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Abstract—In the era of high-speed and low-power VLSI
circuits, the question of which circuit family is best for a given
application has become extremely relevant. From a designer’s
perspective, technology miniaturization brings increased param-
eter variation and decreased reliability, which lead to circuit mal-
function. To mitigate the risks of undesirable circuit behavior, a
designer has to make decisions not only at the micro-architectural
scale, but also at the transistor-level scale. Various emerging
technologies and non-conventional circuit families may help
alleviate reliability problems and provide better performance.

We have developed automated tools that allow designers to
select the circuit family that yields the best results in terms
of various design metrics for any application. Using our tools
and techniques, the circuit choices can be made in a timely
manner without in-depth knowledge of every circuit family under
consideration. We demonstrate a tool flow that offers significant
reduction in the design cycle time. We provide synchronous
and asynchronous circuit libraries for designers to evaluate
their circuit architectures and explain how this work can be
extended to arbitrary types of circuit families for any given
technology node. Finally, we evaluate the novel tools using ITC-
99 benchmark suite and present simulation results for various
circuit implementations in terms of throughput, power, process
corners, and input statistics.

I. INTRODUCTION

The main purpose of modern Computer-Aided Design
(CAD) tools is to aid designers combat the issues of power
management and decreased reliability [1], as well as to
decrease design cycle time. Contemporary industrial design
flows are well understood, documented, constantly updated
and improved by large-scale CAD corporations. However,
the limitations of current design flows are also well-known
[2], particularly in areas of low-power and high-speed VLSI.
The increased complexity of VLSI designs paired with the
challenges brought out by feature miniaturization have in-
creased design cycle duration and time to market. One of the
primary reasons for this increase is a lack of fast and accurate
circuit level simulation tools for non standard cell-based circuit
families. Presently, if a designer wants to perform gate-level
optimizations of a non standard cell-based (or transistor-level
optimizations of a standard cell-based) circuit family, he is
forced to perform slow transistor-level simulations that can
take several days to complete for a reasonable size VLSI
design. Furthermore, these simulations are often infeasible,
since many foundries do not reveal the backend structure
of the gates in their standard cells to the designers due
to confidential intellectual property agreements. In addition,
mixed high- and low-level simulations are oftentimes complex
or even impossible. Thus, designers are forced to perform
most of their optimizations only at a high-level circuit scale,
where no notions of transistors or even gates exist. This type

of decision-making process renders crucial low-level design
space optimizations unavailable. Emerging technologies are
particularly impacted by the restriction on low-level design
optimizations, since existing mapping from high-level descrip-
tion to a limited set of templated cells oftentimes negates
the benefits of customized logic. Moreover, if a designer
tries to perform low-level optimizations, he is required to
have in-depth knowledge of multiple circuit families under
consideration. As a result of such complexity, it becomes
extremely difficult to predict what circuit family will be better
for a given application in a particular environment under a
given set of optimization criteria.

An efficient flow would potentially look as follows. A
designer specifies his design using a high-level description
language, such as Verilog. Then, an intelligent tool automati-
cally synthesizes the description into multiple transistor-level
netlists using various types of circuit families, which are then
simulated at a transistor-level scale. After analyzing the data
obtained from simulations, a designer has enough information
to decide which circuit family is best-suited for their design,
given their set of requirements.

There are currently dozens of circuit families to consider.
Synchronous families include static CMOS, domino logic, dif-
ferential signaling, etc. Many low-power/high-speed applica-
tions may benefit from self-timed (asynchronous) circuit fam-
ilies, which offer tradeoffs in terms of throughput and power
consumption in comparison to synchronous circuits [3]. Some
potential benefits of asynchronous logic include data-driven
switching activity and absence of clock circuitry. However,
these advantages come with the overhead of additional hand-
shaking signals and potentially more complex data encoding
(for example, dual-rail signals). Asynchronous circuits operate
without global clocks and are comprised of many fine-grained
hardware processes operating in parallel. Fig. 1 compares the
progression in time of synchronous and asynchronous circuit
processes. Asynchronous processes operate by communicating
’tokens’ using handshake protocols. The data-driven nature of
asynchronous circuits allows a circuit to idle without switching
activity when there is no work to be done. Another advantage
of asynchronous circuits is the capability for correct opera-
tion in the presence of continuous and dynamic changes in
delays [4]. Sources of such local delay variations may include
temperature, supply voltage fluctuations, process variations,
noise, and radiation.

