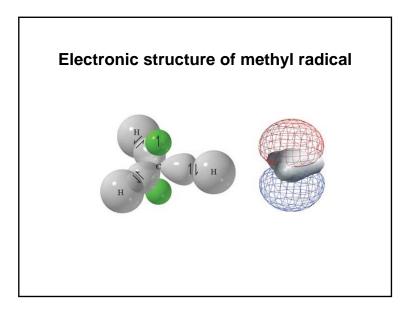
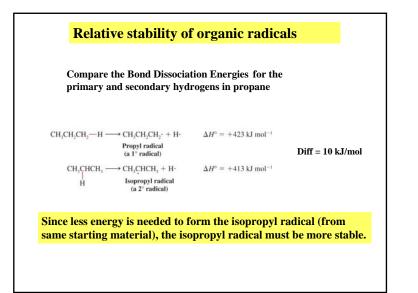

Production of radicals

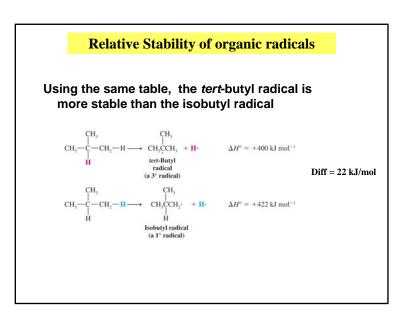

- Usually begins with homolysis of a relatively weak bond such as O-O or X-X
- Initiated by addition of energy in the form of heat or light

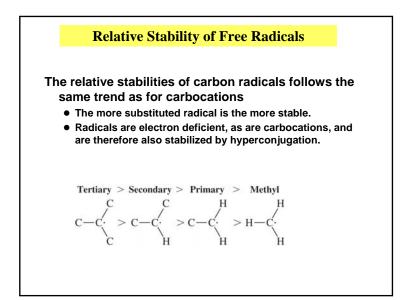
$$: \overset{\sim}{\underset{\sim}{:}} \overset{\sim}{\underset{\sim}{:}} \overset{\sim}{\underset{\sim}{:}} \overset{\circ}{\underset{\quad}{:}} \overset{\circ}{ :} \overset{\circ}{\underset{\quad}{:}} \overset{\leftarrow}{\underset{\quad}{:}} \overset{}$$

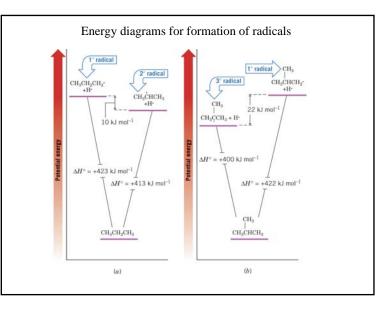
$$R - \overset{\bigcirc}{\underset{N}{\overset{\bigcirc}{\overset{\bigcirc}{\overset{\bigcirc}{\overset{\frown}{}}}}} = R} \xrightarrow{heat} 2 R - \overset{\bigcirc}{\underset{N}{\overset{\bigcirc}{\overset{\frown}{}}} \cdot}$$

