#### Integrating Large Scale, Innovative Solar Thermal Systems into the Built Environment

U.S. DEPARTMENT OF

June 26, 2013 11:00am – 12:30PM Track: Renewable & Alternative Energy Sources Sponsor: 6.7 Solar Energy Utilization

ASHRAE

Oakland UNIVERSITY

Hybrid Geothermal / Solar Thermal HVAC System: Part1 Design (OU Human Health Building)

Jim Leidel Oakland University Denver, June 26, 2013

LEED PLATINUM

USGB

# Session Learning Objectives

- 1. What do solar thermal energy systems provide for the built environment?
- 2. Components of active solar thermal systems?
- 3. Examples of loads served by solar thermal systems.
- 4. Three case studies where large solar thermal systems.
- 5. Thermal energy storage (it's use and sizing) required by solar energy supply vs load. Review for each case.
- 6. Design challenges & major system design options faced while implementing large solar thermal projects.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation. 2

# AGENDA

- Quick Look at Solar Thermal Economics as Compared to Solar PV
- Case Studies:
  - Oakland University Human Health Building: Hybrid
    Geothermal / Solar Thermal HVAC System: Pt 1 Design
  - District Energy St. Paul: Solar Thermal & Biomass for Downtown St. Paul, Minnesota
  - Drake Landing Solar Community with Seasonal Energy Storage



## **Economics of Solar Thermal**

# Solar PV vs. Solar Thermal in Today's Marketplace



Utility Cost per kWhr (or kWhr equivalent of natural gas)

Comparison of the annual energy value of two separate \$10,000 solar systems: PV and solar thermal at various utility rates.

#### **PV** Annual Output Value for a \$10,000 Investment



Sensitivity analysis of \$10,000 PV investment with varying installed cost and natural gas or electric rates

#### **Thermal Annual Output Value for a \$10,000 Investment**



Sensitivity analysis of \$10,000 solar thermal investment with varying installed cost and natural gas or electric rates



Sensitivity analysis of separate \$10,000 PV or solar thermal investments with varying installed cost and natural gas or electric rates

## **Conclusion?**

Need to utilize solar thermal energy for more than just space heating & domestic HW.

Look at space cooling (displacing electricity usage)



### Located in Southeast Michigan, just north of Detroit in suburban Oakland County





Public University Golden Grizzlies 19,000 students 3.0M square feet 132 baccalaureate degree programs 126 graduate

degree and certificate programs



## **Clean Energy Projects at Oakland**



Human Health Building: Geothermal / Solar Thermal Hybrid Project

### What are Ground Source Heat Pumps?



also referred to as Geothermal Heat Pumps or GeoExchange

## HHB Project Overview

- Timeline •
  - Geothermal ground array bid package:
  - Geothermal ground array construction:
  - Main building construction begins:
  - Substantial completion:
  - Performance monitoring & reporting:
- Budget
  - Total project:
  - DOE share
  - Awardee share
- Barriers

April 2010 Summer 2010 June 2010 Summer 2012 2012 through 2014

\$9,778,930 \$2,738,100 \$7,040,830

(No funds received yet)

- Lack of experience with: Geothermal projects of this size, VRF heat pumps, large solar thermal systems, & desiccant cooling
- Architect / Engineer: ٠
- Construction Manager:
- Geothermal Specialist:

Smithgroup

Christman Company

Strategic Energy Solutions

## **Technologies Utilized**

### **Geothermal Heat Pump Demonstration**

Utilize a ground sourced heat pump HVAC system.

### Variable Refrigerant Flow Technology

Utilize variable refrigerant flow (VRF) heat pumps, allows for less compressors and enhanced internal heat recovery.

### Solar Thermal Desiccant Dehumidification

Dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

## **Geothermal System**



### Geothermal System (grant funded full system)

**Closed Ground Loop** 



## Variable Refrigerant Flow Heat Pumps



### Solar Thermal Desiccant Dehumidification



# Temperatures Needed for Thermally Activated Cooling Technologies



## 100% Outdoor Air Unit (with desiccant)

### **Exhaust Air**

# Exhaust from Space



Outdoor Air Intake

Conditioned Air to Space





**Dedicated Outdoor Air Units (DOAS)** 



## Ground Loop Spec's

#### **Geothermal Heat Pump Demonstration**

| HEAT EXCHANGER INFORMATION       |                              |  |  |
|----------------------------------|------------------------------|--|--|
| Configuration                    | Vertical Closed Loop         |  |  |
| Borehole Quantity                | 256                          |  |  |
| Borehole Depth                   | 320 feet                     |  |  |
| Borehole Separation              | 25 feet                      |  |  |
| Number of Circuits               | 20                           |  |  |
| Thermal Conductivity *           | 1.23 BTU / (hr-ft-deg F)     |  |  |
| Soil Diffusivity                 | 0.83 foot <sup>2</sup> / day |  |  |
| Undisturbed Ground Temperature * | 53.0 deg F                   |  |  |
| GHX Pressure Drop                | 42 feet of head              |  |  |
|                                  |                              |  |  |
| FLUID INFORMATION                |                              |  |  |
| Total Flow                       | 1,225 GPM                    |  |  |
| Fluid                            | Water only                   |  |  |
| Minimum HP Unit Inlet Fluid Temp | 40 deg F                     |  |  |
| Maximum HP Unit Inlet Fluid Temp | 90 deg F                     |  |  |