In order to allow designers to choose the best circuit family
for a design, we have developed a tool flow for automatic
synthesis of logic blocks into synchronous and asynchronous
logic families. This automatic synthesis enables a systematic
comparison between different circuit family implementations.
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Fig. 1: Synchronous and Asynchronous Domains

After compilation of a given digital logic block into several
synchronous and asynchronous implementations, we measure
power, performance, and throughput. Using our flow, a de-
signer can evaluate various circuit types and quantitatively
determine under which conditions an asynchronous circuit
would result in reduced delay or power consumption compared
to its synchronous counterpart and vice versa. At this point
one can decide which implementation should be used; prior to
going through the entire synthesis/layout of all circuit blocks.
Our tool flow also provides highly-optimized and pre-compiled
cell libraries for different logic families, both synchronous
and asynchronous. These libraries eliminate the requirement
of thorough knowledge of all circuit families. All our tools
are compatible with industrial standard cell libraries – a fact
which gives a designer another degree of freedom. One has an
option to pick the factory supplied standard cells, if they are
sufficient for a given design, or to decide that another circuit
family should be used instead.

This paper presents a novel hybrid synchronous-
asynchronous tool flow with transistor-level libraries and all
the necessary transformations to give a designer the flexibility
of performing power/throughput/area optimizations at all levels
of the design cycle. We evaluate our tools using the ITC-99
benchmarks, which are commonly used to assess CAD tools.

II. RELATED WORK

Various CAD tools exist for VLSI synthesis using standard
cells. Some examples are the industrial synthesis tool offerings
from Cadence and Synopsys. Standard tools, such as Synopsys
Design Compiler [5], mainly use synchronous static CMOS
standard cell synthesis. These tools can take a RTL netlist
and synthesize it into synchronous gate-level netlist using a
supplied library of standard cells. Since oftentimes foundries
do not supply transistor-level descriptions of the standard
cells, the flexibility of performing detailed transistor-level
optimizations may be taken away from a designer.

Asynchronous circuits can be synthesized using various
methods. On one hand, Martin describes a system where
CSP-type (Communicating Sequential Processes) programs [6]
are decomposed recursively until they can be translated into
corresponding transistor-level implementations [7]. On another
hand, Tangram [8] and later Balsa [9] use a syntax directed
approach to translate CSP to an abstract handshaking cir-
cuit, which is then mapped to a standard cell library. While

Tangram and Balsa allow a designer to perform prototyping,
the resulting circuits tend to be slower and area-inefficient,
due to the limited selection of components supplied in the
circuit libraries. Farhoodfar et al. also use syntax directed
translation on hardware processes to synthesize a CSP-like
program into a library of templated pipelined buffer cells
(PCHB, PCFB) [10]. The resulting circuits compiled by this
tool are highly-pipelined and very power hungry.

Another approach to synthesize asynchronous circuits is to
leverage existing HDL and synthesis engines to generate asyn-
chronous circuits. One such tool is Pipefitter, which takes an
initial specification in Verilog and uses a commercial synthesis
engine along with the asynchronous control synthesizer Pet-
rify [11] to generate gate-level netlists. A delay line matched to
the latency of the logic in each pipeline stage is added to ensure
no race conditions exist. Law [12] presents a similar solution,
except with more localized control circuits. Blunno [13] uti-
lizes an approach that involves splitting a system into control
and datapath blocks. In order to connect together those blocks,
the synthesizable HDL is supplemented with mechanisms
to implement asynchronous channels. Ellervee describes the
techniques for automatic synthesis of asynchronous circuits for
RTL-based design descriptions [14]. Lighthart [15] exploits
HDL tools by having a functional library that implements
3-value logic. The resulting RTL undergoes syntactic transfor-
mations into CMOS-implementable delay insensitive 2-phase
gates. Weaver [16] compiles a synchronous single-rail RTL
description into a finely-pipelined QDI asynchronous imple-
mentation by replacing synchronous logic gates and registers
with their QDI equivalents.

Beerel designed Proteus [17], which is a hybrid approach.
The input to Proteus is specified in CSP; the tool goes
through a series of syntactic transformations to get an RTL
representation, which is then mapped into gates using a single-
track full buffer template. Proteus offers significant advantages
over other tools as it exploits the expressiveness of CSP and it
is complemented with optimizations targeted for asynchronous
circuits. The main disadvantage of Proteus is that it requires
a complete rewrite of the design into CSP, which makes it
unwieldy to perform quick prototyping and comparison against
synchronous circuits. Furthermore, Proteus optimizations are
limited on large blocks that perform complex algorithmic
functions.

