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Avenue du Général de Gaulle 1, 92141 Clamart, France

e-mail: {nicolas.greffet, georges.devesa}@edf.fr

Keywords: Dynamic soil-structure interaction, impedance matrix, hybrid Laplace-time domain
approach, Convolution Quadrature Method, nonlinear analysis.

Abstract. Nonlinear dynamic soil-structure interaction problems are usually solved by a sub-
structuring technique where the soil-structure system is decomposed into two sub-domains: the
nonlinear structure, which can also include a part of the soil showing a nonlinear behavior, and
the linear unbounded soil. The present work considers the case where the problem is localized
on the building. The effects of the unbounded soil are then represented as a particular type of
boundary condition by means of the so-called impedance operator, assumed to be known in the
Laplace domain. In this framework, since nonlinearities are taken into account, the problem
has to be solved in the time domain. Consequently, the interaction forces are expressed in terms
of the Laplace-domain impedance results as a convolution integral between the time impedance
coefficients and the nodal displacements located on the interface. In order to compute this con-
volution product a hybrid Laplace-time domain approach based on a Convolution Quadrature
Method is introduced. It allows to express this convolution not only in terms of displacements
but also in terms of accelerations and velocities convolutions. The proposed method is finally
tested on a soil-structure application modeled with a lumped-parameter system. Satisfactory
results are obtained when an elasto-plastic behaviour is accounted for.
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1 INTRODUCTION

The classical dynamic soil-structure interaction method is based on a domain decomposi-
tion technique, where the whole soil-structure domain is decomposed into two subdomains: the
soil and the structure. Both subdomains lead to a local problem that is solved separately, war-
ranting in a conformal approach that the traction equilibrium and displacement continuity are
verified on the soil-structure interface. The main reason for this decomposition is that different
numerical methods can be used for the soil and for the structure. On the one hand, the bounded
subdomain of the structure can be modeled by means of a Finite Element method which allows
to take into account nonlinear phenomena in a straightforward way. On the other, the unbounded
linear elastic soil can be computed using a Boundary Element method, the radiation conditions
being thus implicitly satisfied. When the soil shows a nonlinear behaviour, the corresponding
part of this subdomain should be incorporated to the structure subdomain.

Since engineers are usually more interested in the structural response, the global problem
is solved directly in the building and the effect of the soil is taken into account as a particular
type of boundary condition. This condition is expressed by means of the so-called impedance
operator which, in the present work, is assumed to be known in the Laplace domain. The matrix
impedance s 7→ Ẑ(s), s ∈ C, i.e. the discretized version of the impedance operator, maps any
displacement vector of the soil-structure interface to its corresponding force vector on the same
boundary.

When nonlinearities are accounted for, the problem have to be formulated in the time do-
main. Consequently, the interaction forces on the soil-structure interface denoted by Γ result
in a convolution product between the time dynamic impedance coefficients t 7→ Z(t) and the
degrees-of-freedom of the nodes located on the interface t 7→ uΓ(t), t ∈ R:

(Z ∗ uΓ) (t) =

∫ t

0

Z(t− τ)uΓ(τ) dτ, 0 ≤ t ≤ T (1)

where the impedance is assumed to satisfy causality properties.
In order to compute this kind of convolution integrals, literature proposes different numerical

methods, such as the frequency-time method [1, 2] or the hidden variables method [3], which are
based on a frequency domain formulation of the impedance operator. Similarly, some authors
have focused on formulations in the Laplace domain [4, 5], showing a special interest when
coupled to a Convolution Quadrature Method (CQM) [6].

The approach presented in this article is in essence an extension of the work originally pro-
posed by Moser and al. [7, 8] and Pereira and Beer [9]. A hybrid Laplace-time domain tech-
nique is therefore introduced in the following sections in order to numerically evaluate Equation
1. Time is discretized by means of a CQM, so the Laplace transform of the convolution kernel
is supposed to be analytic on the complex half-plane <e(s) > σ0 and polynomially bounded for
large |s|:

||Ẑ(s)|| ≤ D|s|µ (2)

for D, µ ∈ R. Particularly, the dynamic impedance matrix will be assumed of the following
form:

Ẑ(s) = MΓs2 + CΓs + KΓ + Ẑns(s) (3)

where KΓ,CΓ and MΓ are the matrices which correspond to the inertial, damping and stiffness
effects and where Ẑns(s) denotes a non-singular function vanishing for large |s|.
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2 HYBRID LAPLACE-TIME DOMAIN APPROACH

In this framework, the CQM approximates the convolution integral in Equation 1 by a dis-
crete convolution (time step ∆t > 0):

(Z ∗ u)(n∆t) =
∑

0≤n∆t≤t

Φku(t− n∆t) , t = ∆t, 2∆t, 3∆t, ... (4)

where coefficients Φk correspond to the weights of the generating power series:

+∞∑
k=0

Φkζ
k = Ẑ (s∆t) (5)

The complex sampled values s∆t of the dynamic soil impedance are given by a rational function
of a linear multistep method of order p satisfying strong A-stability conditions. For instance,
let s∆t be δ(ζ)

∆t
where δ(ζ) is the backward differentiation formula of p = 2 reading δ(ζ) =

3
2
− 2ζ + 1

2
ζ2.