\* From formation thermal conductivity test data taken July 30, 2009

## Ground Loop Spec's (pg2)

#### **Geothermal Heat Pump Demonstration**

| GROUT INFORMATION                 |                                 |  |  |
|-----------------------------------|---------------------------------|--|--|
| Grout Type                        | Thermally Enhanced Bentonite    |  |  |
| Minimum Thermal Conductivity      | 0.88 BTU / (hr-ft-deg F)        |  |  |
| FLUSH & PURGE INFORMATION         |                                 |  |  |
| Minimum Fluid Velocity            | 2 feet / second                 |  |  |
| Minimum Purge Flow (per circuit)  | 75 GPM                          |  |  |
| Purge Pressure Drop (per circuit) | 47 feet of head                 |  |  |
| GHX CAPACITY INFORMATION          |                                 |  |  |
| Peak Heating                      | 2,000,000 BTU / hour (166 tons) |  |  |
| Peak Cooling                      | 4,920,000 BTU / hour (410 tons) |  |  |
| Heating EFLH                      | 1,455 hours                     |  |  |
| Cooling EFLH                      | 929 hours                       |  |  |











### **Meter Information**

| TAG                       | Description          | Unit | Media             | Dirctn | Meter           |
|---------------------------|----------------------|------|-------------------|--------|-----------------|
| <b>E</b> <sub>elect</sub> | Electrical utility   | kWhr | Electricity       | In     | Nexus 1262      |
| Ε <sub>spv</sub>          | Solar photovoltaics  | kWhr | Electricity       | In     | Shark 200       |
| <b>E</b> <sub>ng</sub>    | Natural gas utility  | MCF  | Natural gas       | In     | Gas             |
| <b>E</b> <sub>sth</sub>   | Solar thermal system | BTU  | Solar hot water   | In     | Ultrasonic BTU  |
| E <sub>geo</sub>          | Ground loop          | BTU  | Ground loop water | Bi-dir | Ultrasonic BTU  |
| <b>E</b> <sub>store</sub> | Solar ground storage | BTU  | Solar hot water   | Bi-dir | Ultrasonic BTU  |
| E <sub>V1in</sub>         | DOAS intake air      | BTU  | Outdoor air       | In     | Air flow & temp |
| E <sub>V1out</sub>        | DOAS intake exhaust  | BTU  | Exhaust air       | Out    | Air flow & temp |
| E <sub>V2in</sub>         | DOAS intake air      | BTU  | Outdoor air       | In     | Air flow & temp |
| E <sub>V2out</sub>        | DOAS intake exhaust  | BTU  | Exhaust air       | Out    | Air flow & temp |
| <b>E</b> <sub>exh</sub>   | Laboratory exhaust   | BTU  | Exhaust air       | Out    | None            |
| E <sub>smelt</sub>        | Snow melt system     | BTU  | Hot water         | Out    | Ultrasonic BTU  |

### Meter information

- **Nexus 1262** Utility switchboard electric meter
- Shark 200 Multifunction panel electric meter
- **Gas** Rotary natural gas meter with pulser
- **Ultrasonic BTU** Ultrasonic flow and energy meter
- Air flow & temp Dedicated Outdoor Air Unit (DOAS) with packaged air flow station and temperature / humidity sensors used by the building automation system to calculate energy











### SIMPLIFIED HEATING DIAGRAM



#### PRIORITY:

SUMMER ON PEAK 1) HX-1 2) HX-4 3) B-1 4) GEO H/C-1 SUMMER OFF PEAK & WINTER 1) HX-1 2) HX-4 3) GEO H/C-1 4) B-1







#### CONTROL NETWORK ARCHITECTURE







![](_page_46_Picture_0.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_48_Picture_0.jpeg)

![](_page_49_Picture_0.jpeg)

![](_page_50_Picture_0.jpeg)

# VRF Heat Pumps

![](_page_51_Picture_0.jpeg)

![](_page_52_Picture_0.jpeg)

Variable Refrigerant Flow Compressors with VFD's

![](_page_53_Picture_0.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_58_Picture_0.jpeg)

## Solar PV on top of penthouse

![](_page_59_Picture_1.jpeg)

![](_page_60_Picture_0.jpeg)

![](_page_61_Picture_0.jpeg)

## End of Part 1: System Design

![](_page_62_Picture_1.jpeg)

Part 2: Construction, Commissioning & Lessons Learned

Part 3: Energy Monitoring & Performance

![](_page_63_Picture_0.jpeg)

# **Questions** ?

![](_page_63_Picture_2.jpeg)

![](_page_63_Picture_3.jpeg)

Jim Leidel Director of Clean Energy Systems leidel@oakland.edu www.oakland.edu/CERC and www.oakland.edu/ENERGY