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Abstract 

Fe-based catalysts doped with Mo were prepared and tested in the catalytic 

decomposition of methane (CDM), which aims for the co-production of CO2-free 

hydrogen and tubular nanostructured carbon (NC). Catalysts performance were tested in 

a thermobalance operating either at isothermal or temperature programmed mode by 

monitoring the weight changes with time or temperature, respectively, as a result of NC 

growth on the metal particles. Maximum performance of Fe-Mo catalysts was found at 

the temperature range of 700-900ºC. The addition of Mo as dopant resulted in an 

increase in the rate and amount of deposited carbon, reaching an optimum in the range 

2.5-7.5% (mol) of MoO3 for Fe-Mo/Al2O3 catalysts, whereas for Fe-Mo/MgO catalyst 

an optimum at 7.5 % MoO3 loading was obtained. XRD study revealed the effect of the 

Mo addition on the Fe2O3/Fe crystal domain size in the fresh and reduced catalysts. 

Tubular carbon nanostructures with high structural order were obtained using Fe-Mo 

catalysts, mainly as multiwall carbon nanotubes (MWCNTs) and bamboo carbon 

nanotubes. Fe-Mo catalysts showing best results in thermobalance were tested in a pilot-

scale plant with a rotary bed reactor leading to high conversions of methane (70%) and 

formation of MWCNTs (8 gNC/h). 
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1. Introduction 

Nanostructured carbon (NC) has attracted the attention of numerous researchers since 

the discovery of the carbon nanotubes (CNTs) by Iijima in 1991 [1]. CNT consist of one 

or more rolled graphene layers resulting in many tubular structures, differing in length, 

thickness, type of helicity and number of layers or walls, from single wall (SWCNTs) 

and double (DWCNTs) to multiwall carbon nanotubes (MWCNTs).  

CNTs are typically produced by Chemical Vapor Deposition (CVD) from 

decomposition of various hydrocarbons (mainly CH4 or C2H2) or CO using as catalysts 

transition metals supported on different metal oxides [2]. One interesting approach to 

the production of such carbon nanofilaments is the so-called catalytic decomposition of 

methane (CDM) [3, 4]. CDM is an endothermic reaction that produces in one single 

step free-CO2 hydrogen and carbon nanostructures with various textural and structural 

properties [5]. Co- and Ni-based catalysts are widely used in CDM due to their high 

activity and the formation of filamentous carbon [6-11]. However, Ni and Co-based 

catalysts suffered from rapid deactivation when used at temperatures higher than ca. 650 

ºC due to metal particle encapsulation by carbon [12-16]. Fe-based catalysts can operate 

at higher temperatures than Co or Ni based catalysts without suffering from 

deactivation, resulting in higher methane conversions due to the positive shift of the 

thermodynamic equilibrium. As an example, the equilibrium methane conversion at 

650ºC is 71%, whereas at 800ºC increases up to 92%. Beside this, Fe based catalysts are 

cheaper and more environmental friendly than Co and Ni based catalysts. 



3 

Our group has recently synthesized high loaded iron oxide based catalysts with Al2O3 

and MgO as textural promoters (Fe/MgO and Fe/Al2O3) [14, 15, 17, 18]. These catalysts 

showed methane conversion values close to equilibrium along with the production of 

MWCNTs and bamboo CNTs (also named as chain-like type [19]). Iron catalysts, 

however, exhibited lower catalytic activity than the nickel ones [7, 14, 20].  

In order to improve Fe-based catalysts performance, several transition metals (Co, Ni, 

Mo, Pd, Mn and Cu) have been used as catalyst additives [6]. Bimetallic Fe-based 

catalysts such as Fe-Co [8, 21-23] or Fe-Mo [24-34] resulted in higher CNTs yield 

compared to undoped catalysts, besides preventing catalyst particle aggregation [35]. It 

is known that an increase in Mo content in bimetallic catalysts led to narrower 

nanotubes, i.e. less graphene layers, at the expense of carbon yield in the hydrocarbon 

decomposition process [27, 29, 30, 33, 34, 36]. 

Stable oxides (Al2O3, MgO, SiO2, TiO2, ZrO2, etc.) are the supports most commonly 

used for NC formation by CDM in high-loaded metal catalysts [21, 37]. In Fe catalysts, 

the support acts like textural promoter affecting both the NC yields and the structure 

and morphology of the carbon nanofilaments produced [37].  

