HW Set VIII- page 1 of 8
PHYSICS 1401 (1) homework solutions
14-30 Calculate the amount of energy required to escape from
(a) Earth's moon and
(b) Jupiter
relative to that required to escape from Earth.
$14-30$
Kinetic energy requited to escape (from surfer) must equal the potential energy at surface. Ratio, relation to Earth
(a) Moan :

$$
\begin{aligned}
& \frac{K_{M}}{K_{E}}=\left|\frac{U_{M}}{E_{E}}\right|=\frac{G \frac{M_{M} m}{Z_{M}}}{G \frac{M_{E} m}{R_{E}}}=\frac{M_{M}}{M_{E}} \frac{R_{E}}{R_{M}} \\
& \frac{K_{M}}{K_{E}}=\frac{7.36 \times 10^{22}}{5.98 \times 10^{24}} \div \frac{6.37 \times 10^{6} \mathrm{~m}}{1.74 \times 10^{6} \mathrm{~m}}=0.045
\end{aligned}
$$

(Appendix C)
(b) Jupiter

Appendix C
givesmass and escape velocity

$$
\begin{aligned}
& \frac{K_{J}}{K_{E}}=\frac{\frac{1}{2} M V_{J}^{2}}{\frac{v_{2}}{2} v_{C}^{2}} \\
& K_{J}=\left(\frac{V_{J}}{V_{E}}\right)^{2}=\left(\frac{59.5^{\mathrm{kmm} / \mathrm{s}}}{11.2^{\mathrm{L} / /_{\mathrm{s}}}}\right)^{2}=28.2
\end{aligned}
$$

Check

$$
\frac{K_{J}}{K_{E}}=\frac{M_{J}}{M_{E}} \frac{R_{E}}{R_{M}}=318 \frac{12,000}{143,000}=28.5
$$

HW Set VIII- page 2 of 8
 PHYSICS 1401 (1) homework solutions

14-34 Planet Roton, with a mass of $7.0 \times 10^{24} \mathrm{~kg}$ and a radius of 1600 km , gravitationally attracts a meteorite that is initially at rest relative to the planet, at a great enough distance to take as infinite. The meteorite falls toward the planet. Assuming the planet is airless, find the speed of the meteorite when it reaches the planet's surface.

$$
\begin{aligned}
& \text { 14-34 Mechanical energy } \quad \begin{array}{r}
K+U) \quad \text { is conserved, where } \\
K
\end{array}=\frac{1}{2} m v^{2} \quad U=-G \frac{M m}{r} \\
& \text { Initially } r_{0}=\infty \quad v_{0}=0 \quad \text { so } K+U=0 \\
& \text { At surface, } r_{2}=R \\
& \frac{1}{2} m^{\prime} V_{s}^{2}-C \frac{M x}{R}=0 \\
& V_{s}=\sqrt{2 \frac{G M}{R}}=\sqrt{2 \frac{\left(6.67 \times 10^{-11}\right)\left(7.0 \times 10^{24}\right)}{1600 \times 10^{3}}} \\
& V_{s}=2.42 \times 10^{4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

14-48 A satellite hovers over a certain spot on the equator of (rotating) Earth. What is the altitude of its orbit (called a geosynchronous orbit)?

HW Set VIII- page 3 of 8
 PHYSICS 1401 (1) homework solutions

14-51 In 1610, Galileo used his telescope to discover four prominent moons around Jupiter. Their mean orbital radii a and periods T are as follows:

Name	$\boldsymbol{a}\left(\mathbf{1 0} \mathbf{B}^{\boldsymbol{m}} \boldsymbol{m}\right)$	\boldsymbol{T} (days)
Io	4.22	1.77
Europa	6.71	3.55
Ganymede	10.7	7.16
Callisto	18.8	16.7

(a) Plot $\log \mathrm{a}(\mathrm{y}$ axis) against $\log \mathrm{T}$ (x axis) and show that you get a straight line.
(b) Measure the slope of the line and compare it with the value that you expect from Kepler's third law.
(c) Find the mass of Jupiter from the intercept of this line with the y axis.

$$
14-51
$$

$$
\text { Kepler's 3rd Law } 4 \pi^{2} \text { says }
$$

$$
T^{2}=\left(\frac{4 \pi^{2}}{G M_{3}}\right) a^{3}
$$

Here T and a are the periods and orbit radii A Jupiters moons and $M_{5}=$ mass Jupiter
Applied + Earth's motion around the Sun (mass M_{∞})

$$
T_{E}^{2}=\left(\frac{4 \pi^{2}}{G M_{\theta}}\right) r_{2}^{3}
$$

Ratio $\left(\frac{T}{T_{E}}\right)^{2}=\left(\frac{M_{\odot}}{M_{J}}\right)\left(\frac{a}{r_{E}}\right)^{3}$
or $\quad\left(\frac{r_{G}}{a}\right)=\left(\frac{M_{\sigma}}{M_{J}}\right)^{1 / 3}\left(\frac{T_{E}}{T}\right)^{2 / 3}$
(a)
graph

