

4.1. Global Quotient Orbifolds. Given a manifold X and a finite
group G acting smoothly on it, we define the global quotient orbifold
[X/G] to simply be the datum of such pair. So far this is neither very
exciting nor very geometric - but it is the only thing that we can do
given that we wish to remember all information about our group ac-
tion. The interesting task is to develop how to do geometry with such
datum. The action of G induces an equivalence relation on points of
X (equivalence classes are called orbits) and we denote by | X/G| the
orbit space(also called the coarse moduli space of the orbifold). If
the action of GG is free then the orbit space is a manifold. Of course,
whatever geometric notions we develop for the orbifold [X/G], we re-
quire that they specialize to the corresponding notions for the quotient
manifold when the G action is free.

Definition 4.1. Let z € X. We define the isotropy group (or the
local group) of [X/G] at the point x to be the stabylizer of x: G, =
{9 €G:gx=ux}.

The isotropy groups of different points in the orbit of = are related by
conjugation, and hence the isomorphism class of GG, is an invariant of
the orbit. A very crude albeit often effective way to think of an orbifold
is to think of its orbit space plus the additional information that each
point of the orbit space carries an isomorphism class of groups. From
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the point of view of intersection theory, every such point [x] should be
given the fractional weight of 1/|G,|.

To describe maps between two global quotient orbifolds f : [Y/H]| —
[X/G] one is obviously tempted to ask for a group homomorphism
¢ : H — G and an equivariant map F' : Y — X certainly such data
does induce a map of the underlying orbifolds - however this notion is
too restrictive. Consider the simple example where Y = S, H = {¢},
X =R, G = Z and integers act by translations. The action is free
and the orbit space is itself a circle, so we would expect the identity
map of the circle (as [Y/H]) to itself (presented as [X/G]) to appear
among our maps of orbifolds. However all maps F' from S! to R are
homotopically trivial: no such F' can descend to the desired identity
map. The issue is that a global quotient is a specific “presentation” of
an orbifold: in order to witness all maps or orbifolds one has to be able
to replace the source orbifold with a different equivalent way to present
it. This leads to the notion of Morita equivalence and will be explored
later. For now we content ourselves to study maps from a manifold to
a global quotient orbifold.

Definition 4.2. Let Y be a manifold and [X/G] a global quotient
orbifold. Then a function f : Y — [X/G] consists of the following
data:

(1) a principal G bundle p: P — Y

(2) a G-equivariant map F': P — X.

Remark 4.3. This definition is a special case of what was fuzzily dis-
cussed earlier: P with the G action is a (Morita) equivalent way to
present the orbifold Y (which happens to be a manifold, so be it!), and
the map F'is a “naive” map of global quotient orbifolds.

Example 4.4. Recall the moduli space BG we defined in Exercise 10.
We can now observe that if GG is a finite group then BG is the global
quotient orbifold [pt./G].

Example 4.5. The next class of examples are representations of finite
groups. Gorenstein representations are particularly liked as the natural
volume form on C™ descends to a volume form on the orbifold. Among
these examples are all ADE surface singularities and [C?/Zj3] (three
copies of the same non-trivial representation of Zs), which is obtained
from the canonical line bundle of P? by shrinking the 0-section.

4.2. Orbicurves. The other class of orbifolds we wish to introduce
are “orbi-curves”, which are the natural generalization of Riemann
Surfaces in the orbifold world. Given a Riemann Surface C' we ob-
tain an orbicurve C by endowing a finite number of points of C' with a
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cyclic quotient orbifold structure. We describe now how to give orbifold
structure to one point in a Riemann Surface - of course repeating the
process a finite number of times one obtains a general orbicurve. Con-
sider the unit disk D and the natural multiplicative action of the cyclic
group of n-th roots of unity (we should really call this p, but orbifold
people have picked up the habit of using the notation Z,, I believe
mostly to annoy number theorists). The orbit space D,, := [D/Z,] is
still diffeomorphic to the unit disk. The only point that carries non-
trivial isotropy is the (image of the) origin, which has local group Z,.
Given a Riemann Surface C' with an atlas that contains a unique chart
¢p : D — C' covering a given point p, one can safely replace such chart
by ¢, : D, — C. The new atlas presents an orbifold where the point
p has acquired Z, orbifold structure, i.e. an orbi-curve with precisely
one non-trivial orbi-point.

A map from an orbicurve C to BG corresponds to a principal G
bundle over the orbi-curve. This is an honest principal bundle over
the coarse space of the curve minus the set of non-trivial orbi-points.
Over the orbi-points the cover acquires ramification. For example a
hyperelliptic cover becomes an etale map (hence a principal Zs bundle)
over an orbi-P! where the 2g + 2 branch points have been given Z,
orbifold structure (it is also common to say have been twisted by Z,).
When the group G is the symmetric group, then a principal S; bundle
is a priori a d! cover of the base curve. By letting S; act naturally
on a set of d points and taking the associated bundle, one recovers an
“ordinary” d-fold cover (ramified over the orbi-points). This Hurwitz
theory is equivalent to the theory of maps from orbi-curves to BS;.

Remark 4.6 (Nodal orbi-curves). When a Riemann surface has a node,
we allow it to have orbifold structure at the node. This means that
if we normalize the node, both shadows of the node have the same
orbifold structure and that the representations induced by a generator
of the cyclic group on the tangent spaces are dual to each other (in
other words if the node has local equation xy = 0 one can give a cyclic
action by n-x = nx, n-y = n~'y and then take the quotient via this
action.)

4.3. Inertia Orbifold. On a very basic level orbifolds are spaces whose
points “carry” the information of a group (of automorphisms is the orb-
ifold is thought of as a moduli space or a category). However the orb-
ifold itself cannot distinguish elements of these automorphism groups
and when such refined information is needed there is a partner orbifold
that is called to the task: the inertia Orbifold. On a very basic and
imprecise level, points of the inertia orbifolds are pairs (x, g), where
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x is a point of the orbifold and g € G, is an element of the isotropy
group of x. There is naturally a projection function from the inertia
orbifold down to the original orbifold.

One can define the inertia orbifold more formally in a few different
ways. We mention a couple here in passing, but then focus on the case
of global quotient orbifolds, where we can be a lot more explicit. For
a general orbifold X, the inertia orbifold is:

(1) the space of constant loops, i.e. maps from S' to X whose
image is one point ([ALRO7]Definition 2.49).
(2) the fiber product of X with itself over the diagonal ([Abr08]).

Definition 4.7. Let [X/G] be a global quotient orbifold, and for g € G
denote X9 the set of points fixed by the element g. Then the inertia
orbifold is defined to be the global quotient

(13) X = <]_[ X9> /G,
geG

where the action is defined as follows: for x € X9 and h € G, the point
hz is the point hx in X",

Exercise 23. The above presentation of the inertia orbifold of a global
quotient can be refined by observing that you can identify fixed loci
by elements that are conjugate to each other. Let A be a subset of GG
containing one element for each conjugacy class of G. Then prove that
the inertia orbifold can be presented as:

(14) zx = [T (x*/Cl9)),

geA

where C(g) denotes the centralizer of ¢ in G.

Example 4.8.
IBSs = BS3 U BZy U BZs

Remark 4.9. The orbifold [X/G] is always (isomorphic to) a connected
component of the inertia orbifold, namely the untwisted sector, cor-
responding to the identity automorphism. The other components of the
inertia orbifold, indexed by non-trivial conjugacy classes, are called the
twisted sectors.

4.4. Chen-Ruan Orbifold Cohomology. Given an orbifold X', the
Chen-Ruan Cohomology of X is graded ring. As a vector space it is
just the (ordinary) cohomology of the orbit space of ZX. However the
grading is appropriately shifted, and the product is constructed out
of three point invariants ([ALRO7]) or via a representation theoretic
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obstruction bundle ([JKKO07]). We don’t concern ourselves too much
with the product here, but we briefly introduce the age grading.

Definition 4.10. Given g € G and x € XY , the representation induced
by g on T, X can be written as a diagonal matrix with entries 7; roots
of unity. Assign to each root of unity n; = €*™% the rational number
0 < ¢; < 1. The sum of all the ¢;’s only depends on the conjugacy
class of g and it is called the age of the twisted sector X9. As a graded
vector space, the Chen-Ruan cohomology of a global quotient is written
as:

Hip(X) = @ H 2 (|X9/Cg))).

geA
Example 4.11.
Hep(BG) = HgR(BG) =CH

H:p(CP)Z3) = H @ H* @ H* = Ciy & C, & Cy

Remark 4.12. We note that the the age is an integer grading precisely
when the orbifold has Gorenstein singularities.

4.5. Twisted Stable Maps. The study of Gromov-Witten invariants
of orbifolds is developed by Chen and Ruan in [CR02] and [CR04]. The
algebraic point of view is established in [AGV]. In order to obtain a
good mathematical theory (i.e. a compact and reasonably well behaved
moduli space, equipped with a virtual fundamental class) they study
representable morphisms from orbi-curves, and require insertions to
take value in the Chen-Ruan cohomology of the target.

With these two modifications in place, the moduli space M, (X, 3)
is a proper Deligne Mumford stack and just about any desirable (and
undesirable) feature of ordinary Gromov-Witten theory carries over to
the orbifold setting.

Ezercise 24. Note that allowing curves to have orbifold structure is
not just a philosphical niceity, or a desire to enrich the theory - but a
necessity: even if one only cares about maps from smooth curves to an
orbifold, in order to obtain a compact moduli space one has to allow
nodal degenerations of smooth curves to acquire orbifold structure at
the node. Convince yourself of this by thinking of a family of maps from
elliptic curves to BZs degenerating to a nodal elliptic curve. Construct
one such family where the limit curve must have Zy orbifold structure
at the node.
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Rather than spending too much time on the generalities of orbifold
Gromov-Witten theory, we explore the situation that we are most inter-
sted in, i.e. the case of maps to a classifying space BG, parameterized
by the space M, ,(BG,0) (where the curve class 0 € Ha(BG) is typi-
cally omitted from the notation).

