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Hydrodynamic Modeling for Autonomous Underwater Vehicles

Using Computational and Semi-Empirical Methods

Jesse Stuart Geisbert

Abstract

Buoyancy driven underwater gliders, which locomote by modulating their buoyancy

and their attitude with moving mass actuators and inflatable bladders, are proving their

worth as efficient long-distance, long-duration ocean sampling platforms. Gliders have

the capability to travel thousands of kilometers without a need to stop or recharge.

There is a need for the development of methods for hydrodynamic modeling. This thesis

aims to determine the hydrodynamic parameters for the governing equations of motion

for three autonomous underwater vehicles. This approach is two fold, using data ob-

tained from computational flight tests and using a semi-empirical approach. The three

vehicles which this thesis focuses on are two gliders (Slocum and XRay/Liberdade),

and a third vehicle, the Virginia Tech Miniature autonomous underwater vehicle.



Acknowledgements

There are many people whom I would like to thank for helping me over the past two years

in my research and studies that have made this thesis possible. These people have helped

me in the classroom, in the office, in the lab, and in all of the general day to day tasks that

have occupied my time.

First, I would like to thank my committee for supporting me in this research. I have been

able to go to any of them with questions and get direct answers to and help on any of the

problems I was having. I further was able to get to know them both inside and outside the

classroom, which has made for a much better working atmosphere and experience on my

end. Whether it was a BBQ, ice-cream social, or just a friendly meeting, I was always made

to feel comfortable and welcomed and I enjoyed each and every interaction I had with you.

Thank you.

I would especially like to thank Dr. Craig Woolsey for all the time and energy he has put

into this research. Without his almost daily guidance and support I would have found it

very easy to give up a long time ago. When I work with Craig, I feel like there is always

something new to learn and improve upon, which is an exciting way to approach research.

I have been able to count on him for questions and guidance in almost every aspect of my

research. It is unexplainably nice to know that if you have a problem and need to contact

your advisor, you will get an almost immediate response with a solution that makes sense.

Further, I would like to thank those whom I worked with in the lab on various projects

and questions pertaining to this research. Not only did these people answer any trivial

questions I had, but they were able to take it a step beyond and show me the implications

and importance of what I needed to know. I have been able to know these people too both

inside and outside the lab, which has made it very easy and welcoming to come to work every

day and see greeting faces. I would especially like to thank Nina Mahmoudian for her help

with the viscous parameters on the Slocum glider. Nina was able to work with me on several

i



occasions to gather the proper terms using the proper methods. With her understanding of

how and where the values are needed allowed me to better understand why we were doing

the research in the first place. To everyone, thank you.

Burke Murray at NSWC-Carderock Division is another person whom I am in debt to for

always answering the almost-daily emails and for the occasional meetings we’ve had over

the duration of this research. Without his help and extensive knowledge of USAERO, and

the ability to relate and teach the information to me, I would have never been able to use

the CFD program and obtain the results I now have. There was never more than a days

wait for a response to any email filled with tedious questions that I had sent him. Not only

were the responses useful and relevant, but often contained examples of his own work I could

look at and manipulate for my own further understanding. Without all of the teaching, files,

explanations, and support, I would have never made it this far. Thank you, Burke.

Finally, I would like to thank my fiance and best friend, Jessica Jacobson. I would not be

here if not for her and would have pursued other life options long ago if it had not been for

her support and friendship and love. She has been the other half of my mental backbone for

the past two years. Whenever I was frustrated, upset, or about to give up, she was always

there, always positive, and always supportive and understanding to my needs and feelings.

She has driven me to excel and helped show me how important it is to be and do all I can

while given the time I have here. With her, I can do anything, and a simple thank you will

never suffice.

In a final note, I would like to dedicate this thesis and research to the 32 innocent lives that

were lost here at Virginia Tech this year on April 16th, 2007. The students who needlessly

suffered in this tragic event will live in my memory forever, and to them, who can never

finish their goals, dreams, education, ambitions, research, and life, I dedicate my thesis to

you.

ii



Contents

1 Introduction 1

1.1 Buoyancy Driven Underwater Gliders . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Standard Modeling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Mathematical Modeling 7

2.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Math Modeling Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Inviscid Coefficients from Computational Flight Tests 18

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 USAERO to Compute Inviscid Parameters . . . . . . . . . . . . . . . . . . . 20

3.2.1 USAERO Calculation Discussion . . . . . . . . . . . . . . . . . . . . 22

3.3 Grid Generation and Panel Study . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Surface Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Validation of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



3.5 Gliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Slocum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 XRay/Liberdade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Error in Glider Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Viscous Coefficients from Semi-empirical Estimates 51

5 Hydrodynamic Modeling for the 475 VTMAUV 55

6 Summary and Conclusions 65

6.1 Future Work and Recommendations . . . . . . . . . . . . . . . . . . . . . . . 65

A Details of Semi-Empirical Calculations 66

A.1 General Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2 Repeated Coefficients Calculations . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 Viscous Coefficients Calculations . . . . . . . . . . . . . . . . . . . . . . . . 69

B Slocum Study Results 80

B.1 Slocum Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C XRay/Liberdade Study Results 83

C.1 XRay/Liberdade Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



List of Figures

1 Exaggerated Buoyancy Engine Concept . . . . . . . . . . . . . . . . . . . . . 2

2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Direction Cosines - Projection of b1 onto {i} . . . . . . . . . . . . . . . . . . 8

4 Forces and moments due to constant accelerations in the x-direction . . . . . 19

5 Constant Force Coefficient in x-direction due to acceleration in x-direction for

5 ft Radius Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Computing Xu̇ for a sphere with a 5 ft radius. . . . . . . . . . . . . . . . . . 22

7 Slocum glider in the grid generating program, Surfgen . . . . . . . . . . . . . 27

8 Panel Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Pressure Coefficient Error with respect to No. Panels . . . . . . . . . . . . . 29

10 Added Mass Error with respect to No. Panels . . . . . . . . . . . . . . . . . 31

11 475 VTMAUV in Rhinoceros 3.0 . . . . . . . . . . . . . . . . . . . . . . . . 31

12 VTMAUV Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Final Panel Result for VTMAUV Study . . . . . . . . . . . . . . . . . . . . 35

14 Sphere with radius r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

15 Ellipsoid with semi-axes a, b, and c [6] . . . . . . . . . . . . . . . . . . . . . 38

16 Slocum glider in Rhinoceros 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . 41

17 Slocum glider in USAERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

18 Slocum Added Mass/Inertia due to Linear Accelerations . . . . . . . . . . . 46

19 Slocum Added Mass/Inertia due to Angular Accelerations . . . . . . . . . . 47

v



20 XRay Glider in USAERO/OMNI3D . . . . . . . . . . . . . . . . . . . . . . . 48

21 XRay/Liberdade Linear Acceleration Terms . . . . . . . . . . . . . . . . . . 49

22 XRay/Liberdade Angular Acceleration Terms . . . . . . . . . . . . . . . . . . 50

23 475 Glider in USAERO/OMNI3D . . . . . . . . . . . . . . . . . . . . . . . . 55

24 475 Forward Mast Linear Acceleration Terms . . . . . . . . . . . . . . . . . 59

25 475 Forward Mast Angular Acceleration Terms . . . . . . . . . . . . . . . . . 60

26 475 Middle Mast Linear Acceleration Terms . . . . . . . . . . . . . . . . . . 61

27 475 Middle Mast Angular Acceleration Terms . . . . . . . . . . . . . . . . . 62

28 475 Aft Mast Linear Acceleration Terms . . . . . . . . . . . . . . . . . . . . 63

29 475 Aft Mast Angular Acceleration Terms . . . . . . . . . . . . . . . . . . . 64

30 Slocum Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

31 XRay/Liberdade Panel Study . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



List of Tables

1 SNAME notation for for marine vessels; see [6]. . . . . . . . . . . . . . . . . 8

2 Coefficient of Pressure Distribution Based on Panels . . . . . . . . . . . . . . 28

3 Added Mass Comparison for Panel Study of a sphere . . . . . . . . . . . . . 30

4 Number of Panels Defined per Study . . . . . . . . . . . . . . . . . . . . . . 32

5 Pressure Coefficient Distribution over Panels based on Case No. . . . . . . . 33

6 Final Panel Study Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 List of Knowns for Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Viscous Coefficients for Slocum . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Panel Distribution Over Slocum Body . . . . . . . . . . . . . . . . . . . . . . 80

10 Panel Distribution Over Slocum Body . . . . . . . . . . . . . . . . . . . . . . 81

11 Final Panel Distribution for Slocum . . . . . . . . . . . . . . . . . . . . . . . 81

12 Panel Distribution Over XRay/Liberdade Body . . . . . . . . . . . . . . . . 83

13 Pressure Distribution Over XRay/Liberdade Body per Study . . . . . . . . . 84

14 Final Panel Distribution on the XRay/Liberdade Body . . . . . . . . . . . . 84

vii



Nomenclature/Notation

Variable Description

·̂ cross product equivalent matrix âb = a× b

·̄ nondimensional value

0 zero vector

bi basis vector for body frame, i ∈ {1, 2, 3}
C f hydrodynamic coupling matrix

Crb rigid body coupling matrix

D drag force

Dω angular rate damping matrix

F viscous hydrodynamic force, [X, Y, Z]T

g acceleration due to gravity

h angular momentum about body origin

ii basis vector for inertial frame, i ∈ {1, 2, 3}
Irb rigid body inertia

I f added inertia

Imm mass particle inertia about body origin

l reference length

L lift force

m mass of displaced fluid less particle mp

mrb mass of rigid body

mv total vehicle mass

viii



Variable Description

mp lateral mass particle

m̃ excess mass, mv −m

M f added mass matrix

M rb vehicle mass matrix

M viscous hydrodynamic moment, [L, M, N ]T

p inertial linear momentum in body frame

rp position of lateral mass particle, rp = rpb2

rrb body center of mass (less contribution due to mp)

R body to inertial rotation

ρ density (seawater)

S side force

T kinetic energy

In addition to the nomenclature described above, we adopt a somewhat standard notation

for the dimensional and non-dimensional hydrodynamic parameters commonly referred to

as “stability derivatives.” These parameters can be divided into inviscid (potential flow)

terms and viscous terms. For an underwater vehicle, the primary inviscid hydrodynamic

parameters are the components of the generalized added inertia matrix. Following SNAME

notation [6], the generalized added inertia matrix is

MA =


 M f CT

f

C f I f


 = −




Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Lu̇ Lv̇ Lẇ Lṗ Lq̇ Lṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ




The following table provides definitions of nondimensional quantities used to represent vis-
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cous effects. These definitions largely follow the notational convention for aircraft, with some

minor discrepancies (such as the use of a single characteristic length L).

Dimensional Dimensional Nondimensional

Quantity Divisor Quantity

X, Y , Z 1
2
ρV 2S CX , CY , CZ

L, M , N 1
2
ρV 2Sl Cl, Cm, Cn

u, v, w V ū, v̄, w̄

p, q, r V/l p̄, q̄, r̄

Standard assumptions concerning vehicle symmetry are that the longitudinal forces and

moments depend only on longitudinal state variables and the lateral-directional forces and

moments depend only on lateral-directional state variables. Notation for the nondimensional

stability derivatives, which characterize the viscous hydrodynamic effects, is defined below.

CX CZ Cm

ū CXu CZu Cmu

α CXα CZα Cmα

q̄ CXq CZq Cmq

CY Cl Cn

β CYβ
Clβ Cnβ

p̄ CYp Clp Cnp

r̄ CYr Clr Cnr

x



1 Introduction

1.1 Buoyancy Driven Underwater Gliders

The concept for an autonomous underwater vehicle (AUV) which uses buoyancy for propul-

sion was introduced in the late 1980’s. These underwater gliders evolved from a special

class of instrumented floats that have been used by physical oceanographers for nearly 20

years [14]. These floats, which are equipped with buoyancy actuators, can ascend and de-

scend vertically, collecting oceanographic data along the way. Floats drift with the ocean

currents, however; scientists have no control over their motion once they are released. Henry

Stommel, a renowned physical oceanographer, working with his colleague Doug Webb, in-

troduced the concept for a winged AUV with a buoyancy actuator and a moving mass for

attitude control [2]. By properly modulating its net weight and attitude, this vehicle uses

gravity to propel itself with tremendous efficiency. The future holds dreams of these gliders

undertaking missions that can span years and travel thousands of miles performing exper-

imental studies on the ocean environment or tracking enemy submarines in a surveillance

mission [11]. Gliders are currently making historic achievements and already capable of per-

forming a variety of solo missions. In November of 2004, a glider made history by crossing

the Gulf Stream to become the first autonomous vehicle to do so [3].

