HYD-64

Bureau of Reclamation
Hydraulic Machinery Laboratory
Denver, Colorado
August 21, 1939

Laboratory Report No. HMA Grand Coulee Pumping Plant. Columbia Basin Project Compiled by: F. Tessitor Checked by: D. J. Hebert Submitted by: G. J. Hornsby

Subject: Hydraulic model studies of the Grand Coulee pumping-plant intake

1. Introduction. The normal reservoir elevation at Grand Coulee Dam is 1288.0 and the minimum elcvation is 1208.0 , making a maximum draw-down of 80 feet. The maximum receiving, canal elevation is 1585.0 . Thus, the maximuin head on the pumping plant will be 377 fect. The normal lift, however, will be from elevation 1288 to clevation 1585 , or 297 feet. The pumps will bc rated at 295 fect head with a delivery of 1,600 c.f.s. per pump. There will be twclvc pumps in the plant, each constituting a separate unit with its own inlet and outlet conduits 14 foct and 12 fect in diameter, respectively.

The tests describod in this report have to do only with the inlct conduit from the resorvoir to the pump inlet flange. This includes the trashracks, tho entranec through the gates, the coinduit, and the clbow undor the pump. While it is understood that the head losses in the various components of the inlet structurc arc important, it is bolieved that the volocity and the prossurc distribution at the inlct flange of the pump aro also important to the efficient performance of the unit as a whole. For this reason considerable attention was given to this point in the tests.
2. Summary. Hydraulic model studics on a scalc of l:17.3 wore made of three types of elbows and two types of ontrances in connection with the design of the intakes for Frand Coulce pumping plant.

It was found that from the standroint of encrgy loss there is very littlo difforence, for most practical purposes, amone the three olbows and betweon the two entranecs.

The total loss in the intakc obtaincd by cxtrapolating model valucs to the prototype Reynolds' number is ostimated to bo $\frac{0.20 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ where V is the moan velocity in the 14 -foot diametcr pipe. This total loss is mado up approximatuly as follows: $\frac{0.10 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ in the ontrance, $\frac{0.04 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ in the straight pipe, and $\frac{0.06 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ in the clbow with its attached reducer.

From the standpoint of velocity distribution in the coirduit, the circular entrance was slightly superior to the rectangular one. From the standpoint of distribution at the inlet flange of the pump, the vaned elbow was definitely superior to the two converging clbows.
3. Purpose of model studies. These studies were undertaken for the purpose of investigating the behavior of various elbows in the pumping plant intake line as proposed. By intake is meant the entire conduit from the forebay to the pump suction eye, including trashrack structure, entrance, straight conduit, and elbow. However, as the work progressed it was thought desirable to include studies of other types of entrances for comparativo purposes.

Information was desired as to the hydraulic losses to be encountered with the several different installations, as well as the velocity distribution at several points in the intake system, particularly at the inlct flange of the pump.
4. Set-up and test procedure. In the test set-up, water is drawn from a forebay through the model of the intake by means of a vertical, single-suction, centrifugal pump. The pump dischargos back into the forcbay behind suitable bafflcs through a 6-inch diametcr pipo fitted with an end cap orifice which is used to measure the discharge. For the different runs, the amount of flow was determined by adjusting the valve so that the hoight of a mercury column attached to the discharge orifice was set to a definite point. This setting of the mercury column was donc visually, anci, with reasonable care, could be sct so that different runs at the sarnc flow might vary ± 0.025 inch in setting. Tho punp is not to bo considered part of the model studies. A gencral view of the set-up is shown on plate A.

Upon considcration of the various factors involvod, a model scalc of 1 to 17.3 was chosen. The intake opening was made of wood and installed in such fiashion that changos could be made casily. The rest of the intake from the ontrance to tho pump was made of pyralin to permit visual observation. Provision was made at suitable sections in this part of the intake for making the necessary physical measurements.