In this work, massive Fe catalyst doped with different Mo loadings were prepared using 

either MgO or Al2O3 as textural promoters. CDM performance was evaluated firstly in a 

thermobalance in isothermal and ramp mode. Catalysts showing better performance 

were subsequently scaled up in a rotary bed reactor. NC quality, which is of utmost 

importance for its future application, has been determined by structural, textural and 

morphological characterization. 
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2. Experimental 

2.1. Catalyst preparation 

In order to study the NC formation in CDM reaction, the following Fe-based catalysts 

were prepared: Fe/Al2O3 (molar ratio: 2:1) and Fe/MgO (2:1), where Fe acts as active 

phase in the CDM process and Al2O3 and MgO as textural promoters. Fresh catalysts 

were synthesized by the fusion method from mixture of the respective salts and 

subsequent calcination in air at 450 °C during 2 hours [17]. The molar ratio of the 

components (2:1) was selected according to prior work conducted by our research group 

[15]. Catalysts were doped with Mo in different loadings: 2.5, 5, 7.5 and 10 % (molar, 

expressed as MoO3). Catalysts are hereafter denoted as FeMo(X)/Al2O3 or 

FeMo(X)/MgO, where X refers to the MoO3 amount in molar percentage. The fresh-

catalyst powder were then grounded and sieved to select particles with sizes in 100−200 

µm range.  

 

2.2. Experimental configurations and CDM tests 

The performance of the catalyst synthesized in the methane decomposition reaction was 

preliminarily studied in a thermobalance (CAHN TG-2151) at different operating 

temperatures. The evolution of the catalyst activity was recorded gravimetrically via the 

observed weight changes of the sample due to progressive carbon deposition as a 

reaction product of the CDM, as previously reported in [38]. Two temperatures modes 

were used: temperature programmed mode (using a heating rate of 10 ºC/min) from 400 

ºC to 900 ºC and isothermal mode (at 700, 750 and 800 ºC) for 10 h. In a typical run, 10 

mg of fresh catalyst was used and a methane flow rate of 1LN/min. Under these 

conditions, maximum carbon deposition and subsequent deactivation of the catalyst is 

assured [6, 36, 37]. Prior to CDM tests, fresh catalyst was reduced using a heating ramp 
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of 10 ºC/min from room temperature to 750 ºC with a H2 flow rate of 1 LN/h and then 

maintained at this temperature until complete reduction of catalyst.  

A rotary bed reactor (RBR) set-up consisted of a cylindrical drum made of Kanthal 

rotating around its horizontal axis was used to evaluate at higher scale magnitude the 

best catalysts synthesized. The diameter and length of the cylinder were 0.065 and 0.80 

m, respectively, and the rotational speed can be varied from 1 to 20 rpm. Additional 

details of the experimental apparatus can be found elsewhere [39]. Prior to CDM tests, 

fresh catalysts were subjected to a reduction treatment using a heating ramp of 10 

ºC/min from room temperature to 750 ºC with a H2 flow rate of 70 LN/h and then 

maintained at this temperature for 1 h. Next, CDM reaction temperature was set at 750 

°C. The feed consisted of pure methane (99.99%) adjusted to a weight hourly space 

velocity (WHSV, defined here as the methane flow rate at normal conditions per gram 

of catalyst initially loaded) of 1,5 LN/(h·gcat). The composition of the outlet gas was 

determined by micro GC (Varian CP4900) equipped with two packed columns and a 

Thermal conductivity detector (TCD). The carbon produced was directly measured by 

weight difference, corresponding satisfactorily with the mass of carbon expected from 

the mass balance within an error of less than 5%. Methane conversion was calculated 

from the eq. (1), where %H2 is the H2 content in the outlet gases expressed as a volume 

percentage. 

���� =
%��

�		
%��
      (1) 

An estimation of carbon accumulated, gC, during CDM reaction in RBR was determined 

from the methane conversion evolution by the equation: 

�� =
�


�
� ·
�

	
���� · ���� · ��     (2) 

where α is the standard molar volume, MC is the atomic weight of carbon, ����	is the 

methane flow rate fed to the reactor, and t is the total run time.  
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Carbon content is expressed as the carbon deposited with respect the amount of active 

phase in the catalysts: Fe or Fe + Mo (when Mo is present in the catalyst formulation). 

 

2.3. Characterization techniques 

The catalysts were characterized by X-ray diffraction (XRD) and temperature-

programmed reduction (TPR), while the NC quality obtained in CDM tests was 

determined using structural (XRD), textural (N2 adsorption) and morphology 

characterization (SEM and TEM). 

XRD patterns of fresh catalysts and obtained NC were acquired in a Bruker D8 

Advance Series 2 diffractometer. The angle range scanned was 10º-80º using a counting 

step of 0.05º and a counting time per step of 3 s. A suitable sample holder with a very 

low noise level was used, allowing for pattern acquisitions from a small amount of 

sample with high resolution. The powder XRD patterns were further processed using 

the accompanying DIFRAC PLUS EVA 8.0 to obtain refined structural parameters of 

crystal domain sizes of iron (metal, oxide or carbide) and deposited carbon through the 

application of Rietveld methods. The interlayer spacing, d002, the mean crystallite size 

along c axis, Lc, and graphitization degree, g, are used in this study to assess the degree 

of structural order of the materials [40]. The mean interlayer spacing, d002, was 

evaluated from the position of the (002) peak applying Bragg’s equation [41]. The mean 

crystallite size, Lc, was calculated from the (002) peak using the Scherrer formula, with 

a values of K = 0.9 [41]. The graphitization degree, g, was calculated from the Mering 

and Maire equation (validity range: 0.3354 ≤ d002 ≤ 0.3440 nm) [37, 42]. 