The buoyancy actuator that is typically used for underwater gliders is an inflatable bladder

which is exposed to the ambient ocean water. When this bladder is inflated (typically with

oil), the buoyant force on the vehicle increases; when the bladder is deflated, the buoyant

force on the vehicle decreases. If the vehicle is trimmed to be neutrally buoyant with the

bladder half full, then modulating the bladder volume makes the vehicle rise or sink. The

moving mass actuator provides attitude control in pitch and roll by moving the vehicle center

of mass relative to the center buoyancy [7].

To illustrate the concept, suppose that the vehicle is in a sinking glide with a given velocity

vector, V , and then inflates its bladder to become positively buoyant (i.e., light in water). As
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Figure 1: Exaggerated Buoyancy Engine Concept

the bladder increases, seawater (indicated by the light blue color) is pushed out of the vehicle

by the increasing bladder volume. The mass of the bladder system never changes, only the

volume in which it displaces. When the seawater has been pushed out of the vehicle by the

increased bladder volume, the vehicle has become lighter in weight than its previous state.

Suppose also that the center of mass (indicated by the yellow and black circle) is shifted

rearward of the center of buoyancy so that the vehicle noses up. As the vehicle ascends,

the lift generated over the fixed wing propels the vehicle forward. When the vehicle has

ascended sufficiently far, the bladder is deflated and the moving mass is shifted forward. As

the volume of the bladder is decreased, seawater is pulled back into the vehicle and causes

the net weight of the vehicle to be heavier in weight than its previous state. The vehicle

noses down and begins to descend. The lift reverses in such a way that lift continues to

propel the vehicle forward, rectifying vertical motion into horizontal motion.

There are scenarios for which buoyancy driven gliders are more favorable than traditional,

propeller-driven AUVs due to power storage limitations. Scenarios where buoyancy driven

gliders would be more favorable would be for long-term, long-range ocean sampling tasks

and also persistent surveillance tasks [5]. Gliders excel in endurance over traditional battery

propulsion vehicles because their only powering needs are to inflate/deflate the buoyancy

bladder and move the mass actuators which control pitch and roll. These glider powering

needs are what allow the gliders to travel thousands of kilometers for many days while

sampling the ocean environment [15]. Scenarios where buoyancy driven gliders would not be
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favorable would be in environments with shallow water which would inhibit gliding. Further,

environments with strong currents would hinder glider performance, as gliders are very slow

vehicles, typically travelling at speeds near twenty-five centimeters per second [14].

The earliest three underwater gliders to be introduced are Spray [14], Slocum [15], and

Seaglider [5]. These gliders are all designed for oceanographic observation over very long

distances and durations. Although each glider is slightly different in design, the objective

for each is the same: to minimize energy expended in collecting science data. The result is

an ocean sampling device which can provide scientists with data that is more valuable than

data from floats or moored sensors and significantly lower cost than data taken by manned

research vessels.

An important capability for gliders is to navigate accurately. Model-based control design

can be used to enhance navigational accuracy, but requires development of a vehicle hy-

drodynamic model. The primary purpose of the research in this thesis is to determine the

hydrodynamic parameters that define the dynamic equations for two specific underwater

gliders. The first is Slocum [15]. Slocum, named for Joshua Slocum who was the first person

to sail around the world alone, has a traditional airplane shape: a cylindrical fuselage, swept

wings, and a vertical tail fin, which is connected to the fuselage by a tail boom. While

a vertical tail is necessary for directional stability, a horizontal tail is not necessary for a

sufficiently bottom-heavy vehicle. Slocum is a medium-sized glider with an overall length of

3.2 meters, a fuselage diameter of 0.165 meters, and a displaced mass of 40 kilograms. The

glider can travel to a depth of 2600 meters and has a stated operational range of approxi-

mately 40,000 kilometers [15]. The second glider considered in this thesis is XRay/Liberdade,

a blended wing-body underwater glider designed and built by a team from the Scripps In-

stitute of Oceanography’s Marine Physical Laboratory and the University of Washington’s

Applied Physics Laboratory [8].

The hydrodynamic parameters which define the dynamic equations for an underwater glider

can be categorized into viscous terms and inviscid terms. Viscous terms are those param-
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eters that depend on viscous drag and lift over the body, in aggregate, or over individual

components of the body. Inviscid terms are those parameters which arise from potential

flow theory, such as added mass and added inertia. For generic aircraft shapes, such as

Slocum, there are well-used semi-empirical tools for estimating the viscous terms. For less

traditional shapes, such as XRay/Liberdade, the tools for estimating viscous terms are not

so well-developed. In neither case are there reliable analytical or semi-empirical methods for

determining the inviscid terms. To compute these terms requires solving Laplace’s equation

with complicated boundary conditions, a task which must generally be done numerically.

This thesis describes semi-empirical and numerical methods used to estimate the viscous

and inviscid terms appearing in the dynamic equations for Slocum. It also describes the

numerical computation of inviscid terms for XRay/Liberdade. In addition, since the capa-

bility and expertise to compute added mass and added inertia for complicated shapes has

been developed, the thesis also describes hydrodynamic model development for the 4.75 inch

diameter Virginia Tech Miniature AUV (475).

1.2 Standard Modeling Methods

There are several methods that will produce results for hydrodynamic parameters based on

a given geometry. The methods include analytical, experimental, computational, and semi-

empirical approaches. The distinctions between the modeling methods are further described

below.

Analytical methods for determining model parameter values include implementing strip the-

ory or solving Laplace’s equation. Strip theory, also known as slender body approximation,

can be applied to slender bodies in order to estimate the hydrodynamic parameters (such

as added mass and inertia) for a body using the 2D sectional properties. Strip theory can

also approximate other parameters in the equations of motion, such as damping coefficients.

One assumption of strip theory is that the vessel is slender. Slender vessels have a small

beam (or draft)-to-length ratio, meaning any cross-sectional changes occur gradually over the

4



length of the vessel. Strip theory takes the hydrodynamic parameters of the 2D shape and

integrates the parameters over the length of the vessel. Another assumption of strip theory

is that there are small angle changes in the vehicle’s maneuver. For the Slocum glider, strip

theory may be appropriately used since the glider can be assumed to be slender. However,

for the XRay/Liberdade, strip theory cannot provide an approximation for the hydrodynamic

parameters. In both glider cases, the small angle change assumption is generally reasonable.

Another approach to determining the mathematical model parameters is to do experimental

studies. These studies include sea trials and tow-tank tests. These methods are costly due

to the expense of constructing scale vehicle models and operating the experimental facility.

Further, the added mass and inertia terms are difficult to obtain from sea trials.

A third approach to determining the mathematical model parameters is to use computa-

tional methods. Computational fluid dynamics (CFD) involves solving the Navier-Stokes

flow equations numerically using a computer. CFD programs are less costly than tow-tank

and sea trial testing and more broadly applicable than analytical methods, however they

require an expert to grid the model and validate the results. CFD programs can handle any

type of trajectory that one would prescribe for the model, making this a viable approach

for determining difficult-to-measure model parameters for the Slocum and XRay/Liberdade

gliders. CFD programs are generally validated using experimental data from wind tunnel

tests. Today, there is a large number of different CFD programs available, each with its own

advantages and disadvantages. For each of these codes, a user defines a geometry, generates

a grid pattern over the geometry, then applies the particular algorithm developed for that

CFD program.

One final method for determining model parameters is to use a semi-empirical approach.

Semi-empirical approaches use experimentally derived guidelines for estimating model pa-

rameter values for vehicles with generic shapes.
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1.3 Proposed Approach

The approach followed in this thesis in order to determine the hydrodynamic properties

involves several steps. To solve for the inviscid parameters, a commercially available CFD

program called USAERO was used for the vehicles to perform computational flight tests, as

described in Section 3.2. USAERO is used to solve for the inviscid coefficients by solving

Laplace’s equations. Semi-empirical computations are performed on the same models using

USAF DatCom [4] and Roskam [13] to solve for the viscous parameters. In addition to these

sources, additional information required to complete the hydrodynamic parameters, such as

rigid body data, is obtained using the 3D modeling software Rhinoceros 3.0.
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2 Mathematical Modeling

An objective of this research is to provide parameter values for the dynamic equations that

will describe an underwater glider’s motion. This section develops the general equations.

2.1 Reference Frames

Reference frames must be defined before an analysis of the kinematic and dynamic equations

can be made. The moving coordinate frame (b) and the fixed-in-space inertial frame (i) are

shown in Figure 2.

Figure 2: Reference Frames

Here, ’O’ is the origin of the body-fixed frame, which in this study coincides with the center

of volume of the model, as determined from Rhinoceros 3.0. The variables listed in Figure 2

are explained in Table 1.

The motion of the body-fixed frame is described relative to the inertial frame. Following

the notation from [6], the model’s position and orientation can be expressed relative to the

inertial frame by η1 = [x, y, z]T and η2 = [φ, θ, ψ]T , respectively. Here, x, y, and z refer

to the position of the body with respect to the inertial frame. The variables φ, θ, and ψ

refer to the angular orientation of the body with respect to the inertial frame in roll, pitch,
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Table 1: SNAME notation for for marine vessels; see [6].

Degree of Freedom forces/moments linear/angular velocities

Translation along x-axis (surge) X u

Translation along y-axis (sway) Y v

Translation along z-axis (heave) Z w

Rotation about x-axis (roll) L p

Rotation about y-axis (pitch) M q

Rotation about z-axis (yaw) N r

and yaw, respectively. The linear and angular velocity with respect to the inertial frame are

expressed in the body frame as ν1 = [u, v, w]T and ν2 = [p, q, r]T , respectively.

2.2 Kinematics

Consider the case presented in Figure 3 where the two reference frames shown in Figure 2

share the same origin. One way to express the body frame unit vectors in the inertial frame

is through projection.

Figure 3: Direction Cosines - Projection of b1 onto {i}
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Expressing the body frame unit vector, b1, as a projection to the inertial frame yields the

following equation,

b1 = cos β11i1 + cos β12i2 + cos β13i3 (1)

Similarly, this can be done for the other two remaining unit vectors in the body frame.

b2 = cos β21i1 + cos β22i2 + cos β23i3 (2)

b3 = cos β31i1 + cos β32i2 + cos β33i3 (3)

These equations can be put into vector and matrix form in the following manner.

{b} =




cos β11 cos β12 cos β13

cos β21 cos β22 cos β23

cos β31 cos β32 cos β33


 {i} = [R]{i} (4)

Here, [R] is known as the direction cosine matrix. This direction cosine matrix can be

parameterized in terms of the Euler angles, roll, pitch, and yaw, described above. In airplane

and underwater glider applications, it is popular to choose an Euler angle rotation through

the roll angle, φ, the pitch angle, θ, and the yaw angle, ψ. Given a specified Euler angle,

three direction cosine matrices are used to relate the body frame to the inertial frame. Define

planar rotation matrices,

[R1(θ)] =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 (5)
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[R2(θ)] =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 (6)

[R3(θ)] =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (7)

The direction cosine matrix, R(φ, θ, ψ), which maps free vectors from the body frame to the

inertial frame is

[R(φ, θ, ψ)] = [R3(ψ)][R2(θ)][R1(φ)] (8)

which can be restated as,

[R(η2)] =




cos ψ cos θ − sin ψ cos φ + cos ψ sin θ sin φ sin ψ sin φ + cos ψ cos φ sin θ

sin ψ cos θ cos ψ cos φ + sin φ sin θ sin ψ − cos ψ sin φ + sin θ sin ψ cos φ

− sin θ cos θ sin φ cos θ cos φ




(9)

The Euler angular rates, η̇2 are defined by the body angular rate and the attitude of the

body frame.

η̇2 = [R2(η2)]ν2 (10)

The transformation matrix, R2(η2), can be derived through,
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η̇2 =




φ̇

0

0


 + [R1(φ)]T




0

θ̇

0


 + [R1(φ)]T [R2(θ)]

T




0

0

ψ̇


 = [R2(η2)]

−1η̇2 (11)

Expanding Equation (11) and taking the inverse, we can state the proper transformation

matrix which relates the body-fixed angular velocity and the Euler rate vector as,

[R2(η2)] =




1 sin φ tan θ cos φ tan θ

0 cos ψ − sin φ

0 sin φ/ cos θ cos φ/ cos θ


 (12)

There is a singularity at θ = ±π/2 in Equation 12. In applications where this may be

a problem, another possibility is to use the quaternion representation. Summarizing the

results from Section 2.2 yields Equation (13), which expresses the kinematic equations in

vector form.


