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A Properties of fluid

A.1 Concept of continuum

On a macroscopic scale, large compared with the distance between molecules,

the molecular structure of a fluid does not explicitly influence the variations

of fluid properties. Thus, the macroscopic behaviour of fluid is the same as

if it were perfectly continuous in structure, i.e. physical quantities, such as

density, temperature and velocity, will be regarded as varying continuously

in space. Such a fluid is called a continuum. This hypothesis implies that

fluid properties can be regarded as point functions, and differential calculus

can be applied to describe their variations in time and in space. (So are

equations established.)

A.2 Density

Density ρ = mass/volume, e.g. kg/m3. Density in a fluid flow, generally

speaking, can vary in position and in time, i.e. ρ(x, t), where x = (x, y, z).

However, density in a liquid is nearly constant under most circumstances.

For example, ρwater = 1000 kg/m3, and only increases 1% if the pressure is

increased by a factor of 220. So, liquids are usually ‘incompressible’.

Specific weight =
weight

volume
i.e. γ = ρg

Relative density =
ρfluid

ρreference

Relative density is dimensionless, and is sometimes called the ‘specific grav-

ity’. For gas, it is rarely used.

A.3 Pressure

The normal stress on any plane through a fluid element is called the fluid

pressure, p in N/m2, taken as positive for compression by convention. A fluid

at rest cannot withstand any tangential stresses (shear stresses), but it still

has the pressure – the hydrostatic pressure which is the subject of topic B.

At any one point in a fluid, the pressure is the same in all

directions, i.e. pressure is a scalar.

To see this, let us consider a triangular slab of fluid, see figure 1. The fluid

may be stationary, or accelerating in time but without relative motion (i.e.

free of shear stress) at ax and az in the x and z directions.
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Figure 1: The end view of a fluid

slab.

Applying Newton’s second law

in the x and y directions, one

can show that

px = pz = pn = p

So, at a given time, there can

only be one value of fluid pres-

sure at a particular point.

Vapour pressure

It is the pressure at which a liquid boils, and is in equilibrium with its

own vapour. If the liquid pressure falls below the vapour pressure, bub-

bles begin to appear in the liquid. This can occur when a liquid undergoes

rapid accelerations, a phenomenon called ‘cavitation’ (fluid-induced boiling).

Cavitation can severely damage fluid machines, such as turbines and pumps.

A.4 Viscosity

Viscosity is a quantitative measure of a fluid’s resistance to flow when a shear

stress is applied. It relates the local stress in a moving fluid to the strain

rate of the fluid element. Consider a fluid element (a small square) under a

horizontal shear stress τ , which results in a horizontal velocity u = δu, see

figure 2(a).

τ

u 

δz

δx

δθ

τ

u = 0

δ u δ t
u = δ 

��������������������������������������������������

zδ

z

u(z)

δu

B. L.

no−slip

(a) (b)

Figure 2: (a) A fluid element under a horizontal shear. (b) A velocity profile.

Common fluids, such as water, air and oil, show a linear relation between

applied shear and the resulting strain rate, i.e.

τ ∝ δθ

δt
.
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For small angle δθ,

δθ ' tan δθ =
δuδt

δz
=⇒ δθ

δt
=

δu

δz

(
i.e.

dθ

dt
=

du

dz

)
Thus, τ ∝ du/dz.

τ = µ
du

dz
, (A.1)

where µ is coefficient of viscosity. For newtonian fluids, shear

stress is linearly proportional to the velocity gradient.

From the velocity profile above a solid wall, see figure 2(b), we observe:

(i) Because of viscosity, u = 0 at a solid boundary. This is the so-called

‘no-slip’ boundary condition, and true for any viscous fluid.

(ii) Since u must increase to a non-zero value just above the wall, the

velocity gradient, du/dz, is usually the greatest at the wall. So is the

shear stress τ . This is the manifestation of ‘friction’ at a solid boundary.

(iii) A layer, crossing which the velocity changes sharply and thus the vis-

cous force is important, is termed as the ‘boundary layer’. It can occur

in the interior of a flow (i.e. without the presence of a solid boundary).

µ has a unit of stress–time. For water, µ = 10−3 kg/(m · s); for air, µ =

1.8× 10−5 kg/(m · s); but for glycerin, µ = 1.5 kg/(m · s). Temperature can

have a strong effect on the viscosity of a fluid.

Kinematic viscosity

ν =
µ

ρ
, (A.2)

and has a unit of length2/time. For water, ν ' 10−6 m2/s.

