Hydro power plants

Hydro power plants

The principle the water conduits of a traditional high head power plant

Ulla- Førre

Original figur ved Statkraft Vestlandsverkene

Arrangement of a small hydropower plant

Water intake

- Dam
- Coarse trash rack
- Intake gate
- Sediment settling basement

Dams

- Rockfill dams
- Pilar og platedamme
- Hvelvdammer

Rock-fill dams

1. Core

Moraine, crushed soft rock, concrete, asphalt

- 2. Filter zone
- 3. Transition zone Fine blasted rock

Sandy gravel

4. Supporting shell Blasted rock

Slab concrete dam

Arc dam

Gates in Hydro Power Plants

Types of Gates

- Radial Gates
- Wheel Gates
- Slide Gates
- Flap Gates
- Rubber Gates

Radial Gates at Älvkarleby, Sweden

Radial Gate

Rubber gate

Circular gate

Circular gate

Jhimruk Power Plant, Nepal

Trash Racks

Panauti Power Plant, Nepal

Gravfoss Power Plant Norway

Trash Rack size: Width: 12 meter Height: 13 meter

Stainless Steel

CompRack

Trash Rack delivered by VA-Tech

Cleaning the trash rack

Pipes

- Materials
- Calculation of the change of length due to the change of the temperature
- Calculation of the head loss
- Calculation of maximum pressure
 - Static pressure
 - Water hammer
- Calculation of the pipe thickness
- Calculation of the economical correct diameter
- Calculation of the forces acting on the anchors

Materials

- Steel
- Polyethylene, PE
- Glass-fibre reinforced Unsaturated
 Polyesterplastic, GUP
- Wood
- Concrete

Materials

Material	Max.	Max.	Max.
	Diameter	Pressure	Stresses
	[m]	[m]	[MPa]
Steel, St.37			150
Steel, St.42			190
Steel, St.52			206
PE	~ 1,0	160	5
GUP	2,4	320	
	Max. p = 160 m.	Max. D: 1,4 m.	
Wood	~5	80	
Concrete	~5	~ 400	

Steel pipes in penstock

Nore Power Plant, Norway

GUP-Pipe Raubergfossen Power Plant, Norway

Wood Pipes

Breivikbotn Power Plant, Norway

Øvre Porsa Power Plant, Norway

Calculation of the change of length due to the change of the temperature

$\Delta L = \alpha \cdot \Delta T \cdot L$

Where:

- ΔL = Change of length
- L = Length
- α = Coefficient of thermal expansion [m/°C m]

[m]

[m]

[°C]

 $\Delta T = Change of temperature$

Calculation of the head loss $h_{f} = f \cdot \frac{L}{D} \cdot \frac{c^{2}}{2 \cdot g}$

Where:

- h_f = Head loss
- f = Friction factor
- L = Length of pipe
- D = Diameter of the pipe
- c = Water velocity
- g = Gravity

- [m] [-] [m]
- [m] [m/s]
- [m/s²]

VALUES OF (VD*) FOR WATER AT 15,5 °C (VELOCITY IN M/SEC *DIAMETER IN M)

MOODY DIAGRAM
Example Calculation of the head loss

Power Plant data:

H=100 mHeadQ=10 m³/sFlow RateL=1000 mLength of pipeD=2,0 mDiameter of the pipeThe pipe material is steel

$$Re = \frac{c \cdot D}{v}$$

Where:

c=3,2 m/sWater velocityv= $1,308 \cdot 10^{-6} \text{ m}^2/\text{s}$ Kinetic viscosityRe= $4,9 \cdot 10^6$ Reynolds number

$$h_{f} = f \cdot \frac{L}{D} \cdot \frac{c^{2}}{2 \cdot g}$$

MOODY DIAGRAM

Example Calculation of the head loss

Power Plant data:

- H = 100 m Head
- $Q = 10 \text{ m}^3/\text{s}$ Flow Rate
- L = 1000 m Length of pipe
- D = 2,0 m Diameter of the pipe