The space M, (BG) is a (smooth) orbifold (DM stack) of dimension
3g —3+n. It parameterizes G-covers of curves of genus ¢ that are etale
away from the n-marked points. The space has many connected com-
ponents: on a first level, because one can specify different conjugacy
classes - i.e. ramification profiles, for the marked points. But even
after making one such choice one could have more than one connected
component, as we illustrate in Example 4.13. There are two natural
structure morphisms from this moduli space: one to ﬂgm which is a
finite cover, and another to the moduli space U, M,,, where h is the
genus of the cover curve and it varies depending on the twisting of the
n marks on the base curve.

Example 4.13. Consider M,(BZ,), parameterizing etale double cov-
ers of genus g curves. From the Riemann-Hurwitz formula the genus of
the cover curves is h = 2g — 1. The structure map to ﬂ;g_l has degree
229-1 " corresponding to the number of homomorphisms from H;(C) to
Zo for C any curve of genus g, divided by 2 because each cover has
a nontrivial involution. The space however consists of two connected
components: the component of trivial covers, parameterizing discon-
nected double covers; from a group theoretic perspective this happens
when all loops are sent to the identity element in Zs. And the compo-
nent of connected double covers, occurring when the Z, representation
of the fundamental group is non-trivial. The trivial component is iso-
morphic to (a BZ, gerbe over) M,.

Abramovich-Corti and Vistoli in [ACV01] establish the equivalence
between spaces of twisted stable maps to BS; and (the normalization

of) moduli spaces of admissible covers as introduced by Harris and
Mumford ([HMS82]).

Ezercise 25. Understand the space Mo, (P! x BG,1) as the moduli
space of admissible covers to a parameterized P*.

4.6. Hurwitz-Hodge Integrals. Moduli spaces of twisted stable maps
to BG have two structure morphisms, and therefore can have via pull-
back two natural Hodge bundles, one corresponding to the base curves
and one to the covers. While the “base” Hodge bundle may seem more
natural, it is also less exciting, as any intersection theoretic question
concerning these kind of Hodge classes can be made equivalent via
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projection formula, to a question about “classical” Hodge integrals.
Therefore we focus our attention on the Hodge bundle pulled back
from the space of covers: to make this explicit we call this the (total)
Hurwitz-Hodge bundle.

The total Hurwitz-Hodge bundle inherits a natural G' action and
splits into subbundles corresponding to irreducible representations of
G. Given an irrep p, we denote by [, the subbundle whose fiber is a
bunch of copies of p. In formula:

E'=PE,
P

The E,’s are often referred as the Hurwitz-Hodge bundles and their
Chern classes as Hurwitz-Hodge classes.

A formal and more orbifold theoretic definition of Hurwitz-Hodge
bundles can be given by remembering that vector bundles on BG cor-
respond to representations of G. Given an irrep p, let L, denote the
corresponding vector bundle on BG. Let m : U — M, ,(BG) be the
universal family and f : 4 — BG be the universal map. Then we have:

R'm f*(L,) = (Ep)v - EZV'
We can use the Riemann-Roch formula for twisted curves from [AGV,

7.2.1] to compute the rank of the Hurwitz-Hodge bundles:
ke

X(8) = TH(E)X(Oe) + deg(8) = 3 age, (€).

where £ is a vector bundle on a twisted curve C and py,...,prye are
the twisted points.

Ezercise 26. Compute the ranks of E; and E_; on M,(BZ;). You
can do this in two different ways, either by using the Riemann-Roch
formula above or by geometric considerations. Pay attention: the ranks
vary on different components of the moduli space!

Ezercise 27. Compute the ranks of E;, E,, and E;, on M, 4(BZ3). Again
note that there are many different components where the ranks are
different.

In [BGPO05] it is shown that a version of Mumford’s relation holds
among Hurwitz-Hodge bundles. This useful relation among Hurwitz-
Hodge classes is often called G-Mumford:

Ct(Ep ) E\p/) =1.

Similarly we can define v classes on these moduli spaces. Again,
there are a few variants that can be adopted. Here unless otherwise
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specified we adopt the convention that when we refer to a v class on
M, ,(BG) we intend the corresponding class pulled back from M,,.

Polynomials giving rise to zero dimensional classes in Hurwitz-Hodge
classes and 1 classes are called Hurwitz-Hodge integrals. Besides being
interesting objects on their own, they are relevant to orbifold Gromov-
Witten theory: every time a target orbifold admits a torus action with
a finite number of isolated fixed points, orbifold Gromov-Witten invari-
ants can be expressed in terms of Hurwitz-Hodge integrals and com-
binatorics. This is through the technique of Atyiah-Bott localization,
which we proceed to illustrate next.

5. ATYIAH-BOTT LOCALIZATION

The localization theorem of [AB84] is a powerful tool for the in-
tersection theory of moduli spaces that can be endowed with a torus
action. In this section we present the basics of this techniques following
[HKK™03] and focus on one particular application, the evaluation of
the hyperelliptic locus in the tautological ring of M,.

5.1. Equivariant Cohomology. Let G be group acting on a space
X. According to your point of view G might be a compact Lie group
or a reductive algebraic group. Then G-equivariant cohomology is a
cohomology theory developed to generalize the notion of the cohomol-
ogy of a quotient when the action of the group is not free. The idea
is simple: since cohomology is homotopy invariant, replace X by a ho-
motopy equivalent space X on which G acts freely, and then take the
cohomology of X /G. Rather than delving into the definitions that can
be found in [HKK'03], Chapter 4, we recall here some fundamental
properties that we use:

(1) If G acts freely on X, then
H:(X) = H(X/G).

(2) If X is a point, then let EG be any contractible space on which
G acts freely, BG := EG/G, and define:

Hl.(pt.) = H*(BGQG).
(3) If G acts trivially on X, then
H{(X) = H(X) ® H(BG).
Example 5.1. If G = C*, then EG = S*°, BG := P> and
He.(pt.) = C[hl,
with h = ¢;(O(1)).
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Remark 5.2. Dealing with infinite dimensional spaces in algebraic ge-
ometry is iffy. In [Ful98], Fulton finds an elegant way out by showing
that for any particular degree of cohomology one is interested in, one
can work with a finite dimensional approximation of BG. Another
route is to instead work with the stack BG = [pt./G]. Of course the
price to pay is having to formalize cohomology on stacks...here let us
just say that O(1) — BC*, pulled back to the class of a point, is a copy
of the identity representation Id : C* — C*.

Let C* act on X and let F; be the irreducible components of the
fixed locus. If we-push forward and then pull-back the fundamental
class of F; we obtain

Since N,/x is the moving part of the tangent bundle to Fj, this euler
class is a polynomial in % where the A°4) term has non-zero co-
efficient. This means that if we allow ourselves to invert h, this euler

class becomes invertible. This observation is pretty much the key to
the following theorem:

Theorem 5.3. The maps:

P H ) I H(X) @ ) S @ (F)(h)

are inverses (as C(h)-algebra homomorphisms) of each other. In partic-
ular, since the constant map to a point factors (equivariantly!) through
the fized loci, for any equivariant cohomology class o:

i*(@)
o= —
/X zZ: /F e(Np,/x)
In practice, one can reduce the problem of integrating classes on a

space X, which might be geometrically complicated, to integrating over
the fixed loci (which are hopefully simpler).

Example 5.4 (The case of P!). Let C* act on a two dimensional vector
space V' by:
t - (vo,v1) := (vo, tvy)

This action defines an action on the projectivization P(V) = P!. The
fixed points for the torus action are 0 = (1 : 0) and co = (0 : 1).
The canonical action on 7p has weights +1 at 0 and —1 at oo. Iden-
tifying V' \ 0 with the total space of Opi(—1) minus the zero section,
we get a canonical lift of the torus action to Opi(—1), with weights
0,1. Also, since Opi(1) = Op1(—1)", we get a natural linearization for
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Op1(1) as well (with weights 0, —1). Finally, by thinking of P! as the
projectivization of an equivariant bundle over a point, we obtain:
ClH, h]
H(H —h)
The Atyiah-Bott isomorphism now reads:
C(h)o ® C(h)o < HE(P)®C(h)

HE.(P) =

(1,0) — a
(0,1) - =
(1,1) — 1
(h,0) — H

5.2. Applying the Localization Theorem to Spaces of Maps.
Kontsevich first applied the localization theorem to smooth moduli
spaces of maps in [Kon95]. Graber and Pandharipande ([GP99]) gen-
eralized this technique to the general case of singular moduli spaces,
showing that localization “plays well” with the virtual fundamental
class. Several subsequent applications by Okounkov-Pandharipande,
Graber-Vakil, Bertram and many other have crowned it as an extremely
powerful technique for intersection theory on the moduli space of stable
maps. In [Cav06b], [Cav05], the author began applying localization to
moduli spaces of admissible covers, technique that was subsequently
framed into the larger context of orbifold Gromov Witten theory via
the foundational work of [AGV06].