Nevertheless, paying attention to the physical units of Equation 1, it seems natural to ex-
press the convolution not only in terms of displacements, but also in terms of accelerations and
velocities. To that end, the polynomial part P̂ (s) of the impedance is factorized yielding to:

Ẑ(s) = Ẑm(s)P̂ (s) = Ẑm(s)
(
M̃Γs2 + C̃Γs + K̃Γ

)
(6)

where K̃Γ, C̃Γ and M̃Γ are respectively the estimators of the matrices KΓ,CΓ and MΓ pre-
sented in Equation 3.

Therefore, the convolution can be written in terms of the Laplace transform as follows:

(Z ∗ u)(t) =
1

2πi

∫
σ0+iR

Ẑm(s)P̂ (s)û(s) estds (7)

The polynomial function P̂ (s) acts thus over the displacement as a differential operator and
Equation 1 finally reads:

(Z ∗ u)(t) = (Zm ∗ M̃Γü)(t) + (Zm ∗ C̃Γu̇)(t) + (Zm ∗ K̃Γu)(t) (8)

where the interaction force vector (denoted hereafter by RΓ(t)) involves in its calculation the
evaluation of displacement, velocity and acceleration convolutions.

If a time step ∆t > 0 is chosen, the convolution integral can be discretized again as in
Equation 4 leading to:

RΓ,n = (Z ∗ u)(n∆t) =
n∑

k=1

(
Ψn−k+1

2 ük + Ψn−k+1
1 u̇k + Ψn−k+1

0 uk

)
(9)

where matrices multiplying displacement vectors uk, velocity vectors u̇k and acceleration vec-
tors ük are given by:

Ψk
0 = Zk

mK̃Γ

Ψk
1 = Zk

mC̃Γ

Ψk
2 = Zk

mM̃Γ (10)
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From a numerical point of view, sub-convolutions are just unknown at t = n∆t, since all
previous time steps have already been computed. Therefore, Equation 9 can be written by
isolating instant n as:

RΓ,n = Ψ1
2ün + Ψ1

1u̇n + Ψ1
0un + RΣ(n−1) (11)

Consequently, coefficients Ψ1
i (i = 0, 1, 2) are respectively related to instantaneous stiffness,

damping and inertia terms and RΣ(n−1) depends only on previous time steps:

RΣ(n−1) =
n−1∑
k=1

(
Ψn−k+1

2 ük + Ψn−k+1
1 u̇k + Ψn−k+1

0 uk

)
(12)

3 NUMERICAL APPLICATION

A lumped-parameter model is considered in the following in order to represent the soil-
structure system. The nonlinear behaviour is introduced by an elastoplastic spring with one
end attached to the upper mass m1 and the other, to the smaller mass m2. A square surface
foundation layering on a homogeneous half-space is connected to mass m2 by means of a rigid
body constraint (see Figure 1). The soil impedance seen from the foundation is then computed
with a boundary element method in the Laplace domain. For the sake of simplicity, the foun-
dation is modeled to give an impedance in the form of inertial, damping and stiffness terms
so that a time reference solution can be straightforwardly obtained. In order to illustrate some
properties of the soil-structure system considered in an elastic regime, Table 1 gives the main
eigenfrequencies of the structure clamped at its base.

Pumping Shaking Torsional Rocking
Eigenfrequencies [Hz] 5.43 7.95 99.86 405.34

Table 1: Main eigenfrequencies of the structure clamped at its base.

The soil can be characterized by its shear velocity Cs = 505m.s−1 and the elastoplastic
behaviour of the spring is modeled with the linear kinematic work hardening law sketched in
Figure 1. The elastic deformation is characterized here by the elastic stiffness matrix Ke which,
after reaching the yield of plasticity Fy, becomes Kp = 0.1Ke.

(a) (b)
Figure 1: (a) Simplified model of a structure on a square surface foundation. (b) Linear kinematic work hardening
law of the nonlinear spring K.
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Figure 2: Free-field accelerogram applied to m2 as a representation of the seismic loading.

The loading applied to m2 in the x-direction ex corresponds to the earthquake giving the
free-field accelerogram γ(t) shown in Figure 2, whose maximal acceleration is around 0.3g.