The tost procedure consistcd of moasuring hydraulic losses and moking velocity traverses. The lossos were measurcd in the convontional mannor, by installing piczomoter rins and connectine thesc to open manometors. The vclocity traverscis irce first obtaincol through tho uiso of a sphorical pitot tube known as the "Staukugel." This tubo has five openings on the portion of the sphore facing the streain flowe Tho five oponings are so placod that their radings permit computation of the vclocity vector both as to dircction and macnitude. How-

From the standpoint of velocity distribution in the conduit, the circular entrance was slightly superior to the rectangular one. From the standpoint of distribution at the inlet flange of the pump, the vaned elbow was definitely superior to the two converging elbows.
3. Purpose of model studies. These studies were undertaken for the purpose of investigating the behavior of various elbows in the pumping plant intake line as proposed. By intake is meant the entire conduit from the forebay to the pump suction eye, including trashrack structure, entrance, straight conduit, and elbow. However, as the work progressed it was thought dosirablc to include studies of other types of entrances for comparativc purposes.

Information was desired as to the hydraulic losses to be encountered with the several different installations, as well as the velocity distribution at several points in the intake system, particularly at the inlct flange of the pump.
4. Set-up and test procedure. In the test set-up, wator is drawn from a forebay through the model of tho intake by means of a vertical, single-suction, contrifugal pump. The pump discharges back into the forobay behind suitable bafflos through a 6-inch diametcr pipc fitted with an end cap orifice which is used to measurc the discharge. For the differcnt runs, the amount of flow was detcrmined by adjusting the valve so that the hoight of a mercury column attachod to the discharge orifice was set to a definite point. This setting of the mercury column was donc visually, andi, with reasonable care, could bo sct so that different runs at the sarne flow might vary ± 0.025 inch in setting. Tho pump is not to bo considered part of the model studies. A general vicw of the set-up is shown on plate A.

Upon considcration of the various factors involved, a model scalc of 1 to 17.3 was choson. The intake opening was made of wood and installed in such fashion that changes could be made easily. The rest of the intake from the ontrance to the punp was made of pyralin to permit visual observation. Provision was made at suitable sections in this part of the intake for making the nocessary physical measurements.

The tost procedure consistod of moasuring hydraulic losses and making velocity travorsos. The losses wore measurod in the conventional mannor, by installing piczomoter rin ws and connecting thesc to open manometors. The velocity travorsos vore first obtaincd through tho uisc of a sphorical pitot tubc known as the "Staukugel." This tubc has five openings on the portion of the sphore facing the stroan flow. Tho fivc oponings are so placod that their radings permit computation of the vclocity vcctor both as to dircction and magnitudc. How-
over, upon invostigation and an attomptod calibration of this inm strumont, it was found to have objoctionable characteristics for the use to which it was put. It was thorofore docidod to use a cylindrical pitot tube which calibration showed to bo froo from the undesirable charactoristics of the pitot sphere. This tube was built on the basis of the studies made by Ficchheimer. It has only three oponings lying in a planc porpendicular to tho axis of the oylindor. Thosc threc oponings allow a dotormination of the dircction and marnitude of tho velocity in that plane only. Howover, it is possible, by the proper location of any numbor of traverses, to got the actual dircetion and magnitude of the velocity voctor at any point. It was obsorved that the flow at tho soctions chosen did not doviatc from a direction perpendicular to the planc of the section sufficiently to warrant the taking of more then the two traversis in any given soction. This gave only tho contior pioint (whore the two traversos intersect) as the place where the dircotion of the velosity could be doturmined in thres dimensions.