To the current knowledge of the authors, the results from
previous work have not provided a flexible tool flow, which is
evaluated using detailed simulations, analysis and comparison
between synthesized asynchronous and synchronous circuits.
The extensions of previous tools to utilize arbitrary transistor-
level circuit families have not been discussed either.

III. TOOL FLOW COMPARISON

A. Industrial Tool Flow
A sample industry-standard tool flow for ASIC implemen-

tation is shown in Fig. 2. First, a designer creates a high-level
Verilog RTL description of the circuits. Second, the RTL is
synthesized into a gate-level netlist using a restricted set of
standard cells with pre-layout timing estimates supplied by
the foundry. Third, a designer works with automatic place and
route tools to obtain a physical implementation (layout) of
the circuit. In practice, the third step is not fully automatic
and requires significant manual effort. The generated layout
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Fig. 2: Industrial Tool Flow

can then be extracted with parasitic effects, with a caveat that
oftentimes the back-end contents (transistors) of the standard
cells are not revealed. Only after these steps are completed, a
designer can perform accurate analog-level simulations with
the estimated parasitic elements from the layout — for the first
time since the beginning of the design cycle. The place and
route step takes a large portion of the design cycle time and
needs to be partially/fully repeated after every modification to
the circuits prior to having the ability to perform the next set of
accurate simulations. With this flow, it takes designers a long
time to get to the first (and all subsequent) set of accurate
simulations, where many common problems, such as cross
coupling, charge sharing, and signal swing issues are revealed.

B. Proposed Tool Flow
In order to reduce the design time and allow engineers to

test various types of circuit families for a given implementa-
tion, we augment the industrial tool flow, as demonstrated in
Fig. 3. Our tool flow contributions are highlighted using green
font and surrounded with a dotted box.
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Fig. 3: Proposed Tool Flow

In this flow, a designer creates a high-level Verilog de-
scription of the architecture, which is then synthesized into a
gate-level netlist using a set of supplied high-level (logic only)
standard cells. Any industrial tool, such as Synopsys Design

Compiler, may be used for this level of synthesis. At this point
we use our custom tool, Verilog-to-TransistorChain (Sec V-A)
to generate two netlists: asynchronous and synchronous. Here,
instead of using only the “black-box” industrial cells, a de-
signer has a choice of also using highly robust cells from
various different circuit family libraries. The circuit family and
block granularity is specified in our Verilog-to-TransistorChain
tool based on architectural considerations and may be modified
at any point. For example, if the selected circuit family for
a given block is synchronous, the synthesized netlist is used
directly with transistor-level libraries of various synchronous
families. However, if the selected family is asynchronous,
we perform several netlist transformations (described in later
sections) to obtain a logically equivalent asynchronous gate-
level netlist. In this case, asynchronous transistor libraries are
attached to the generated gate-level netlist. Presently, our tools
perform the transformation of synchronous gate-level netlists
into Quasi-Delay Insensitive (QDI) [4] asynchronous netlists,
but it is simple to perform a similar set of transformations to
obtain other types of asynchronous netlists (e.g. bundled-data).
A designer does not need to have an in-depth understanding
of the operation of asynchronous circuits because our tools
automatically perform semantic-preserving transformations of
the original RTL. Afterwards, we use another custom tool,
SPnetlist Generator (Sec V-B) to produce a transistor-level
netlist with estimated parasitics for the desired circuit families,
which can now be used for accurate simulations. To conduct
a realistic simulation, our tools include wiring, fan-out and
internal transistor capacitance models (Sec V-B). These models
are used to compute parasitics associated with each gate.
The advantage of our flow is that, at this early point in
the design cycle, engineers can perform analog simulations
using industrial simulators. These simulation results take into
consideration most of the parasitic effects of a given design
and aid in making a decision of which circuit family to use
for the blocks.

Our proposed tool flow eliminates the iterative place-and-
route step for all the preliminary design decisions and mea-
surements. Once the transistor netlist is finalized and satisfies
all the metrics, the place and route step is performed only
once with some minor post-layout adjustments to account for
placement related cross-talk, transmission line effects, etc.

C. Proposed Simulator Chain
In our proposed tool flow, a designer has much more

flexibility simulating circuits at various pre-layout levels of
development, as shown in Fig. 4. As in the industrial flow,
the behavioral and RTL Verilog/VHDL code, as well as the
gate-level netlist may be simulated with an industrial simulator,
such as Synopsys VCS [5]. After we generate the intermediate
synchronous and asynchronous netlists, the synchronous netlist
may be simulated with the same simulator as before. In the
asynchronous scenario, we use our custom digital simulator,
PRSIM (Sec V-C). PRSIM may also be used to simulate
synchronous netlists, which use custom libraries. We have
also developed a simulator interface, Automatic Cosimulation
and Environment Generator, to allow the cosimulation of syn-
chronous and asynchronous circuits simultaneously (Sec V-D).