 η̇1

η̇2


 =


 R1(η2) 03×3

03×3 R2(η2)





 ν1

ν2


 (13)

2.3 Dynamics

Linear momentum, p, and angular momentum, h, are used to define the dynamic equations

of motion. These two momentum vectors are the conjugate momenta corresponding to ν1

and ν2, respectively. To develop the expressions for p and h requires several definitions.

The inertia matrix, I, is composed of three separate inertia matrices: the added inertia

matrix, If and the rigid body inertia matrix, Irb. If accounts for the added inertia of the

system as the fluid is accelerated when the body is rotated. Irb accounts for the inertia due

to the defined geometry of the model and the inertia caused by the moving mass which helps

control the vehicle in a maneuver. If the underwater glider’s external geometry is such that
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the b1-b2 and b1-b3 planes are planes of symmetry, the added inertia matrix is diagonal [10].

The added inertia of the system is,

If = −diag
(

Lṗ Mq̇ Nṙ

)
(14)

where Lṗ, Mq̇, and Nṙ are defined as roll moment due to roll acceleration, pitch moment due

to pitch acceleration, and yaw moment due to yaw acceleration, respectively [6]. For typical

underwater glider configurations, the rigid body inertia matrix takes the form,

Irb =




Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz


−mpr̂pr̂p (15)

where Ixz appears when the center of mass is not located on a body frame axis. Here, mp is

the mass of the control moving mass. The vector rp is the vector from the location of the

center of mass to the location of the control moving mass. The 3 × 3 matrix r̂p is defined

as the skew-symmetric cross-product equivalent matrix formed from the particle location

vector, rp.

r̂p =




0 −rp3 rp2

rp3 0 −rp1

−rp2 rp1 0


 (16)

We assume that the vehicle center of mass is located in the b1-b3 plane, and we assume that

rp = rpb2. Combining the three matrices together yields,

I = If + Irb (17)

The next definition is for the mass matrix, M , of the system. The mass matrix is the sum

of two matrices; the added mass matrix, Mf , and the vehicle mass matrix, Mv. Like the
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added inertia matrix, the added mass matrix is diagonal for the gliders considered here due

to their planes of symmetry.

Mf = −diag
(

Xu̇ Yv̇ Zẇ

)
(18)

where Xu̇, Yv̇, and Zẇ are the force in the x-direction due to acceleration in the x-direction,

force in the y-direction due to acceleration in the y-direction, and force in the z-direction

due to acceleration in the z-direction, respectively [6]. The vehicle mass matrix is defined

as,

Mrb =




mv 0 0

0 mv 0

0 0 mv


 = mvI (19)

Here, mv is the mass of the rigid body vehicle and I is the 3x3 identity matrix. Combining

the two matrices yields,

M = Mf + Mrb (20)

The coupling matrix, C, arises from the potential flow and inertial coupling between the

translational and rotational kinetic energy of the system. There are two components in the

coupling matrix. The added coupling matrix, Cf is defined as,

Cf = −




0 0 0

0 0 Mẇ

0 Nv̇ 0


 = −




0 0 0

0 0 Yṙ

0 Zq̇ 0




T

(21)

where Mẇ and Nv̇ are the pitch moment due to acceleration in the z-direction, and yaw

moment due to acceleration in the y-direction, respectively. Yṙ and Zq̇ are the side force due

to yaw acceleration, and lift force due to pitch acceleration, respectively. It is important
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to note that Equation (21) refers to models with two planes of symmetry. The rigid body

matrix is defined as,

Crb = mvr̂rb + mpr̂p = −CT
rb (22)

Combining the two components yields the equation for the coupling matrix,

C = Cf + Crb (23)

To determine expressions for the linear and angular momentum, p and h, one must write

the kinetic energy,

T =
1

2
νT MGIMν (24)

where MGIM is the generalized inertia matrix for the system. For this system, the kinetic

energy can be written as a summation of the rigid body kinetic energy and the fluid added

mass/inertia kinetic energy. The complete kinetic energy of the body/fluid system is,

T = Trb + Tf (25)

=
1

2


 ν1

ν2




T 
 Mrb CT

rb

Crb Irb





 ν1

ν2


 +

1

2


 ν1

ν2




T 
 Mf CT

f

Cf If





 ν1

ν2


(26)

=
1

2


 ν1

ν2




T 
 M CT

C I





 ν1

ν2


 (27)

Linear and angular momentum are defined as,
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 p

h


 =


 ∂T /∂ν1

∂T /∂ν2


 =


 M CT

C I





 ν1

ν2


 (28)

The dynamic equations relate the change of linear and angular momentum to external forces

and moments. The dynamic equations of motion are,

ṗ = p× ν2 + m̃g
(
R1(η2)

T i3

)
+ F viscous (29)

ḣ = h× ν2 + p× ν1 + (mpgrp + mrbgrrb)×
(
R1(η2)

T i3

)
+ M viscous. (30)

Here, m̃ refers the system’s net mass which is modulated by inflatable bladders which change

their volume and cause the vehicle to sink or rise due to net buoyancy. F viscous and M viscous

refer to external forces and moments, respectively, that do not result from scalar potential

functions. These values include viscous forces and control moments which are explored in

Section A using semi-empirical methods. The equations for the viscous forces and moments

are as follows,

F viscous = −[RBC(α, β)]




D(α)

Sββ + Sδrδr

Lαα


 (31)

where RBC(α, β) is the proper rotation matrix that transforms the free vectors from the

current frame to the body frame. D, S, and L refer to the drag, sideslip, and lift values of

the system and will be developed further later.

M viscous = Dων2 +




Lββ

Mαα

Nββ + Nδrδr


 (32)
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Here, the Dω matrix contains terms which characterize viscous angular damping (such as

pitch and yaw damping). We assume the roll and yaw damping are decoupled.

Dω = [(1/4)ρV Sl2] · diag(Clp , Cmq , Cnr) (33)

Expressions for Clp , Cmq , Cnr are developed in Section A.3. Other useful equations that relate

the viscous coefficients, which can be stated from [10], are as follows. The components of

viscous force are,

D(α) = [(1/2)ρV 2S]CD(α) (34)

S(β) = [(1/2)ρV 2S]CS(β) (35)

L(α) = [(1/2)ρV 2S]CL(α) (36)

where,

CD(α) = CD0 + κCL(α)2 (37)

CS(β) = CSβ
β (38)

CL(α) = CLαα (39)

The components of viscous moment are,

16



Lββ = [(1/2)ρV 2Sl]Clββ (40)

Mαα = [(1/2)ρV 2Sl]Cmαα (41)

Nββ + Nδrδr = [(1/2)ρV 2Sl](Cnβ
β + Cnδr

δr) (42)

These forces and moments are assumed to be linear due to the small angle changes experi-

enced in flight. Expressions for all of the non-dimensional coefficients (Cmα , Cnβ
, Cnδr

, etc.)

are developed in Appendix A.3; the values are summarized in Table 8.

2.4 Math Modeling Summary

This research aims to compute underwater glider model parameters appearing in the dy-

namic equations (29) and (30). A CFD program, USAERO, is used to generate the added

mass/inertia and coupling values, Mf , Cf , and If . Other parameters, such as Irb, Mrb,

Crb, etc. can be determined from Rhinoceros 3.0 and by knowing the weight and location

the vehicle particle moving mass.

A semi-empirical approach is used to determine the viscous forces and moments, F viscous and

M viscous, in Equations (31) and (32). In this thesis, the viscous parameters were obtained

for Slocum only.
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3 Inviscid Coefficients from Computational Flight Tests

We derive the inviscid hydrodynamic parameters through unsteady “computational flight

tests” using a commerical CFD program known as USAERO. This section explains the

origins of USAERO and the approach used in determining these hydrodynamic parameters.

It details the validation of the software and provides the final results obtained.

3.1 Motivation

The inviscid parameters that we are trying to solve for are the added mass/inertia and cou-

pling terms that result when a body is accelerated through a fluid at rest. In Section 2.3 we

referenced these parameters in their matrix form and showed how they fit into the equations

of motion, but have not yet discussed how to obtain them.

Suppose we had a way of accelerating a body within a fluid at rest. From this experiment

we would find that under a constant acceleration, a constant force and/or moment is gen-

erated. If we had a method of studying a vehicle under several different values of constant

acceleration, we could present the results as in Figure 4.

Acceleration is graphed on the x-axis and the resulting force (or moment) is graphed on

the y-axis. The lines represent the different forces and moments due to varying constant

accelerations in one direction, in this case the x-direction. Performing linear curve fits to

these data reveals the slopes of the lines. These slopes are the values that we are after. Once

we have solved for these slopes, we may populate the matrix given in Equation (43).
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Figure 4: Forces and moments due to constant accelerations in the x-direction

MA =


 M f CT

f

C f I f


 = −




Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Lu̇ Lv̇ Lẇ Lṗ Lq̇ Lṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ




(43)

Xu̇, for example, comes from the slope of the line that results from graphing the force in

the x-direction (X) due to a linear acceleration in the x-direction (u̇). The units on this

added inertia matrix, MA, presented in this thesis are as follows: the upper-left three by

three added mass matrix is in slugs, the lower-left and upper-right three by three added

coupling matrices are in slugs·feet, and the lower-right three by three added inertia matrix
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is in slugs·feet2.

3.2 USAERO to Compute Inviscid Parameters

USAERO is an unsteady version of the commercially available program VSAERO which was

developed for NASA Langley Research Center in 1978 [1]. The development of USAERO

was sponsored by the Office of Naval Research (ONR) to support submarine maneuvering

predictions that required analysis of unsteady motion and inviscid effects. USAERO has the

ability to compute the unsteady flow characteristics for single or multiple bodies in general

motion, or at rest in a moving fluid. It uses a time-stepping approach that solves a surface

singularity model using quadrilateral panels of uniformly distributed doublets and sources.

USAERO has the capability to output several different types of calculated results, including

the integrated force and moment histories on a body.

One assumption that USAERO makes that was mentioned in Section 1.2 is that the effects of

viscosity are largely confined to a thin boundary layer on the body surface. This allows the

majority of flow to be classified as inviscid. USAERO is not intended to solve the complete

Navier-Stokes equations. Using flow theory, the doublets and sources are solved over the

time history for the body, which allows for surface velocities and pressures to be evaluated.

This in turn allows the pressure coefficient on each panel to be computed. With the pressure

coefficient and velocity of each surface point evaluated, the force and moment acting on the

body can be computed by integrating the pressure over the surface.

USAERO is also capable of wake studies, flow tracing, internal flow, and propulsor modeling.

However, for this research, the only necessary techniques and methods are those which yield

the force and moment coefficients.

USAERO has the ability to analyze a body over a given time frame within a defined flow

and to determine the forces and moments acting on the body. Further, USAERO has the

ability to simulate a body accelerating in a flow and obtain any forces and moments due
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to the acceleration. These forces and moments due to acceleration are the desired output

of USAERO for this research. The body is defined and oriented in USAERO, then given a

constant acceleration in a particular degree of freedom (surge, heave, sway, yaw, pitch, or

roll). Given the prescribed constant acceleration and the resulting forces and moments on

the body, one may graph force due to acceleration. Solving for the slope of the line generated

by this analysis yields the added mass/inertia term.

Figure 5: Constant Force Coefficient in x-direction due to acceleration in x-direction for 5 ft

Radius Sphere

Figure 5 shows an example of the output file generated by USAERO. Figure 5 comes from

a test case that will be described in Section 3.4.1 that had an acceleration of 20 ft/s2 in

the x-direction. The point of interest in Figure 5 is the constant force coefficient in the x-
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direction (CFX) due to an acceleration in the x-direction. With multiple acceleration cases,

and knowing that at zero acceleration there will be zero forces and moments on the vehicle,

there are sufficient data points to generate a graph showing the variation in force or moment

coefficients due to changes in acceleration.

Figure 6: Computing Xu̇ for a sphere with a 5 ft radius.