Let X be a space with a C* action, admitting a finite number of
fixed points P;, and of fixed lines ; (NOT pointwise fixed). Typical
examples are given by projective spaces, flag varieties, toric varieties...
Then:

(1) A C* action is naturally induced on M, (X, 3) by postcompo-
sition.
(2) The fixed loci in M,,(X,3) parameterize maps from nodal
curves to the target such that (see Figure ?7):
e components of arbitrary genus are contracted to the fixed
points P;.
e rational components are mapped to the fixed lines as d-fold
covers fully ramified over the fixed points.
In particular

Fy = [[ Mg, x || BZa,-

(3) The “virtual” normal directions to the fixed loci correspond
essentially to either smoothing the nodes of the source curve
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(which by exercise 19 produces sums of v classes and equivari-
ant weights), or to deforming the map out of the fixed points
and lines. This can be computed using the deformation exact
sequence ([HKK™03], (24.2)), and produces a combination of
equivariant weights and A classes.

MAKE PICTURE!

The punchline is, one has reduced the tautological intersection theory
of M,,(X, ) to combinatorics, and Hodge integrals (i.e. intersection
theory of A and 1) classes). From a combinatorial point of view this can
be an extremely complicated and often unmanageable problem, but in
principle application of the Grothendieck-Riemann-Roch Theorem and
of Witten Conjecture/Kontsevich’s Theorem completely determine all
Hodge integrals. Carel Faber in [Fab99] explained this strategy and
wrote a Maple code that can handle efficiently integrals up to a certain
genus and number of marks.

6. EvALuATION OF THE HYPERELLIPTIC LOCUS

We apply localization to moduli spaces of admissible covers to give a
proof of a theorem of Faber and Pandharipande that bypasses the use
of Grothendieck-Riemann-Roch and only relies on the combinatorics
of simple Hurwitz numbers. This proof is independent of the original
proof and it is the d = 2 case of Theorem 0.2 in [BCT06].

Theorem 6.1 ([FP00], Corollary of Proposition 3). Denote by H, a
(29 +2)! cover of the hyperlliptic locus in M, obtained by marking the
Wezierstrass points. Then:

(15) Z (/H )\g/\g_1> (2%__1)! = %tan (g) .

g=1 g
Observations.

(1) Since the class A\jA,_; vanishes on the boundary of M,, the
above integral can be performed on the closure of the hyper-
elliptic locus. We choose the open statement because of the
original application that led to study the problem: the class of
the hyperelliptic locus is a generator for the socle in the tauto-
logical ring of M,.

(2) Choosing the appropriate generating function packaging is key
to solving these questions. While (15) is probably the most
appealing form of the result, we prove the equivalent integrated
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version:
> x29 x
Di(x) := Z (/Hg )\g/\g_1> 29)1 = —Incos (§> .

g=1

(3) We essentially use the identification described in Exercise 17:
N 1 —
Hy = Admg0((2), -, (2)) = “57 Moggea.
to translate the geometric problem into a combinatorial one.

6.1. Outline of proof. We first introduce generating functions for
other Hodge integrals on the Hyperelliptic locus:

. x29
A, bt |
/]:[ 979 ) 29'

g9

(16) Di(x) =) (

g>t

For reasons that will become evident in a few lines, we also define
(17) Dy(x) :== —.

Now the proof of (15) follows from combining the following two in-
gredients. First a way to describe all D;’s in terms of D;.

Lemma 6.2 ([Cav06a],Theorem 1).
21 1
i!

Dy(x) = —~Dj(x).

or equivalently

2'D1 (z)

l\DIH

Z Dix
Second, an interesting way to write the identity 0 = 0:

Lemma 6.3. The integral
(18) / (R (O ® O(=1))) = 0
Adm

g%]P’l

implies the relation:

(19) %(cos( )—1) —sm (Z/D )

Ezercise 28. Given the two lemmas, conclude the proof. This is in fact
a Calc II exercise!

Remarks.
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—0 =
0 P oo

F1GURE 6. The fixed loci for integrals of admissible cov-
ers to a parameterized P! consist of covers where all ram-
ification happens over 0 and oo - or rather over rational
tails sprouting from these points.

Note that the auxiliary integral (18) is on a moduli space of
admissible covers of a parameterized P!. This allows the moduli
space to have a C* action. The fixed loci however are boundary
strata consisting of products of admissible cover spaces of an
unparameterized rational curve, illustrated in Figure 6.
Lemma 6.2 generalizes nicely to the case of multiple 1 inser-
tions. For I a multi-index of size 1 — 1

2g i — 1 22‘71 ]
I x o ¢ 7
Z>, (/H AgAg‘”’) 291 ( I ) 7 Dilo):
9> g

Formula (20) was experimentally discovered independently by
the author and Danny Gillam in 2007. A proof of (20) was given
by the author and his PhD student Dusty Ross in [CR11].

6.1.1. Proof of Lemma 6.2. We compute via localization the following
auxiliary integrals:

Ay = / AgAg—revy(0)evs(0)ev;(oo) =0
Adm

g—Pl

For k£ > 1, the integral is 0 for trivial dimension reasons. Computing
the integral via localization however yields a non-trivial relation among

Hodge
(1)

integrals. We observe the following vanishings:

The class A\, vanishes on curves not of compact type. Therefore
all fixed loci having contracted components over both 0 and
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oo and where the double cover over the main component is
unramified vanish.

(2) Since we are asking ramification both over 0 and oo the fixed loci
having only one contracting component and unramified double
cover over the main component also do not contribute.

(3) Since we are asking for (at least) two branch points to have gone
to 0 we cannot have no contracted component over infinity.

The contributing fixed loci consist of a double cover of the main compo-
nent, ramified over 0 and oo, and either a lone genus g curve contracting
over 0 (this gives us the principal part in the relation) or two contract-
ing curves over 0 and oo of positive genera adding to g. For a fixed
genus ¢ the localization then relation reads:

(21)
29 — 1 4 . . ,
/ AgAg—k¢k_1 =2 Z ( 2 ) Z(_ly (/ /\91)‘91—k+i¢k_l_1> (/ /\92)\92_iwz—1>
Hy = 92 =1 Hg, Hyg,
g1+92=9g
91,92 >0

Relation (21) computes the integral of level k inductively in terms
of lower values of k. To conclude the proof of Lemma 6.2 it suffices to
package the relations coming from all genera as the relation of gener-
ating functions,

k

(22) S (~1)D}_y(«)Di(x) = 0

=0

and observe that the formula of Lemma 6.2 verifies (22) by Newton’s
binomial theorem.

6.1.2. Proof of Lemma 6.3. Deriving relation (19) from the auxiliary
integral (18) requires an appropriate choice of lifting of the torus action
to the bundles O and O(—1). We choose to linearize the trivial bundle
with weight 1 everywhere, and the tautological bundle with weight —1
over () and 0 over oo.

The zero weight for O(—1) over oo forces contributing localization
graphs to be one-valent over infinity.

The opposite weights for the two bundles over 0 give, by Mumford
relation (10) a sign and a Hurwitz number contribution by the moduli
spaces of the covers sprouting over 0. Over infinity we obtain have the
integrals that we wish to compute. The relation consists of a linear
term, corresponding to a unique curve of genus g attaching over 0 to
an etale double cover of the main P!, and a quadratic term, correspond
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to all fixed loci consisting of a ramified double cover of the main com-
ponent with one or two curves of genera adding to g, weighted by some
combinatorial coefficients encoding how many ways the branch points
can arrange themselves over 0 and oo in order to give a given pair of
genera.

Writing the relation for all genera in generating function form one
obtains (19).

Exercise 29. Fill in the details of this proof. It’s kind of fun...

7. SIMPLE HURwWITZ NUMBERS AND THE ELSV FORMULA

The name simple Hurwitz number (denoted H,(n)) is reserved
for Hurwitz numbers to a base curve of genus 0 and with only one
special point where arbitrary ramification is assigned. In this case the
number of simple ramification, determined by the Riemann-Hurwitz
formula, is

(23) r=2g+d—2+{(n).

The combinatorial definition (3) of Hurwitz number simplifies further
to count (up to an appropriate multiplicative factor) the number of
ways to factor a (fixed) permutation o € C,, into r transpositions that
generate Sy:

(24)
1

Ezercise 30. Prove that (24) is indeed equivalent to (3).

H(r,....mest.m-...-otn=0€Cy, (m,...,7) =S4}

The first formula for simple Hurwitz number was given and “sort of”
proven by Hurwitz in 1891 ([Hur91)):

n
Hy(n) = rld"3 H #

Particular cases of this formula were proven throughout the last cen-
tury, and finally the formula became a theorem in 1997 ([GJ97]). In
studying the problem for higher genus, Goulden and Jackson made the
following conjecture.

Conjecture. For any fized values of g,n = €(n):

!
(25) Hy(n) =] ﬁPg,n(m ),

where Py, is a symmetric polynomaial in the n;’s with:
o deg Py, =39 —3+n;
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o P, doesn’t have any term of degree less than 2g — 3 + n;
e the sign of the coefficient of a monomial of degree d is (—1)%(39+n=3),

In [ELSVO01] Ekehdal, Lando, Shapiro and Vainshtein prove this for-
mula by establishing a remarkable connection between simple Hurwitz
numbers and tautological intersections on the moduli space of curves.

