Hydro power plants

Hydro power plants

The principle the water conduits of a traditional high head power plant

Ulla- Førre

Original figur ved Statkraft Vestlandsverkene

Typical Power House with Francis Turbine

Arrangement of a small hydropower plant

Water intake

- Dam
- Coarse trash rack
- Intake gate
- Sediment settling basement

Dams

- Rockfill dams
- Pilar og platedamme
- Hvelvdammer

Rock-fill dams

1. Core
2. Filter zone
3. Transition zone
4. Supporting shell

Moraine, crushed soft rock, concrete, asphalt Sandy gravel
Fine blasted rock
Blasted rock

Slab concrete dam

Arc dam

Gates in Hydro Power Plants

Types of Gates

- Radial Gates
- Wheel Gates
- Slide Gates
- Flap Gates
- Rubber Gates

Radial Gates at Älvkarleby, Sweden

Radial Gate

Flap Gate

Rubber gate

Circular gate

End cover

Circular gate

Jhimruk Power Plant, Nepal

Trash Racks

Panauti Power Plant, Nepal

Gravfoss

Power Plant Norway

Trash Rack size: Width: 12 meter Height: 13 meter

Stainless Steel

CompRack
 Trash Rack delivered by VA-Tech

Cleaning the trash rack

Pipes

- Materials
- Calculation of the change of length due to the change of the temperature
- Calculation of the head loss
- Calculation of maximum pressure
- Static pressure
- Water hammer
- Calculation of the pipe thickness
- Calculation of the economical correct diameter
- Calculation of the forces acting on the anchors

Materials

- Steel
- Polyethylene, PE
- Glass-fibre reinforced Unsaturated Polyesterplastic , GUP
- Wood
- Concrete

Materials

Material	Max. Diameter	Max. Pressure	Max. Stresses
[m]	$[\mathrm{m}]$	$[$ MPa $]$	
Steel, St.37			150
Steel, St.42			190
Steel, St.52	$\sim 1,0$	160	5
PE	2,4 Max.p $=160 \mathrm{~m}$.	320 Max. D: $1,4 \mathrm{~m}$.	
GUP	~ 5	80	
Wood	~ 5	~ 400	
Concrete			

Steel pipes in penstock

GUP-Pipe

Raubergfossen Power Plant, Norway

Wood Pipes

Breivikbotn Power Plant, Norway

Øvre Porsa Power Plant, Norway

Calculation of the change of length due to the change of the temperature
 $\Delta \mathrm{L}=\alpha \cdot \Delta \mathrm{T} \cdot \mathrm{L}$

Where:
$\Delta L=$ Change of length
[m]
L = Length
[m]
$\alpha=$ Coefficient of thermal expansion $\left[\mathrm{m} /{ }^{\circ} \mathrm{C} \mathrm{m}\right]$
$\Delta T=$ Change of temperature
$\left[{ }^{\circ} \mathrm{C}\right]$

Calculation of the head loss

$$
h_{f}=f \cdot \frac{L}{D} \cdot \frac{c^{2}}{2 \cdot g}
$$

Where:
$h_{f}=$ Head loss
$\mathrm{f}=$ Friction factor
L = Length of pipe
D = Diameter of the pipe
c = Water velocity
g = Gravity
[m]
[-]
[m]
[m]
[m/s]
[$\mathrm{m} / \mathrm{s}^{2}$]

VALUES OF (VD*) FOR WATER AT $15.5^{\circ} \mathrm{C}$ (VELOCITY IN M/SEC \#DIAMETER IN M)

Example
 Calculation of the head loss

Power Plant data:

The pipe material is steel

$$
\mathrm{Re}=\frac{\mathrm{C} \cdot \mathrm{D}}{v}
$$

Where:
$c=3,2 \mathrm{~m} / \mathrm{s} \quad$ Water velocity
$v=1,308 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ Kinetic viscosity
$\operatorname{Re}=4,9 \cdot 10^{6} \quad$ Reynolds number