Reynolds number

Re =
ρUL

µ
=

UL

ν
=

inertial acceleration force

viscous force
, (A.3)

where U and L are, respectively, the characteristic velocity and length of

a flow. It measures the importance of viscous effects relative to inertial

accelerations (non-frictional). It is dimensionless.
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Example 1 A simple shear flow (plane Couette flow)

Consider a layer of viscous fluid between two parallel plates. The top

plate is pulled by a steady force such that it moves at a constant speed

V . The bottom plate is at rest. The fluid velocity varies linearly in z, see

figure 3. What is the shear applied at the top plate? Evaluate the shear for

µ = 0.3 kg/(m · s), V = 3.0 m/s and h = 2 cm. (Ans: τ = 45 Pa)
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x

z

h

V

u(z)

Figure 3: Parallel flow between two

plates.

A.5 Compressibility

All fluids, like most everything else, decrease their volumes when placed

under pressure. The compressibility of a fluid is measured by the

bulk modulus of elasticity

K = − δp

δV/V
=

δp

δρ/ρ
(A.4)

where δp is a change of pressure, V the volume of the fluid and δV the

change of the volume due to δp. Clearly, K has a unit of pressure. Note:

δρ/ρ = −δV/V , since mass, m = ρV , is conserved.

The bulk modulus of a liquid is very high, indicating that most liquids

are incompressible at moderate pressure. However, in circumstances where

change of pressure is very large or very sudden, as in ’water hammers’ in

pipes, the compressibility of a liquid must be taken into account.
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A.6 Surface tension

A small drop of liquid in air, or an air bubble in water, always forms a sphere;

on a solid (clean) surface, a drop of mercury tends to be a sphere, however

a drop of water forms a lens (partial sphere). All these facts are due to sur-

face tension, which arises from the intermolecular cohesive forces. Its origin

indicates that surface tension is most important at small scales. The recent

expansion in areas, such as bio-engineering, micro- and nano-technology, is

increasingly making the phenomena of surface tension of engineering interest.

It is necessary to know that the free surface of a liquid, or the interface

between two liquids which do not mix, acts as if it were in a state of uniform

tension – surface tension σ. It is a force per unit length, i.e.

Across any line drawn on the interface there is exerted a force

of magnitude σ per unit length in a direction normal to the

line and tangential to the interface.

Surface tension may also be regarded as a surface energy per unit area. For

a clean surface at 20◦C,

σ = 0.073N/m pure water – air;

σ = 0.480N/m mercury – air;

σ = 0.023N/m alcohol – air

The existence of surface tension means that there is a pressure jump

across a curved surface of fluids, the pressure being higher on the concave

side. For an arbitrarily curved interface whose principal radii of curvature

are R1 and R2, a force balance normal to the surface will show that

the pressure increase on the concave side is

∆p = σ

(
1

R1

+
1

R2

)
(A.5)

Example 2

What is the pressure jump across the surface of a spherical droplet, of

radius R, due to surface tension? Where is the higher pressure? Neglect the

weight of the fluid. (Ans: ∆p = 2σ/R)
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Contact angle

In the case of a liquid interface intersecting with a solid surface, another

important surface effect, in addition to surface tension σ, is the contact angle

θ, see figure 4.

����������������������������������������������������������������������������������θ θ

solid

liquid

gas

If θ < 90◦, the liquid ’wets’ the solid.

If θ > 90◦, the liquid is non–wetting.

Figure 4: Contact angle θ at a

liquid-solid-air interface.

The force balance would involve both σ and θ, which are both very sensitive

to the physical and chemical conditions of the solid-liquid interface.

Example 3 Capillary tube and capillary rise

Derive an expression for the capillary rise h in a circular tube of liquid

with surface tension σ and contact angle θ. Evaluate h for water-air-glass

interface, D = 2 mm and θ ' 0. (Ans: h = 4σ cos θ/(ρgD))

D

h

θ θ

Figure 5: Capillary rise in a cap-

illary tube.
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A.7 Equation of state for perfect gas

The molecules of a perfect gas do not exert forces on each other except at

collisions, and their volumes are negligible. For a perfect gas in equilibrium,

there is an

equation of state:

p = RρT, (A.6)

where T is absolute temperature (degree Kelvin, T ◦K = T ◦C + 273.16) and

R is a constant (independent of temperature). Each gas has its own constant

R. If M is the relative molecular mass of a gas, i.e. the ratio of the mass of

the molecule to the mass of a normal hydrogen atom, then

MR = 8314 J/(kg K) – the universal gas constant

Example 4

A mass of air, at a pressure of 200 kPa and a temperature 27◦C, occupies a

volume of 3 m3. For air, the relative molecular mass M = 28.97. Determine:

(a) the gas constant R for air;

(b) the density of the air;

(c) its mass.
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B Hydrostatics

Hydrostatics concerns primarily the problems when a fluid is at rest, specif-

ically the balance of forces. Under the hydrostatic conditions,

(i) there is no shear stress, but only the normal stress (pressure) on any

plane through a fluid element;

(ii) in the horizontal direction, there is no pressure variation;

(iii) in the vertical direction, there is a change in pressure due to gravity.