Theorem 7.1 (ELSV formula). For all values of g,n = £(n) for which
the moduli space M, ,, exists:

;Ii =M+ (1)
(26) Hy(n) =r! H 77_1' /qu [I(1 - nzl(pz) | ’

Remark 7.2. Goulden and Jackson’s polynomiality conjecture is proven
by showing the coefficients of P, ,, as tautological intersection numbers
on M, . Using our standard multi-index notation:

Pyn = i Z (—1)" </ AM/JI'“) n'

k=0 |I}|=3g—34+n—k

Remark 7.3. The polynomial P, ,, is a generating function for all linear
(meaning where each monomial has only one A class) Hodge integrals
on Mg,n, and hence a good understanding of this polynomial can yield
results about the intersection theory on the moduli space of curves. In
fact the ELSV formula has given rise to several remarkable applica-
tions:

[OP09]: Okounkov and Pandharipande use the ELSV formula to give
a proof of Witten’s conjecture, that an appropriate generat-
ing function for the ¢ intersections satisfies the KdV hierarchy.
The v intersections are the coefficients of the leading terms of
P, ,,, and hence can be reached by studying the asymptotics of
Hurwitz numbers:

. Pyu(Nn)
A}linoo N39—3+n

[GJV06]: Goulden, Jackson and Vakil get a handle on the lowest order
terms of P, to give a new proof of the )\, conjecture:

2 —3+n _
/ /\gﬂ)l - < I ) / /\g %g ?
Mgn Mg

We sketch a proof of the FLSV formula following [GV03a]. The
strategy is to evaluate an integral via localization, fine tuning the ge-
omety in order to obtain the desired result.
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We denote
M = My (P, no0)

the moduli space of relative stable maps of degree d to P!, with profile
n over co. The degenerations included to compactify are twofold:

e away from the preimages of oo we have degenerations of “stable
maps” type: we can have nodes and contracting components for
the source curve, and nothing happens to the target P*;

e when things collide at oo, then the degeneration is of “ad-
missible cover” type: a new rational component sprouts from
oo € P!, the special point carrying the profile requirement
transfers to this component. Over the node we have nodes for
the source curve, with maps satisfying the kissing condition.

The space M has virtual dimension r = 2g + d 4 ¢(n) — 2 and admits
a globally defined branch morphism ([FP02]):

br: M — Sym'(P') = P".
The simple Hurwitz number:
Hy(n) = deg(br) = br*(pt.) 0 [M]""

can now interpreted as an intersection number on a moduli space with
a torus action and evaluated via localization. The map br can be made
C* equivariant by inducing the appropriate action on P". The key point
is now to choose the appropriate equivariant lift of the class of a point
in P". Recalling that choosing a point in P” is equivalent to fixing a
branch divisor, we choose the C* fixed point corresponding to stacking
all ramification over 0. Then there is a unique fixed locus contributing
to the localization formula, depicted in Figure 7, which is essentially
isomorphic to ﬂgm (up to some automorphism factors coming from
the automorphisms of the bubbles over P*).

The ELSV formula falls immediately out of the localization formula.
The virtual normal bundle to the unique contributing fixed locus has a
denominator part given from the smoothing of the nodes that produces
the denominator with ¢ classes in the ELSV formula. Then there
is the equivariant euler class of the derived push-pull of TP!(—c0):
when restricted to the fixed locus this gives a Hodge bundle linearized
with weight 1, producing the polynomial in A classes, and a bunch
of trivial but not equivariantly trivial bundles corresponding to the
restriction of the push-pull to the trivial covers of the main components.
The equivariant euler class of such bundles is just the product of the
corresponding weights, and gives rise to the combinatorial pre-factors
before the Hodge integral.
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— —
0 P! hoo

FI1GURE 7. the unique contributing fixed locus in the
localization computation proving the FLSV formula.

Remark 7.4. An abelian orbifold version of the ELSV formula has
been developed by Johnson, Pandharipande and Tseng in [JPT11].
In this case the connection is made between Hurwitz-Hodge integrals
and wreath Hurwitz numbers. I will leave it to Paul to explain this
work.

8. DoOUBLE HURwITZ NUMBERS

Double Hurwitz numbers count covers of P! with special rami-
fication profiles over two points, that for simplicity we assume to be 0
and oo. Double Hurwitz numbers are classically denoted Hy(u,v);
in [CJM11] we start denoting double Hurwitz numbers H(x), for
x € H C R" an integer lattice point on the hyperplane > x; = 0. The
subset of positive coordinates corresponds to the profile over 0 and the
negative coordinates to the profile over co. We define x¢ := {x; > 0}
and Xo := {z; < 0}.

The number r of simple ramification is given by the Riemann-Hurwitz
formula,

r=29—2+n
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and it is independent of the degree d. In [GJV03], Goulden, Jackson
and Vakil start a systematic study of double Hurwitz numbers and in
particular invite us to consider them as a function:

(27) Hj(=):Z"NH— Q.
They prove some remarkable combinatorial property of this function:

Theorem 8.1 (GJV). The function H,(—) is a piecewise polynomial
function of degree 4g — 3 + n.

And conjecture some more:

Conjecture (GJV). The polynomials describing Hj(—) have degree
49 — 3 + n, lower degree bounded by 29 — 3 + n and are even or odd
polynomials (depending on the parity of the leading coefficient).

Later, Shapiro, Shadrin and Vainshtein explore the situation in genus
0. They describe the location of all walls, and give a geometrically
suggestive formula for how the polynomials change when going across
a wall.

Theorem 8.2 (SSV). The chambers of polynomiality of H;(—) are
bounded by walls corresponding to the resonance hyperplanes Wi,
given by the equation

W] = {Z:[L’Z = 0} s
i€l
forany I C {1,...,n}.

Let ¢ and ¢y be two chambers adjacent along the wall Wi, with ¢,
being the chamber with x; < 0. The Hurwitz number Hj(X) is given
by polynomials, say Pi(x) and Py(x), on these two regions. A wall
crossing formula is a formula for the polynomial

Genus 0 wall crossing formulas have the following inductive descrip-
tion:

r

(25) Were0 =o(, ") G e ),

r1, T2

where 6 = Y., x; is the distance from the wall at the point we evaluate
the wall crossing.

Remarks.
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(1) This formula appears not to depend on the particular choice
of chambers ¢; and ¢y that border on the wall, but only upon
the wall W;; however the polynomials for the simpler Hurwitz
numbers in the formula depend on chambers themselves.

(2) The walls W} correspond to values of x where the cover could
potentially be disconnected, or where x; = 0. In the first case
the formula reminds of a boundary divisor degeneration for-
mula, and somehow begs for a geometric understanding.

(3) Crossing this second type of wall corresponds to moving a ram-
ification between 0 and oco. In the traditional view of double
Hurwitz numbers, these were viewed as separate problems: the
lenght of the profiles over 0 and oo were fixed separately, rather
than just the total length. However, here we see that it is nat-
ural to treat them as part of the same problem: in genus 0 the
wall crossing formula for x; = 0 is trivial - and as such iden-
tical to all other wall crossing formulas. This motivates our x
replacing p, v in our notation. Note that I am note just being
cute here. Let me preview that in higher genus this second type
of wall crossing are not trivial any more, while still obeying the
same wall crossing formulas as wall crossing of the first type.

The way Goulden, Jackson and Vakil prove their result is similar to
[OP09]: they compute double Hurwitz numbers by counting decorated
ribbon graphs on the source curve. A ribbon graph is obtained by
pulling back a set of segments from the base curve (connecting 0 to the
simple ramification points) and then stabylizing. Each ribbon graph
comes with combinatorial decorations that are parameterized by inte-
gral points in a polytope with linear boundaries in the x;’s. Standard
algebraic combinatorial techniques then show that such counting yields
polynomials so long as the topology of the various polytopes does not
change. The downside of this approach is that these are pretty “large”
polytopes and it is hard to control their topology.

Shapiro, Shadrin and Vainshtein go at the problem with a geomet-
ric angle, and are able to prove the wall crossing formulas using some
specific properties of intersections of ¢ classes in genus 0. Since descen-
dants become quickly more mysterious in higher genus, their approach
didn’t generalize.

In what follows I'd like to present the approach of [CJM10] to this
problem. Motivated by tropical geometry, we are able to compute dou-
ble Hurwitz numbers in terms of some trivalent polynomially weighted
graphs (that can be thought as tropical covers, even though this point
of view is not necessary other than to give the initial motivation) that
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are, in a sense, “movies of the monodromy representation”. These
graphs give a straightforward and clean proof of the genus 0 situation.
In [CJM11] we show that in higher genus each graph I" comes together
with a polytope Pr (with homogenous linear boundaries in the z;) and
we have to sum the polynomial weight of the graph over the integer
lattice points of Pr. It is again standard (think of it as a discretization
of integrating a polynomial over a polytope) to show that this contribu-
tion is polynomial when the topology of the polytope does not change.
The advantage here is that we have shoved most of the complexity of
the situation in the polynomial weights of the graph: our polytopes are
only g dimensional and it is possible to control their topology. Thus
in [CJM11], we are able to give a complete description of the situation
for arbitrary genus.

8.1. The Cut and Join Recursions and Tropical Hurwitz Num-
bers. The Cut and Join equations are a collection of recursions among
Hurwitz numbers. In the most elegant and powerful formulation they
are expressed as one differential operator acting on the Hurwitz po-
tential. Our use of cut and join here is unsophisticated, so we limit
ourselves to a basic discussion, and refer the reader to [GJ99] for a
more in-depth presentation.

Let o € S, be a fixed element of cycle type n = (n4,...,n;), written
as a composition of disjoint cycles as ¢ = ¢;...c;. Let 7 = (ij) €
Sy vary among all transpositions. The cycle types of the composite
elements 7o are described below.

cut: if 7, j belong to the same cycle (say ¢;), then this cycle gets “cut
in two”: 7o has cycle type ' = (ny,...,m_1,m’,m”), with
m' +m” =n;. If m" £ m”, there are n; transpositions giving
rise to an element of cycle type n'. If m" = m” = n;/2, then
there are n;/2.

join: if i, j belong to different cycles (say ¢;_1 and ¢; ), then these cycles
are “joined”: 7o has cycle type ' = (ny,...,n_1 +ny). There
are n;_1n; transpositions giving rise to cycle type 7.