Figure 6 shows force on the y-axis and acceleration (in one degree of freedom) on the x-

axis for a sphere with a five foot radius. Fitting a linear curve to this graph reveals the

added mass term as the slope of the fitted linear curve. The slope of the linear curve fit

in Figure 6 is -484.47 slugs, which is the added mass term of Xu̇ as calculated through

USAERO. Note that, because of spherical symmetry, no other forces and moments result

from an x-axis acceleration. The same series of acceleration cases are performed for v̇, ẇ, ṗ,

q̇, and ṙ allowing for the added mass/added inertia and coupling matrix to be computed.

3.2.1 USAERO Calculation Discussion

The Navier-Stokes equations are nonlinear partial differential equations that can help de-

scribe the motion of a fluid. The equations are formed from the conservation of momentum

of a system [9]. These equations, coupled with equations describing conservation of energy,

conservation of mass, and an equation of state (typically the ideal gas law) are used to de-
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scribe the flow of a fluid. The first assumption to simplify the Navier-Stokes equations is

that the fluid is incompressible. The Navier-Stokes equations in vector form becomes,

ρ
DV

Dt
= ρg −∇p + µ∇2V (44)

where, ρ is the density of the fluid, DV /Dt is the material derivative of the velocity vector

of the fluid, g is the vector acceleration of gravity, and µ is the viscosity [16]. Another

equation that is useful to define when discussing the Navier-Stokes equations is the continuity

equation, which derives from the conservation of mass,

Dρ

Dt
= −ρ∇ · V (45)

Since we have assumed incompressible flow, the left-hand side of Equation (45) is zero.

Another assumption that simplifies the Navier-Stokes equations is that the flow is inviscid.

In this case, one obtains Euler’s equation,

ρ
DV

Dt
= ρg −∇p (46)

If, in addition, the flow is irrotational, then

∇× V = 0 (47)

Using Equation (45) and (47), one finds the flow is completely described by Laplace’s equa-

tion,

∇2φ = 0 (48)

where φ represents the velocity fluid flow potential. The assumptions to simplify the Navier-

Stokes equations that are implemented by USAERO are that the majority of the flow is
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regarded as inviscid, irrotational, and incompressible [1]. Thus, USAERO simplifies the

Navier-Stokes equations down to Laplace’s equation, shown in Equation (48). USAERO

examines objects in an infinite, unbounded environment, so the velocity potential points of

interest will be on the wetted surface of the configuration defined in USAERO. Applying

Green’s Theorem to Laplace’s equation for the velocity potential at a point on the wetted

surface reveals several integrals which contain the contribution from a surface distribution

of normal doublets of strength, a surface distribution of sources of strength, and a wake

doublet distribution of strength (in this research, all wake effects were ignored). The doublet

distribution on the surface of a configuration is unknown, whereas the source distribution

can be determined by the Neumann boundary conditions specifying the normal velocity at

the boundary [1].

By solving for the doublets and sources of strength at each time step, the surface velocities

and pressure can be evaluated. The flow velocity relative to the surface is comprised of

the perturbation velocity, the infinite flow velocity (which is zero in all thesis research case

studies), the velocity of the body measured relative to an inertial frame, and the component

accounting for any rotational velocity of the body.

The pressure coefficient at each panel center can then be determined using Bernoulli’s equa-

tion by using a time-stepping approach knowing the velocity of a surface point, VS, velocity

of the configuration, V , and the flow solution at any previous time-step, ∂φ
∂t

[1].

Cp = V 2
S − V 2 + 2(

∂φ

∂t
) (49)

The forces and moments on each panel on the configuration can then be determined by

integrating this pressure coefficient over the wetted surface1. In USAERO, the pressure is

assumed to be uniform over each panel. This makes defining the panels on a configuration

crucial to the accuracy of the results, which will be discussed in Section 3.3. The integration

process to determine the forces and moments is therefore reduced to a summation over all

1“Wetted surface” refers to the areas on the configuration/body which will be exposed to the flow
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of the wetted panels on the configuration.

The force and moments are calculated in USAERO as follows [1]:

~CF = −
∫∫

S

(CP~n− Cf
~V |~V |)( dS

SREF
) (50)

and

~CM =

∫∫

S

(CP~n− Cf
~V |~V |)× ~RdS

SREF · L (51)

where ~n is the outward normal from the surface, Cf is the skin friction contribution (only

active if the boundary layer calculation is active - for this research it was turned off), ~V is

the flow velocity relative to the surface, SREF is the reference area, ~R is the position vector

from a surface point relative to the rotational axis, and L is a reference length (usually

mean-chord for pitching moment and semi-span for rolling and yawing moment).

With these force and moment coefficient vectors, we can accelerate the body in USAERO,

generate the coefficient vectors, calculate the actual forces and moments using dynamic

pressure, and finally graph the results for multiple acceleration cases as discussed earlier.

3.3 Grid Generation and Panel Study

USAERO requires the user to define the geometry of the vehicle under review by generating

card sections involving the points and number of panels to be used. However, the question

arises, what grid generation pattern is best and how many panels should be defined over

each patch2? One means to knowing this answer is experience. Experience using the CFD

program and knowledge of expected results for flow over bodies would allow the creator to

generate a working solution to applying a grid of panels over a body. A more quantitative

2A patch is a collection of panels in a rectangular array

25



means for understanding comes from performing a panel study and calculating/mapping the

changes that result with different types of gridding patterns.

3.3.1 Surface Generation

A body can be defined in USAERO’s geometry-definition section several different ways. One

difficult way, which requires a great understanding of USAERO, would be for the user to

create and alter data points directly in the input file. This approach requires a good deal of

experience in using and manipulating the code. One user-friendly program which can also

be used to generate the geometry is Surfgen. Surfgen is a sister tool to the USAERO CFD

package. Surfgen allows the user to create lines, curves, and surfaces from scratch, or enter

pre-existing lines and curves from other 3D modeling programs through a shared file format

known as the Initial Graphics Exchange Specification (IGES) file. After creating a database

of lines and curves in Surfgen, the user can begin to develop connectors over the line which

essentially determine the number and location of the panels defined over the body. With

Surfgen, several different grids can be generated in order to determine the effects of varying

panels on a body. Figure 7 represents an example of generating panels on a body to be

analyzed in USAERO. Figure 7 represents a fairly complex model. Surfgen has the ability

to create computational grids for these complex figures.

3.3.2 Panel Study

With a given shape and grid pattern defined in USAERO, it is difficult to verify whether or

not the flow will be accurately modeled. A panel study provides confidence that the object

under review is accurately represented in the flow compared to what would be experienced

in a true experimental study. Choosing the number of panels requires some consideration.

If too few panels are chosen, the panels across the body will not be able to accurately reflect

everything that is occurring within the flow. At the same time, there is a run time limit

on the maximum number of panels; the optimal number and configuration of panels is that
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Figure 7: Slocum glider in the grid generating program, Surfgen

which provides the necessary accuracy with the minimum computational effort.

Sphere Panel Study

The first simple object which is analyzed in the panel study is the sphere. A sphere is useful

since the added mass terms for a submerged sphere are known analytically to be −1
2
m as

discussed in Section 3.4.1. USAERO can then be used to come up with experimental results

to compare to the theoretical results. This procedure can be done several times for a sphere

with varying panel density.

Three general locations for determining the pressure coefficient over a sphere are the focus

of this study. The three locations are the nose tip (assumed to be the furthest point outward

from the body in the x-direction), the midbody location, and a quarter-body location halfway

between the leading edge and the midbody location.

As one increases the number of panels, one should expect the pressure coefficient estimated

at the nose tip to converge to one. Further, the deviation in pressure coefficient results using
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Table 2: Coefficient of Pressure Distribution Based on Panels

No. Panels Leading Edge Midbody Location Quarter-body Location

10 0.939 -1.165 -0.141

14 0.969 -1.201 -0.133

16 0.976 -1.209 -0.351

18 0.981 -1.227 -0.514

20 0.984 -1.232 -0.307

22 0.987 -1.235 -0.446

24 0.989 -1.238 -0.277

26 0.991 -1.239 -0.398

28 0.992 -1.241 -0.499

30 0.993 -1.243 -0.363

40 0.996 -1.246 -0.391

50 0.997 -1.248 -0.408

60 0.998 -1.249 -0.418

different panel resolutions decreases as the number of panels increases. The data listed in

Table 2 can be displayed visually. Figure 8 shows a progression of results for a sphere in

USAERO using increasingly high panel resolutions.

Starting from the upper left, moving to the right, the panels displayed in Figure 8 have 10,

20, 30, 40, 50, and 60 panels, respectively. The flow is more accurately represented by using

higher panel resolutions.

One way to interpret the results listed in Table 2 is to graph an error function as the number

of panels increases. In an inviscid solution, the pressure coefficient at the beginning or tip of

an object in a flow should have a pressure coefficient equal to 1.0. An error function can be

determined based on the results obtained from each panel study after analyzing the nose tip

location. Essentially, this study is looking for a general answer as to how many panels are

“enough” over a prescribed geometry in order to accurately capture the flow effects. Another
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Figure 8: Panel Progression

way to consider it is: for a given increase in panels, is there a significant increase in accuracy

of the results. This rationale suggests finding a bend or a knee on a graph.

Figure 9: Pressure Coefficient Error with respect to No. Panels

From Figure 9 it can be seen that, at around 26 panels defined on the body, there is roughly

1 percent error between the theoretical value of pressure coefficient and the computed value.

This point also corresponds to the bend or knee in the graph and thus may be deemed an

appropriate number of panels for a sphere.

Another method that could be used to compare the effect of increasing the number of panels
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is to compare the added mass terms of the sphere for each panel study. In theory, as we

increase the number of panels, the computed value of added mass should approach the

theoretical value. The equations for determining added mass of a sphere are developed in

Section 3.4.1.

In this example, ρ = 1.9905 slugs/ft3 and the radius of the sphere is 6 ft. This corresponds

to an actual added mass of 900.48 slugs. For the panel cases described above, the added

mass can be calculated and compared to this theoretical value of added mass. The percent

error is determined by the following,

PercentError =
|Actual − Experimental|

Actual
(100) (52)

where the terms Actual and Experimental refer to the known and computed results, re-

spectively, for the added mass of a sphere.

Table 3: Added Mass Comparison for Panel Study of a sphere

No. Panels Xu̇[slugs] Percent Error

10 818.7 9.08

16 868.9 3.51

20 880.7 2.20

24 886.9 1.51

30 892.2 0.92

40 896.2 0.48

Again, as expected, increasing the number of panels on the body does decrease the error

between theoretical and experimental results. In Table 3, there is a 1 percent error around

24 to 26 panels defined on the body. Again, however, this is a sphere which is a very simple

shape to analyze. Figure 10 gives another representation of the data presented in Table 3.
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Figure 10: Added Mass Error with respect to No. Panels

Complex Shape Panel Study

In most models, there are several different sections of varying curvature and complexity.

Consider the model shown in Figure 11, a model of the Virginia Tech Miniature Autonomous

Underwater Vehicle (VTMAUV) created in Rhinoceros 3.0.

Figure 11: 475 VTMAUV in Rhinoceros 3.0

This model has not previously been analyzed in a CFD program, thus it is difficult to know

how many panels to define at any location on the body in order to generate an accurate model

in the CFD program. A similar panel study like the one on the sphere can be performed

to obtain a solution. For this more complex shape, however, the panel density will not be
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uniform over the body. For example, it would be wise to assume that more panels should be

generated around the nose section since there is more curvature there, but how many panels

are enough? The same question arises for the mid-body section where there is no curvature,

as well as the tail section and the section between the tail fins. To answer these questions,

a convergence study is performed on the 475 VTMAUV in which a series of case studies are

analyzed. Each case study has a different number of panels defined at the different locations

on the 475 VTMAUV. In theory, as the number of panels is increased in a region of a given

panel, there should be a smaller change in the pressure coefficient at the panel under review,

suggesting convergence.

In this complex panel study, nine areas on the 475 VTMAUV are chosen for analysis: the

nose, a nose/body location, a body location, a pre-mast body location, an aft-mast body

location, the front (leading edge) of the mast, a body/tail location, a mid-tail location, and

a tail/end location. In each of these areas the number of panels defined is altered as shown

in Table 4.