From the synchronous and asynchronous netlists we auto-
matically generate a transistor netlist with estimated parasitics
for the block. This netlist is simulated using any accurate
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Fig. 4: Sample Proposed Simulator Chain

analog simulator (e.g. HSPICE, Ultrasim, HSIM, Spectre).
Majority of the iterative implementation improvement and
evaluation tasks are performed at this stage (prior to place and
route). After layout is performed, the same analog simulator
may be used for the final assessment of the selected physical
implementation with exact parasitics.

IV. INDUSTRIAL TOOLS USED IN THE FLOW

Synchronous Digital Simulator. We use Synopsys VCS
for behavioral, RTL, and gate-level simulations. VCS includes
an Verilog Procedural Interface, which provides hooks to
perform simulations at multiple levels of circuit abstractions.

Transistor-Level Analog Simulator. Synopsys HSPICE
is our preferred simulator for accurate circuit simulation.
However, we favored Synopsys HSIM for larger circuits [18].
HSIM drastically improves simulation speed because of its
hierarchical approach to circuit modeling.

V. NOVEL TOOLS OVERVIEW

A. Verilog-to-TransistorChain
The Verilog-to-TransistorChain tool converts a Verilog

netlist into an equivalent intermediate format gate-level netlist
that hierarchically describes pull-up and pull-down transistor
chains (called production rules) of each gate used in the design.
This tool can be used to generate either a synchronous netlist
or an asynchronous netlist. Generation of a synchronous netlist
is straightforward. The synthesized Verilog netlist consists of
instances of standard cells. Each standard cell can be described
using production rules annotated with transistor sizing infor-
mation. Combining this information with the instances in the
Verilog netlist results in a synchronous netlist specified using
production rules.

Generation of an asynchronous netlist uses a syntax-
directed translation of the synchronous netlist. Each standard
cell is replaced with an equivalent asynchronous standard cell,
where all input and output wires are replaced by asynchronous
handshake channels that carry one-bit data. Combinational
logic is replaced by equivalent one-bit pipeline stages. Flip-
flops are replaced by one-place token buffers that are initialized
with the value of the flip-flop on reset. The main additional step
necessary in the asynchronous case is to insert explicit circuits

to support fan-out (one-to-many) connections by combining
the handshake signals using completion gates. This results in
an asynchronous netlist that is structurally equivalent to the
synchronous netlist generated by standard logic synthesis. We
used this approach to minimize the differences between the
synchronous and asynchronous netlists.

The Verilog-to-TransistorChain can work with other asyn-
chronous families (e.g. bundled data) with minimal tool mod-
ifications, if required by a designer. Eventually, for more effi-
cient conversion, we would like to perform the synchronous-
to-asynchronous transformation using a higher-level behav-
ioral description (where applicable). However, that would
require a more complex compiler to perform an optimized
and semantic-equivalent translation. Once this high-level asyn-
chronous transformation is implemented, a designer may use
other automated methods, such as concurrent pipeline synthesis
described by Teifel [19], to perform the circuit synthesis
operation. Such high-level transformation is outside of the
scope of this work.

B. SPnetlist Generator
This tool syntactically translates every production rule

generated by the Verilog-to-TransistorChain into a transistor-
level hierarchical SPICE netlist. A single production rule takes
the form G 7→ S, where G is a boolean expression called the
guard and S is a boolean assignment. Each production rule
corresponds to a pull-up or a pull-down transistor switching
network, depending on whether the boolean assignment S
is for an up-going or a down-going transition. The ordering
of transistors is deterministically derived from the production
rule in the following manner. Power rails are connected to
the source terminal of the transistor generated form the left-
most literal in the production rule guard, whereas the output
is connected to the drain terminal derived from the right-most
literal of the guard. A rule,

a & b -> c−
is translated into a transistor netlist starting from ground
(GND). The ’−’ symbol means that the output describes a
down-going transition. The SPICE netlist that corresponds to
this production rule is:

M0_ GND a #3 GND nfet W=0.2U L=0.045U
M1_ #3 b c GND nfet W=0.1U L=0.045U

A configuration file controls multiple parameters such gate
input and output capacitances, wiring loads, minimum p- and
n- transistor size, source/drain area and perimeter, and spacing
between two FETs in the same diffusion stack. From these
parameters, the SPnetlist Generator automatically calculates
parasitic capacitances and default areas and perimeters for tran-
sistor chains. This automatic calculation is crucial to accurately
model the behavior of a synthesized circuit.