Example 8.3. Let d = 4. There are 6 transpositions in S;. If o =
(12)(34) is of cycle type (2, 2), then there are 2 transpositions ((12) and
(34) ) that “cut” o to give rise to a transposition and 2-2 transpositions
((13),(14),(23),(24)) that “join” o into a four-cycle.

For readers allergic to notation, Figure 77 illustrates the above dis-
cussion. MAKE FIGURE in PDF

Let us now specialize our definition of Hurwitz number by counting
monodromy representations to the case of double Hurwitz numbers.
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_ |Aut(xo)||Aut(xoo)|
d!

H)(x) : H{oo, 1, Try Oco € Sal}|

such that:

oo has cycle type xg;

7;’s are simple transpositions;

0~ has cycle type Xo;

o971 ... TpO0Ox = 1

the subgroup generated by such elements acts transitively on
the set {1,...,d}.

The key insight of [CJM10] is that we can organize this count in
terms of the cycle types of the composite elements

Cxo 2 00,00T1,00T172, -+ ., 00T1T2 ... Tp—1,00T1T2 ... Tpr_1Ty € Cxoo

At each step the cycle type can change as prescribed by the cut and
join recursions, and hence for each possibility we can construct a graph
with edges weighted by the multiplicites of the cut and join equation.
In [CIM11] we call such graphs monodromy graphs.

Definition 8.4. For fixed ¢ and x = (z1,...,z,), a graph ' is a
monodromy graph if:

(1) T is a connected, genus g, directed graph.

(2) I' has n 1-valent vertices called leaves; the edges leading to them
are ends. All ends are directed inward, and are labeled by the
weights x1,...,x,. If x; > 0, we say it is an in-end, otherwise
it is an out-end.

(3) All other vertices of I' are 3-valent, and are called internal ver-
tices. Edges that are not ends are called internal edges.

(4) After reversing the orientation of the out-ends, I' does not have
directed loops, sinks or sources.

(5) The internal vertices are ordered compatibly with the partial
ordering induced by the directions of the edges.

(6) Every internal edge e of the graph is equipped with a weight
w(e) € N. The weights satisfy the balancing condition at each
internal vertex: the sum of all weights of incoming edges equals
the sum of the weights of all outgoing edges.

So we can compute Hurwitz number as a weighted sum over mon-
odromy graphs. Keeping in account the various combinatorial factors
one obtains:
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Lemma 8.5 ([CJM10], Lemma 4.1). The Hurwitz number is computed
as:

(20) Hyx) =3 mw,

where the sum s over all monodromy graphs I' for g and x, and pr
denotes the product of weights of all internal edges.

Example 8.6. Here are a couple silly examples computed using for-
mula 29.

-1
HO((1,1), —(1,1)) = 2 1>_L<
1 -1
5 -2 2 -1
HO((2,1), ~(2,1)) = 4 >_L< . ,
1 -1 1 -2

Now instead of individual numbers, we want to compute the Hurwitz
functions. In figure 7?7 we illustrate the situation. We change a little
the notation, using y’s for the coordinates at co. We observe that dif-
ferent graphs contribute according to the sign of x1 + y;. This gives us
two different polynomials, the difference of which is given by formula 28
(in a trivial way since three pointed genus zero double Hurwitz numbers
are trivially seen to be 1).

8.2. Genus 0. In this section we show how this point of view leads to
fairly elementary proofs of Theorems 8.1 and 8.2.

(1) Each edge weight is linear homogeneous in the z;’s and we have
3g — 3 + n internal edges. Therefore each contributing graph
gives a polynomial of the appropriate degree. A graph con-
tributes if and only if all edge weights are positive. It’s clear
then that the regions of polynomiality are precisely where the
signs of all edge weights persist.

(2) For a given wall Wj, graphs that appear on both sides of the
wall give no contribution to the wall crossing. A graph appears
on both sides of the wall if and only if no edge changes sign
across the wall, i.e. if and only if there is no edge with weight
0 ==k Zie[ L

(3) So in order to compute the wall crossing formula, we only need
to focus on graphs that contain an edge labelled +9. In partic-
ular if the edge is labelled ¢, the graph appears on one side of
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X, +Y,>0
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2X1 2(X1+y1) _2yl

FiGUurRe 8. Computing double Hurwitz numbers using
Lemma 8.5 and observing the wall crossing.

the wall, if it is labelled —¢ the graph appears on the other side
of the wall. Keeping in mind that the wall crossing formula is
the subtraction of the Hurwitz polnomyals on either side of the
wall, the polynomial contribution from any graph (no matter
on which side of the wall it is on) I" is 0 times the product of
the weights of all other internal edges.

(4) Now look at the RHS of (28). Each of the Hurwitz numbers
appearing can be computed as a weighted sum over the appro-
priate monodromy graphs, and therefore the product of Hur-
witz numbers can be computed as a weighted sum over pairs of
graphs. For a fixed pair of graphs the polynomial contribution
is 0 times the product of internal edges of both graphs.

(5) We now prove formula (28) by exhibiting a bijection that pre-
serves polynomial contributions between:

(a) the set L of graphs contributing to the wall crossing.
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(b) aset R of cardinality (T:T2) times the cardinality of the set
of pairs of graphs contributing to the product of Hurwitz
numbers on the right.

First we describe R as the set of triples (I'y,T's, 0), where I’y
and I'y are graphs contributing to the respective Hurwitz num-
bers, and o is a total ordering ther vertices of I'y UI's compatible

with the individual vertex orderings of both graphs.

Ezercise 31. Convince yourself that R has indeed the desired
cardinality.

Now consider the functions
Cut:L — R
that cuts each graph along the edge labelled ¢, and
Glue: R — L

that glues the two graphs I'y,I's along the ends labelled ¢ ori-
enting the new edge as prescribed by the total order o.

Exercise 32. Convince yourself that C'ut and Glue are inverses
to each other.

9. HiGHER GENUS

Lemma 8.5 is not special to genus 0, and gives us a combinatorial
recipe for computing arbitrary double Hurwitz numbers. However two
significant complications arise when trying to generalize the previous
theorems to higher genus:

(1)

In genus 0 the balancing condition and the weights at the ends
determine uniquely the weights of all internal edges. It is easy
to see that in higher genus this is not true, and that in fact
each genus adds a degree of freedom in the choice of weights.
In other words, given a directed, vertex ordered graph with
labelled ends, there is a g-dimensional polytope parameterizing
internal edge weights compatible with the end weights and the
balancing condition. The bounds of this polytope are linear in
the z;’s.

In genus 0 a graph contributing to the wall crossing had a unique
edge labelled §, and consequently a unique way to be discon-
nected into two smaller graphs. In higher genus this is not the
case any more: there are multiple edges that can be “cut” when
crossing the wall, and multiple ways to disconnect the graph. A
careful project of inclusion/exclusion is then required to obtain
the result.
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To recover Theorem ?7 one has to deal with (1), and it is really not
too bad. Our Hurwitz number is still expressed as a finite sum over
graphs, except now for each graph the contribution is a homogenous
polynomial of degree 3g —3+n in the z;’s plus g new variables, that we
need to “integrate” over the integer lattice points of a g dimensional
polytope. You can think of this as a generalization of continuous in-
tegration, or as a repeated application of the power sum formulas; in
either case it is not hard to see that the result is locally a polynomial
in the z;’s of degree 49 — 3 + n.

Where does piecewise polynomiality kick in? Well, as you move the
x;’s around the various graph polytopes change their topology (some
face could get hidden or uncovered by other faces translating around).
That is precisely where the walls are. Again a little bit of analysis
shows that this happen precisely when multiple hyperplanes defining
the polytope intersect non-transversally, and this happens when the
graph can be disconnected.

Here we wish to focus on the much more subtle (and interesting)
case of generalizing the wall crossing formula. Rather than a complete
discussion of the proof (a hopefully reasonable outline of which can
be found in section 4 of [CJM11]), here we would like to illustrate
the salient ideas through two examples, each one specifically tuned to
illustrate dealing with points (1) and (2) above. But before we embark
into this endeavour, let us start with stating the result.

Theorem 9.1.

(30)

We = S () i ey e
lyl=lz|=Ix:]

Here y is an ordered tuple of ((y) positive integers with sum |y|, and
similarly with z.

9.1. The simple cut: Hyperplane Arrangements and The “Cut-
Glue” Geometric Bijection. In this section we focus on an example
of how a geometric bijection can be defined between graphs contribut-
ing to the wall crossing, and graphs contributing to the degeneration
formula on the RHS of (30). The idea distills to its simplest in the case
of graphs that can be cut in only one way.

Let x = (21, 29, 23,24) and 7 = 6 (i.e. g = 2). Let I = {1,3}, and let
¢; be an H-chamber next to the wall W satisfying x1+x3 < 0. ¢y is the
opposite H-chamber. In Figure 9 we consider a graph I' contributing
to the wall crossing for this particular wall. Really, we want to think
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of I' as an un-directed graph. The direction of the edges we show in
this picture are to be thought of as a choice of reference orientation,
and we understand that putting a positive weight on an edge preserves
the reference orientation, while a negative weight reverses it. Now we
observe:

e For any choice of labeling of the ends, there is a 2-dimensional
plane of possible weights for the edges satisfying the balancing
condition.

e This plane is subdivided by hyperplanes (lines) whose equations
are given precisely by the internal edge weights.

e Chambers for this hyperplane arrangement correspond to ori-
entations of the edges of the graph. Unbounded chambers cor-
respond to orientations with directed loops, bounded chambers
correspond to orientation with NO directed loop.

e We give each chamber a multiplicity consisting of the number
of vertex orderings of the directed graph compatible with the
directions of the edges. Note that unbounded chambers have
multiplicity 0.