VALUES OF (VD") FOR WATER AT $15.5^{\circ} \mathrm{C}$ (VELOCITY IN M/SEC \#DIAMETER IN M)

Example
 Calculation of the head loss

Power Plant data:
$\mathrm{H}=100 \mathrm{~m}$ Head
$\mathrm{Q}=10 \mathrm{~m}^{3} / \mathrm{s}$ Flow Rate
$\mathrm{L}=1000 \mathrm{~m}$ Length of pipe
D $=2,0 \mathrm{~m}$ Diameter of the pipe
The pipe material is steel

$$
h_{f}=f \cdot \frac{L}{D} \cdot \frac{c^{2}}{2 \cdot g}=0,013 \cdot \frac{1000}{2} \cdot \frac{3,2^{2}}{2 \cdot 9,82}=3,4 m
$$

Where:

$$
\begin{array}{lll}
\mathrm{f} & =0,013 & \text { Friction factor } \\
\mathrm{c} & =3,2 \mathrm{~m} / \mathrm{s} & \text { Water velocity } \\
\mathrm{g} & =9,82 \mathrm{~m} / \mathrm{s}^{2} & \text { Gravity }
\end{array}
$$

Calculation of maximum pressure

- Static head, H_{gr} (Gross Head)
- Water hammer, $\Delta h_{w h}$
- Deflection between pipe supports
- Friction in the axial direction

Maximum pressure rise due to the Water Hammer

$$
\Delta h_{w h}=\frac{\mathrm{a} \cdot \mathrm{C}_{\max }}{\mathrm{g}} \quad \mathrm{IF} \quad \mathrm{~T}_{\mathrm{C}} \ll \frac{2 \cdot \mathrm{~L}}{\mathrm{a}} \quad \text { Jowkowsky }
$$

$\Delta \mathrm{h}_{\mathrm{wh}}$	$=$ Pressure rise due to water hammer	$[\mathrm{mWC}]$
a	$=$ Speed of sound in the penstock	$[\mathrm{m} / \mathrm{s}]$
$\mathrm{c}_{\max }$	$=$ maximum velocity	$[\mathrm{m} / \mathrm{s}]$
g	$=$ gravity	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$

Example

Jowkowsky

$$
\begin{aligned}
\mathrm{a} & =1000[\mathrm{~m} / \mathrm{s}] \\
\mathrm{c}_{\max } & =10 \quad[\mathrm{~m} / \mathrm{s}] \\
\mathrm{g} & =9,81\left[\mathrm{~m} / \mathrm{s}^{2}\right]
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{C}} \ll \frac{2 \cdot \mathrm{~L}}{\mathrm{a}}
$$

Maximum pressure rise due to the Water Hammer

$$
\Delta \mathrm{h}_{\mathrm{wh}}=\frac{\mathrm{a} \cdot \mathrm{c}_{\max }}{\mathrm{g}} \cdot \frac{2 \cdot \mathrm{~L} / \mathrm{a}}{\mathrm{~T}_{\mathrm{C}}}=\frac{\mathrm{c}_{\max } \cdot 2 \cdot \mathrm{~L}}{\mathrm{~g} \cdot \mathrm{~T}_{\mathrm{C}}} \quad \text { IF } \quad \mathrm{T}_{\mathrm{C}} \geq \frac{2 \cdot \mathrm{~L}}{\mathrm{a}}
$$

$$
\begin{array}{lll}
\text { Where: } & & {[\mathrm{mWC}]} \\
\Delta \mathrm{h}_{\mathrm{wh}} & =\text { Pressure rise due to water hammer } & {[\mathrm{m} / \mathrm{s}]} \\
\mathrm{a} & =\text { Speed of sound in the penstock } & {[\mathrm{m} / \mathrm{s}]} \\
\mathrm{C}_{\mathrm{max}} & =\text { maximum velocity } & {\left[\mathrm{m} / \mathrm{s}^{2}\right]} \\
\mathrm{g} & =\text { gravity } & {[\mathrm{m}]} \\
\hline \mathrm{L}]
\end{array}
$$