(b) Slope (between $I_{0}+$ cellist i)

$$
S_{\text {lope }}=\frac{2.55-1.90}{2.31-1.34}=0.67
$$

$$
\frac{\text { very close to the }}{\text { predicted } 2 / 3}
$$

$$
\text { (c) Extrapolate straight line to } \log \left(T_{T} / \tau\right)=0 \text { (intercept) }
$$

$$
\begin{aligned}
& \text { of } \log \left(\frac{r_{t}}{a}\right) \text { is } 1.68-0.67=1.01 \\
& S_{0}, \quad \frac{1}{3} \log \left(\frac{M_{0}}{M_{J}}\right)=1.01 \Rightarrow \frac{M_{0}}{M_{J}}=10^{3.03}=1072
\end{aligned}
$$

$$
M_{J}=\frac{M_{0}}{1072}=\frac{2.0 \times 10^{27} \mathrm{ks}}{1072}=1.87 \times 10^{27} \mathrm{bg}
$$

HW Set VIII- page 4 of 8
PHYSICS 1401 (1) homework solutions
14-53 In a certain binary-star system, each star has the same mass as our Sun, and they revolve about their center of mass. The distance between them is the same as the distance between Earth and the Sun. What is their period of revolution in years?

14-53 Solve from basic principles and Kepler's Lur

Our solar system

Accelenctions are

$$
a=\frac{v^{2}}{r}
$$

So $M \frac{v^{2}}{r}=G \frac{M^{2}}{(2 r)^{2}}$
$\operatorname{gives}\left(v^{2}=C \frac{M}{4 r}\right)$

Since the orbit is circular, the period of the binary about the C. of M. is T_{B}, where

$$
v=\frac{2 \pi r}{T_{B}}
$$

Combining $\quad \frac{4 \pi^{2} r^{2}}{T_{B}^{2}}=G \frac{M}{4 r}$

$$
\text { or } \begin{aligned}
& T_{B}^{2}=\frac{16 \pi^{2} r^{3}}{G M}, \text { and putting in } r=a / 2 \\
& T_{B}^{2}=\frac{2 \pi^{2} a^{3}}{G M}, \\
&\left(\frac{T_{B}}{T_{E}}\right)^{2}=\frac{1}{2} \quad \begin{aligned}
& \text { compare with } \\
& T_{B}=\frac{1}{\sqrt{2}} T_{E}^{2}
\end{aligned} \\
& T_{B}=(.707)(1 \text { year }) \\
& T_{B}=0.71 \text { y ear }
\end{aligned}
$$

HW Set VIII- page 5 of 8
PHYSICS 1401 (1) homework solutions
15-12
(a) Assuming the density of seawater is $1.03 \mathrm{~g} / \mathrm{cm} 3$, find the total weight of water on top of a nuclear submarine at a depth of 200 m if its (horizontal cross-sectional) hull area is 3000 m^{2}.
(b) In atmospheres, what water pressure would a diver experience at this depth? Do you think that occupants of a damaged submarine at this depth could escape without special equipment?
15-12
Weight q water on $3000 \mathrm{~m}^{2}$ at a depth of $h=200 \mathrm{~m}$ is

$$
\begin{aligned}
& W=9 \mathrm{gh} A=\left(1.03 \times 10^{3} \frac{\mathrm{leg}}{\mathrm{~m}^{2}}\right)\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(200 \mathrm{~m})\left(3000 \mathrm{~m}^{2}\right) \\
& \left.W=6.06 \times 10^{9} \text { Newtons } \quad \text { (or abms } 1.4 \times 10^{9} \mathrm{lbs}\right)
\end{aligned}
$$

The pressure is

$$
\begin{aligned}
& p=\rho g h=\frac{\omega}{A}=\frac{6.06 \times 10^{9} \mathrm{~N}}{3000 \mathrm{~m}^{2}}=2.02 \times 10^{6} \text { Paschal } \times \frac{1 \mathrm{atn}}{1.01 \times 10^{5} \mathrm{~Pa}} \\
& p=20 \text { atmospheres } \quad\left(\begin{array}{r}
\text { or about } 300 \mathrm{lbs} \text { on } \\
\text { every square inch } \\
\text { Human body would inpled!.) }
\end{array}\right.
\end{aligned}
$$

15-18
The L-shaped tank shown in Fig. 15-32 is filled with water and is open at the top. If $\mathrm{d}=5.0 \mathrm{~m}$, what are
(a) the force on face A and
(b) the force on face B due to the water?