Figure 9 illustrate this situation over two points living on either side
of wall Wj.

At the wall the the three red hyperplanes corresponding to the three
edges that can be cut to disconnect the graph, meet in codimension 2.

On one side of the wall, these three hyperplanes form a simplex which
vanishes when we hit the wall (vanishing F'-chamber). A new simplex
reappears on the other side of the wall (an appearing F'-chamber).

The directed graph corresponding to the appearing chamber has a
flow from top to bottom, that can only be realized when x;4+x35 > 0, i.e.
on side “2” of the wall. Thus we can see from the graphs whether an
F-chamber is vanishing/appearing or not. The 6 neighboring chambers
appear on both sides of the wall.

When computing the Hurwitz number, for each directed graph we
need to sum the product of internal edges over the integer points of
the corresponding chamber. Note that for all directed graphs with the
same underlying graph, the product of internal edges (= ¢r) differs
at most by a sign, and that this signs alternates in adjacent cham-
bers. To understand the contribution to P, we sum the polynomial
w4 (weighted with sign and multiplicity) over the lattice points in each
of the chambers A, B, ..., G. For the polynomial P;, we have to play
the same game with the chambers B, ..., H' on top, however, we eval-
uate this polynomial now at the point x5 which is not in ¢; but in cs.
Thus, we have to “carry” the chambers B, ..., H' over the wall, i.e. we
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FiGUuRE 9. Hyperplane arrangements corresponding to
orientations of edges of a graph.
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need to interpret the region bounded e.g. by the defining hyperplanes
of B’ on the other side of the wall in terms of the chambers A, ... G.
Note: there are several things to be careful about signs in these dis-
cussions, but I would like to make the expositional choice of completely
ignoring any sign issue, and ask for your trust that everything pans out
as desired at the end of the day. Or rather, if you are really hardcore...

Exercise 33. Check my signs! They should be defined in a natural and
consisten way till the end of the paper...hopefully, that is.

We now express each of the chambers B’ ..., H' as a formal signed
sum of the chambers A, ... G.
H =A B'=B-A C'=C+A D=D-A

E=E+A FF=F-A G'=G+ A

The only chamber on side 1 which contains B in its support when
interpreted on side 2 is B’, and the B coefficient for B’ is +1. In the
difference P(x2) — Pi(x2) the two summands Y 5 1-¢r, — > 51-¢r,
cancel. This is a general fact.

Fact. Only appearing chambers contribute to the wall crossing. We
must be careful though. Chambers on side 1 of the wall (which are
certainly not appearing!), when transported to side 2 DO contribute
to an appearing chamber.

Since the polynomial we are integrating over A is always (up to sign)
the same, what we really must be concerned with is the multiplicities
of the contributions to A by A itself and by the chambers on side 1
that map to A.

S (B (=5)+1—(=2)+2— (1) +2—(-2))pa
“S 2040 =% (g) ou

A

(31)

If we cut the graph I' at the three edges, then the upper part I, con-
tributes to the Hurwitz number H3(z1, z3, —i, —j, —x1 —x3+i+j) and
the lower part I'; contributes to the Hurwitz number H?(xy, 24,1, j, — 22—
x4 — 1 —j). In fact the pair (I'y,I';) appears 6 times in the product
of Hurwitz numbers, corresponding to all ways of labelling the three
cut edges. Then note that to compute the pair of Hurwitz numbers we
must sum over all i > 0, j > 0 and 21 +x3 — i — j > 0 (the simplex A)
the product of internal edges of the two connected components times
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the connecting edges, hence just the polynomial ¢ 4. Then the contri-
bution to the right hand side of (30) by pair of graphs that glue to I'
is6>, () - €4, ie. (31).

We want to take this a little further, and interpret this equality ge-
ometrically. The factor (g) counts the ways to merge two orderings
of the vertices of I'y and I'; to a total ordering of all vertices. Then
re-gluing the cut graphs with the extra data of this merging gives a bi-
jection with the directed, vertex-ordered graphs, contributing to (31).
So in this case we have a direct generalization of the C'ut — Glue cor-
respondence of section 8.2

Remark 9.2. Or course to turn this idea into a proof one needs to for-
malise things. In [CJM11], we interpret the bounded chambers above
as a basis of the g-th relative homology of the hyperplane arrangement,
and the process of “carrying the chambers over the wall” as a Gauss
Manin connection on the corresponding homological bundle. Then the
core of our idea is a combinatorial formula for this Gauss Manin con-
nection in terms of cutting and regluing of graphs.

9.2. The egg: Inclusion/Exclusion. In section 9.1 we focused on
a graph with a wealth of possible edge orientations and hence a very
interesting associated hyperplane arrangement, but only one way to
disconnect along the wall. Here we go to the other extreme and observe
a graph with trivial orientation choices but many possible ways to
disconnect. Consider “the egg” in Figure 10, and again the wall WW;
given by the equation z1 + x3 = 0.

There is only one possible orientation for the egg on each side of the
wall and one possible vertex ordering for each of these orientations.
The chamber on the left hand side is an appearing chamber, and the
chamber on the left, when transported to the right, covers it with
multeplicity —1.

The coefficient in front of ). pgamma for the egg contribution to
the wall crossing is therefore:

1—(-1) =2

Good news first: let us check that our formula indeed gives us a 2. If
we disconnect the egg in all possible ways that give us at most three
connected component (see Figure 11) and look at the appopriate coef-
ficients, we get:

(11) ! @ ! @ B (1,11,2> B (211 1) " (1121 1) -7
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X1+X3 =1

i=0

+X < +
XX, 0 X x3>0

F1GURE 10. The egg graph and its orientations on either
side of the wall.

0-0:0:0-0-C

F1GURE 11. The light cuts of the egg graph.

But now for the bad news. We would like to prove this by giving a
geometric bijection between the graphs contributing to the wall cross-
ings and the regluings of the cut graphs where we allow to reorient the
cut edges. To go from the left side egg to the right side egg we need to
reorient all internal edges, and there is no cut in Figure 7?7 that allows
us to do that!

After much crying and gnashing of teeth, this lead us to think that
maybe we should allow ourselves to do more general cuts, in fact to cut
the graphs in all possible ways, and organize our inclusion/exclusion
in terms of the number of connected components of the cut graph.
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Luckily, in this example we obtain the desired 2, as shown in Figure
12
\ A A LA
+©+\/' T\ '@*\/

FIGURE 12. The general cuts of the egg graph.

@ - (;1) i @ - (1411 2) N (241L 1) N (112l 1) " (1, 1%1, 1) -7

In this cut/glue inclusion exclusion process one introduces a huge
number of other graphs (with sinks/sources etc) whose contribution
should clearly vanish. In Figure 9.2, we check that the contribution
to the inclusion/exclusion process by each of the two contributing egg
graphs is indeed 1 (corresponding to the number of vertex orderings
of the “good eggs”), and the contribution for a “bad egg” (i.e. an egg
with a sink) indeed vanishes.

SICIfel el (A [e

N T T R B s
Z + 1

j - + O

Therefore, to prove Theorem 9.1, we first prove that our combinato-
rial recipe for the Gauss Manin connection proves a “heavy formula”’,
and then show via yet another inclusion/exclusion argument that the
two formulas are equivalent.
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FiGureE 13. The data denoted by * in the heavy for-
mula, Theorem 9.3

Theorem 9.3 (Heavy Formula).

(82) WCix)=) Y (—1)N(S’t1f7tN7u>—H1}<Z->!

N=0 s+ (255 ) +u=r

N=ln=d
data in *
N
HS(XD )‘) <H Htj(*)) HU<XIC7 —77)
j=1

The data denoted by x is illlustrated in Figure 13: it consists in
disconnecting a graph with the right numerical invariants in all possible
legal ways, where legal means that the graph obtained by shrinking all
connected components to vertices and mantaining the cut edges as
edges has no directed loops. The p denote the partitions of weights of
the edges connecting the i-th to the j-th connected component.

10. CURRENT (QUESTIONS

So far we have focused our attention mostly on Hurwitz numbers,
and investigated their combinatorial properties as well as their relation-
ship with the geometry of moduli spaces of curves. A natural point of
view on Hurwitz numbers is that they really are the degree of a zero-
dimensional cycle, defined as the pull-back of (the class of) a point



HURWITZ THEORY, ORBIFOLD GW THEORY AND APPLICATIONS 55

T1 Trk
T r-k
— A 1 T2 T3 Tl‘-k-1 B
— r-k
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FIGURE 14. The union of strata we denote by T"* C
Moo (1,1,¢,...,€) paramereterizes chains of r — k ra-
tional curves, where the i-th component hosts the -th
(light) marked point, and the remaining k points are dis-
tributed in all possible ways among the various twigs.

via the natural branch morphism. Similarly one can define higher di-
mensional Hurwitz loci: in genus zero they are simple to describe and
enjoy similar polynomiality and wall crossing properties than the zero-
dimensional objects. The simplicity is given by the fact that the genus
zero space of relative stable maps is birational to My,,. In higher genus
the determination of the class of the (pushforward of the) moduli space
of maps (or rather of a suitable compactification thereof) is already an
interesting and challenging question known as Eliashberg’s problem.
The determination of such a class would lead us to extend polynomi-
ality results in arbitrary degree and develop an analogue of the ELSV
formula for double Hurwitz number. In the following sections we col-
lect what is known of this story and highlight a good number of open
questions and speculations.