In lieu of actual measurcincnts of direction (cxoent in one plane) visual obscrvations wore rilicd upon to study any abnormal conditions of flow within the conduit and clbows. The use of air and dyc in the fluid flowine throurh the model shoved up the objectionablo characteristies and the desirable icaturc of the various sot-ups tostod. Thoso obscrvations have bewn relicd upon to tomper the verious doductions dravirn from the data.
5. 县解trances tosted. Two res of entrances viere stuaied. One, which will hereafter be called the rectangular entrance, is the original design. This entrance is rectanfular at the face of the dam and has a transition section to the circular portion of the intake conduit. The intake up to the elbow is on a slope of 10 degrees. The second entrance studied was a circular bellmouth entrance dosimed acoording to information obtained previously in the laboratory. This ontrance is horizontal for a short distance and there turns by mans of a l0-degree bend to meet the normal slope of the intake pipe. Other comparative features of thesc ontrances may be obtaincd from the sketch on ficeures 1 and 2. The lo-dogree slopo of the conduit requiros that the elbow turn the water 100 dogroes instead of 90 dugroes. This should bo borne in mind when studying the results prosontod heroin.
6. Elbows tostod. Throc types of olbows were testod. The first one, subinitted by the design scotion, had a circular ontrance which changed proprossively to an olliptical soction at the outflow end, the minor axis, winich lios in the plane of the bond, becoming shorter and the major axis rumainiag sonstant. Tho soctional area and the radius of curvatur change in such a manner that the product of the velocity times the radius remains cons cont. A transi-
tion scction, changing from the elliptical to a circular section, was necessary between the elbow outflow and the pump inlet flange. This elbow will hereafter bc referred to as the flliptical clbow.

The second elbow tested was a miter bend with a section containing vancs inserted at the intersection of the two segments. A rather sharp convergenco was requircd between the elbow and the pump inlct flange to reduce the full intake diamotor to that requircd at the pump. This elbow, which was dosigncd in the laboratory, will hercafter be referred to as the vanc olbow.

The third type tested vras a constant radius clbow with a gradual convergence from the intako pipe up to the pump inlet flange. This elbow, which was sumitted by the design section and modified slightly in the laboratory, will be referred to horeafter as the convergine elbow. Photographs of the various elbows are shown on plate B.

An explenation of the choice of measurement sections would bo appropriatc herc. The scotions were located in such a manner that the hydraulic effects of the various parts of the intake could be observed. Section "D" was located immodiately downstream from the entrance and section "C" imacdiately upstroam froin the beginning of the elbow. These two scetions are common to all tests. The location of scction " B " varied according to the clbow being tested, but, in general terms, it was located at the outflow end of the elbow proper. Section "A" was locited as clusc to the pump impoller cyo as physical limitations pormittod.

During the progress of the test it was decided, on the basis of the promising results obtained from the vane elbow, to study the possibilitics of decreasing the size of the whole pump intakc. As this could be donc very easily by use of the vane type of elbow, a $6-1 / 2$-inch diameter intakc was built of pyralin with a corresponding: wooden bellmouth entrance. The same series of tests was conducted on this set-up as for the others.

An interosting deviation from the main program of tests consisted in investigating the effect on cntrance loss of the various components of the trashrack structurc. Piczemetor roadings were taken at scetion "D" ior various discharges, with the complete installation in place. The next step consisted in removing portions of the trashrack and measuring the lossos through the same range of flow. Next, the trashrack piers and bars were remeved and the losses measured. This was carried through systernetically until the rectangular cntrance wes clcan with the f'acc of the dam, as shown in platc C. Thesc rosults are given in table 1.

Attention is called to the fact that all results given are for a condition of minimum reservieir clevation. This was used as the worst pussible operating cendition lilrcly to occur. A checle was made to sec if the tost results wore influenced by suction head, but it was found not to have any measurable effect on the model rosults through a variation of about 18 inches (26 foct prototype). All subscquent tests wore made with the minimum reservoir elcvation.
7. Rosults. Since it vras dorided boforo completion of the model tests that the sizc of the intalco conduit in the prototyo would be 14 feet in diamctor, the tosts for the various elbows and ontrances are compared on the basis of a convergance from 14 feet to 9.5 feet at the pump inlet flange.