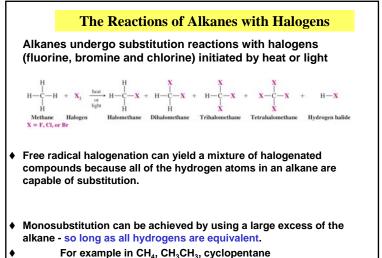
Dialkyl peroxide

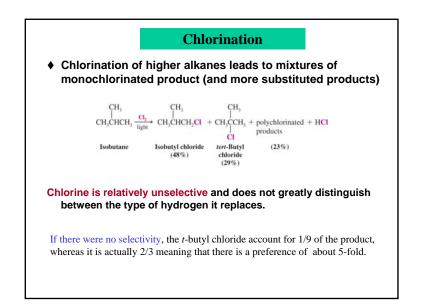


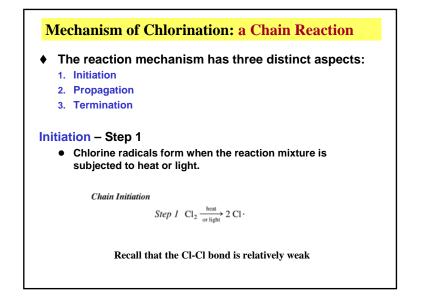



	Bond Dissoci	ation Energies				
	Atoms have higher energy (are less stable) than the molecules they can form					
Brea	aking covalent bonds requi	res energy (<i>i.e.,</i> it is endothermic)				
	$H \longrightarrow H \longrightarrow H \cdot + H \cdot$	$\Delta H^{\rm o} = +436 \text{ kJ mol}^{-1}$				
	$Cl - Cl \rightarrow Cl + Cl$	$\Delta H^{\circ} = +243 \text{ kJ mol}^{-1}$				


Example of using Bond Dissociation Energies				
Consider the possible reaction of H_2 with Cl_2				
1 п				
$\Delta H^{\rm o} = (-86$	(4 kJ + 679 kJ) = -185 kJ	for 2 mol HCl produced		
	nic, more energy is released ired to break the H-H and C	in forming the 2 H-Cl bonds of l-Cl bonds of reactants		

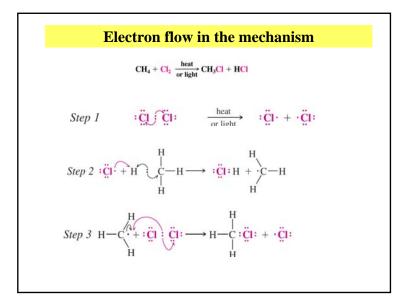

	A:B → A + B			
T-11f11	Bond Broken (shown in red)	kJ mol ⁻¹	Bond Broken (shown in red)	kJ mol
Table of bond	н—н	436	(CH ₃) ₂ CH-Br	298
dissociation	D-D	443	(CH ₃) ₂ CH-1	222
uissociation	F-F	159	(CH ₃) ₂ CH-OH	402
an analos in tant	CI-CI	243	(CH ₃) ₂ CH—OCH ₃	359
energies in text,	Br-Br	193	(CH ₃) ₂ CHCH ₂ —H	423
120	1-1	151	(CH ₃) ₃ C-H	400
p. 430	H-F	570	(CH ₃) ₃ C-CI	349
	H-CI H-Br	432 366	(CH ₃) ₃ C - Br (CH ₃) ₅ C - 1	292
	H-B2	298	(CH ₃) ₃ C-OH	400
	CH,-H	440	(CH ₃) ₂ C-OCH ₃	348
	CH ₃ —F	461	C _s H _s CH _s —H	375
	CH ₂ -Cl	352	CH_=CHCHH	36
	CH ₃ —Br	293	CH-CH-H	465
	CH-I	240	C.HH	474
	CH-OH	387	HCmC-H	547
	CH-OCH	348	CH-CH	378
	CH,CH,-H	421	CH,CH,-CH,	371
	CH ₃ CH ₂ -F	444	CH ₃ CH ₃ CH ₂ -CH ₃	374
	CH ₃ CH ₂ —CI	353	CH3CH2-CH2CH3	343
	CH ₂ CH ₂ —Br	295	(CH ₃) ₂ CH—CH ₃	37
	CH ₃ CH ₂ -1	233	(CH ₃) ₃ CCH ₃	363
	CH ₂ CH ₂ —OH	393	HO-H	499
	CH_CH2-OCH5	352	HOO-H	356
	CH3CH2CH2-H	423	HO-OH	214
	CH3CH2CH2-F	444	(CH ₃) ₃ CO-OC(CH ₃) ₃	15
	CH3CH2CH2-CI	354	0 0	
	CH3CH2CH2-Br	294	C.H.CO-OCC.H.	13
	CH_CH_CH1	176	CH,CH,O-OCH,	18-
	CH ₂ CH ₂ CH ₂ —OH CH ₂ CH ₂ CH ₂ —OCH ₃	395 355	CH,CH,O-H	43
	(CH ₃)-CH ₂ -OCH ₃	413	0	
	(CH ₃) ₂ CH—H (CH ₃) ₂ CH—F	413	сн.с-н	364
	(CH ₃) ₂ CH ⁻ P	355	ongo n	30