10.1. Rational Double Hurwitz Classes. In this section we define
Hurwitz classes and study their (piecewise) polynomial properties. We
say that a family of Chow cycles a(x) in the moduli space of ratio-
nal pointed stable curves is polynomial of degree d and dimension k if
a(x) € Zy(Mo,)[z1, . . ., 2n)q. This is equivalent to a having an expres-
sion as a combination of dimension k£ boundary strata with coefficients
polynomials in the z;’s of degree d.

Definition 10.1. Let x € H. Consider the union of boundary strata
T"% C My, (1,1,¢,...,¢€) parameterizing chains of r — k projective
lines, where the i-th component hosts the i-th (light) marked point, as
illustrated in Figure 14. Referring to Figure 15 for the names of the
natural morphisms, we define the k-dimensional Hurwitz cycle:

(33) Hy(x) := st (br*(T"7)) € Z(Mo.,)
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Hy, (x) My (x,ty, ..., t;) 22— My,

| |

[Tr_k] — [M()’Q_Hn(l, l,e, ... ,E)/Sk]

FiGURE 15. The k-dimensional Hurwitz locus is the in-
verse image via the branch map of the stratum 777,

Sometimes we want to look at the k-dimensional locus in the appropri-
ate space of maps. We make the definition:

(34) L, (x) := b= (T"*) € My (X, th, -« o t)

Remark 10.2. Hurwitz loci were introduced in [GV03b, Section 4.4].
The only difference in our definition is that we “mark” the branch
points that we are fixing. The use of the more refined branch mor-
phism to the Losev-Manin space gives us a more convenient expres-

sion of the locus in terms of the pull-back of a boundary stratum in
M072+T(17 1,8, C ,8).

10.1.1. Multiplicities of boundary strata. Boundary strata in moduli
spaces of relative stable maps corresponding to breaking the target
are naturally described in terms of products of other moduli spaces
of relative stable maps. It is important to keep careful track of var-
ious multiplicities coming both from combinatorics of the gluing and
infinitesimal automorphisms (see [GV03b, Theorem 4.5]). Let S be a
boundary stratum in H;(x), parameterizing maps to a chain 7V of N
projective lines. S can be seen as the image of:

N
gl: [[M: = S € M (x),
i=1
where the M? are moduli spaces of possibly disconnected relative
stable maps, where the relative condition imposed at the point oo in
the é-th line matches the condition at 0 in the (i+1)-th line. We denote
by z; = (2} z") such relative condition and by abuse of notation
we say it is the relative condition at the i-th node of 7. Then,

(35) H |A§l1 Z [ (HM')]

Equation (35) seems horrendous, but it amounts to the following
recipe: the general element in S is represented by a map from a nodal
curve X to TV, with matching ramification on each side of each node of
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X. The multiplicity m(S) is the product of ramification orders for each
node of X divided by the (product of the order of the group of) auto-
morphisms of each partition of the degree prescribing the ramification
profile over each node of TV.

The description of Hurwitz loci in terms of boundary strata in spaces
of maps, together with an analysis of the multiplicities of the push-
forwards to Mg, naturally leads to discover the (piecewise) polynomi-
ality of the Hurwitz cycles.

Theorem 10.3. For x € ¢, Hy(x) is a homogeneous polynomial cycle
of degree n — 3 — k.

This theorem is established by three facts: first a simple vanishing
statement, noting that boundary strata contribute to the Hurwitz locus
only if they have exactly one non-trivial component over the chain they
cover; second, the observation that given any boundary stratum in My,
of the right dimension, it appears in the image of the pushforward
of some component of Hj(x). Finally there is again an analysis of
the boundary multiplicities. We omit the first fact which is a simple
dimension count, and discuss the other two.

Lemma 10.4. Letx € ¢, I' € T,_x(x). Then there exists an irreducible
component A in Hy(x) such that the stabilization of the source curve
of the general element of A has dual graph T.

Proof. This statement becomes transparent after noting that boundary
strata in M, (x,ty,...,t,_;) are in bijective correspondence with their
“tropical dual graphs”. Given a boundary stratum [S] whose general
element is given by a map f: X — 1"

e the chain 777* is replaced by the interval [0, — k + 1] with
the i-th projective line corresponds to the point ¢ and ¢-th node
corresponding to the segment (7,741); the points 0 and r —k+1
correspond to the relative points.

e over point ¢ draw one vertex for each connected component of
fUT);

e over segment (i,7+ 1) draw one edge for each node of X above
the i-th node of T"~*: the edge connects the appropriate vertices
and is weighted with the ramification order at the node;

e over [0,1) and (r — k,r — k + 1] draw edges corresponding to
the relative condition x.

We call the graph thus obtained the pre-stable tropical dual of [S].

We stabilize the graph by forgetting all two talent vertices to obtain
what we call the tropical dual of [S]. This procedure is illustrated in
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FI1GURE 16. The construction of the tropical dual graph
associated to a boundary stratum of relative maps. The
y] are the degrees of the trivial covers of the i-th twig,
and the z/ the ramification orders over the i-th node.
Note that the 2’s on either side of a trivial cover are equal
to the corresponding y (e.g #1 = yi = 2} = y2 = z1).This
makes it possible to erase the two valent vertices and have
the z! become the weights of the edges of the tropical
dual graph.

Figure 16 and clearly it can be inverted to identify a boundary stratum
of maps given a tropical cover. With this translation Lemma 10.4 is
equivalent to the purely combinatorial statement of Lemma ?77. O

Lemma 10.5. Letx € ¢, I' € Tr—k(x) and Ar the corresponding bound-
ary stratum in Mo,,. Let m(I") and ¢(I') as in Definitions 77, 77 and
f:T (%) = Tr_k(x) be the natural forgetful morphism. Then

Hix)= Y o) [[(val(v) —2) Ay

LeTs , (%) v
(36) = > mD)p(0) [[(val(v) - 2)Ar.
re7,—k(x) v

Proof. We observed that for each boundary stratum Ar in Mo,n there
are precisely m.(I") boundary strata in Hj,(x) pushing forward to it. It
remains to show that each such stratum [S] pushes forward with mul-
tiplicity ¢(I") [],(val(v) — 2). We obtain this multiplicity by adapting
formula (35) to the simple shape of the boundary strata we are observ-
ing. Over each 7; in the chain there is only one connected component
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of X that maps non-trivially. Therefore we can replace the moduli
space of possibly disconnected covers M? of (35) by the unique moduli
space of non-trivial connected covers to Tj, call it M;, times an auto-
morphism factor of 1/y! for every connected component of degree y’
mapping trivially to T;; we denote by triv; the number of trivial covers
of the i-th component. Also the factors of 1/|Aut(z;)| need to be re-
placed by the automorphisms of each sub-partition of z; corresponding
to nodes on the same pair of curves on the two sides of the i-th node
of T"=*. But X is a rational curve and hence all such sub-partitions
have length one and trivially no automorphisms. Hence (35) becomes:

| [ (’“ )]
37 S| = L L. M, )
o =g |\

j=1 Yi
Equation (36) is deduced from (37) via the following observations:

(1) There is a factor of y/ for each 2-valent vertex of the pre-stable
tropical dual of [S], and 3 is equal to the weight of (either)
edge on each side of the vertex. Therefore all yi 's cancel with
some of the z’s. The remaining multiplicity from the first part
of (37) is therefore the product of weights of all internal edges
of the tropical dual graph: by definition this is ¢(T).

(2) Each M; is a moduli space of connected, rubber relative stable
maps, with one simple transposition marked. We know st maps
M, onto MO,n with degree r = (71") If we call v; the vertex of
the tropical dual graph corresponding to M;, then in this case
n = val(v;) and thus r = val(v;) — 2.

4

To obtain Theorem 10.3 it is now sufficient to remark that the
weights of the edges of the tropical dual graph are linear homogeneous
polynomials in the x;’s and there are precisely n — 3 — k internal edges
in the tropical dual graph of any stratum in Hy(x) that pushes forward
non-trivially to MO,n-

We conclude this section by noting that our arguments do not apply
exclusively to Hurwitz cycles, but to any cycle obtained by pull-pushing
a boundary stratum from Losev-Manin to M,,. We thus obtain the
following:

Corollary 10.6. Let x € ¢ and A be a union of boundary strata of
dimension k in Mooy, (1,1,¢,...,¢€). Then st.br*(A) is a homogeneous
polynomial class of degree n — 3 — k in c.
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Hurwitz cycles are polynomials in each chamber, and, like for Hur-
witz numbers, the way the polynomials change is described by an in-
ductive formula.

Theorem 10.7 (Wall Crossing). Let I C {1,...,n} and consider the
wall Wy = {e =3, ., x; =0}. Then:
(38)
min{k,r1—1} R
WCr(x) =c¢ Z < >Hj(xl, —€) R H_;(Xpe, €)

j=max{0,1+k—ra} |I| —1- J

The proof of Theorem 10.7 is parallel to [CJM10, Theorem 6.10]: it
essentially boils down to observing that three-valency of the vertices
of the tropical dual graphs does not play a role in the wall crossing
phenomenon.

10.2. Eliashberg’s Problem. In 2001 Yasha Eliashberg, in laying the
foundations of Symplectic Field Theory, asked the following question
to Richard Hain.

Question (Eliashberg’s problem). Given an n-tuple of integers x adding
to 0 determine the class in M, of pointed curves (C,p1,...,pn) such
that the divisor D = x;p; is principal.

A few observations are in order:

(1) Perhaps the first thing to clarify is why does this question be-
long in this mini-course. If C' is a smooth curve, then asking
for a divisor to be principal is equivalent to having a mero-
morphic function with zeroes and poles with prescribed orders,
i.e. a map to P! with specified ramification profile over 0 and
00. On the open moduli space hence Eliashberg is asking for a
description of a double Hurwitz locus.