The pipe material is steel

$$h_{f} = f \cdot \frac{L}{D} \cdot \frac{c^{2}}{2 \cdot g} = 0,013 \cdot \frac{1000}{2} \cdot \frac{3,2^{2}}{2 \cdot 9,82} = 3,4 \text{ m}$$

$$\begin{array}{rcl} f & = & 0,013 & & \mbox{Friction factor} \\ c & = & 3,2 \mbox{ m/s} & & \mbox{Water velocity} \\ g & = & 9,82 \mbox{ m/s}^2 & & \mbox{Gravity} \end{array}$$

Calculation of maximum pressure

- Static head, H_{gr} (Gross Head)
- Water hammer, Δh_{wh}
- Deflection between pipe supports
- Friction in the axial direction

Maximum pressure rise due to the Water Hammer

 $\Delta h_{wh} = \frac{a \cdot c_{max}}{g} \qquad \text{IF} \quad T_{c} << \frac{2 \cdot L}{a} \qquad \text{Jowkowsky}$

Jowkowsky

Maximum pressure rise due to the Water Hammer

$$\Delta h_{wh} = \frac{c_{max} \cdot 2 \cdot L}{g \cdot T_C} = 61 \, m$$

Calculation of the pipe thickness

$$L \cdot D_{i} \cdot p \cdot C_{s} = 2 \cdot \sigma_{t} \cdot L \cdot t$$

$$\bigcup$$

$$\sigma_{t} = \frac{p \cdot r_{i} \cdot C_{s}}{t}$$

$$p = \rho \cdot g \cdot \left(H_{gr} + h_{wh} \right)$$

Where:

[m] = Length of the pipe L [m] Di = Inner diameter of the pipe = Pressure inside the pipe [Pa р = Stresses in the pipe material [Pa] σ_{t} = Thickness of the pipe [m] t Cs = Coefficient of safety [-] = Density of the water ρ H_{gr} = Gross Head [m] Δh_{wh} = Pressure rise due to water hammer [m]

- Based on:
 - Material properties
 - Pressure from:
 - Water hammer
 - Static head

Calculation of the pipe thickness

$$L \cdot D_{i} \cdot p \cdot C_{s} = 2 \cdot \sigma_{t} \cdot L \cdot t$$

$$\bigcup$$

$$t = \frac{p \cdot r_{i} \cdot C_{s}}{p \cdot r_{i} \cdot C_{s}} = 0.009 \text{ m}$$

 σ_{t}

$$p = \rho \cdot g \cdot \left(H_{gr} + h_{wh}\right) = 1,57 \text{ MPa}$$

- Based on:
 - Material properties
 - Pressure from:
 - Water hammer
 - Static head

- Length of the pipe Inner diameter of the pipe Stresses in the pipe material Density of the water Coefficient of safety Gross Head Pressure rise due to water hammer

Calculation of the economical correct diameter of the pipe Hydraulic Losses

Power Plant data:

$$P_{\text{Loss}} = \rho \cdot g \cdot Q \cdot h_{\text{f}} = \rho \cdot g \cdot Q \cdot f \frac{L}{2 \cdot r} \cdot \frac{Q^2}{2 \cdot g \cdot \pi^2 \cdot r^4} = \frac{C_2}{r^5}$$

P _{Loss}	. =	Loss of power due to the head loss	[W]
ρ	=	Density of the water	[kg/m³]
g	=	gravity	[m/s²]
Q	=	Flow rate	[m³/s]
h _f	=	Head loss	[m]
f	=	Friction factor	[-]
L	=	Length of pipe	[m]
r	=	Radius of the pipe	[m]
C ₂	=	Calculation coefficient	

Calculation of the economical correct diameter of the pipe Cost of the Hydraulic Losses per year

$$K_{f} = P_{Loss} \cdot T \cdot kWh_{price} = \frac{C_{2}}{r^{5}} \cdot T \cdot kWh_{price}$$

Κ _f	=	Cost for the hydraulic losses	[€]
PLoss	=	Loss of power due to the head loss	[W]
Т	=	Energy production time	[h/year]
kWh _{pric}	е=	Energy price	[€/kWh]
r	=	Radius of the pipe	[m]
C_2	=	Calculation coefficient	