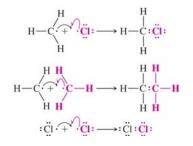
- ♦ (BUT NOT IN, for example, CH₂CH₂CH₂)
- (BUT NUT IN, for example, $CH_3CH_2CH_3$)

Chlorination of Methane: Mechanism of Reaction

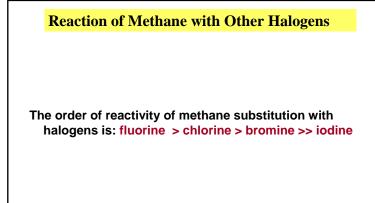

Propagation (2 steps which are repeated many times)

- A chlorine radical reacts with a molecule of methane to generate a methyl radical
- The methyl radical reacts with a molecule of chlorine to yield chloromethane and regenerates chlorine radical
- The new chlorine radical reacts with another methane molecule, continuing the chain reaction

Chain Propagation

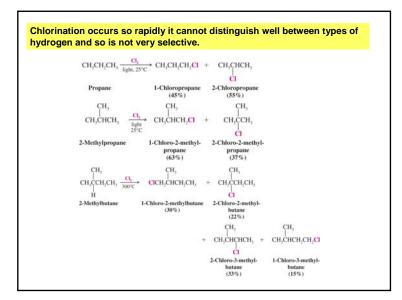

Step 2 $CH_4 + Cl \cdot \longrightarrow CH_3 \cdot + H \longrightarrow Cl$ Step 3 $CH_3 \cdot + Cl_2 \longrightarrow CH_3Cl + Cl \cdot$

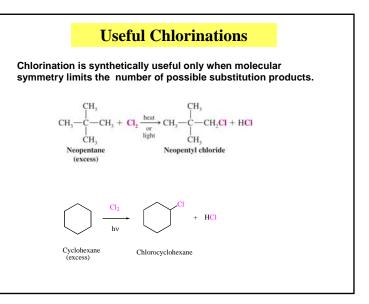
A single initiation step can lead to thousands of propagation steps, hence the term chain reaction

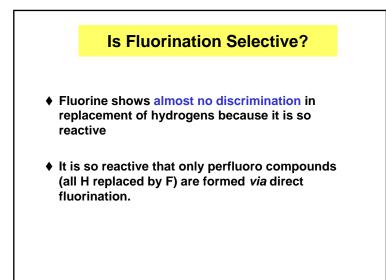


Termination

Occasionally, the reactive radical intermediates are quenched by reaction pathways that do not generate new radicals.

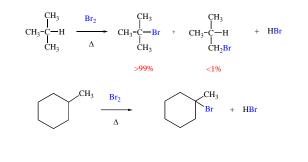


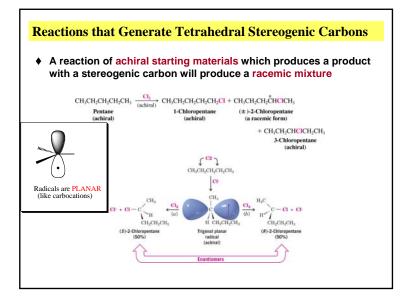

Therefore, the reaction of chlorine with methane requires constant irradiation to replace radicals quenched in chain-terminating steps.