The reducibility of the fresh catalysts was studied by TPR. The respective reduction 

profiles were obtained in an AutoChem Analyzer II 2920 (Micromeritics) provided with 

a TCD from a sample amount of 10 mg and using a heat rate of 5 ºC/min within a 
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temperature range from room temperature to 1050 ºC under a flow rate of 50 ml/min of 

a H2 (10%)/Ar mixture.  

The textural properties of the deposited carbon were measured by N2 adsorption at 77 K 

in a Micromeritics ASAP2020 apparatus. The specific surface areas and pore volumes 

were calculated by applying the BET method to the respective N2 adsorption isotherms.  

The morphological appearance of the deposited carbon was studied with a scanning 

electron microscope (Hitachi S-3400) coupled to a Si/Li detector for energy dispersive 

X-ray (EDX) analysis, and a transmission electron microscope (Tecnai F30), equipped 

with a cannon of 300 KeV, EDX / EELS analyzers and a maximum resolution of 1,5 Å. 

 

3. Results and Discussion 

3.1. Fresh catalysts characterization 

XRD diffraction patterns of the fresh catalysts for different MoO3 loading ranging from 

0 to 10% and textural promoters, namely Al2O3 and MgO, are shown in Figure 1a and 

1b, respectively. In both cases, undoped catalysts showed typical reflexions assigned to 

Fe2O3. Figure 1a did not show Al2O3 reflections, revealing its amorphous nature [36], 

whereas two reflexions were observed in Figure 1b assigned to MgO. Doping of the 

Al 2O3 catalysts with Mo resulted in the disappearance of the Fe2O3 reflexions, 

regardless of the Mo loading, and the presence of very broad signals typically assigned 

to γ-Al 2O3 can be distinguished [22]. The disappearance of Fe2O3 reflexions as a result 

of Mo addition may be attributed to a good dispersion of the Fe2O3 phase, since Mo 

promotes the formation of small metal particles [36, 43] with crystal domain size below 

the detection limit of the XRD technique. In catalysts prepared with MgO, diffractions 

assigned to MgO and Fe2O3 can be observed. A reduction in the crystallinity of Fe2O3 

and MgO is also observed with increasing Mo content [27]. On further inspection, 
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catalysts doped with Mo amount higher than 5% showed weak reflexions around 20-35º 

(2θ) that could be assigned to MoO3 most representative planes [44]. Furthermore, other 

species, formed upon interaction between Fe and/or Mo with textural promoters such as 

MgFe2O4, MgFe3O4, FeMoO4, Fe2(MoO4)3, MgMoO4 and MgMo2O7 may be present in 

this narrow 2θ range, although the identification of these peaks is not straightforward 

[27, 29, 33]. These phases are originated in the calcination process by interaction 

between metal and promoter precursors; MgFe2O4 and  FeMoO4 were detected in a high 

temperature calcination (900 ºC) [33], where iron is well-dispersed in a MgFe2O4/MgO 

or FeMoO4/MgO solid solution formed by the interdiffusion between FeOx and MgO 

[45]. MgMoO4 is formed by interaction between Mo and MgO forming a solid solution 

[27, 29]. Fe2O3 and MoO3 (or Mo like heterometaloxanes) may be well dispersed in 

small sizes in a low concentration in a solid solution in the support lattice [43].  

Table 1 shows the Fe2O3 crystal domain size in the fresh catalyst obtained by XRD. 

Undoped catalysts prepared with Al2O3 had a crystal domain size of 17.7 nm, lower 

than the one prepared with MgO (24.5 nm). Mo effect on the Fe2O3 crystal domain size 

can be evaluated for the FeMo(X)/MgO catalyst. Thus, a gradual reduction in the Fe2O3 

crystal domain size is observed as the MoO3 content increased up to 7.5%. Thus, Fe2O3 

crystal domain size was 24.5 nm for the undoped catalyst, whereas for FeMo(7.5)/Al2O3 

catalysts was 18.4. However, further increase in MoO3 loading provoked a slight 

increase in Fe2O3 crystal domain size. In all cases, crystal domain size is within the 

range 18.4-25.9 nm. Fe2O3 sizes below 30 nm promotes the formation of α-Fe and Fe3C 

(cementite) during methane decomposition [19]. These species are catalytically active in 

the process allowing a gradual carbon accumulation during nanofilament growth. By 

contrast, larger Fe2O3 particles favor its transformation into non-catalytic γ-Fe saturated 
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with carbon atoms (austenite). For FeMo(X)/Al2O3 catalysts, Fe2O3 crystal domain size 

cannot be calculated due to the low crystalline nature of these samples.  