A comparison of the volocity distributions for both types of cntrancos is shown in figurc 3 in the dimensionluss plut. It is apparont that the volocity distribution is more noarly symatrieal in the bellmouth cntrancc than in the roctangular onc. It must bo romombered that by bollmouth ontrance is incant the bellmouth propor plus the lo-degree bend, becausc the measuring scotion is just downstream from the bend. The difforence betweon the distribution of flow in the two entronces is quitc small and evon this small difference practically disappears before the elbow is reachod.

In order better to predict the velocity distribution in the prototype, the model discharee was doubled. The distribution of velocity remained the seme at the section tosted (see dimonsionloss plot, sce. D, figure 3). For this incroased discharge the velocity in the model was five foot por scecnd. The velocity in the prototype vill be 10 foct per scound. Sinco the scole ratio is 17.3, the Reynolds: number in the protutype will be about 35 times that in the model. Thoreforc, the effects of fricticn will be relatively smaller in the prototype, with the result that the prototype will tond toward a more uniform distribution provided the distribution is symetrical in the modol. If, hevevor, the distribution is not symmotrical, as in the case of the rectangular entrancc, conditions are likely to bo aggravated at hicher Reynclds' numbcrs. The measurements were taken without the trashrack strurture. It is believed that the trashracks and piers will bo a stabilizing influenco without affocting the flow pattorn.

The losses in the two types of entrances are shown in table 2. The relative morits af the differont set-ups tostod may bost be detormined by kocping in mind the experimental orror inhorent in the individual values given. In obtaining the losses a.t the various soctions, wator manmetors wore used to roed the pressures. Those manometers wore rond with an acouracy of ± 0.001 foot. The loss in hoad from the hoadvater to any section is obtainod by
subtracting the velocity head at that section fron the difference in pressure as determined from the water manometer readings. Due to the possible variation in setting the flow, the velocity head may vary ± 0.001 foct and the pressure readings fron each manometer may also vary ± 0.001 foot. The determination of loss would have an accuracy of ± 0.003 foot (since two separate manometer readings are used in the detemination). Exprussed in percent of velocity head, the maximum variation would be of the order of magnitude of ± 2.5 percent at the lowest model discharge. In general, the loss in the bellmouth entrance is lower than in the rectangular one when the gates are not in place. A comparison between the two entrances, with their respective gates in place, is given in table l. In this case the bellmouth entrance is superior by from two to five percent of the velocity head. The loss, expressed in terms of ve.. locity head, will be less in the prototypc than in the model so that the values obtained in the model are on the safe side.

The loss in the trashrack structure was just barely perceptible in the model, being of the order of 0.005 foot at a velocity of 5 fect por socond in the conduit. Since the velocity in the prototype is 10 fect per sccond, the loss will be of the ordor of 0.005 foot at a velocity of 5 foet por second in the conduit. Sincc the velocity in the prototype is 10 feet per sccond, the loss will be of the ordor of 0.03 foot, vihich is nogligible. By far the most significant factor in the ontranco lossos was showm by the effect of the gate slots. A comparison of colums 4 and 5 in table 1 shows the effoct of filling in the gate slots. As these tests were made with the rectangular entrance, the losscs, of course, are applicable to that entrance only.

The values of K, in the formula for loss in the entrance, $h=\frac{K V^{2}}{2 g}$, may safely be talron as 0.10 for the bellmouth and 0.12 for the roctangular ontranco.
8. Elbows. A comparison of the thrce clbows, using the bellmouth ontrance, is shown in figure 4. As pointed out previously, it was found that the type of eatrance had a vory minor offect on the flow in the olbows. Therefore a comparison on the basis of cither entranco is valid.

From the standpoint of vilocity distribution in the cross section innodiately preceding the puap, the elbows in the order of their performance are vane cilbow, converging clbow, and olliptical elbow. The converging end the chliptical olbows show their influence on velocity distribution in accordsnce with previous experimental work. Therc is an incroasc of velocity c.long the inacr radius until the cxit soction is raachod (section B). At this point there
is separation with correspondingly lower velocity. The dimensionless plot of distribution on figure 4 brines out the severity of the separation in the elliptical elbow compared with the converging elbow. This tendency in the elliptical elbow is no doubt accentuated by the proportions of the transition section required.