Table 4: Number of Panels Defined per Study

Case Nose Nose/Body PMB LE Mast AMB Body/Aft Mid-Tail Aft/End

1 5 2 6 6 3 2 4 2

2 7 3 8 8 5 3 6 3

3 9 4 10 10 7 4 8 4

4 11 5 12 12 9 5 10 5

5 13 6 14 14 11 6 12 6

*6 14 7 16 16 13 7 14 7

7 17 8 18 18 15 8 16 8

*8 19 9 20 20 16 10 18 9

9 21 10 22 22 17 12 20 10

*10 23 11 24 24 18 14 22 11

Here, “PMB” refers to the pre-mast body location and “AMB” refers to the aft-mast body
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location. In the early cases, some panels have very high aspect ratios and are definitely

not the proper number required to accurately model the sections. However, they were only

meant to aid in convergence to a solution. In the same manner, the last panel study had a

tremendously large number of panels defined on the entire body, more than necessary over

relatively simple sections such as the mid-body.

In each of the ten case studies that were performed, the pressure coefficient values at the

locations described above were determined. Table 5 shows the panel study analysis for the

seven case studies at the various locations along the body.

Table 5: Pressure Coefficient Distribution over Panels based on Case No.

Case Nose MN Nose/Body PM LEM AM Body/Aft Mid-Tail End

1 0.883 -0.389 -0.217 -0.0155 0.419 -0.0273 -0.174 0.0774 0.427

2 0.944 -0.341 -0.257 -0.0159 0.705 0.0079 -0.229 0.0778 0.592

3 0.967 -0.305 -0.272 -0.0176 0.856 -0.0045 -0.297 0.0706 0.630

4 0.977 -0.288 -0.284 -0.0178 0.912 -0.0019 -0.338 0.0693 0.642

5 0.982 -0.273 -0.292 -0.0177 0.918 -0.0001 -0.372 0.0684 0.646

*6 0.984 -0.260 -0.299 -0.0173 0.936 0.0064 -0.378 0.0686 0.645

7 0.986 -0.383 -0.304 -0.0172 0.939 0.0075 -0.399 0.0683 0.646

*8 0.987 -0.366 -0.312 -0.0171 0.939 0.0057 -0.421 0.0681 0.646

9 0.988 -0.333 -0.315 -0.0172 0.952 0.01 -0.453 0.0684 0.646

*10 0.989 -0.359 -0.313 -0.017 0.954 0.0072 -0.447 0.0685 0.646

Here, “MN” refers to mid-nose location, “PM” refers to pre-mast location, “LEM” refers to

the leading edge location on the mast, and “AM” refers to aft mast location. In Tables 4

and 5 the * refers to a step in the file creation process where additional panels had to be

defined in the y-z direction, as opposed to only changing panel density in the x-direction.

This was done in order to avoid the panels becoming too large in one direction and having

too high of an aspect ratio, which leads to poor analysis. Looking at Table 5, it can be

seen that there is some convergence of the values at certain locations. Since there are no
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known data values to measure against, there is no way of knowing how many panels are

sufficient. One way to be sure of a solution for a study like this is to graph the results of

each case study and compare the difference between results. As the case studies increase

in panel density, the change will be less each time and finally the change will be negligible.

This convergence solution is one way to obtain the proper number of panels to define over

a given body location. For each of the AUV’s analyzed in this thesis that are created from

Surfgen, this technique is used. Figure 12 represents the tables above in graphical form,

which should make it more clear how a final solution is obtained.

Figure 12: VTMAUV Panel Study
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Figure 12 does not show all of the panel locations graphed since some sections under analysis

(i.e. Mid-Nose) are under the same panel density as other sections (i.e. Nose). In order to

determine the final solution on the number of panels, one could go through graph by graph

and make a decision where the increase in panels no longer yields a much more accurate

result. Looking at the “Nose Tip Location” graph indicates that around 20 panels defined

on the nose, the pressure distribution isn’t varying greatly. Other sections such as the “Body

Before Mast Location” graph may seem difficult to decide on the proper number of panels.

However, looking at the pressure coefficients on the y-axis reveals that the panels from case

to case are only changing by 0.0001 after 15 panels or more are defined on the location.

This same method can be carried out for all locations. Thus, a final solution to the panel

distribution on the model can be represented below as shown in Table 6

Nose Nose/Body Pre-Mast LE Mast Aft-Mast Aft/Tail Mid-Tail End

21 10 16 20 13 10 14 5

Table 6: Final Panel Study Distribution

Figure 13: Final Panel Result for VTMAUV Study
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3.4 Validation of the Approach

In order to validate the approach, added inertia matrices for two geometries with analytical

solutions were determined. This process serves two tasks. The first task is to determine the

accuracy and validity of USAERO compared to known computational results. The second

task is to gain further understanding of how the program works by setting up and running

multiple simulations and debugging the process. Two cases were analyzed for simple bodies

of revolution; a sphere and a spheroid. These two objects were chosen because one may

compare computational solutions to known solutions for added mass/inertia.

3.4.1 Sphere

Figure 14: Sphere with radius r

Consider a sphere as shown in Figure 14 with a radius of 3 ft and a density of 1.9905 slug/ft3

(the density of seawater). The added mass of a sphere is known to be:

Xu̇ = Yv̇ = Zẇ = −(1/2)m (53)

where m is the mass of the displaced fluid:

m = ρ(4/3)πr3 (54)

Therefore,
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Xu̇ = Yv̇ = Zẇ = −2

3
ρπr3 (55)

Also, because of spherical symmetry

Lṗ = Mq̇ = Nṙ = 0 (56)

From these equations it can be determined that for a sphere of radius = 3ft and density =

1.9905 slugs per cubic ft, the added mass terms should yield Xu̇ = -112.56 slugs and the

added mass/inertia matrix is represented by Equation (57).

MA = −




112.56 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 112.56 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 112.56 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




(57)

Using the same given inputs in USAERO as mentioned above, analysis can be performed on

the sphere and its added mass/inertia matrix can be computed.

MA = −




112.07 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 112.43 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 112.43 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




(58)

The difference between theoretical values and USAERO calculated values is seen to be ex-

tremely small. In order to improve accuracy, more panels could be gridded on the body, as
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will be described in Section 3.3.2.

3.4.2 Spheroid

Figure 15: Ellipsoid with semi-axes a, b, and c [6]

The next validation case considers a slightly more complicated object, a spheroid. The same

process described in Section 6 is performed. Using Figure 15 and setting a=10 ft, b = 5

ft, and c = 5 ft along with the same density of seawater, a test case can be performed on

this prolate spheroid to determine the added mass/inertia terms. This case is relevant since

additional added inertia terms should show up in the solution, unlike the sphere case. For a

prolate spheroid, the eccentricity is defined as [6]:

e =
√

1− (b/a)2 (59)

Other parameters are,

α0 =
2(1− e2)

e3
(
1

2
ln

1 + e

1− e
− e) (60)

β0 =
1

e2
− 1− e2

2e3
ln

1 + e

1− e
(61)

where the mass of the prolate spheroid is:
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m =
4

3
πρab2 (62)

With these definitions,

Xu̇ = − α0

2− α0

m (63)

Yv̇ = Zẇ = − β0

2− β0

m (64)

Lṗ = 0 (65)

Nṙ = Mq̇ = −1

5

(b2 − a2)2(α0 − β0)

2(b2 − a2) + (b2 + a2)(β0 − α0)
m (66)

Using Equations (63 - 66) gives the added mass/inertia solution, in English units, for the

given prolate spheroid, presented in Equation (67).

MA = −




437.77 0.00 0.00 0.00 0.00 0.00

0.00 1467.89 0.00 0.00 0.00 0.00

0.00 0.00 1467.89 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 12476.66 0.00

0.00 0.00 0.00 0.00 0.00 12476.66




(67)

The same approach for validation of the sphere is used to validate the spheroid. Multiple

accelerations in each of the degrees of freedom are performed to determine the coefficients

of force and moment. Equation (68) shows the added mass/inertia matrix generated using

USAERO.
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MA = −




435.22 0.00 0.00 0.00 0.00 0.00

0.00 1467.5 0.00 0.00 0.00 0.00

0.00 0.00 1465.6 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.00 12691 0.00

0.00 0.00 0.00 0.00 0.00 12719




(68)

Comparing Equations (67) and (68) shows that the added mass matrix from USAERO

closely resembles the predicted values from theory. Again, in order to get more accuracy,

more panels could be used in USAERO as described in Section 3.3.2.

3.5 Gliders

One of the primary focuses of this thesis is to determine the added mass/inertia of cur-

rent underwater gliders. The following two sections describe two specific gliders that are

considered here.

From Section 2, it has been shown that a solution of the added mass/inertia matrix should

hold the form shown in Equation (69), assuming that the model under review has two or

more planes of symmetry [10]. This is the general solution for a added mass/inertia matrix

for a body with two planes of symmetry.

MA = −




Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 Yṙ

0 0 Zẇ 0 Zq̇ 0

0 0 0 Lṗ 0 0

0 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 0 0 Nṙ




(69)
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3.5.1 Slocum

Figure 16: Slocum glider in Rhinoceros 3.0

The Slocum glider, described in Section 1.1, is a more conventional glider which has been

the focus of several analytical and experimental studies [2, 7]. Unfortunately, none of these

studies has included proper estimates of the added mass and inertia terms. To provide

some sound basis for evaluating theoretical results, as applied to the Slocum vehicle, the

generalized added inertia matrix for this vehicle has been obtained. The Slocum model first

began in Rhinoceros 3.0, as shown in Figure 16, and was broken down into components.

These components were then transferred into Surfgen, described in Section 3.3.1. From

there, a grid generated model was produced for the vessel after an extensive panel study was

performed, which is detailed in Appendix B.1. A representation of Slocum in USAERO can

be seen in Figure 17.

The body frame is fixed in the conventional way, with the x-axis pointing towards the nose

and the z-axis downward through the belly. The origin of this frame is the center of buoyancy

(center of volume) location of the displaced fluid determined from Rhinoceros 3.0 (i.e. the

volume centroid of the model). The center of buoyancy of Slocum is located at (-2.878, 0,

0.0019) feet measured from the nose tip of the vehicle.
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Figure 17: Slocum glider in USAERO

Equation (70) provides the final result of the generalized added inertia matrix for the Slocum

glider, where all quantities are provided in English units (slugs, slug-feet, and slug-feet2, re-

spectively), as obtained by the USAERO methods described previously. Section B.1 provides

an in-depth analysis on the panel study used for Slocum.


 Mf Cf

T

Cf If




Slocum

=




−0.159 0.000 0.000 0.000 0.000 0.000

0.000 −3.946 0.000 0.125 0.000 0.798

0.000 0.000 −4.562 0.000 −0.344 0.000

0.000 0.125 0.000 −0.566 0.000 −0.438

0.000 0.000 −0.355 0.000 −7.80 0.000

0.000 0.799 0.000 −0.438 0.000 −10.49




(70)

Comparing Equation (70) to Equation (69) shows four additional terms. These terms show

up for the Slocum glider due to the asymmetry of the vehicle; Slocum has only one plane

of symmetry, the longitudinal plane. A graphical solution to how we obtained the values in

Equation (70) is presented in Figures 18 and 19. For each degree of freedom in acceleration,

the respective forces and moments are shown.

A further parameters that can be estimated is the inertia of the rigid body, Irb. This
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calculation is made from the completed model in Rhinoceros 3.0. As described previously,

Rhinoceros 3.0 treats the vehicle as a body of uniform mass/volume and calculates the

centroid of that uniform volume. The units from Rhinoceros 3.0’s calculation is in ft5. If we

multiply this matrix by the density of the fluid which the vehicle will be in, then we can get

like-terms for the rigid body inertia and the added inertia calculated from USAERO. The

units of Equation (71) are in slugs·ft2.

Irb =




0.251 0 0

0 9.719 0

0 0 9.719


 (71)

3.5.2 XRay/Liberdade

The XRay glider is a blended wing-body autonomous underwater vehicle [8]. As for many

AUVs, the added mass and inertia terms are unknown and are difficult and costly to measure

through experiments. The representation of the XRay glider was obtained from the 3-D

modeling program, Rhinoceros 3.0, after importing geometry provided by collaborators at

the SIO/MPL. Rhinoceros 3.0 was used to help create the point files, which were then used

to create the patch data section of the input file for the XRay in USAERO, as shown in

Figure 20 in the manner described in Section 3.3.1.