The study of the reducibility of the fresh catalysts carried out by TPR is shown in 

Figure 2. The TPR profiles of FeMo(0)/Al2O3 catalysts showed the presence of three 

well differentiated reduction regions, indicating a stepwise reduction process. The first 

region was composed by a H2 consumption peak centred at temperatures around 350 ºC, 

which reflected the first stage of the reduction of hematite, bulk principally [46], to 

magnetite: Fe2O3 → Fe3O4. The second broad reduction peak found at temperatures 

between 420 and 750 ºC represented the reduction of magnetite to metallic iron: Fe3O4 

→ α-Fe. This intermediate temperature region is assigned to the two-step magnetite 

reduction sequence, Fe3O4 → FeO → α-Fe [47]. The appearance of broad reduction 

region in the high temperature range (750-950 ºC) indicated the presence of different 

mixed oxides whose chemical nature and degree of crystallinity cannot be assessed 

surely. These species can be assigned to Fe (III) aluminates reduced in successive stages 

to form Fe (II) aluminates and α-Fe [46]. Mo addition induced significant changes in the 

Al 2O3 catalysts TPR profiles. The peak in the first reduction region presented a similar 

shape as the undoped catalyst, although it was slightly shifted to higher temperatures. 

The H2 consumption in the second region diminished dramatically. A new reduction 

peak appeared centred at ca. 750 ºC, being larger as the Mo content increased. 

Therefore, this peak is ascribable to the reduction of Mo species (MoO3 or Mo ferrites) 

to an oxide with a lower chemical valence, that is, MoO2, in accordance with literature 

data [48, 49]. The two peaks observed in the third region did not change as the Mo 

content increased. 

The TPR profiles of the MgO catalysts showed two H2 consumption regions: in the first 

region, between 300 ºC and 550 ºC, a shoulder and a peak centred at 350 and 470 ºC, 
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respectively, were observed. Both H2 consumption regions can be assigned to the 

reduction of bulk Fe2O3 species with different interactions with MgO. The appearance 

of the shoulder can be attributed to the higher Fe content of the MgO catalysts as 

compared to the Al2O3 based catalysts. The second region between 500 ºC and 700 ºC 

was related to the stepwise reduction of Fe3O4 to FeO and Fe. No H2 consumption in the 

high temperature domain was detected, which may imply that weaker interaction takes 

place between Fe and MgO, as compared to the Al2O3 based catalysts. Mo addition to 

MgO based catalysts shifted the peaks in both regions to higher temperatures. The 

intensity of the peak observed in the first reduction region diminished as the Mo content 

increased. The broad peak observed centered at ca. 750-800 ºC corresponded to the 

reduction of FeO and MoO3 [48]. 

In both cases, Mo doping shifted the reduction peaks toward higher temperatures, 

indicating that it promoted a decrease in the reducibility of catalysts. This fact can be 

ascribed to a stronger metal particles and textural promoter interaction, probably due to 

the small size of metal particles, as indicated in the XRD discussion. 

XRD of catalysts reduced at 750 ºC are shown in Figure 3 a and 3 b for the Al2O3 and 

MgO based catalysts, respectively. Al2O3 present typical reflections related to 110 and 

200 planes of Fe [50], whereas MgO based catalysts presented a better developed 

cristallinity resulting in the appearance of Fe reflections assigned to 110 and 200 planes, 

and MgO assigned to 200 and 220 planes [51]. Fe crystal domain size in the reduced 

catalysts was calculated and the results are shown in Table 1. It is observed in all cases 

that the reduction of Fe2O3 to metallic Fe in the reduction pre-treatment affected the Fe 

crystal domain size by enlarging it, probably due to sintering upon the catalyst reduction 

stage. For instance, the Fe crystal domain size in the reduced catalysts is 89.7 and 50.2 
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nm for the FeMo(0)/Al2O3 and FeMo(10)Al2O3, respectively. Fe crystal domain size in 

FeMo(X)/Al2O3 catalysts is lower than in FeMo(X)/MgO catalyst. An increase in Mo 

loading had no effect in the Fe crystal domain size of the Al2O3 based catalysts, whereas 

it promoted a decrease of the Fe domain size in the MgO based catalysts. Regarding Mo 

content, the trend in Fe crystal sizes was similar to that of Fe2O3 in fresh catalysts. Mo 

presence is known to form heteropolymolybdates or ferrites type structures in fresh 

catalyst which favor formation and stabilization of metallic particles of smaller size in 

the reduction step. It also hinders the sintering of the active nanosize metal clusters into 

coarse poorly active particles [43]. 

 

3.2. Thermogravimetric analysis of Fe-based catalysts  

3.2.1. Temperature-ramp tests 

As previously commented, CDM reaction was studied by monitoring the mass gained as 

the temperature was increased from 500 ºC to 900 ºC with a heating rate of 10 ºC·min-1. 

TGA results obtained with Fe and FeMo catalysts prepared with Al2O3 and MgO as 

textural promoters are shown in Figures 4a and 4b, respectively. Insets in Figure 4 show 

the carbon formation rate (CFR) for the catalyst prepared with Al2O3 and MgO as 

textural promoter, respectively, calculated from the numerical derivative of the carbon 

content vs. time curves.  