The governing equations of this numerical model from the non-inertial frame of reference of
the structure can be written at t = n∆t as follows:[

M11 0
0 M22 + Ψ1

2

] [
ü1,n

ü2,n

]
+

[
F int

1,n

F int
2,n

]
=

[
−M1exγn

−M2exγn

]
+

[
0

−RΣ(n−1)

]
(13)

where F int
α (t) (α ∈ {1, 2}) denote the nonlinear internal efforts in the structure and depend on

both displacement and velocity vectors. The interaction forces RΓ,n have been directly substi-
tuted by Equation 11. It has to be noticed that the application considered here is particularized
to the case where K̃Γ = C̃Γ = 0, that is the case where only inertial terms are taken into
account for the computation of the convolution integral:

RΓ,n =
n∑

k=1

Ψn−k+1
2 ü2,k = Ψ1

2ü2,n +
n−1∑
k=1

Ψn−k+1
2 ü2,k (14)

where Ψk
2 = Zk

mM̃Γ. The coefficients corresponding to Zk
m can be efficiently computed by

using Fast Fourier Transforms (FFT) [10]:

Zk
m =

ρ−n

L

L−1∑
l=0

Ẑm(sl)e
− 2πinl

L , n = 0, 1, .., N (15)

where ρ represents the radius of a circle in the analyticity domain of Ẑm(s) = s−2Ẑ(s)M̃−1
Γ

and sl = δ(ρe2πil/L)
∆t

with δ(ζ) the polynomial of the underlying linear multistep method. Assum-
ing that the values of Ẑm are computed with precision εCQM , one gets that the error in Zk

m is
O(
√

εCQM) when L = N and ρN =
√

εCQM . In addition, the FFT algorithm allows to compute
the weights in O(L log L) operations.
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The governing equations are finally solved for displacement by using the modified average
acceleration time integration scheme of the Newmark family. This time integration scheme
allows to introduce numerical damping by means of the parameter α. Two different yields of
plasticity Fy1 and Fy2 with Fy1 >> Fy2. For both cases, Equations 13 have been solved for
different accuracies εCQM . In the following, normalized errors during the first T seconds of the
earthquake are calculated using the expression eT =

RMS(u−uref )

max(uref )
where RMS and uref denote

respectively the Root Mean Square and the reference solution. Table 2 presents the errors
e10(%) on the displacement of m1 in the x-direction. No numerical damping is introduced
(α = 0).

εCQM eT (%)
10−04 5.81
10−06 0.76
10−08 1.29
10−10 1.51
10−12 1.53

(a)

εCQM eT (%)
10−04 62.82
10−06 2.59
10−08 2.73
10−10 3.29
10−12 3.34

(b)
Table 2: Relative errors for different precisions εCQM when the displacement at the top of the structure is computed
during T = 10s for (a) Fy1 and (b) Fy2, with Fy1 >> Fy2 and α = 0.

Results presented in Tables 2 show that better agreements with the reference solution are
obtained for a precision of εCQM = 10−06 with both yields of plasticity. In addition, it seems
that the more nonlinear the response, the larger the error. In fact, if numerical damping is
introduced (α = 0.1) for the reference solution computed with Fy2 and εCQM = 10−06, the
measured relative error reduces to e10 = 1.59%. The observed dissipation is less important for
Fy1. Therefore, the numerical damping introduced by the proposed approach may come from
the Newton nonlinear solver.

Figure 3: Displacement at m1 in the x-direction computed with the hybrid time-Laplace domain approach (black
markers) and compared to the reference solution (red line) and to the linear response (blue line) for Fy2.
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It should be remarked that if the plasticity yield is chosen sufficiently large, the entire calcu-
lation remains linear. Therefore, linear and nonlinear responses can easily be compared using
a fixed precision, for example ε = 10−06. Figure 3 shows thus the displacement at m1 in the
x-direction compared to the reference solution and also to the linear solution for Fy2. It is then
observed that the amplitude of displacements is increased as expected. In addition, when the
elastoplastic effects are taken into account, the structural response is clearly shifted to the low
frequencies because of the reduction in stiffness (Ke,i > Kp,i). However, only one fundamental
frequency seems to stand out in the response as if just one equivalent stiffness were present in
the system. Hence, the effects of both stiffness Ke and Kp on the response can be highlighted
by increasing the yield of plasticity. The response with a larger Fy, plotted in Figure 4, is sig-
nificantly different from the one plotted in Figure 3 showing in particular a higher frequency
content.

Figure 4: Displacement at m1 in the x-direction computed with the hybrid time-Laplace domain approach (black
markers) and compared to the reference solution (red line) for Fy1.

Further research has to be pursued in order to investigate if the numerical response is im-
proved when the damping and stiffness parts of the dynamic impedance are also factorized.

4 CONCLUSIONS

The soil-structure interaction problem is solved directly in the building and the impedance
operator, defined on the boundary, is used as a particular type of boundary conditions that ac-
counts for the unbounded soil. When nonlinearities are taken into account, the problem is solved
in the time domain. Therefore, the influence of the soil is accounted for as a load (interaction
forces) computed as a convolution integral in the time domain.

The proposed approach based on the Laplace domain presents some interesting features. On
the one hand, it can be combined with IFFT algorithms yielding to small computational costs.
On the other hand, it allows to express the convolution integral in terms of inertial, damping
and stiffness quantities.
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A numerical application considering nonlinear phenomena in the structure has been studied.
The convolution integral has been transform to a convolution depending only on acceleration
quantities. Very satisfactory results have been obtained when compared to a reference solu-
tion. However, it seems that the proposed approach introduces numerical damping when strong
elastoplastic behaviour is taken into account.
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