With the model geometry properly incorporated, the added mass/inertia matrix can be

computed. The body frame is fixed in the non-conventional way, with the x-axis pointing

towards the nose and the z-axis upward through the belly. The origin of this frame is located

at the center of volume of the body, which was determined from Rhinoceros3. The center of

volume is located at (-3.814, 0, 0.004) feet from the nose tip of the vehicle. To appreciate

the scale, note that the length along the centerline from the nose-tip to tip of the tail along

3Rhinoceros 3.0 calculates the volume centroid of all closed polysurfaces selected. It treats each volume’s

mass as uniformly distributed.
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the centerline is 7.309 feet.

The panel study done on the vehicle can be seen in Section C.1. Equation (72) provides

the finalized results of the generalized added inertia matrix for the XRay glider, where all

quantities are provided in English units (slugs, slug-feet, and slug-feet2).


 Mf Cf

T

Cf If




XRay

=




−18.32 0.00 0.00 0.00 0.00 0.00

0.00 −10.86 0.00 4.68 0.00 29.85

0.00 0.00 −261.3 0.00 −84.22 0.00

0.00 4.52 0.00 −3030.8 0.00 −12.16

0.00 0.00 −85.81 0.00 −285.1 0.00

0.00 28.72 0.00 −14.94 0.00 −300.1




(72)

Comparing Equation (72) to Equation (69) reveals four additional terms. These terms show

up for the XRay/Liberdade glider due to the asymmetry of the vehicle; XRay/Liberdade

has only one plane of symmetry, the longitudinal plane. In graphical form, the values in

Equation (72) are obtained from Figures 21 and 22.

The rigid body inertia matrix can also be computed for the XRay/Liberdade glider, as was

done for the Slocum glider. This is done in Rhinoceros 3.0 by calculating the volume moments

of inertia, whose units are in ft5. Multiplying by the density of the surrounding fluid gives

the proper matching units to the added inertia matrix, which are slugs·ft2.

Irb =




910.2 0 0

0 131.9 0

0 0 1030.2


 (73)
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3.5.3 Error in Glider Results

There is some error present in determining the final solutions to the generalized added mass

matrices that should be addressed. When analyzing the force and moment coefficient data

from USAERO’s output, the non-steady terms which are analyzed are chosen at random.

The steady terms, such as force in the x-direction due to acceleration in the x-direction, are

virtually unchanging throughout the time-steps of the computational flight test and thus it

is clear which “value” which should be plotted for the linear curve fit analysis. However, the

unsteady terms, such as force in the z-direction due to acceleration in the x-direction, range

in value and it becomes difficult to pick the “accurate” term for the linear curve fit analysis.

As a result, a non-linear trend or confusing plot may be generated. This is not indicative

of a trend or pattern in the data, but instead simply an effect of random selection, which

should aid in the visualization that in fact there is no linear trend to that particular data

and thus it should be ignored.

Another source of error on the final results for the vehicles studied in this research is to note

that through the panel studies, we determined how many panels defined on the body were

“enough” to accurately model the flow around the geometry. To get more accurate results,

however, would mean that the geometry should be panelled at a much higher resolution.

This will increase the run-time of the trials significantly for only a little more accuracy in

the results.
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Figure 18: Slocum Added Mass/Inertia due to Linear Accelerations
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Figure 19: Slocum Added Mass/Inertia due to Angular Accelerations
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Figure 20: XRay Glider in USAERO/OMNI3D
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Figure 21: XRay/Liberdade Linear Acceleration Terms
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Figure 22: XRay/Liberdade Angular Acceleration Terms
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4 Viscous Coefficients from Semi-empirical Estimates

Stability coefficients have been determined for the Slocum glider using semi-empirical tech-

niques. Table 7 describes these parameters. The method of obtaining these viscous coeffi-

cients is described and applied in Appendix A.

A list of parameters describing the model is required. Using Rhinoceros 3.0 and the figures

defined in [13], a complete table of geometric parameters was generated. Table 7 shows

this table of geometric parameters used to determine the viscous coefficients. Examples of

calculations involving these geometric parameters are shown in Appendix A.

Using the parameter values listed in Table 7 and following the outlined approach detailed

in [13], the results for the viscous coefficients for Slocum are calculated and presented in

Table 8.
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Name Symbol Value

a Speed of Sound 4921 ft/s

A Aspect Ratio 7.21

Aveff
Effective Aspect Ratio of Tail 0.87

b Wing Span 3.21 ft

bv Tail Span 0.52 ft

c Chord length at CG 0.43 ft

cr Root Chord 0.52 ft

ct Tip Chord 0.37 ft

df Fuselage Diameter 0.69 ft

lf Length of Fuselage 5.89 ft

lv Horizontal Length of Tail CG from Body CG 4.08 ft

S Wing Surface Area 1.43 ft2

Sv Tail Surface Area 0.31 ft2

Swetw Wing Wetted Surface Area 1.07 ft2

λ Taper Ratio 0.69

SBs Fuselage Surface Area 3.81 ft2

m Mass 50 kg

M Mach Number 0.0005

nac X-Distance Wing CL to AC 1.07 ft

nmgc X-Distance Wing CL to LE 0.97 ft

V Speed of Glider 2.54 ft/s

W Weight of Glider 110.2 lbf

x̄ref X-Location CG body to CG wing -0.942
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Table 7: List of Knowns for Calculations

Name Symbol Value

xm X-Location of CG 2.88 ft

zv Vertical Height of Tail CG from Body CG 0.61 ft

α Angle of Attack 4.25o

zw Vertical location of wing w/r to CG 0

Λ(c/2)t Half-chord sweep angle of tail 29.8o

Λ(c/4)t Quarter-chord sweep angle of tail 29.8o

Λ(c/2)w Half-chord sweep angle of wing 42.6o

Λ(c/4)w Quarter-chord sweep angle of wing 43.8o

Γ Dihedral angle of wing 0o

RNf
Reynolds Number of fuselage 0.235x106

t/c Thickness-to-chord ratio 0.016

δf Flap Deflection 0o

εt Wing Twist value 0o

CL Lift Coefficient due to weight 12.03

xcg(w) Distance from Wing front to CG location on chord at CG 0.22 ft

xac(w) Distance from Wing front to AC location on chord at CG 0.11 ft
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Table 8: Viscous Coefficients for Slocum

Symbol Name Value [1/rad]

CLα Lift-Due-To-Angle-of-Attack 3.73

Cmα Pitching-Moment-Due-To-Angle-of-Attack -0.15

Clβ Rolling-Moment-Due-To-Sideslip -1.43

Cnβ
Yawing-Moment-Due-To-Sideslip 4.85

Cyβ
Side-Force-Due-To-Sideslip -0.32

Cyp Side-Force-Due-To-Roll-Rate 0.10

Clp Roll-Moment-Due-To-Roll-Rate -0.78

Cnp Yawing-Moment-Due-To-Roll-Rate -1.19

Cmq Pitching-Moment-Due-To-Pitch-Rate -0.04

Cyr Side-Force-Due-To-Yaw-Rate 0.45

Clr Rolling-Moment-Due-To-Yaw-Rate 1.62

Cnr Yawing-Moment-Due-To-Yaw-Rate -0.06
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5 Hydrodynamic Modeling for the 475 VTMAUV

Research and development on the 4.75 inch diameter Virginia Tech Miniature AUV (currently

referred to as the 475) is currently underway. A USAERO model of the 475 can be seen in

Figure 23. The grid pattern and panel distribution was developed in Surfgen, described in

Section 3.3.1, in which the final representation was determined from a panel study.

Figure 23: 475 Glider in USAERO/OMNI3D

One goal for the project is to understand the effects of adding circular cylinders (payloads)

to the undercarriage of the model and determining the changes in added mass/inertia. There

are to be several studies done with this model by adding several types of circular cylinders

which vary in size, location, and diameter. For this thesis research contribution, only the

added mass/inertia calculations are desired, as the viscous terms are to be determined by

other researchers using a different CFD program.

There are three different configurations of the 475 that are being considered and analyzed

in this research. The differences involve changing the location of the mast and the center of

gravity on the vehicle. For naming purposes, one will be called the forward mast position,

another the middle mast position, and the third the aft mast position.
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The added mass/inertia matrices for the three configurations are given immediately, with

the graphical solution following later. For the forward mast position the added mass/inertia

matrix is represented in Equation (74) (Units are in English units). The middle mast position

is represented in Equation (75). The aft mast position is represented in Equation (76).


 Mf Cf

T

Cf If




475ForwardMast

=




−0.032 0.000 0.000 0.000 0.000 0.000

0.000 −0.639 0.000 0.0131 0.000 0.079

0.000 0.000 −0.559 0.000 −0.0618 0.000

0.000 0.0132 0.000 −0.0035 0.000 −0.0029

0.000 0.000 −0.0619 0.000 −0.280 0.000

0.000 0.0789 0.000 −0.0029 0.000 −0.285




(74)


 Mf Cf

T

Cf If




475MiddleMast

=




−0.032 0.000 0.000 0.000 0.000 0.000

0.000 −0.649 0.000 0.013 0.000 0.088

0.000 0.000 −0.559 0.000 −0.059 0.000

0.000 0.0131 0.000 −0.0035 0.000 −0.005

0.000 0.000 −0.059 0.000 −0.279 0.000

0.000 0.090 0.000 −0.0049 0.000 −0.291




(75)


 Mf Cf

T

Cf If




475AftMast

=




−0.032 0.000 0.000 0.000 0.000 0.000

0.000 −0.646 0.000 0.013 0.000 0.106

0.000 0.000 −0.559 0.000 −0.064 0.000

0.000 0.013 0.000 −0.0035 0.000 −0.0072

0.000 0.000 −0.064 0.000 −0.279 0.000

0.000 0.107 0.000 −0.0071 0.000 −0.302




(76)
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The graphs below represent how the solution to the added mass/inertia and coupling matrices

were obtained for each of the mast positions. The slopes of the lines in the graphs represent

the terms of interest and are presented below.

Like Slocum and XRay/Liberdade gliders, we can compute the inertia matrix of the rigid

body vehicle for each of these mast locations. These rigid body inertia matrices are calculated

in Rhinoceros 3.0 as volume moment, and must be multiplied by density to get the proper

units of slugs·ft2. For the forward mast position the rigid body inertia is,

Irb =




0.012 0 0

0 0.294 0

0 0 0.292


 (77)

and for the middle mast position, it is

Irb =




0.012 0 0

0 0.294 0

0 0 0.293


 (78)

and for the aft mast position, it is

Irb =




0.012 0 0

0 0.296 0

0 0 0.294


 (79)

These values seem to remain almost constant in all three configurations because both the

mast location and center of volume of the model are changing. As the mast location moves

rearward, the center of volume also moves rearward. When the moments of inertia are

recalculated for each case, they are all analyzed around different centers of volume. As the

center of volume moves rearward when the mast moves rearward, more volume is accounted

for in front of the center of mass, thus only slightly changing the net volume distribution
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of the model. This explains why the values in the rigid body inertia matrices may not be

drastically changing in relation to one another for each mast location study.
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Figure 24: 475 Forward Mast Linear Acceleration Terms
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Figure 25: 475 Forward Mast Angular Acceleration Terms
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Figure 26: 475 Middle Mast Linear Acceleration Terms
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Figure 27: 475 Middle Mast Angular Acceleration Terms
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Figure 28: 475 Aft Mast Linear Acceleration Terms
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Figure 29: 475 Aft Mast Angular Acceleration Terms
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6 Summary and Conclusions

Computational flight tests were performed on two buoyancy driven underwater gliders and

one autonomous underwater vehicle. The study yielded the generalized inertia matrix for all

three vehicles. The purpose of obtaining the generalized inertia matrix for the vehicles was to

determine some of the hydrodynamic parameters which play a role in the governing equations

of motion. For Slocum, the viscous parameters were also obtained. The hydrodynamic

parameters for the Slocum glider have been completely determined.

Further, researchers at Virginia Tech are now equipped and capable of using, with confidence,

the panelling program Surfgen, as well as the CFD program, USAERO. Future parameter

studies can be performed for the models presented in this thesis, or new models. The same

process of obtaining the hydrodynamic parameter solutions can be performed as outlined in

this thesis.

6.1 Future Work and Recommendations

A goal for the 475 project is to determine the effects of adding different payloads of varying

size, length, and location under the hull and determining the result in changing generalized

inertia matrix of the system. This could provide a database of model parameter values for

various sizes and locations of payloads.