For both textural promoters used, Mo addition improved catalyst performance as 

compared to the undoped catalysts, as previously reported [27, 29, 30, 33, 34, 36]. This 

fact can be confirmed attending to the higher amount of carbon accumulated (Figures 4 

a and 4 b) and the higher CFR in the ramp tests (insets). This improvement in catalyst 

performance was observed up to a certain amount of MoO3 loading. Thus, maximum 
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carbon accumulation capacity was found to be 5% and 7.5% for the catalysts prepared 

with Al2O3 and MgO, respectively. Comparing with other results in literature, MoO3 

optimum loading in Al2O3 supported catalysts varies from 5.8% (mol) in a 52% (wt.) 

Fe2O3 content catalyst [36] to 12% (mol) in very low Fe loaded catalyst (3.5 wt.%) [34]. 

Similarly, CFR was higher for catalyst prepared with 7.5% Mo loading for the case of 

MgO catalyst, whereas optimum results were obtained for catalyst prepared with 5 and 

7.5% when Al2O3 was used as textural promoter. The evaluation of the textural 

promoter used revealed that better results, both in terms of carbon accumulation 

capacity and CFR, were obtained for catalysts prepared with Al2O3. 

Ramp temperature tests can also provide valuable information about the optimum 

window temperature to carry out the CDM avoiding catalyst deactivation, highlighting 

the differences upon the textural promoter used.  

CFR curves of Al2O3 catalysts show almost negligible values up to temperatures of 650 

ºC, and from this temperature and onwards, a sharp increase in the CFR was observed. 

The curves ended with a dramatic decrease of CFR, possibly due to catalyst deactivation 

at high temperature. CFR curves obtained with MgO catalysts revealed a different 

shape. CFR was very low at temperatures lower than 700ºC. A sharp increment 

occurred at 700-750º, followed by a progressive increment up to a maximum (850ºC) 

and then a progressive deactivation. In this case, by the time that the ramp ended, the 

catalysts maintained a relative high CFR, therefore total deactivation was not attained 

during the course of these tests. For Mo doped catalyst, a constant CFR temperature 

range appeared. Thus, Mo doped Al2O3 based catalysts had a temperature window in 

which CFR was maximum between ca. 700-850 ºC, whereas Mo-doped MgO catalysts 

this window is shifted to higher temperatures, between 750 and 900ºC. 
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It can be concluded that Mo addition improved catalyst performed in the catalysts 

prepared with Al2O3 and MgO as textural promoter. Catalyst prepared with Al2O3 

yielded higher carbon accumulation capacities and carbon formation rates than MgO 

catalyst in the tests carried out in isothermal tests. These results can be tentatively 

explained according to the characterization results presented in Section 3.1. Thus, 

maximum carbon accumulation was obtained for catalysts with smallest Fe crystal 

domain size (Table 1), related to a stronger metal-promoter interaction, as discussed in 

section 3.1.   

Taking into account both carbon accumulation capacities and CFR, optimum Mo 

loading was in the range 2.5-7.5% for Al2O3 catalysts, whereas for MgO based catalyst 

an optimum at 7.5 % Mo loading was obtained. Catalysts with 7.5% Mo content 

prepared with both textural promoters were selected for next studies carried out at 

isothermal conditions. 

3.2.2. Isothermal tests 

CDM was carried out in isothermal mode at three different temperatures, namely 700, 

750 and 800 ºC. Figure 5 shows the carbon accumulated with time for FeMo(0)/Al2O3 

(Figure 5a), FeMo(0)/MgO (Figure 5b), FeMo(7.5)/Al2O3 (Figure 5c) and 

FeMo(7.5)/MgO (Figure 5d) catalysts. Runs were carried out until the mass gain was 

almost negligible.  

In both cases, Mo addition improved significantly the catalyst performance, indicated 

by the higher ultimate carbon accumulation, (UCA), i.e., the amount of carbon 

accumulated until deactivation occurred. It was observed that temperature did not affect 

catalyst performance on non-doped catalysts, whereas it had a great impact on the Mo 

doped catalysts. For both catalyst tested, tests carried out a 700 ºC resulted in a relative 
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slow initial carbon deposition rate, as revealed the curve slopes. At 800 ºC, TGA curves 

were characterized by a sharp increase in the amount of carbon accumulated in the 

initial stage of the reaction followed by a rapid deactivation after ca. 50-100 min time 

on stream (TOS). Catalyst performance at 750 ºC presented an intermediate behaviour, 

achieving larger value of UCA for both catalysts. Therefore, it can be concluded that 

optimum operation temperature for these catalysts in the CDM reaction is 750ºC. It is 

known that temperatures above 680 ºC guarantee the Fe3C transformation into its 

metastable state and the formation of the α-Fe phase in a considerable amount, the latter 

being active to CDM [37]. 

Isothermal tests revealed that the UCA obtained for the catalyst doped with 7.5% Mo 

was slightly larger for Al2O3 based catalysts, although the main impact on the textural 

promoter used was observed in the time needed to reach this value. This implies that 

catalyst prepared with Al2O3 had higher kinetics in the CDM reaction. 