The vane elbow exhibits very different characteristics, and, since this type of elbow is just berining: to claim attention, some additional discussion is in order. This type of elbow has been used for some time in the aerodynamics laboratories for the purpose of turniné air with a minimuin distortion of velocity distribution. More recently it has been found by other investigators that by a carefiul and suitable design of the vanes this type of elbow can be meide to give losses comparable to the best elbows of the conventional trype. The design of the vanes in the elbove tested in the laboratory followod the sugestions proposed by Krober in technical momorandum No. 722 of the N.A.C.A. Nine thin vancs vicre installed with a shape approximatine those proposcd by Krober. More oxperimontation could be donc in detcrmining the most officicat typc of vane, but it was folt that in this study it was not justificd becausc of the rcla.tively low velocitios and correspondingly low lossus.

The losses, as measurcd bur means of piczomotor rings, are shown in tablc 2. Those are total losses from forebay to the measuring section indicated. The elliptical clbow shows an approciably hicher loss than the othor two clbows. The vane and convereing elbows show: practically the same loss. The losses measured in this mannor aro dopondeint upon the velocity distribution and the curvature of the stroam linos. Therefore, it was decided to evaluate the losses by intograting the pitot-tubc incasuramcints of total pressurc. At any point the difforence betwecn the potential of the forcbay and tho total pressure is the loss in unergy to this point. Those encrgy lossos arc prosented in figure 5. To get the avoraro loss por pound of fluid, these losses are multipliod by the velocity, intcgrated over the cross scetion and thon divided by tho discharge. The losses obtained in this way differ materially from the losses obtainod in tho usual manier. The tutal loss por pound to soction "A" for $Q=1.300$ c.f.s. are as follows: Venc, 0.055 font; clliptical, 0.046 foot; converging, 0.033 foot. Considering the fact that the probible crrer may be four or five percent, the three elbows show very closu agreameint.

In comparing these losses with the losses dorivod from the piezomstor measurements, several differences may be noted. The loss in the olliptical clbow has bcon materislly roduccid. This reduction can bo oxplained by roferring to tho velocity distributione The distribution is distorted to such on oxtcint that the piezonetric pressurc moasurcd at the pipc wall will vary around the circunfor-
ence. Tho average prossure is then more a function of the piezometor locations than of the actial mean pressure in the cross section. In the case of the converging elbow, the distribution is better; therefore the closer agreement obtained is to be expested. For the vane elbow the agrcement should be very close, since the distribution of velocity is quite uniform both in magnitude and direction. There is a discrepancy in this case, and it is felt that more vreight can be placed on the loss from the piezometer readings. Therefore the true loss in the vane elbow set-up will be in the neighborhood of 0.042 foot when the value in table 2 is corrected from $Q=1.426 \mathrm{c} . f . \mathrm{s}$. to $Q=1.300$ c.f.s. This adjustinent brings the three clbows into even better agreement.

In summary, it can be stated that on the basis of energy loss, as deternincd by thesc tests, there is vcry little difference among the three elbows.

The change in the percentage loss with increasing discharge is shown in table 2. The percentage loss in the prototype will be somewhat less than in the model because of the highor Reynolds' number. On the other hand, if the relative roughness is groator in the prototype, the percentagc loss will tond to be higher. The range of discharges in the inodel was not sufficiently wide to scrve as a basis for extrapolation. A reasonable value for design purposos would be a loss coefficicnt of 0.20 . The head loss from the forebay to the pump inlct would then be $-\frac{0.20 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ where $\mathrm{V}=$ velocity in the l4-foot diamoter pipe. The magnitude of the loss would be $0.20 \times 1.6=0.32$ foot. This loss amounts to only 0.1 percont of the total pumping hcad and can bo considcrod negligible.
9. 6-1/2-inch diameter intake model. Sinco the results obtained with tho vane clbow showed considerable promise, it was decided to construct an intake which had a constant diameter equal to that of the pump inlet. Because the vane clbow required only slightly more depth than the conduit diameter, it was possiblc to make the intake horizontal. The bellmouth was formed to approximately the same shape as the larger bollmouth cintrance. The dosimn of the elbow was changed so that thore were only seven vancs as contrasted with ninc vancs in the largor elbow. The vclocity distributions at the various sections are shown on figure 6. The distribution is not as good as in the larger vanc elbow: There is a breaking away of the flow at the inside of the miter. One reason for this is the smaller number of vancs and the corresponding largor passages. The drag induced by tho vanes shows up very clearly in these tosts; however, the variations in velocity caused by this draf are only of the ordor of four percent. The velocity distribution is not as satisfactory as that obtained in the larger vane elbow, and it servos to bring out the need
for more experimental study before a basis for design can be established.