B.1 The hydrostatic equation

It is not the pressure but the spatial variation of the pressure that causes a

net force on a fluid. Consider a small fluid tube below.

l
A

α

p

p + δp

weight = ρ

area

gδ δAl

δ
δ

Figure 6: Force balance of a fluid tube in equilibrium.

For equilibrium, the net force in any direction must vanish. Thus, in the

direction along the tube, the force balance is written as

[(p + δp) δA− pδA] + ρgδlδA cos α = 0,

∴ δp = −ρg (δl cos α) = −ρgδz. (B.1)

This leads to the

hydrostatic equation:

dp

dz
= −ρg. (B.2)

The negative sign is due to the z–axis being pointing upward.

It is this vertical pressure gradient that produces a net force, balancing the

gravity force (the weight). That is to say,

As a result of the weight of a fluid, there is a change in pressure

with depth.
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B.2 Pressure in fluid of uniform density

Equation (B.2) is valid for any fluids at rest. For incompressible fluid, ρ is

constant, and (B.2) gives

p + ρgz = constant, (B.3)

in a fluid of uniform density. The constant is the piezometric pressure.

airp

airp

��������������������������������������������������

z

p

z = 0

ghρ

z = − h

For incompressible fluid, the hy-

drostatic pressure increases linearly

with depth, regardless of the shape

of the container. The pressure is

the same at all points on a given

horizontal plane (same z).

Figure 7: Pressure increases with depth.

B.3 Absolute, gauge and vacuum pressure

When the pressure measurement is specified with respect to a zero pressure

reference (i.e. that of a vacuum), it is the absolute pressure. For example, in

figure 7, p = pair + ρgh is the absolute pressure at z = −h.

When the measured pressure is higher than the local atmospheric pressure,

the difference is called the gauge pressure, e.g. ρgh in figure 7 is the gauge

pressure at z = −h; if lower, the difference is called the vacuum pressure (or

negative gauge pressure). The atmospheric pressure is approximately 1 bar

or 1000 kN/m2.

The term p/ρg is called the pressure head or simply ’head’.
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B.4 Applications to pressure measurements

Piezometer

The pressure in a liquid, relative to pair, can be measured using a piezome-

ter tube, see figure 8.

pair

p

h

piezometric head h:

p− pair = ρgh.

Figure 8: A piezometer tapped into a pipe.

Manometers

From the hydrostatic equation (B.2),

p2 − p1 = −ρg (z2 − z1) (B.4)

i.e. the pressure difference between two points is proportional to the vertical

distance between the points. Thus, a static column of one or more fluids can

be used to measure the pressure difference between two points (or relative to

the surrounding atmosphere). Such a device is called a manometer. Some

examples are seen below.

Example 5

(a) A simple U-tube manometer

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

X

ρA

X

1h

2h

ρB

p

pair

Pressures at X–X are the same.

p + ρAgh1 = pair + ρBgh2.

Setting pair = 0 (i.e. we are inter-

ested in the pressure relative to pair,

not the absolute pressure), the pres-

sure in the container is

p = ρBgh2 − ρAgh1.

11



(b) Differential manometer

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������ρA

1
p p

2

x

y

ρB

X X

By equaling the pressures at X–X,

p1 + ρAg(x + y) = p2 + ρAgy + ρBgx,

∴ p1 − p2 = (ρB − ρA) gx.

Converting to pressure head,

h1 − h2 =
p1 − p2

ρAg
=

(
ρB

ρA

− 1

)
x.

This is the head loss from point 1 to

point 2, due to wall friction. If A is

water and B is mercury, ρB/ρA = 13.6

and h1 − h2 = 12.6x.

(c) An inclined manometer for measuring small pressure

2

h
l

α

area a

area A

h∆

1
p

p

ρ

p1 = p2 + ρg (h + ∆h)

h = l sin α

A∆h = al (mass conservation)

p1 − p2 = ρgl
(
sin α + a

A

)
If a/A → 0, p1 − p2 = ρgl sin α
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B.5 Hydrostatic force on plane surfaces

The pressure force on a submerged surface is always normal to the surface,

regardless of the shape and orientation of the surface.

Vertical rectangle

1h

b

ρgh 2

ρgh 1

plan view

d CG

hCG

h2

Figure 9: Pressure diagram for

a vertical rectangle.