Example

$\begin{aligned} \mathrm{L} & =300[\mathrm{~m}] \\ \mathrm{T}_{\mathrm{C}} & =10 \quad[\mathrm{~s}] \\ \mathrm{C}_{\text {max }} & =10 \quad[\mathrm{~m} / \mathrm{s}] \\ \mathrm{g} & =9,81\left[\mathrm{~m} / \mathrm{s}^{2}\right]\end{aligned}$

$$
\Delta \mathrm{h}_{\mathrm{wh}}=\frac{\mathrm{c}_{\max } \cdot 2 \cdot \mathrm{~L}}{\mathrm{~g} \cdot \mathrm{~T}_{\mathrm{C}}}
$$

Calculation of the pipe thickness

$L \cdot D_{i} \cdot p \cdot C_{s}=2 \cdot \sigma_{t} \cdot L \cdot t$
\Downarrow
$\sigma_{t}=\frac{\mathrm{p} \cdot \mathrm{r}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{s}}}{\mathrm{t}}$
$\mathrm{p}=\rho \cdot \mathrm{g} \cdot\left(\mathrm{H}_{\mathrm{gr}}+\mathrm{h}_{\mathrm{wh}}\right)$

- Based on:
- Material properties
- Pressure from:
- Water hammer
- Static head

Example

Calculation of the pipe thickness

$\mathrm{L} \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{p} \cdot \mathrm{C}_{\mathrm{s}}=2 \cdot \sigma_{\mathrm{t}} \cdot \mathrm{L} \cdot \mathrm{t}$
\Downarrow

$$
\mathrm{t}=\frac{\mathrm{p} \cdot \mathrm{r}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{s}}}{\sigma_{\mathrm{t}}}=0,009 \mathrm{~m}
$$

$$
\mathrm{p}=\rho \cdot \mathrm{g} \cdot\left(\mathrm{H}_{\mathrm{gr}}+\mathrm{h}_{\mathrm{wh}}\right)=1,57 \mathrm{MPa}
$$

- Based on:
- Material properties
- Pressure from:
- Water hammer
- Static head

Where:
$\mathrm{L}=0,001 \mathrm{~m}$
$D_{i}=2,0 \mathrm{~m}$
$\sigma_{\mathrm{t}}=206 \mathrm{MPa}$
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$C_{s}=1,2$
$\mathrm{H}_{\mathrm{gr}}=100 \mathrm{~m}$
$\Delta \mathrm{h}_{\mathrm{wh}}=61 \mathrm{~m}$

Length of the pipe Inner diameter of the pipc
Stresses in the pipe material
Density of the water
Coefficient of safety
Gross Head
Pressure rise due to water hammer

Calculation of the economical correct diameter of the pipe

Example

Calculation of the economical correct diameter of the pipe Hydraulic Losses

$$
\begin{aligned}
& \text { Power Plant data: } \\
& \mathrm{H}=100 \mathrm{~m} \text { Head } \\
& \mathrm{Q}=10 \mathrm{~m}^{3} / \mathrm{s} \text { Flow Rate } \\
& \eta_{\text {plant }}=85 \% \quad \text { Plant efficiency } \\
& \mathrm{L}=1000 \mathrm{~m} \text { Length of pipe } \\
& P_{\text {Loss }}=\rho \cdot g \cdot Q \cdot h_{f}=\rho \cdot g \cdot Q \cdot f \frac{L}{2 \cdot r} \cdot \frac{Q^{2}}{2 \cdot g \cdot \pi^{2} \cdot r^{4}}=\frac{C_{2}}{r^{5}} \\
& \text { Where: }
\end{aligned}
$$

Example

Calculation of the economical correct diameter of the pipe Cost of the Hydraulic Losses per year

$$
\mathrm{K}_{\mathrm{f}}=\mathrm{P}_{\mathrm{Loss}} \cdot \mathrm{~T} \cdot \mathrm{kWh}_{\text {price }}=\frac{\mathrm{C}_{2}}{\mathrm{r}^{5}} \cdot \mathrm{~T} \cdot \mathrm{kWh}_{\text {price }}
$$