At isothermal conditions, CFR decreased dramatically with time, as deducted from the 

curve slopes. This indicates that a large fraction of the carbon accumulated is obtained 

during the initial stage of the runs. UCA values obtained at 750 ºC with 

FeMo(7.5)/Al2O3 and FeMo(7.5)/MgO were 13.4 and 12.4 gC/gFe, respectively. 

Comparing the UCA values of this work with others Fe-Mo catalysts employed in 

literature for CNTs synthesis, large differences depending on WHSV, reaction 

temperature, pressure, feed or Fe/Mo ratio in the catalyst were observed, therefore the 

comparison is not straightforward. As an example, UCA values ranging from 8.6 to 46.2 

gC/gFe for Fe-Mo catalysts were reported [29, 34]. 

 

 

3.3. Characterization of spent catalysts  
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Figure 6 shows the diffractograms of the catalysts after isothermal tests at 750 ºC. In all 

cases, besides the Fe reflection at ca. 44.9º of Fe (110), new reflections as compared to 

the fresh reduced catalysts appeared: a prominent reflection at ca. 26º, assigned to the 

002 plane of the graphitic structure of deposited carbon, several reflections identified as 

Fe3C and the presence of Mo2C at ca. 39.9º. Rietvel analysis revealed some distinct 

features in the crystal domain size of Fe and Fe3C on the spent catalysts, as shown in 

Table 2. Thus, Fe crystal domain size diminished in all cases as compared to the fresh 

reduced catalysts. This can be attributed to a fragmentation of Fe particles after the 

initial stage of carbon filaments formation [37]. 

Fe3C crystal domain size on the spent catalysts tested at 750 ºC varied considerably as a 

function of the textural promoter used. Thus, MgO based catalysts had a relative large 

Fe3C crystals (ca. 40 nm), and Mo addition had no impact. On the other hand, Al2O3 

catalysts showed smaller Fe3C crystals as compared to MgO catalysts. Additionally, it 

was observed that Mo addition led to Mo2C formation, which prevents the enlargement 

of Fe3C crystal and improve the dispersion and catalytic activity of Fe [43]. Thus, Fe3C 

crystal domain size was 21.5 and 12.6 nm in the spent FeMo(0)/Al2O3 and 

FeMo(7.5)/Al2O3, respectively. Mo addition avoids the crystallization of Fe3C 

inhibiting the catalytic activity of metal due to the slower diffusion of carbon in Fe3C, 

compared with solutions of carbon in α-Fe [43, 52].  

It is known that the eutectic mixture of Mo and Fe, and their carbides, has a lower 

melting point which would favor the diffusion of dissolved carbon during formation of 

carbon nanofilaments [43]. The presence of Fe3C, Mo2C and active Fe particles in the 

spent catalysts, as shown in Figure 6, supports the carbide cycle mechanism [37]: Fe3C 

is formed by methane decomposition on the free surface fragment of the catalytic 

particle. Since Fe3C is metastable under certain conditions, it is decomposed to form 
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graphitized carbon in form of filamentous carbon and α-Fe, the latter being active to 

hydrocarbons decomposition. Thus, the presence of α-Fe and Fe3C in the catalytic 

particle is necessary for oriented carbon growth. Finally, deactivation may be due to the 

fragmentary dispersion of Fe particles, which is accompanied by encapsulation of 

residual particles by growing carbon nanofilament. This fact is in agreement with a 

reduction Fe crystal size as compared to the reduced catalysts shown in Table 2, as 

discussed above. 

SEM study shown in Figure 7 provides more insight about the morphological 

differences of the carbon deposited on the different catalysts used, which clearly 

appeared as nanofilaments emerging from Fe-Mo particles. Al2O3 catalysts (Figures 7a 

and 7b) led to more homogeneous filaments and higher aspect ratio than those produced 

with MgO catalysts (Figures 7c and 7d). Mo doping affects the final appearance of the 

NC depending on the textural promoter: Al2O3 spent catalysts exhibited no significant 

topographic differences influenced by Mo doping (Figure 7b), whereas MgO Mo-doped 

catalysts improved the formation of carbon nanofilaments with a higher aspect ratio 

(Figure 7d).  

Product quality is determined as a function of textural and structural parameters of NC. 

Surface area of products (NC + catalyst) depends on the extent of CDM reaction as seen 

in Table 2. Mo addition enhanced carbon formation resulting in a spent catalyst with 

larger surface area values (118-123 m2/g for FeMo(7.5)/Al2O3 and FeMo(7.5)/MgO, 

respectively), than the analogous spent undoped catalysts (82-35 m2/g), larger pore 

volumes and lower pore sizes. The high graphitic nature of nanofilaments is reflected by 

the structural parameter of graphitic carbon (see Table 2) such as the graphitization 

degree, g, the interplanar distance, d002, or crystallite size, Lc, which are close to those of 

graphite. 
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3.4. Scaling-up in a rotary bed reactor installation 

In this section, the scaling up of the CDM using the Mo doped catalysts selected in 

previous section was carried out using a RBR. This set up has been previously used as 

an alternative to other types of moving bed reactors (fluidized bed) and to study of Fe- 

and Ni-based catalysts in CDM [14, 39]). Figure 8 shows conversion and carbon 

accumulation data for FeMo(7.5)/Al2O3 and FeMo(7.5)/MgO catalysts tested in 180 

min duration tests in the RBR at 750ºC and a WHSV of 1.5 Nl·gCat
-1·h-1. Methane 

conversion and carbon accumulated were calculated from eq. 1 and eq. 2, respectively.  