F = area under pressure diagram

× width

=
ρgh1 + ρgh2

2︸ ︷︷ ︸
pave = ρghCG

d × b

F = average pressure × immersed area = ρghCGA (B.5)

Note: The centroid CG of the immersed rectangle is located at depth hCG

below the water surface.

Example 6 Pressure force on a dam

Calculate the force on a dam in a reservoir of depth 10 m.

(a) The wet face is vertical.

(b) The wet face is sloped at α = 45◦.

(a) hCG = 1
2
h = 5 m. Area/per width is A = h× 1 = 10 m/per width.

F = ρghCGA = 1000× 9.81× 5× 10 = 490500N/m width

(b) hCG = 5 m, however, the area/per width is

A =
h

sin α
× 1 =

10

sin 45◦
= 14.14 m/per width

F = ρghCGA = 1000× 9.81× 5× 14.14 = 693567N/m width
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General plane surface

α

F = P    ACG

hCP hCG
h

Op = pair

CG

CPl

l

l = h/ αsin

CP
CG

dA = dx dy

Total force:

Figure 10: Hydrostatic

force and centre of pres-

sure on an arbitrary

plane surface of area A

inclined at an angle α.

• Total force:

Force on an element area: dF = p× dA = ρghdA

Force of the surface: F =

∫
dF =

∫
p dA (i.e. sum of p over A) = pave × A

Since pave = the pressure at the centroid = ρghCG,

F = pressure at the plate centroid × the area

= ρghCGA = ρg (lCG sin α) A (B.6)

Equation (B.6) is true for any plane submerged in fluid of uniform den-

sity, regardless of the shape of the plane and its orientation.

• Center of pressure hCP :

The total force F , however, does not act through the centroid. The centre

of pressure CP is generally below the centroid toward the high pressures, in

order to balance the bending moment portion of the stress. Extending the

immersed surface, it intersects the water surface at a line, denoted as OX.

Moment of the element force about OX axis: pdA× l = ρg (l sin α) dAl

Moment of the resultant force: FlCP =

∫
pdA× l =

∫
ρg sin α l2dA. So,

lCP =

∫
l2dA

A lCG

=
second moment of area about OX

A lCG

.
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The parallel axes theorem states∫
l2dA = ICG + A l2CG

ICG = second moment of an area about its centroid. Thus,

centre of pressure:

lCP =
ICG

A lCG

+ lCG hCP = lCP sin α (B.7)

Common examples are

C C
d

CC
d

b

ICG = 1
12

bd3 ICG = 1
64

πd4

Example 7 Center of pressure

Calculate the centre of pressure for the two cases in example 6.

(a) d = 10 m, b = 1 (unit width). lCG = hCG = 5 m.

ICG = 1
12

bd3 =
1000

12
m3 per width

hCP =
ICG

AhCG

+ hCG =
1000

12 (10× 1) 5
+ 5 = 1.67 + 5 = 6.67 m

(b) d = 10/ sin 45◦ = 14.14 m, b = 1 (unit width).

hCG = 5 m, lCG = hCG/ sin 45◦ = 7.07 m.

ICG = 1
12

bd3 =
(14.14)3

12
m3 per width

lCP =
ICG

AlCG

+ lCG =
(14.14)3

12 (14.14× 1) 7.07
+ 7.07 = 9.43 m

hCP = lCP sin 45◦ = 6.67m
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B.6 Hydrostatic force on curved surfaces

FH

FV

vertical 
projection

hCG

F

α

VC

Figure 11: Pressure force on

a curved surface.

– The total force F is normal to the curved surface, so it always passes

through the centre of curvature.

– It is simplest to resolve horizontal and vertical components of F .

• Horizontal component FH :

Project the curved surface onto a vertical plane. Aproj = area

of the vertical projection, and its centroid is located at hCG below

the water surface.

FH = force on the vertical projection

= ρghCGAproj. (B.8)

FH acts through the centre of pressure of Aproj.

• Vertical component FH :

V = the volume directly above curved surface

FV = weight of water in V

= ρgV. (B.9)

FV acts through the centre of gravity of the volume V .

• The direction of F

tan α = FV /FH (B.10)

Buoyancy

One can think that a body is a volume enclosed by an upper surface and

a lower one. Applying (B.9) to these two surfaces of a submerged body, the

results are the two laws of buoyancy, following Archimedes.

– A body immersed in a fluid experiences a vertical buoyant force equal

to the weight of the fluid it displays.

– A floating body displays its own weight in the fluid in which it floats.
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Example 8 Pressure force on a curved gate

A sector gate, of radius 5 m and length 3.5 m, controls the flow of water

in a channel. α = 30◦. Determine the total force on the gate.
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water

2 m
air

C
α

5 m

5 m
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Tutorial

Hydrostatic forces on gates, and calculation of moments.
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