Where:

K_{f}	$=$ Cost for the hydraulic losses	$[€]$
$\mathrm{P}_{\text {Loss }}=$ Loss of power due to the head loss	$[\mathrm{W}]$	
T	$=$ Energy production time	$[\mathrm{h} / \mathrm{year}]$
kWh		
$\mathrm{price}=$	Energy price	$[€ / \mathrm{kWh}]$
r	$=$ Radius of the pipe	$[\mathrm{m}]$
C_{2}	$=$ Calculation coefficient	

Example

Calculation of the economical correct diameter of the pipe Present value of the Hydraulic Losses per year

Where:

$$
\mathrm{K}_{\mathrm{f}}=\frac{\mathrm{C}_{2}}{\mathrm{r}^{5}} \cdot \mathrm{~T} \cdot \mathrm{kWh}_{\text {price }}
$$

$\mathrm{K}_{\mathrm{f}} \quad=$ Cost for the hydraulic losses
[$€]$
$\mathrm{T}=$ Energy production time
$\mathrm{kWh}_{\text {price }}=$ Energy price
$r=$ Radius of the pipe
[h/year]
[$€ / \mathrm{kWh}]$
$\mathrm{C}_{2}=$ Calculation coefficient
Present value for 20 year of operation:

$$
\mathrm{K}_{\mathrm{fpv}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{~K}_{\mathrm{f}}}{(1+\mathrm{I})^{\mathrm{i}}}
$$

Where:

$$
\mathrm{K}_{\mathrm{fpv}} \quad=\text { Present value of the hydraulic losses } \quad[€]
$$