Another area that this thesis did not handle was determining the viscous data for XRay/Liberdade

and the 475. There is a current working project for the 475 to determine the viscous data

using a separate CFD program, named Fluent. Viscous terms for the XRay/Liberdade glider

have been computed using a CFD program by collaborators at SIO/MPL.
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A Details of Semi-Empirical Calculations

The following information details how results obtained in Section 4 were achieved. The

equations in this section are given in [13] and make use of the parameters listed in Table 7

in Section 4.

A.1 General Calculations

The following calculations are some basic calculations that will be called upon many times

in process of obtaining the stability coefficients. Some of these values are for any type of

motion and others are specific to a certain flight condition. For all calculations depending

on either scenario, the parameters that can change due to flight conditions are all being

set to the equilibrium parameter values determined from previous research on the Slocum

glider [7].

Aspect ratio of the wing:

A = b2/S = (3.21)2/(1.43) = 7.21 (80)

Aspect ratio of the tail:

Aveff
= b2

v/Sv = (0.52)2/(0.32) = 0.87 (81)

Taper ratio of the wing:

λ = ct/cr = (0.37)/(0.53) = 0.69 (82)

Mach number of the vehicle:

M = V/a = (2.54/4921) = 0.0005 (83)

Lift Coefficient:

CL =
W

(1/2)ρV 2S
=

110.2

(1/2)(1.9905)(2.54)2(1.43)
= 12.03 (84)
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Reynolds Number:

R =
V · l
ν

=
(0.774)(5.898)

1.924 · 10−5
∼= 237000 (85)

A.2 Repeated Coefficients Calculations

Several of the calculations below make use of more complicated values or coefficients multiple

times. Instead of repeating the calculation for each section, the calculation will be done once

here to show where the values come from and then taken to the proper equation where it is

called to solve for the more general coefficient.

CLαw
. Several coefficients call upon the CLαw

coefficient, which is the wing lift curve

slope. The process for obtaining this value starts in Chapter 8, Section 8.1.3.2, page 248 in

Roskam [13]

CLαw
=

2πA√
2 + ((A2β2

k2 )(1 +
tan2 Λc/4

β2 ) + 4)
(86)

where the aspect ratio, A is defined in Section A.1, and Λc/4 is the quarter-chord sweep angle

of the wing. β and k are defined by the following:

β = (1−M2)(1/2) (87)

k = (Clα)atM/2π (88)

If it is assumed that the wing cross section on Slocum resembles the NACA 0009 airfoil, then

from [13] Clα = 6.245 [1/rad] and k = 0.994. Using the value for Mach number described in

Section A.1, β ≈ 1. Using these values for A, k, β, and Λc/2, the value for CLαw
to be used

throughout the calculations comes to 3.73 [1/rad].
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Another repeated calculation is the component of drag from the wing, which is determined

from [12] using the following equation:

CDow
=

(Cfw)Swetw(FFw)(Qw)

S
(89)

where

Cfw =
1.328√

Rw

= 0.01 (90)

FF = [1 +
0.6

(x/c)m

(
t

c
) + 100(

t

c
)4][1.34M0.18(cos Λm)0.28] (91)

Q can be assumed to be one. Plugging in the remaining surface and wetted surface area

values, yields CD0w
= 0.028.

Another widely repeated calculation that is often used is the value for Cyβv
, defined by the

following equation:

Cyβv
= −kv(CLαv

)(1 + dσ/dβ)ηv(Sv/S) (92)

where kv can be obtained from Figure 10.12 [13] as 1.0. CLαv
is obtained from 8.1.3.2 [13] in

the same manner described for determining CLαw
except with substitution of Aveff

in place

of A. Replacing A with Aveff
yields CLαv = 1.296 [1/rad]. Carrying out these calculations

and plugging in the known parameters yields Cyβv
is equal to -0.32. A useful note to include

is that for the XRay/Liberdade and Slocum gliders, Cyβv
≈ Cyβ

Angle of attack is also called on in quite a few calculations. From Raymer, the angle of

attack of choice would be the angle which provides the maximum lifting coefficient, or the

highest lift to drag ratio.
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CLmax = 0.9Clmax cos Λc/4 (93)

From Roskam, the value of Clmax is given as 1.32. Therefore, CLmax = 0.857. Since CLα has

already been calculated, α can be determined through the following:

CLmax = CLαα (94)

The maximum lift angle of attack is α = 13.2o

A.3 Viscous Coefficients Calculations

CLα: Lift-Due-To-Angle-of-Attack

This calculation starts in Chapter 8, Section 8.1.5.3, page 272 of Roskam [13].

CLα = CLαwf
+ CLαh

ηh(Sh/S)(1− dε/dα) + CLαc
ηc(Sc/S)(1 + dεc/dα) (95)

The equation above can be simplified since the Slocum has neither horizontal tail nor canard.

This reduces the above equation to the following:

CLα = CLαwf
= KwfCLαw

(96)

Kwf is the wing-fuselage interference factor determined from the following equation which

calls upon parameters defined in Table 7:

Kwf = 1 + 0.025(df/b)− 0.25(df/b)
2 = 0.994 (97)
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With this value of Kwf and recalling the value for CLαw
from above, it can be shown that

CLα is equal to 3.733.

Cmα: Pitching-Moment-Due-To-Angle-of-Attack

This equation starts in Chapter 8, Section 8.2.5.2, page 324 of Roskam [13]. The pitching

moment due to angle of attack can be stated with the following equation:

Cmα = (
dCm

dCL

)CLα (98)

To solve this, the airplane pitching moment variation with lift coefficient must be defined as

the following:

dCm/dCL = x̄ref − x̄acA
(99)

x̄ref can be determined from Figures 8.97b and 8.114 of [13], whose value can be determined

exactly with Rhinoceros 3.0. The next step is obtaining the value of the location of the

airplane aerodynamic center in fractions of the mean geometric center.

x̄acA
= ((x̄acwf

)CLαwf
+(ηhCLαh

(1−dε/dα)(Sh/s)x̄ach
−ηcCLαc

(1+dεc/dα)(Sc/S)x̄acc))/CLα

(100)

Note again that the equation can be reduced since there is no horizontal tail nor canard

present on the Slocum. Other useful equations are as follows:

x̄acwf
= x̄acw + ∆x̄acf

(101)

xacw = nac − nmgc = 0.11 (102)
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nac and nmgc are defined in Figure 8.97a [13], which can again be determined from Rhinoceros

3.0. CLαwf
and CLα have both been defined above and can be replaced with their actual

values here. Proceeding forward, the next useful equations are as follows:

∆xacf
= −(dM/dα)/(q̄Sc̄CLαw

) (103)

(dM/dα) = (q̄/36.5)(CLαw
/0.08)i=13

i=1 [
∑

((wfi
)2(dε̄/dα)i∆xi)] (104)

Note, wfi
and ∆xi are defined as average width and spacing at each cross-section of interest,

respectively. CLαw
has been calculated previously. (dε̄/dα)i can be interpreted from Fig-

ure 8.115 and 8.116 [13]. Note, for Slocum, only the sections in front of wing are relevant

since there is no horizontal tail. After taking out the necessary calculations for Slocum,

(dM/dα) = 0.059q̄. Plugging this value into the ∆xacf
equation above, cancelling the q̄

values, and plugging in the value for CLαw
described earlier yields ∆x̄acf

= −0.66. This

leads to x̄acwf
= x̄ACA

= −0.407. This then yields (dCm/dCL) = −0.54 which can finally be

submitted into the starting equation and after proper scaling gives the final result as Cmα

equal to -0.1459.

Clβ : Rolling-Moment-Due-To-Sideslip

This calculation starts in Chapter 10, in section 10.2.4, on page 389 of [13].

Clβ = Clβwf
+ Clβh

+ Clβv
(105)

The above equation can be slightly modified since there is no horizontal tail on the Slocum

model. Analyzing the first term of the above equation can be done with the following

equation:
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Clβwf
= 57.3(CLwf

((Clβ/CL)Λc/2
(KMΛ

)(Kf ) + (Clβ/CL)A) + Γ((Clβ/Γ)KMΓ
+ (∆Clβ/Γ))+

(∆Clβ)zw + (εt tan Λc/4)((∆Clβ)/εt tan Λc/4))

(106)

For preliminary design purposes, CLwf
= CL. Next, (Clβ/CL)Λc/2

can be obtained from

Figure 10.20 of [13], and is -0.0045 [1/deg]. KMΛ
can be obtained from Figure 10.21 of [13],

and is 1. Kf is obtained from Figure 10.22 of [13], and is 0.5. (Clβ/CL)A is obtained from

Figure 10.23 of [13], and is -0.001 [1/deg]. And finally, Γ can be obtained from Figure 10.7

of [13]. Note, for Slocum, Γ = εt = 0. Another component in the above equation can be

defined with the following equation:

(∆Clβ)zw = 0.042(A)(1/2)(zw/b)(dfave/b) (107)

Using zw as defined in Figure 10.9 of [13], the equation above goes to zero and the equation

for Clβwf
is dramatically simplified. Using the values obtained from the figures for the

components of the equation, Clβwf
= −2.29. The contribution from the vertical tail can be

determined from the following equation:

Clβv
= (Cyβv

)(zv cos α− lv sin α)/b (108)

Here, Cyβv
is from Equation 10.28 of [13], and has been solved above. zv and lv are both

determined from Figure 10.27 of [13], and are listed in Table 7. Plugging in these values

yields Clβv
= −0.034. Combining the wing-fuselage interaction and vertical tail terms from

the starting equation and properly scaling gives a final value for Clβ equal to -1.427.

Cnβ
Yawing-Moment-Due-To-Sideslip

This calculation starts in Chapter 10, Section 10.2.4, on page 397 of [13]. This value is

comprised of the following components:
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Cnβ
= Cnβw

+ Cnβf
+ Cnβv

(109)

Cnβw
is defined from DatCom [4] through:

Cnβw
= C2

L[
1

4πA
− tan Λc/4

πA(A + 4 cos Λc/4)
[cos Λc/4−A

2
− A2

8 cos Λc/4

+
6x̄ sin Λc/4

Ac̄
]] = 8.908 (110)

Cnβf
= −57.3KNKR1(Sfslf/Sb) (111)

KN can be determined from Figure 10.28 of [13], and is 0.0015. KR1 can be determined

from Figure 10.29 of [13], and is 1. Sfs and lf are defined from Figure 10.28 of [13], and

can be calculated exactly with Rhinoceros 3.0. The vertical tail contribution is given by the

following:

Cnβv
= −(Cyβv

)(lv cos α + zv sin α)/b (112)

where Cyβv
is determined from Equation 10.28 of [13], calculated above. lv and zv are again

from Figure 10.27 of [13]. Plugging in the necessary components to the parameters and

coefficients described here and properly scaling yields Cnβ
is equal to 4.845.

Cyp Side-Force-Due-To-Roll-Rate

This equation starts in Chapter 10, Section 10.2.6, on page 417 of [13]. It is defined by the

following equation:

Cyp = 2(Cyβv
)(zv cos α− lv sin α)/b (113)
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where Cyβv
can be determined from Equation 10.28 of [13], described above. zv and lv are

determined from Figure 10.27 of [13], which can be computed exactly in Rhinoceros 3.0.

Plugging in these values and multiplying by the nondimensionaled correction factor yields

Cyp is equal to 0.103.

Clp Rolling-Moment-Due-To-Roll-Rate

This equation starts in Chapter 10, Section 10.2.6, on page 417 of [13]. It is defined by the

following equation:

Clp = Clpw
+ Clph

+ Clpv
(114)

Since there is no horizontal tail component on Slocum, this equation can simplify slightly.

Analyzing the remaining first component can be done with the following equation:

Clpw
= (βClp/k)CL=0(k/β)((Clαw

)CL
/(CLαw

)CL=0)((Clp)Γ/(Clp)Γ=0) + (∆Clp)drag (115)

where (βClp/k)CL=0 can be obtained from Figure 10.35 of [13], and is -0.4. Note, in this

equation the following parameters need to be redefined:

β = (1−M2)(1/2) (116)

k = (Clα)Mβ/2π (117)

Here, (CLαw
)CL=0 can be obtained from Equation 8.22 of [13] and is worked out in an earlier

section. (Clαw
)CL

can be calculated from Section 8.1.3.5 of [13] and has been previously

defined. zw can be obtained from Figure 10.9 of [13] and Γ from Figure 10.7 of [13]; both
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which show their respective values to equal zero. The wing drag contribution to roll damping

is given by:

(∆Clp)drag = ((Clp)CDL
/(CLw)2)(CLw)2 − 0.125CDow

(118)

where (Clαw
)CL

can be obtained from Figure 10.36 of [13], and is 1. Again, it is appropriate

to set CLw = CL. The remaining component, CDow
, is obtained from Raymer [12] and is de-

termined previously. The remaining component is the vertical tail contribution, determined

from the following:

Clpv
= 2(zv/b)

2Cyβv
(119)

where zv is obtained from Figure 10.27 of [13] and Cyβv
is determined from Equation 10.28

of [13], described earlier. Combining the vertical tail and wing sections and properly scaling

yields Clp is equal to -0.778.