Calculation of the economical correct diameter of the pipe Present value of the Hydraulic Losses per year

[€]

[-]

[-]

$$\mathbf{K}_{\mathrm{f}} = \frac{\mathbf{C}_2}{\mathbf{r}^5} \cdot \mathbf{T} \cdot \mathbf{kWh}_{\mathrm{price}}$$

Where:

Κ _f	 Cost for the hydraulic losses 	[€]
T	 Energy production time 	[h/year]
kWh,	_{price} = Energy price	[€/kWh]
r	= Radius of the pipe	[m]
C_2	 Calculation coefficient 	

Present value for 20 year of operation:

$$K_{f pv} = \sum_{i=1}^{n} \frac{K_{f}}{(1+I)^{i}}$$

K _{f pv}	= Present value of the hydraulic losses
n	Lifetime, (Number of year)
I	= Interest rate

Calculation of the economical correct diameter of the pipe Cost for the Pipe Material

$$m = \rho_m \cdot V = \rho_m \cdot 2 \cdot \pi \cdot r \cdot t \cdot L = \rho_m \cdot 2 \cdot \pi \cdot r \cdot \frac{p \cdot r}{\sigma} \cdot L = C_1 \cdot r^2$$
$$K_t = M \cdot m = M \cdot C_1 \cdot r^2$$

Where:

m = Mass of the pipe ρ_m = Density of the material = Volume of material V = Radius of pipe r = Length of pipe L = Pressure in the pipe р = Maximum stress σ C_1 = Calculation coefficient [€] K_t = Installation costs M = Cost for the material [€/kg]

[kg] $[kg/m^3]$ [m³] [m] [m] [MPa] [MPa]

NB:

This is a simplification because no other component then the pipe is calculated

Calculation of the economical correct diameter of the pipe

- Installation Costs:
 - Pipes
 - Maintenance
 - Interests
 - Etc.

Calculation of the economical correct diameter of the pipe

$$K_{f pv} = \sum_{i=1}^{n} \frac{\frac{C_2}{r^5} \cdot T \cdot kWh_{price}}{(1+I)^i} \qquad K_t = M \cdot C_1 \cdot r^2$$

$$\frac{d(\mathbf{K}_{t} + \mathbf{K}_{f})}{dr} = 2 \cdot \mathbf{M} \cdot \mathbf{C} \cdot \mathbf{r} - \frac{5}{r^{6}} \cdot \sum_{i=1}^{n} \frac{\mathbf{C}_{2} \cdot \mathbf{T} \cdot \mathbf{k} \mathbf{W} \mathbf{h}_{price}}{(1+I)^{i}} = 0$$

Κ _f	=	Cost for the hydraulic losses	[€]
K _t	=	Installation costs	[€]
T	=	Energy production time	[h/year]
kWh _{price}	, =	Energy price	[€⁄kWh]
r	=	Radius of the pipe	[m]
C ₁	=	Calculation coefficient	
C_2	=	Calculation coefficient	
M	=	Cost for the material	[€⁄kg]
n	=	Lifetime, (Number of year)	[-]
I	=	Interest rate	[-]

Calculation of the economical correct diameter of the pipe

Calculation of the forces acting on the anchors

Calculation of the forces acting on the anchors

[N] [N] [N]

Calculation of the forces acting on the anchors

Valves

Principle drawings of valves

Spherical valve

Bypass system

Butterfly valve

Butterfly valve

Butterfly valve disk types

Hollow-jet Valve

Pelton turbines

- Large heads (from 100 meter to 1800 meter)
- Relatively small flow rate
- Maximum of 6 nozzles
- Good efficiency over a vide range

Jostedal, Norway

Francis turbines

- Heads between 15 and 700 meter
- Medium Flow Rates
- Good efficiency η=0.96 for modern machines

Kaplan turbines

- Low head (from 70 meter and down to 5 meter)
- Large flow rates
- The runner vanes can be governed
- Good efficiency over a vide range