$\mathrm{n}=$ Lifetime, (Number of year)

```
I = Interest rate

\section*{Example}

Calculation of the economical correct diameter of the pipe Cost for the Pipe Material
\[
\begin{aligned}
& \mathrm{m}=\rho_{\mathrm{m}} \cdot \mathrm{~V}=\rho_{\mathrm{m}} \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{t} \cdot \mathrm{~L}=\rho_{\mathrm{m}} \cdot 2 \cdot \pi \cdot \mathrm{r} \cdot \frac{\mathrm{p} \cdot \mathrm{r}}{\sigma} \cdot \mathrm{~L}=\mathrm{C}_{1} \cdot \mathrm{r}^{2} \\
& \mathrm{~K}_{\mathrm{t}}=\mathrm{M} \cdot \mathrm{~m}=\mathrm{M} \cdot \mathrm{C}_{1} \cdot \mathrm{r}^{2} \\
& \text { Where: }
\end{aligned}
\]

\section*{Example}

Calculation of the economical correct diameter of the pipe
- Installation Costs:
- Pipes
- Maintenance
- Interests
- Etc.

\section*{Example}

Calculation of the economical correct diameter of the pipe
\[
\begin{aligned}
& K_{f p v}=\sum_{i=1}^{n} \frac{\frac{\mathrm{C}_{2}}{r^{5}} \cdot \mathrm{~T} \cdot \mathrm{kWh}_{\text {price }}}{(1+\mathrm{I})^{\mathrm{i}}} \quad \mathrm{~K}_{\mathrm{t}}=\mathrm{M} \cdot \mathrm{C}_{1} \cdot \mathrm{r}^{2} \\
& \frac{\mathrm{~d}\left(\mathrm{~K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{f}}\right)}{\mathrm{dr}}=2 \cdot \mathrm{M} \cdot \mathrm{C} \cdot \mathrm{r}-\frac{5}{\mathrm{r}^{6}} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{C}_{2} \cdot \mathrm{~T} \cdot \mathrm{kWh} \mathrm{price}}{(1+\mathrm{I})^{\mathrm{i}}}=0 \\
& \text { Where: } \\
& \begin{array}{lll}
\mathrm{K}_{\mathrm{f}} & =\text { Cost for the hydraulic losses } & {[€]} \\
& &
\end{array} \\
& \mathrm{K}_{\mathrm{t}} \quad=\text { Installation costs } \quad[€] \\
& \mathrm{T}=\text { Energy production time [h/year] } \\
& \mathrm{kWh}_{\text {price }}=\text { Energy price } \\
& =\text { Radius of the pipe } \\
& \text { [ } € / \mathrm{kWh}] \\
& \text { [m] } \\
& \mathrm{C}_{1}=\text { Calculation coefficient } \\
& \mathrm{C}_{2}=\text { Calculation coefficient } \\
& \mathrm{M}=\text { Cost for the material } \\
& \text { n = Lifetime, (Number of year ) } \\
& \text { I = Interest rate } \\
& \text { [ } € / \mathrm{kg}] \\
& \text { [-] }
\end{aligned}
\]

\section*{Example}

Calculation of the economical correct diameter of the pipe
\[
\begin{aligned}
& \frac{\mathrm{d}\left(\mathrm{~K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{f}}\right)}{\mathrm{dr}}=2 \cdot \mathrm{M} \cdot \mathrm{C} \cdot \mathrm{r}-\frac{5}{\mathrm{r}^{6}} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{C}_{2} \cdot \mathrm{~T} \cdot \mathrm{kWh}_{\text {price }}}{(1+\mathrm{I})^{\mathrm{i}}}=0 \\
& \Downarrow \\
& \mathrm{r}=\sqrt[7]{\frac{5}{2} \cdot \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{C}_{2} \cdot \mathrm{~T} \cdot \mathrm{kWh}}{\text { price }}} \mathrm{M} \mathrm{\cdot C} \mathrm{\cdot(1+I)}^{\mathrm{i}}
\end{aligned}
\]

\section*{Calculation of the forces acting on the anchors}


\section*{Calculation of the forces acting on the anchors}

\(\mathrm{F}_{1}=\) Force due to the water pressure [N]
\(\mathrm{F}_{2}=\) Force due to the water pressure [N]
\(F_{3}=\) Friction force due to the pillars upstream the anchor
\(F_{4}=\) Friction force due to the expansion joint upstream the anchor
\(F_{5}=\) Friction force due to the expansion joint downstream the anchor

\section*{Calculation of the forces acting on the anchors}


\section*{Valves}


\section*{Principle drawings of valves}

Open position
Closed position
\(\qquad\)
--.


Hollow-jet valve


Butterfly valve

\section*{Spherical valve}


\section*{Bypass system}


\section*{Butterfly valve}


\section*{Butterfly valve}

\(\rightarrow(\Leftrightarrow\)


\section*{Butterfly valve disk types}


\section*{Hollow-jet Valve}


\section*{Pelton turbines}
- Large heads (from 100 meter to 1800 meter)
- Relatively small flow rate
- Maximum of 6 nozzles
- Good efficiency over a vide range

\section*{Jostedal, Norway}
\[
\begin{aligned}
& * \mathrm{Q}=28,5 \mathrm{~m}^{3} / \mathrm{s} \\
& * \mathrm{H}=1130 \mathrm{~m} \\
& * \mathrm{P}=288 \mathrm{MW}
\end{aligned}
\]


\section*{Francis turbines}
- Heads between 15 and 700 meter
- Medium Flow Rates
- Good efficiency \(\eta=0.96\) for modern machines

\section*{SVARTISEN}

\[
\begin{aligned}
& \mathrm{P}=350 \mathrm{MW} \\
& \mathrm{H}=543 \mathrm{~m} \\
& \mathrm{Q}^{*}=71,5 \mathrm{~m}^{3} / \mathrm{S} \\
& \mathrm{D}_{0}=4,86 \mathrm{~m} \\
& \mathrm{D}_{1}=4,31 \mathrm{~m} \\
& \mathrm{D}_{2}=2,35 \mathrm{~m} \\
& \mathrm{~B}_{0}=0,28 \mathrm{~m} \\
& \mathrm{n}=333 \mathrm{rpm}
\end{aligned}
\]



\section*{Kaplan turbines}

- Low head (from 70 meter and down to 5 meter)
- Large flow rates
- The runner vanes can be governed
- Good efficiency over a vide range
```