(2) There is a certain degree of ambiguity with which the question
is (intentionally) written, as the concept of principal divisor be-
comes iffy for a singular curve (more specifically for a curve not
of compact type). There is various ways in which Eliashberg’s
question can be rigorously formulated - each of which I believe
is of interest.

(a) Describe the above locus as a class on a partial compacti-
fication of M, ,,. A natural partial compactification where

this class is define is /\/lzfn, the locus of curves of compact

type. The domain of definition of the class is mg,n — Agi"f?,
the complement of the singular locus in A,.
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(b) Describe some meaningful class on the closed moduli space
that restricts to the appropriate class: this could be sim-
ply the closure of the class discussed in the previous item,
or the class of some meaningful compactification of the
moduli problem implicitly posed in Eliashberg’s question.
We already have two natural candidates at hand: moduli
spaces of admissible covers and moduli spaces of relative
stable maps.

We therefore can reformulate Eliashberg’s question as follows.

Question._Describe ﬁe push-forward (via the natural stabilization mor-
phism to My,) of [M, (P, x)]"" and of [Admg_,o(x)]. Compare the
two classes.

Recently Richard Hain ([Haill]) has described a class, that we call
Hain’s class, answering Eliashberg’s question on ./\/l;tn The key ingre-
dient is that the class of the zero section of the universal Jacobian over
curves of compact type is 1/g! times the g-th power of the © divisor.
The question is then reduced to pulling back © via the natural section
o(x) : ./\/l;tn — Jyn. Hain accomplishes the task using the theory of
normal functions, whereas in [GZ12], Grushevski and Zacharov use test
curves to determine the coefficients of the pullback of the divisor. We
present a very pretty version of the class of the pull-back of © that, to
my knowledge, has been formulated by Dimitri Zvonkine:

(39) J(X)*(@):% S° S wsar Dy n(I11°),

Ic{1,...,n} h=0

where Dy, ,,(I]1¢) denotes the divisor (of compact type) parameteriz-
ing curves with one node and two components of genus h and g—h, with
marks in subset I on the component of genus h. Then z; := > ., z;.
The following abuses of notation are also in place:

(40) Dog({i}H|I —{i}) = 1.

Formula (40) is homogeneous quadratic in the z;’s, thus making
Hain’s class a polynomial class which is homogeoneous of degree 2g.
In [CMW12] we have exploited this polynomiality to compute Hain’s
class in genus 1 via localization on moduli spaces of relative stable
maps. We obtain the result in the following form. We first describe
Hain’s class in ./\/lf3: we assume x; and x, are positive and use the
relation 3 = —x1 — 2 to eliminate x5 from our formula. Then Hain’s

icl
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class is the restriction of 91 (x1, 22, x3) = A12? + Ayx3 + Brixs, with
(41)
Al = 1/}3—D170(1|2, 3) AQ = ¢3—D170(2|1, 3) B = 77[}3—D170(3|1, 2)

Ezercise 34. Check that equations (40) and (41) agree on M{;. Fur-
ther they agree with Hain’s original formula which in this specific case
is:

57)1(131, 9, JI3) = —$2I35170(1|2, 3)—I11’351,0(2|1, 3)-1’1$2E170(3’1, 2, 3)
—(1‘21‘3 + 13 + Ill'g)ELQ(gbll, 2, 3)

For more than three marks the class is then simply obtained by
pulling back the coefficients via the appropriate forgetful morphisms.
We note that the class $1(z1, 29, 23) is well defined over all of M 3,
however it is not the pushforward of the virtual fundamental class from
the moduli space of relative stable maps. The difference, somewhat
suggestively, is precisely —A; (the closure of the self intersection of the
zero section in the universal Jacobian).

Exercise 35. In genus one \; generates the space of divisors not of
compact type, hence the two classes above must differ by a multiple of
A1. Hence you can check that

[m?aPﬂ’ X1,X2, XS)}W;T - 57)1(3:17 X2, SE3> - )\1
by an intersection theoretic computation using the following facts:
e The Double Hurwitz number formula ([GJV03]):

3!
Hy(z1, 29, 23) = ﬁ(ﬂfl + x9)% (27 + 23 — 1).

e The fact that we will show in section 10.3:
(M (P xq,%2,%3)]"" - 3!(x) + 29)%5 = Hy (71, 72, 73)

10.3. ELSV Formula for Double Hurwitz Numbers. The com-
binatorial structure of double Hurwitz numbers seems to suggest the
existence of an ELSV type formula, i.e. an intersection theoretic ex-
pression that explains the polynomiality properties of the This pro-
posal was initially made in [GJV03] for the specific case of one-part
double Hurwitz numbers, where there are no wall-crossing issues. Af-
ter [CJM11], we propose an intriguing, albeit maybe excessively bold
strengthening of Goulden-Jackson-Vakil’s original conjecture.

Conjecture (Bayer-Cavalieri-Johnson-Markwig). For x € Z" with

in:O;

B I—As+ ...+ (—1)9Aqg
(42) H,(x) = /P B | e
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M(z) = M, (z) 2 My

Mbr = MO,?-&-T(L 1, Eyon ,5)/Sr

FI1GURE 17. The tautological morphisms from the space
of rubber stable maps.

where,

(1) P(x) is a moduli space (depending onx) of dimension 4g—3+n.

(2) P(x) is constant on each chamber of polynomiality.

(3) The parameter space for double Hurwitz numbers can be identi-
fied with a space of stability conditions for a moduli functor and
the P(x) with the corresponding compactifications.

(4) As; are tautological Chow classes of degree 2i.

(5) ;s are cotangent line classes.

Goulden, Jackson and Vakil, in the one part double Hurwitz number
case, propose that the mystery moduli space may be some compactifi-
cation of the universal Picard stack over Mg,n- They verify that such a
conjecture holds for genus 0 and for genus 1 by identifying Pic, ,, with
Ml,n-‘rl-

An alternative approach to a more geometric view of the structure
of double Hurwitz numbers can be obtained by reasoning on the poly-
nomiality of Hain’s class. The following discussion stems from work
with Arend Bayer. Consider the diagram of spaces in Figure 10.3:

The double Hurwitz number H,(z) is the degree of br:
H,(x)[pt.] = br*([pt])

We rewrite this expression in terms of i classes. We have three
different kinds of ¢ classes, and we have to be very careful to not mix
them up:

(1) to: this is the psi class on the target space at the relative divisor
0, i.e. the first chern class of the cotangent line bundle at the
relative point 0 on the universal target.

(2) 1);: these are the psi classes on the space of rubber stable maps
at the i-th mark. Remember that we are marking the preimages
of the relative divisors.

(3) 1; is the ordinary psi class on the moduli space of curves.
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Lemma 10.8.

. [pt.]

7,29—3+n -
4 r!

This follows immediately by combining the following facts:
(1) Any 9 class on an (ordinary) Mg, has top self intersection

1[pt.].

(2) The fact that the point 0 has weight 1 means that no twigs con-
taining the point 0 get contracted because of the small weigths
at the other points. Therefore if we consider the contraction
map ¢ : Moo — Mo(1,1,¢,...,¢), we have that c¢*(¢1) = 1/;0.

(3) The r! factor comes from the fact that the branch space is a S,
quotient of My(1,1,¢,...,¢).

Lemma 10.9. A ~
br* (o) = w1

where it is understood that the i-th mark is a preimage of 0.

Consider the diagram:

U
AN
Uy, M(x)
0\\ |

N

Mbr

Then:
br*(i/so) = —br*07(0) = —s; f*(0) = —s; (2;8:) = zib;
Now the key fact is that

H9<X) _ T‘!b’f‘*(?/A)Qg_?)—i_n) _ T!x?g—?)—l—ni)i?g—i%—kn

This is a small step in the right direction: we are expressing the Hur-
witz number as a globally polynomial function over a family of moduli
spaces. The wall crossings for double Hurwitz numbers are then ex-
plained as wall crossings for the psi classes on the various moduli spaces.
But we still have a dependence of the moduli spaces which is way too
intrinsically related to the Hurwitz problem, and also the degree of the
polynomial is 2¢g off by what it should be...just saying that the top
intersection of psi classes on rubber stable maps is a rational function
that corrects the 2 and produces the double Hurwitz number.

Everything is much more interesting if we notice that the tilda-psi
classes are pull-backs of ordinary psi classes plus some corrections,
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namely by divisors in the spaces of relative stable maps parameterizing
curves where the mark lies on an unstable component of the curve.
Then one can use projection formula to obtain a class which, assuming
st [M;(]P’l, x)]""" to be an even polynomial of degree g gives the desired
polynomiality properties for the Hurwitz numbers in each chamber. We
make this analysis for the one part double Hurwitz numbers (where we
recover the appropriate formulas and explain the high divisibility by d

observed in [GJV03]).

10.3.1. One part double Hurwitz numbers. The key observation here is
that the 1 class is a pullback of an ordinary psi class:

Lemma 10.10. Let xq be the unique positive part. Then:
1 = stab™yy

This follows from a natural isomorphisms of the cotangent line bun-
dles, due to the fact that in the space of rubber maps the first mark
point never lies on a bubble that gets contracted by the stabilization
morphism. In other words, observing the diagram,

U(x)

[N

we have that
§1 == U*(Sl)

and hence:

stab* (Y1) = —stab*si(s1) = =570 (s1) = —51(51) = ¢

Now by projection formula:

(43)

Hy(x) = rlstab, (23932975 = plstab, ([M(x)]V7) 293203 +n

Remark: Formula (43) explains the comments made in GJV - para-
graph after Corollary 3.2. (the divisibility of the polynomial by z>9~°*",
and the appearence of constants related to the moduli spaces of curves

1/24, 1/5760 etc...).
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