Al 2O3 yielded higher CH4 conversion during the course of the tests, as compare to the 

MgO catalysts, with initial CH4 conversions of 75 and 69%, respectively. Both catalysts 

suffered from slight deactivation as the TOS increased. This deactivation was more 

dramatic for the catalysts prepared with MgO as textural promoter. Comparing the 

carbon accumulated during the TOS (180 min) at both experimental set-ups 

(thermobalance and RBR), same trends in terms of carbon accumulation capacity were 

observed. Thus, after 180 min TOS, the amount of carbon accumulated in RBR was 

2.88 and 1.64 and gCN/gFe+Mo for FeMo(7.5)/Al2O3 and FeMo(7.5)/MgO, respectively. 

On the other hand, TB obtained 7.73 and 5.73 gCN/gFe+Mo (on 180 min), respectively. 

Therefore, TB at isothermal mode represents a valuable tool for rapid testing of 

catalysts, although RBR is needed in order to obtain larger NC productions. However, 

the ultimate mass gained per gram of metal (Fe + Mo) by these catalysts is lower due to 

less forced operation: TB works at much higher WHSV to exhaust catalyst activity until 

its deactivation as compared to RBR. 

3.4.1. Nanostructured carbon characterization 
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Some TEM micrographs of the NCs produced in RBR by CDM are shown in Figures 9 

(spent FeMo(7.5)/Al2O3) and Figure 10 (FeMo(7.5)/MgO). In Figures 9a and 10a are 

shown some representative overviews of spent catalysts, revealing certain heterogeneity 

in diameters and the presence of nanofilaments of several sizes and structures, mainly 

carbon nanotubes. Spent FeMo(7.5)/Al2O3 showed tubular structures with a relative 

narrow diameter distribution (Figure 9a and 9b), while spent FeMo(7.5)/MgO presented 

a wider diameter distribution (Figure 10a) showing some tubular structures up to 100 

nm in diameter grown from coarse particles (Figure 10b). Both samples showed coarse 

catalyst particles with deposits of carbon and, probably, inactive crystalline Fe3C [52]. 

Carbon nanofilaments are formed from Fe crystals of different sizes, resulting in 

different graphitic carbon structures. In Figures 9b and 9c, and Figures 10c and 10d 

several metal particles can be observed, varying in size (from 10 to 60 nm) and 

morphology, with common characteristics as enlarged and rounded appearance. 

Graphene parallel planes are generated from carbon diffusion through Fe-Mo particles 

to the longitudinal sides, thereof emerging different carbon nanofilaments. This process 

occurs until eventual catalyst deactivation once metal particles are fully covered by 

carbon and as a result of catalyst particles segregation (Figure 10c) [15, 37]. 

As discussed, CNTs production consist of bamboo CNTs (Figures 9b and 9c and 

Figures 10b and 10c), nanotubes with a few layers, known as thin multiwalled carbon 

nanotubes (t-MWCNTs) (Figure 9d), and MWCNTs of 10-20 nm in diameter (Figure 

10d). These carbon nanostructures are characterized by the parallel arrangement of 

graphene layers to nanotube axis forming a continuous hollow core (5-10 nm); except 

for the bamboo type that presented internal nodes that disrupt the hollow core. Bamboo 

nanotubes appeared after the segregation of catalytic particles evidencing the high 

fluidity of Fe particles during carbon nanofilaments growth. Metal particle segregation 
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accounts for the formation of bamboo nanotubes [37]. Regarding carbon quality, 

structural and textural parameters were similar to carbons obtained in TB, characterized 

by having high graphitic order and slightly low surface areas.  

 

4. Conclusions 

On the basis of the results described above, we concluded as follows: 

• Ramp mode thermobalance was stated as a reliable tool for rapid catalysts 

screening in the CDM reaction. Catalyst performances were evaluated in carbon 

formation terms where optimum catalyst formulation and its operation 

temperature range can be easily determined. 

• Carbon formation by CDM started from 500 ºC and accelerate between 650 and 

700 °C for iron catalysts due to the formation of metastable Fe3C, resulting in 

carbon growth. Maximum CFRs were obtained at temperatures in the range of 

700-900 °C depending on textural promoter used. 

•  Mo addition enhanced carbon formation showing different optimum contents 

depending on the catalyst promoter used. This was attributed to a different 

metal/support interaction, as TPR study revealed. Mo doping favored the 

dispersion of small Fe2O3 particles in the fresh catalyst, which in subsequent 

stages of reduction and CDM reaction were converted to Fe and Fe3C, favoring 

the carbon diffusion into the catalyst particle during the carbon nanofilament 

growth.  