The head loss from forebay to pump is higher than in the larger installation, due to higher velocities. The loss in the prototype, estimated by lowering the model values to take account of the higher Rejmolds' number, is $\frac{0.30 \mathrm{~V}^{2}}{2 \mathrm{~g}}$, where $\mathrm{V}=$ velocity in the 9.5-foot diameter pipe. The magnitude of this loss would be 0.30 x $7.94=2.4$ feet, which is 0.75 percent of the total head.
10. Conclusions. Before drawing any definite conclusions, it is well to review first the particular factors involved in the problem and, socond, those whirh are peculiar to the model set-up.

First, the olbows which turn the wator through 100 degrees end a short distance from the eye of the pump inpeller. The choice of diameters for the pump inteke and the conduit makes it necessary to have a fairly sharp convergence betweon the olbow and the pump inlet flange.

Second, the pump used in the model study is not an homologous model pump and does not simulate the prototype. Therefore any effect of the laboratory pump on the model intake is peculiar to the modcl study and camnot be transforred to the prototype. This offoct inight be a distortion of the flow pattern as a result of unsymmetricil flow through the pump. On the other hand, the model pump may have a stabilizing effect. Whatcver the effect, it would be small, and if sccondary disturbances are neglected, this effoct of the pump will bo cancelled out in a comparative study.

Third, the losses deterinined in the model have an accuracy of ± 0.003 foot.

Bearing these factors in mind, the following conclusions are drawn from tho model studicis:

The bcllmouth entrance is slightly bettcr than the rectangular contrance froin the standpoint of velocity distribution and loss of head. Thc diffurence in loss cocffisicnt "K" is of the order of two to throe percent in favor of the bollmouth design. The minimuin ontrance loss measurcd in the rodel was $\frac{0.10 \mathrm{~V}^{2}}{2 \mathrm{~g}}$, where V is the velocity in the conduit. The loss in the prototype will bo relatively smaller bocause of the higher value of Roynolds' number. A valuc of loss taken as $\frac{0.08 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ would be safe, considering the magnitudo of
the velocity head in the prototype. The losses in the trashrack structure were of the same order of magnitude as the observation error, so that no definite figures can be given for design data. The loss due to the gate slots is the greatest factor in the total loss in the rectangular entrance.

On the basis of head lost in passing through the elbow, there is very little difference among the three elbows. This is not surprising because in the usual installation of an elbow the major portion of the loss attributable to the elbow is developed in the downstream tangent, due to maldistribution of the velocity. In the problem of the pump intake, there is no downstream tangent, but there is the pump which may be affected by the velocity distribution.

From the standpoint of distribution, the vane elbow is definitely the best elbow, with the converging elbow next bost. No attempt was made to find the magnitude and direction of the effect of the elbow on the performance of the pump. If this effoct is appreciable, the vane elbow would appear to be the most desirable elbow. If the effect is negligible, the choice of elbow is merely onc of cost. In other words, the elbow which can be built most economically is the most desirable one.