$15-18$
(a) Surface A is $h_{A}=2 d$ below the top. Hence, the pressure at this depth is

$$
P_{A}=\rho g h_{A}
$$

$$
\text { so } \quad P_{A}=2 \rho g d
$$

and the net force is $\quad F_{A}=p_{A}(d)^{2}=2 \rho \mathrm{gd}^{3}=2\left(1.0 \times 10^{3}\right)(9.8)(5.0)^{3}$

$$
F_{A}=2.45 \times 10^{6} \text { Newtons }
$$

(b) The pressure on surface B varies with distance (vertical) The variation, however, is linear, so we can wee the arerrege pesifir $1 / 2$ way up.... This position is $\frac{5}{2} d$ from the top. Hence,

$$
\begin{aligned}
& F_{B}=P_{A v} A \\
& F_{B}=\rho g\left(\frac{5}{2} d\right) d^{2}=\frac{5}{2} \rho g d^{3} \\
& \text { So } F_{B}=\frac{5}{4} F_{A}=3.06 \times 10^{6} \text { Newtons }
\end{aligned}
$$

HW Set VIII- page 6 of 8
PHYSICS 1401 (1) homework solutions
15-28 A blimp is cruising slowly at low altitude, filled as usual with helium gas. Its maximum useful payload, including crew and cargo, is 1280 kg . The volume of the he-lium-filled interior space is $5000 \mathrm{~m}^{3}$. The density of helium gas is $0.16 \mathrm{~kg} / \mathrm{m}^{3}$, and the density of hydrogen is $0.081 \mathrm{~kg} / \mathrm{m}^{3}$. How much more payload could the blimp carry if you replaced the helium with hydrogen? (Why not do it?)

15-28
In general, the bouyant force is

$$
B=\rho g V
$$

So the payload (or weight) difference comes form the difference between hydrogen $\left(\rho_{H}\right)$ and helium $\left(\rho_{H e}\right)$ densities, at STP.

$$
\begin{aligned}
& \Delta W=B_{H e}-B_{H}=\left(\rho_{\mathrm{He}}-\rho_{H}\right) \mathrm{gV} \\
& \Delta W=\left[(0.16-0.081) \frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right]\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}-}\right)\left(5000 \mathrm{~m}^{3}\right) \\
& \Delta W=3.87 \times 10^{3} \text { Newton }
\end{aligned}
$$

The mass of additional payload would be

$$
\Delta M=\frac{\Delta W}{g}=\frac{3.87 \times 10^{3}}{9.8}=395 \mathrm{~kg} \quad\binom{\sim 9.0}{\text { of weight }}
$$

This is not done (since catostrophic accidents in 1930's) because of hydrogen's flammability $\rightarrow>$ though this is really a chemistry issue!

HW Set VIII- page 7 of 8
PHYSICS 1401 (1) homework solutions
15-40 Figure $15-38$ shows the merging of two streams to form a river. One stream has a width of 8.2 m , depth of 3.4 m , and current speed of $2.3 \mathrm{~m} / \mathrm{s}$. The other stream is 6.8 m wide and 3.2 m deep, and flows at $2.6 \mathrm{~m} / \mathrm{s}$. The width of the river is 10.5 m , and the current speed is $2.9 \mathrm{~m} / \mathrm{s}$. What is its depth?

HW Set VIII- page 8 of 8
 PHYSICS 1401 (1) homework solutions

15-57 A pitt tube (Fig. 15-44) is used to determine the airspeed of an airplane. It consists of an outer tube with a nomber of small holes B (four are shown) that allow air into the tube; that tube is connected to one arm of a U-tube. The other arm of the U-tube is connected to hole A at the front end of the device, which points in the direction the plane is headed. At A the air becomes stagnant so that $\mathrm{v}_{\mathrm{A}}=0$. At B , however, the speed of the air presumably equals the airspeed v of the aircraft.

(a) Use Bernoulli's equation to show that

$$
v=\sqrt{\frac{2 \rho g \kappa}{\rho_{a i r}}}
$$

where ρ is the density of the liqaid in the U-tube and h is the difference in the fluid levels in that tube.
(b) Suppose that the tube contains alcohol and indicates a level difference h of 26.0 cm . What is the plane's speed relative to the air? The density of the air is 1.03 $\mathrm{kg} / \mathrm{m}^{3}$ and that of alcohol is 810 $\mathrm{kg} / \mathrm{m}^{3}$.

15-57

(a) At the entrance (A), the air is deflected to the sides. So, the velocity of the air at in the entry to the tube is

$$
P_{A}=0 \quad \text { (atmosplesic) }
$$

On the otherhand, at (B) the air is rushing by at speed v. From Bernoulli equation

$$
P_{A}=P_{B}+\frac{1}{2} \rho_{Q} U^{2} \quad \text { where } \rho_{0}=\text { air density }
$$

This So the pressure at (B) is $\frac{1}{2} \rho v^{2}$ lear than atmospheric. This balanced by liquid pressure $\Delta p=\rho g h=\frac{1}{2} \rho v^{2}$ Hence, $\quad v^{2}=\frac{2 \rho g h}{\rho a}$ or $v=\sqrt{\frac{2 \rho g h}{\rho a}}$
(b) For case given

$$
v=\sqrt{\frac{2(810)(9.8)(0.26)}{1.03}}
$$