• Fe-Mo catalysts formed carbon nanofilaments, mainly MWCNTs and bamboo 

nanotubes with high grade of graphitization and interesting textural properties. 

During CDM, the fragmentation of the active metal particles took place leading 

to bamboo structures and the deactivation by encapsulation. Morphological 
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differences as a function of the textural promoters used resulted in different 

diameter distribution in tubular carbon nanostructures. 

• A pilot-scale plant with a rotary bed reactor is shown as an efficient and scalable 

set-up for free-CO2 hydrogen production and carbon nanofilaments, obtaining 

high methane conversions (70%) and formation of MWCNTs (8 gNC/h). 
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Table 1. Crystal sizes of Fe2O3 and Fe of the fresh and reduced catalysts, respectively. 

Catalyst Fe2O3 crystal size (nm) Fe crystal size (nm) 

FeMo(0)/Al2O3  17.7 34.2 

FeMo(2.5)/Al2O3  - 18.7 

FeMo(5)/Al2O3  - 18.5 

FeMo(7.5)/Al2O3  - 20.1 

FeMo(10)/Al2O3  - 19.2 

FeMo(0)/MgO 24.5 89.7 
FeMo(2.5)/MgO 25.9 65.8 
FeMo(5)/MgO 23.3 58.0 
FeMo(7.5)/MgO 18.4 54.6 
FeMo(10)/MgO 21.0 50.2 
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Table 2. Properties of spent catalysts after isotherm CDM tests at 750 ºC. Textural 

parameters determined by N2 adsorption: BET surface area (SBET), pore volume (VP) 

and average pore size. Structural parameters determined by XRD for graphite 

(interplanar distance (d002), crystallite size (Lc) and graphitization degree (g)) and Fe 

and Fe3C (crystal size). 

 
 
  

 
Textural Properties Structural Properties 

Catalyst 
SBET 

(m2/g) 
VP 

(cm3/g) 
Pore 

size (Å) 
d002 

(nm) 
g  

(%) 
Lc 

(nm) 
Fe  

(nm) 
Fe3C 
(nm) 

FeMo(0)/Al2O3 82 0.29 143.2 0.3385 64 7.2 30.0 21.5 

FeMo(7.5)/Al2O3 118 0.31 105.4 0.3373 78 5.3 19.2 12.6 

FeMo(0)/MgO 35 0.15 169.1 0.3362 91 11.3 82.0 42.0 

FeMo(7.5)/MgO 123 0.42 135.4 0.3372 79 6.0 33.9 39.2 
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FIGURE CAPTIONS 

Figure 1. Powder XRD patterns of fresh calcined catalysts: a) FeMo(X)/Al2O3; b) 

FeMo(X)/MgO. 

Figure 2. TPR profiles of the fresh calcined catalysts: a) FeMo(X)/Al2O3; b) 

FeMo(X)/MgO. 

Figure 3. Powder XRD patterns of fresh reduced catalysts: a) FeMo(X)/Al2O3; b) 

FeMo(X)/MgO. 

Figure 4. Evolution of carbon accumulated for catalysts during thermobalance ramp-

mode CDM tests. Insets: evolution of the carbon formation rate with time: CFR 

(gC·gFe+Mo
-1·s-1) vs temperature (ºC). a) FeMo(X)/Al2O3; b) FeMo(X)/MgO. 

Figure 5. Evolution of carbon accumulated with time at different reaction temperatures 

for catalysts: a) FeMo(0)/Al2O3; b) FeMo(0)/MgO; c) FeMo(7.5)/Al2O3; d) 

FeMo(7.5)/MgO. 

Figure 6. Powder XRD patterns of spent catalysts after isothermal test carried out in 

thermobalance at 750 ºC: a) FeMo(0)/MgO; b) FeMo(7.5)/MgO; c) FeMo(0)/Al2O3; d) 

FeMo(7.5)/Al2O3. 

Figure 7. SEM micrographs of spent catalysts after isothermal test carried out in 

thermobalance at 750 ºC for catalysts: a) FeMo(0)/Al2O3; b) FeMo(7.5)/Al2O3; c) 

FeMo(0)/MgO; d) FeMo(7.5)/MgO. 

Figure 8. Methane conversion (closed symbols, left axis) and carbon formation per 

gram of metal (Fe + Mo) (open symbols, right axis). CDM reaction performed in RBR, 

T: 750 °C and WHSV: 1.5 Nl·gCat
-1·h-1.  

Figure 9. TEM micrographs of spent FeMo(7.5)/Al2O3 catalysts after tests carried out in 

RBR, T: 750 °C and WHSV: 1.5 Nl·gCat
-1·h-1. 

Figure 10. TEM micrographs of spent FeMo(7.5)/MgO catalysts after tests carried out 

in RBR, T: 750 °C and WHSV: 1.5 Nl·gCat
-1·h-1. 
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6.  
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Figure 7. 
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Figure 8. 
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Figure 9.  
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Figure 10.  
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