C. Asynchronous Digital Simulator (PRSIM)
The simulator we use for asynchronous and non-

conventional synchronous circuits testing is a custom event-
driven digital simulator. The input to PRSIM is an auto-
matically generated (using Verilog-to-TransistorChain) netlist
based on production rules. A set of production rules can be
viewed as a sequence of events. All events are stored in a
queue. When all pre-conditions of an event become true, a
timestamp is attached to that event. Once the timestamp of
an event coincides with PRSIM’s running clock, the event



(production rule) is executed. Timestamps of events can be
deterministic or can follow a probability distribution. The
probability distributions may be random or long-tailed (i.e
most events are scheduled in the near future, while some
events - far in the future). Such flexibility allows PRSIM to
simulate behaviors of asynchronous and synchronous circuits
at random or deterministic timing. Whenever an event is
executed, PRSIM performs multiple tests to verify correct
circuit behavior, including: 1) Verify that all events are non-
interfering; an event is non-interfering if it does not result in
a short circuit under any allowed input conditions; 2) Verify
proper codification on synchronous buses and asynchronous
channels; 3) Verify the correctness of expected values of a
channel or a bus (optional); 4) Verify that events are stable;
in asynchronous context, an event is considered stable when
all receivers acknowledge each signal transition before the
signal changes its value again. We have extended PRSIM’s
functionality to evaluate energy, power and transient effects of
temperature & supply voltage on gate delays, if desired.

D. Automatic Cosimulation and Environment Generator
The Automatic Cosimulation tool allows simultaneous

cosimulation of an arbitrary mix of synchronous and asyn-
chronous circuit-families at various levels of abstraction. This
tool was developed using two main components: VPI-PRSIM
and the custom Environment Generator (which can be also
used as a stand-alone tool). The connectivity and interactions
between our tools and all the simulators are shown in Fig. 5.

The first component of Automatic Cosimulation, VPI-
PRSIM, allows dynamic bindings between the VCS and
PRSIM simulations. We have built VPI-PRSIM using the
Verilog Procedural Interface (VPI / PLI 2.0) as defined in
the Verilog standard [20]. The VPI-PRSIM module provides
an API that can be used within Verilog/VHDL to trans-
fer signals and control between a C/C++ program and a
Verilog/VHDL simulator. This module allows simulators to
exchange timestamps and events through callbacks coordinated
by the VPI interface. VPI-PRSIM registers callback functions
that are exercised whenever an event occurs. The registered
callback functions provided by the VPI interface allow our
event-driven simulator PRSIM to process changes in Verilog
interface signals. Any time the Verilog/VHDL simulator calls
a PRSIM function, PRSIM checks for pending events (signal
transitions), updates its event queue and any Verilog signals
that are modified by PRSIM. PRSIM synchronizes the simu-
lation timestamp between the two simulators before and after
an event is evaluated. The bindings between VCS and HSIM
are performed using Synopsys’s VCS-HSIM cosimulation in-
terface that also relies on the VPI (PLI 2.0) interface [18].

The second component of our Automatic Cosimulation
is the Environment Generator, which automatically creates
interfaces between the Verilog/VHDL simulator VCS, the
PRSIM asynchronous simulator, and the HSIM transistor-level
simulator. It generates the top-level Verilog to interconnect
instances defined at various levels of abstraction including
Verilog/VHDL, production rules, and transistor-level netlists.
The Environment Generator has preloaded communication
primitives: boolean signals, buses, and channels. Whenever a
connection needs to be made between different levels of ab-
straction, our tool detects the type of the connection required,
and automatically emits the Verilog code that performs the

necessary connections. The Environment Generator also allows
to back annotate parasitics, specify parameters, interfaces, and
initial conditions (ic-s) for PRSIM and HSIM simulators.
Furthermore, our tool has an extensive module library that
allows designers to automatically send, receive, probe, and
check correctness of communication channels and buses. These
modules are configurable and can be added on demand using
a configuration file.
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Fig. 5: Automatic Cosimulation Flow Chart

Automatic Cosimulation, with Environment Generator as
its key component, allows an engineer to work with hybrid
synchronous-asynchronous designs, while implementing the
actual circuits using multiple families. A designer can cosimu-
late high-level behavioral, RTL, production rule, and transistor-
level circuit descriptions with a mixture of digital and analog
(transistor-level) simulators.