Cnp Yawing-Moment-Due-To-Roll-Rate

This calculation starts in Chapter 10, Section 10.2.6, on page 421 of [13]. It is defined by

the following equation:

Cnp = Cnpw
+ Cnpv

(120)

The wing contribution is given by:

Cnpw
= −((Cnp/CL)CL=0,M)CL + (Cnp/εt)εt + ((∆Cnp/αδf

)(δf ))(αδf
)δf (121)
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where:

(Cnp/CL)CL=0,M = (
A + 4 cos Λc/4

AB + 4 cos Λc/4

)(
AB + (1/2)(AB + cos Λc/4) tan2 Λc/4

A + (1/2)(A + cos Λc/4) tan2 Λc/4

)(Cnp/CL)CL=M=0

(122)

where:

B = (1−M2(cos Λc/4)
2)1/2 (123)

and:

(Cnp/CL)CL=M=0 = −1

6

A + 6(A + cos Λc/4)((x̄/c̄)(tan Λc/4/A) + (tan2 Λc/4/12))

A + 4 cos Λc/4

(124)

For the Slocum glider there is no wing twist contribution, εt, or flap deflection, δf , due to the

construction design. Thus, the equation for the wing contribution term simplifies, and after

plugging in the known parameters yields a value of -3.752. The vertical tail contribution is

given by the following equation:

Cnpv
= −(2/b2)(lv cos α + zv sin α)(zv cos α− lv sin α− zv)Cyβv

(125)

where zv and lv are obtained from Figure 10.27 of [13] and Cyβv
is determined from Equa-

tion 10.28 of [13], described above. Plugging in the necessary values yields Cnpv
= −0.242.

Combining the wing and tail contributions and properly scaling yields Cnp =-1.186.

Cmq Pitching-Moment-Due-To-Pitch-Rate

This calculation comes from the DatCom [4] reference CD which can be found in part 2 on

page 193. It is defined by the following equation:

Cmq = Cmqw
+ Cmqh

+ Cmqc
(126)
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Since there is no horizontal tail or canard, the terms simplifies down to be equal to the wing

contribution component, which is determined from the following equation:

Cmqw
= −kwClαw

cos Λc/4(
A(0.5(x̄/c̄) + 2(x̄/c̄)2)

A + 2 cos Λc/4

+ (1/24)
A3 tan2 Λc/4

A + 6 cos Λc/4

+ (1/8)) (127)

Where kw is determined from Figure 10.40 of [13], and is 0.71. In this equation, x̄ is redefined

through Figure 10.39 of [13], and is 0.512 ft. Plugging in the known parameters listed in the

beginning table and properly scaling yields Cmq =-0.044.

Cyr Side-Force-Due-To-Yaw-Rate

This calculation starts in Chapter 10, Section 10.2.8, on page 428 of [13]. It is defined with

the following equation:

Cyr = −2(Cyβv
)(lvcosα + zvsinα)/b (128)

where lv and zv is obtained from Figure 10.27 of [13] and Cyβv
from Equation 10.28 of [13],

determined earlier. Plugging in these known values and properly scaling yields Cyr is equal

to 0.447.

Clr Rolling-Moment-Due-To-Yaw-Rate

This calculation starts in Chapter 10, Section 10.2.8, on page 428 of [13]. It is defined with

the following equation:

Clr = Clrw
+ Clrv

(129)

The wing contribution term can be determined from the following equation:
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CLrw
= (CLw)(Clr/CL)CL=0,M + (∆Clr/Γ)Γ + (∆Clr/εt)εt + (∆Clr/αδf

)(αδf
)δf (130)

As stated earlier, there is no dihedral, Γ, wing twist, εt, or flap deflection, δf . Thus the

equation is dramatically reduced. The slope of the rolling moment due to roll rate at zero

lift is determined by the following equation:

(Clr/CL)CL=0,M =
1 + A(1−B2)

2B(AB+2 cosΛc/4)
+

AB+2 cosΛc/4

AB+4 cosΛc/4

tan2 Λc/4

8

1 +
AB+2 cosΛc/4

AB+4 cosΛc/4

tan2 Λc/4

8

(Clr/CL)CL=M=0 (131)

where:

B = (1−M2(cos Λc/4)
2)(1/2) (132)

(Clr/CL)CL=M=0 is determined from Figure 10.41 of [13], which is 0.45, and CLw from Equa-

tion 10.57 of [13], which has been previously determined. The wing contribution is deter-

mined as 5.533. The vertical tail contribution is determined from the following equation:

Clrv
= −(2/b2)(lv cos α + zv sin α)(zv cos α− lv sin α)Cyβv

(133)

where zv and lv are obtained from Figure 10.27 of [13] and Cyβv
from Equation 10.28 of [13],

which has been determined previously. Plugging in these known values and solving for the

two components and properly scaling yields Clr is equal to 1.62.

Cnr Yawing-Moment-Due-To-Yaw-Rate

This equation starts in Chapter 10, Section 10.2.8, on page 432 of [13]. It is defined with

the following equation:

Cnr = Cnrw
+ Cnrv

(134)
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The wing contribution term can be obtained with the following equation:

Cnrw
= (Cnr/C

2
L)(CLw)2 + (Cnr/CDo)CDow

(135)

where (Cnr/C
2
L) is obtained from Figure 10.44 of [13], and is 0, and (Cnr/CDo) from Figure

10.45 of [13], which is -0.5. CLw is determined from Equation 10.57 of [13], described earlier.

CDow
is obtained from equations in from [12], also described earlier. Plugging the necessary

values in shows that the wing contribution term is equal to -0.0014. The next component is

the vertical tail contribution, given by the following equation:

Cnrv
= (2/b2)(lv cos α + zv sin α)2Cyβv

(136)

where zv and lv are obtained from Figure 10.27 of [13] and Cyβv
from Equation 10.28 of [13],

which has been determined previously. Plugging in these known values and solving for the

two components yields Cnr is equal to -0.062.
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B Slocum Study Results

B.1 Slocum Panel Study

The Slocum glider panel study was similar to the VTMAUV panel study in the sense that

there were several places under review to determine the change in pressure coefficient due

to change in panel density. For the Slocum glider, there were seven places under review: the

nose, nose/body interaction, pre-wing body, location on front of wing, aft wing/end section

interaction, location close to the end, and a location near the front of the tail section. Like

the other glider panel studies, there were certain cases where not only the longitudinal panels

needed to be increased, but also the panels defined in the y-z plane to avoid some panels

becoming too high in aspect ratio. For this case, this did not affect the data drastically.

Table 9: Panel Distribution Over Slocum Body

Case Nose Nose/Body MB WB WLE Aft/Tail MA Boom/Tail TLE

1 8 3 9 5 12 4 8 6 7

2 10 4 11 7 14 5 10 7 8

3 12 5 13 9 16 6 12 8 9

*4 14 6 15 11 18 7 14 9 10

5 16 7 17 13 20 8 15 10 11

*6 18 8 19 15 22 9 16 11 12

7 20 9 21 17 24 10 17 12 13

Here, “MB” refers to a mid-body location, “WLE” refers to the wing leading edge location,

“MA” refers to the mid-aft location, and “TLE” refers to the tail leading edge location. The

cases in Table 9 which have a * by the number indicate the studies that had an increase in

panels in the y-z plane to reduce panels from becoming too large in aspect ratio. After each

of these seven cases were built in Surfgen, they were ran in the CFD program USAERO and

the following pressure coefficients were obtained at the various locations.
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Table 10: Panel Distribution Over Slocum Body

Case Nose Tip Nose/Body MB FW Aft/Tail AEB Frontal Tail

1 0.7206 -0.1737 -0.02477 -0.04189 -0.14248 0.65376 -0.17027

2 0.83603 -0.19248 -0.02504 -0.0486 -0.12334 0.71353 -0.21029

3 0.83579 -0.19773 -0.02841 -0.05594 -0.12097 0.76432 -0.23429

4 0.84373 -0.20409 -0.02824 -0.06247 -0.10938 0.94903 -0.27108

5 0.83953 -0.20683 -0.02811 -0.06934 -0.09341 0.93377 -0.29386

6 0.83784 -0.21392 -0.02855 -0.07139 -0.0777 0.9251 -0.3019

7 0.83847 -0.21463 -0.02846 -0.07086 -0.07389 0.94191 -0.30505

Here, “MB” refers to a mid-body location, “FW” refers to a frontal wing location, and “AEB”

refers to an aft-end body location. The data in Table 10 can be represented graphically to

better indicate how many panels should be defined over the vehicle. This can be seen in

Figure 30.

After looking at several of the cases presented in Figure 30, the following conclusions can

be drawn about the number of panels to define in each section to ensure proper panel

distribution to capture the effects in the flow.

Nose Nose/Body MB WB WLE Aft/Tail AE Boom/Tail TLE

16 9 15 13 24 9 14 12 13

Table 11: Final Panel Distribution for Slocum

Here, “MB” refers to a mid-body location, “WB” refers to a wing body location, “WLE”

refers to the wing leading edge location, “AE” refers to an aft-edge location, and “TLE”

refers to a tail-leading edge location.
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Figure 30: Slocum Panel Study
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C XRay/Liberdade Study Results

C.1 XRay/Liberdade Panel Study

The XRay/Liberdade panel study was more difficult to perform than the Slocum and VT-

MAUV panel studies due the geometry configuration. Defining more panels on the body

automatically placed more panels on the end tails, and thus there was a run-time limit on

the necessary number of panels to define on the the body. The panel study shows six cases

that were ran in order to determine the changing pressure coefficients. The six locations

under review were: nose tip, frontal body location (i.e. location close to the leading edge

of the body), rear body location (i.e. location close to the trailing edge), central center tail

location, side fin top frontal location, and side fin bottom frontal location.

Table 12: Panel Distribution Over XRay/Liberdade Body

Case Nose Mid Tail Fin BCL TST BST Body Frontal Location

1 4 and 3 5 and 4 9 and 13 6 3 20

2 6 and 4 7 and 5 12 and 17 8 4 30

3 10 and 4 9 and 5 15 and 20 11 5 40

4 13 and 5 12 and 6 18 and 24 13 6 50

5 16 and 5 15 and 6 21 and 27 16 8 60

Here, “BCL” refers to the body centerline location, “TST” refers to a top side tail location,

and “BST” refers to a bottom side tail location. In Table 12, some locations have two panel

numbers because they needed to be defined in the longitudinal and horizontal direction

in order to maintain panel aspect ratios close to a value of one. Further, on the body

centerline, (CL), two panel numbers are defined for the top and bottom body connectors on

the centerline which control the number of panels. These are asymmetric due to the presence

of the centerline tail. The pressure coefficient results of the panel study are shown below

Here, “FB” refers to the frontal body location. “RB” refers to the rear body location. “FCT”
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Table 13: Pressure Distribution Over XRay/Liberdade Body per Study

Case Nose FB RB FCT Frontal Top Tail Frontal Bottom Tail

1 0.90899 0.60364 0.32025 -0.02157 0.60347 -0.15831

2 0.91398 0.66089 0.37567 0.04238 0.6298 -0.01141

3 0.91586 0.68063 0.42855 0.04512 0.66022 0.02966

4 0.91639 0.68405 0.43675 0.04813 0.66898 0.03356

5 0.91676 0.6873 0.43985 0.05217 0.67659 0.04551

refers to the frontal centerline tail location. The data in Table 13 can be represented in

graphical form (Figure 31) to show the results used to determine the final panel distribution

for the XRay/Liberdade.

Based on the graphs in Figure 31, the final panel distribution was determined and the solution

is represented in Table 14.

Nose Mid Tail Fin Frontal Body Body CL Top Side Tail Bottom Side Tail

13 and 5 10 and 5 40 16 and 21 15 5

Table 14: Final Panel Distribution on the XRay/Liberdade Body
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Figure 31: XRay/Liberdade Panel Study
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