Elliptical Elbow

Vane Elbow

1. Fully Installed

2. Trash Racks Removed

TABLE 2

PIEZOMETER MEASUREMENTS OF LOSSES ' $h f$ ' IN FEET OF WATER

 BELL-MOUTH ENTRANCE| DISCHARGE c. f. s. | SECTION-A | | | | | | SECTION-C | | | | | | SECTION-D | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ELL. ELBOW | | VANE ELBOW | | CONV. ELBOW | | ELL. ELBOW | | VANE ELBOW | | CONV. ELBOW | | ELL. ELBOW | | VANE ELBOW | | CONV. ELBOW | |
| | h_{f} | \%V. $\mathrm{H}^{3 /}$ | $h_{\text {f }}$ | \%V.H. ${ }^{\text {* }}$ | h_{f} | \%V. H. ${ }^{\text {* }}$ | h_{f} | \%V.H.* | h_{f} | \%V. H. ${ }^{\text {* }}$ | h_{f} | \%V. $\mathrm{H}^{\text {\% }}$. | h_{f} | \% V. H. ${ }^{\text {* }}$. | h_{f} | \%V.H.* | h_{f} | \%V.H.* |
| 1.426 | . 104 | 86.7 | . 045 | 37.5 | . 042 | 35.0 | . 030 | 25.0 | . 027 | 22.5 | . 027 | 22.5 | . 020 | 16.7 | . 020 | 16.7 | . 018 | 15.0 |
| 1.697 | . 141 | . 83.0 | . 062 | 36.5 | . 063 | 37.1 | . 041 | 24. 1 | . 038 | 22.3 | . 038 | 22.3 | . 030 | 17.6 | . 025 | 14.7 | . 026 | 15.3 |
| 2.016 | .184 | 77.0 | . 075 | 31.4 | . 076 | 31.8 | . 055 | 23.0 | . 047 | 19.7 | . 050 | 20.9 | . 040 | 16.7 | . 032 | 13.4 | . 036 | 15.1 |
| 2.400 | . 247 | 72.9 | . 100 | 29.5 | . 095 | 28.0 | . 073 | 21.5 | . 066 | 19.5 | . 069 | 20.3 | . 055 | 16.2 | . 047 | 13.9 | . 052 | 15.3 |
| 2. 603 | . 270 | 67.5 | . 114 | 28.5 | . 102 | 25.5 | . 083 | 20.7 | . 075 | 18.7 | . 077 | 19.2 | . 065 | 16.2 | . 054 | 13.5 | . 054 | 13.5 |
| RECTANGULAR-TRANSITION ENTRANCE | | | | | | | | | | | | | | | | | | |
| 1. 426 | . 100 | 83.3 | . 045 | 37.5 | . 044 | 36.7 | . 030 | 25.0 | . 027 | 22.5 | . 030 | 25.0 | . 025 | 20.8 | . 025 | 20.8 | . 027 | 22.5 |
| 1.697 | .131 | 77.0 | . 054 | 31.8 | . 059 | 34.9 | . 039 | 23.0 | . 038 | 22.3 | . 038 | 22.3 | . 030 | 17.6 | . 034 | 20.0 | . 033 | 19.4 |
| 2.016 | .165 | 69.0 | . 082 | 34.3 | . 079 | 33.0 | . 054 | 21.3 | . 051 | 21.3 | . 056 | 23.4 | . 040 | 16.7 | . 044 | 18.4 | . 048 | 20.1 |
| 2.400 | . 220 | 64.9 | . 102 | 30.1 | . 097 | 28.6 | . 068 | 20.0 | . 071 | 20.9 | . 074 | 21.8 | . 053 | 15.6 | . 056 | 16.5 | . 059 | 17.4 |
| 2. 603 | . 246 | 61.5 | . 115 | 28.7 | . 115 | 28.7 | . 081 | 20.2 | . 078 | 19.5 | . 084 | 21.0 | . 064 | 16.0 | . 063 | 15.8 | . 068 | 17.0 |

** Percent of velocity head at Section C

BELL-MOUTH ENTRANCE

RECTANGULAR ENTRANCE