E. Circuit Family Libraries
Our tool flow supports multiple synchronous and asyn-

chronous transistor-level libraries. This feature enables syn-
thesis of circuit descriptions into corresponding transistor-level
netlists for various circuit families. Post synthesis (pre-layout)
analysis allows designers to select the best circuit family for
each part of the architecture depending on the targeted metric,
such as power consumption, throughput, latency, etc. For a
new technology node it is straightforward to calibrate existing
libraries. The parameters that change with a new node are pro-
cess properties and transistor descriptions: minimum size, par-
asitic parameters, mobility values, etc. – used for the SPnetlist
Generator configuration. As an example, we have created a
static CMOS synchronous family and a QDI asynchronous
family due to QDI’s robustness to delay, temperature, and
process variations [21] . We have implemented the QDI cells
using PCEHB and HCHB type handshake reshufflings [22].

Layout for the cells in any logic family can be automat-
ically generated by an on-demand std-cell generator, such as
custom cellTK [23]; or an industrial place and route tool, such
as Cadence Encounter. Unlike a traditional ASIC flow, which
relies on a predefined and characterized gate-level netlist,
cellTK generates highly efficient layout cells for an arbitrary
transistor-level netlist.

VI. TOOL FLOW EVALUATION

A. Benchmark Considerations
To evaluate our tools, we utilized our two aforementioned

libraries: a static highly-robust synchronous library (industry-



based) and a QDI PCEHB-based asynchronous library. The
circuits are implemented in a 45 nm technology node [24].

We have obtained ITC-99 benchmarks [25,26] and com-
piled them into synchronous and asynchronous netlists using
our tool flow. We selected the ITC-99 benchmarks because
of their variety in functionality, structure, and complexity as
shown in Table I. The benchmarks range from simple sets of
gates to designs with around 600 gates and dozens of flip-
flops. Some benchmarks represent control processes, while
others embody complex arithmetic and logical data paths.
The behavioral and RTL design of the ITC-99 benchmarks
is originally created in VHDL, which is also supported by our
tool flow.

TABLE I: ITC-99 Benchmarks and Functionalities

Name Description Gates Flip- I/O VHDL
Flops ports lines

b01 Serial flow comparator 45 5 4/2 110
b02 BCD number recognizer 25 4 3/1 70
b03 Resource arbiter 150 30 6/4 141
b04 Min-Max search 480 66 13.8 80
b05 Memory 608 34 3/36 319
b06 Interrupt handler 66 9 4/6 128
b07 Count points on a straight line 382 51 3/8 92
b08 Numeric series 168 21 11/4 89
b09 Serializer/Deserializer 131 28 3/1 103
b10 Voting system 172 17 13/16 167

B. Throughput Comparison
To measure the throughput of the asynchronously im-

plemented benchmarks, we run transistor-level simulations
of the circuit with random input patterns for a sufficient
amount of time to reach steady state and then capture the
average throughput. All simulations are initially performed
using the typical-typical (TT) transistor corner models. For
the synchronous implementations, we initially run the clock
at a low frequency for a long period of time and record the
trace of output values, using random inputs. We then gradually
increase the clock frequency and compare the obtained values
with the trace recorded initially. Whenever we find a mismatch
in the output values or internal state, we postulate that there
was a timing violation somewhere in the circuit, i.e. setup
or hold time of a flip-flop was violated. At that point the
last correctly recorded frequency is regarded as the maximum
circuit frequency under the given conditions. All the original
synchronously-implemented ITC-99 benchmarks have ideal
clocks, i.e. they do not account for clock distribution and
clock uncertainties such as signal jitter and skew. As a result,
to perform a fair comparison, we padded the synchronous
operating frequency with a 20% safety margin, which is
consistent with studies found in the literature [27].

The average absolute throughput in MHz for both syn-
chronous and asynchronous implementations is shown in
Fig. 6, in the columns labeled Sync-Nominal and Async-
Nominal. The synchronous implementations perform better for
less complex benchmarks [b01, b06], while more complex
benchmarks gain throughput using asynchronous realizations
[b05, b07].

C. Process Variations
In order to analyze the impact of foundry process variations

incurred due to typical device mismatch, we run the same set
of synchronous and asynchronous simulations in two extreme

process corners: slow-slow (SS) and fast-fast (FF). Fig. 6 also
demonstrates the effect that process corners have on the be-
havior of synchronous and asynchronous circuits respectively.

As expected, the throughputs of both circuit families in-
crease when both NFET and PFET devices get faster. On
average, the designs running in the FF process corner deliver
an average of 27% more throughput than in the TT corner. On
the other hand, when transistors are running in the SS process
corner, the benchmark performance degrades by an average
of 25% in this process technology. Synchronous circuits tend
be slightly less sensitive to process variation in terms of
performance compared to their asynchronous counterparts,
as demonstrated in Fig. 6. However, what is not captured
by these results is that synchronous implementations must
account for the worst possible variation, while asynchronous
implementations automatically adjust to the wide range of
process variations. The trends for the SS and FF corners
exactly resemble the nominal scenario, considering the relative
speed variation. Such behavior confirms that all the analysis,
as well as all the conclusions drawn from our experiments with
the nominal device models can also be used in the presence
of process variations. The variations considered in this study
are 3σ, represented by the process corners.
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Fig. 6: Performance and Process Variations Analysis

D. Power Analysis
In our power experiments, we want to find the effective

input signal duty cycle that results in equal power consumption
of the synchronous and asynchronous implementations, while
still maintaining the ability of processing bursty inputs at
the maximum throughput. For that, we fix the throughput of
both synchronous and asynchronous circuits (per benchmark)
to the highest frequency that both implementations support
nominally, i.e. lower value of the {Sync-Nominal, Async-
Nominal} pair in Fig. 6. We then vary the input signal duty
cycle by sending bursts of high-throughput inputs, followed
by periods of input inactivity. Our analysis assumes that the
power consumption is dominated by the dynamic power. This
proves to be correct in low leakage technologies, where similar
power consumption is observed for the presented synchronous
and asynchronous implementations.

At the scale of benchmarks in our analysis (small and
medium size circuits), the overheads of clock-gating control
complexity offset the benefits from clock-gating itself. We,
thus, compare the asynchronous implementations to non clock-
gated synchronous implementations. Also, due to the fact that
clock tree networks were not physically present in the original
benchmarks, we have omitted the clock tree load and switching
energy for all synchronous benchmarks.



Mathematically, the dynamic power estimated by Eq. 1,
is used to derive Eq. 2 (for asynchronous circuits) and Eq. 3
(for synchronous circuits). In the following calculations fsw
is the circuit’s switching frequency, which is estimated with
the frequency of circuit operation in each scenario. In the
asynchronous case, Eq. 2, αasync is the activity factor of the
circuit, Casync represents the total load capacitance in the
asynchronous implementation and favg is the input frequency
averaged across all bursts and inactivity periods. favg is also
representative of the average duty cycle of the inputs. The
activity factor in a QDI asynchronous design is maximally
equal to 1, since majority of the nodes in an asynchronous
circuit switch twice per handshake by going to active phase and
neutral phase. In the synchronous calculation, Eq. 3, there are
two components contributing to the circuit’s dynamic power:
the combinational logic term and the clock term. Here, Ccl is
the lumped load capacitance of the logic, and Cclk is the clock
network capacitance. α also has two components: αcl, which
is the activity factor of the logic and, for consistency, αclk - the
activity factor of the clock. fclk denotes the high-throughput
signal switching within input bursts and, in the synchronous
case, represents the clock frequency required to support this
high throughput. fcl, the switching frequency of combinational
logic is equal to αclfavg , since the combinational logic needs
to switch only when inputs change (which in the case of bursty
inputs does not happen on every clock cycle). αcl is maximally
equal to 0.5 for combinational logic according to statistics and
αclk is equal to 1, since a clock has two edges per cycle.

P = CtotalV dd
2fsw (1)

Pasync ≈ αasyncCasyncV dd
2favg

= CasyncV dd
2favg (2)

Psync ≈ CclfclV dd
2 + CclkfclkV dd

2

= (αclCclfavg + αclkCclkfclk)V dd
2

= (0.5Cclfavg + Cclkfclk)V dd
2 (3)

We can get a closed form solution for approximate value
of f∗avg (power break-even average input frequency for syn-
chronous and asynchronous implementations) by equating
Eq. 2 and Eq. 3 and solving for favg . The obtained result
is given by Eq. 4 and shows that f∗avg is directly proportional
to the product of maximum clock rate fclk and clock network
capacitance Cclk; and inversely proportional to the difference
of total asynchronous capacitance Casync and fraction of
combinational logic capacitance Ccl.

f∗avg =
Cclkfclk

Casync − 0.5Ccl
(4)
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Fig. 7: Power Break-Even Average Input Frequency

Fig. 7 shows the power break-even average input burst
frequency f∗avg for each benchmark. Specifically, at f∗avg the
power consumption of the asynchronous implementation is
equal its synchronous counterpart. fclk in this figure is shown
in MHz. In the analysis of Fig. 7, all the capacitances were
extracted from the actual circuits (while omitting the clock
distribution network). One can see that average break-even
frequency occurs in the 10-s to 100-s of KHz range for
different benchmarks (while still supporting 100-s of MHz
maximum input throughput). For bursty, yet high-throughput
inputs within the busts, asynchronous circuits provide a better
tradeoff in terms of power consumption below this f∗avg .
Above f∗avg synchronous circuits are more power efficient
for our presented set of gate-level netlist transformations. To
improve the power efficiency of asynchronous circuits in our
tool flow we are looking into implementing several additional
techniques, as outlined in Sec VI-F.

E. Design Space Investigation
Our tools demonstrate the tradeoffs of implementations in

the synchronous and asynchronous design spaces. An example
study is shown in Fig. 8, which presents a 3-dimensional
view of the average input frequency vs. maximum supported
throughput vs. calculated dynamic power consumption for
benchmark b01. Fig. 8(a,b) demonstrates power consumption
for the asynchronous and synchronous implementations re-
spectively. Similar to previous experiments, favg denotes the
input frequency averaged across bursts and inactivity periods
on y-axis, fclk denotes the maximum signal throughput within
the bursts on x-axis, and the color gradient represents the
power consumption. Fig. 8(c) shows the difference in dynamic
power, Pasync and Psync, for the two implementations. One
observes that synchronous realization has less power consump-
tion in the presence of constant high input data rates repre-
sented by favg . In contrast, the asynchronous implementation
results in a more efficient power consumption when maximum
throughput is required (fclk), but the average input frequency
is low (favg). The graphs for the other benchmarks follow a
similar trend. The only difference in the other benchmarks is
the absolute value on the break-even f∗avg , as shown in Fig. 7.

F. Analysis of Simulation Results
The obtained results agree with the original hypothesis

that we have made while developing these synchronous-to-
asynchronous transformations. In many cases, the obtained
asynchronous implementations were able to achieve higher
performance than their synchronous counterparts. Additionally,
our initial prognosis, which turned out to be true, stated that
due to the nature of the transformations (gate-level netlist
conversion), the number of transistors in the asynchronous
implementation would on average be higher than that of the
corresponding synchronous implementation (the resulting area
overhead of asynchronous circuits was at least twice the area
of the synchronous circuits). Similarly, in the QDI 4-phase
handshake circuits the signal activity factor is higher, since
the circuit on every data token goes through the active phase
and returns to the neutral phase. These facts lead to a higher
power consumption of the asynchronous implementations in
scenarios, where the inputs arrive at high frequency with no
inactive periods. However, the asynchronous implementations
automatically produced in this tool flow have proven to be ad-
vantageous in designs, where there are bursts of high-frequency
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inputs followed by long quiescent periods. Such applications
include speech processing, on-chip networks, neuromorphic
circuits, etc. In these designs, the circuit irealizations must
still be able to support maximum throughput, which means
that the clocks would have to switch at the maximum input
rate if implemented in a synchronous manner.

We are planning to implement several additional techniques
to enhance out tool flow. Specifically, we are looking into opti-
mizing the gate-level transformations and pipelining based on
designer’s metrics (area, throughput, power). To perform this
effectively we would extend our tool flow and add libraries for
other synchronous and asynchronous circuit families. Beyond
that, as mentioned previously, we want to implement high-level
transformations to allow implementation-specific optimizations
earlier in the design cycle.

VII. CONCLUSION

In this paper, we proposed a novel way of designing com-
plex VLSI circuits. This approach is especially useful in large-
scale projects where accurate measurements and decisions
early in the design cycle can drive many high-level architec-
tural decisions. Our tool flow allows designers to select the
ideal circuit family for each digital block in the design based on
various metrics, without necessitating thorough expertise in all
logic families. The tool flow may be extended with additional
synchronous and asynchronous circuit family libraries without
the necessity to modify the underlying tools.

As part of the novel flow, we also presented a method
for integrated simulation framework of both synchronous and
asynchronous circuits. This framework allows cosimulation
using different circuit technologies and different levels of
abstraction. To evaluate the framework, we provided quan-
titative results comparing multiple benchmark implementa-
tions using two logic families: QDI asynchronous and static
synchronous. The presented gate-level pipelining approach
to compile asynchronous circuits increases the throughput
compared to the synchronous approach, while also increasing
power consumption and area in many cases. However, for
applications where the circuits are mostly idle and have bursts
of high frequency activity, the power consumption of the
asynchronous implementations is lower. In the future, among
other enhancements, we would like to focus on performing
not only gate-level syntactic transformations, but also higher-
level, semantic-preserving circuit family-specific architectural
optimizations and transformations.
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