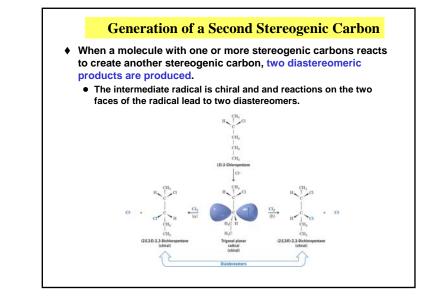


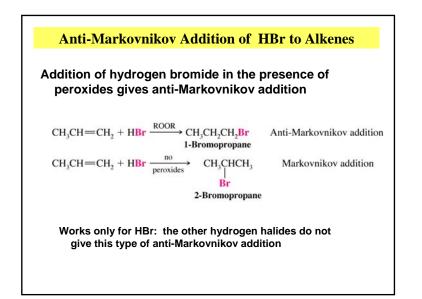
Halogenation of Higher Alkanes

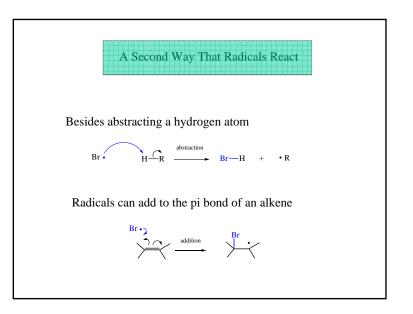
- Monochlorination of alkanes proceeds with limited selectivity.
 - Tertiary hydrogens are roughly 5 times more reactive than primary.
 - Secondary hydrogens are roughly 3.5 times more reactive than primary.

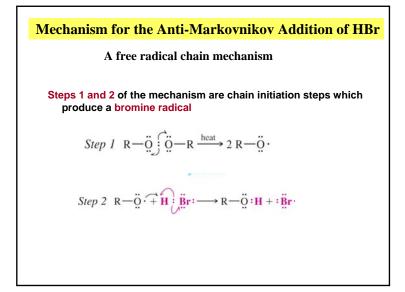


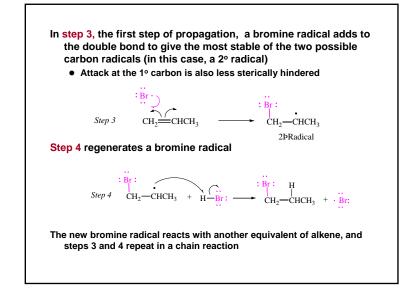


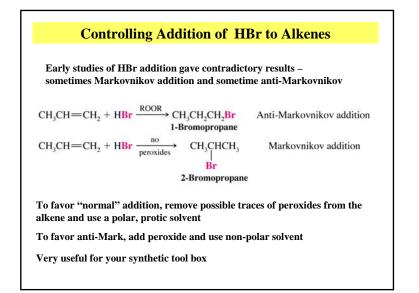

Bromination

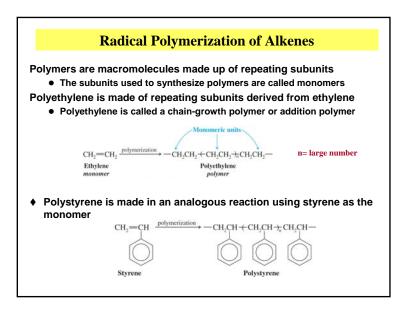

Bromination is the only halogenation that is controllable and selective.

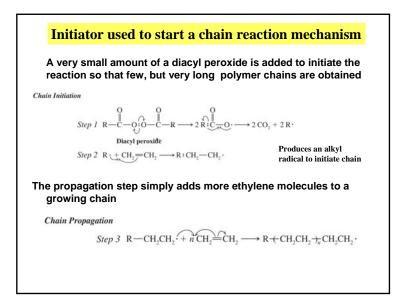

Therefore, free radical bromination is the only practical method for halogenating alkanes.

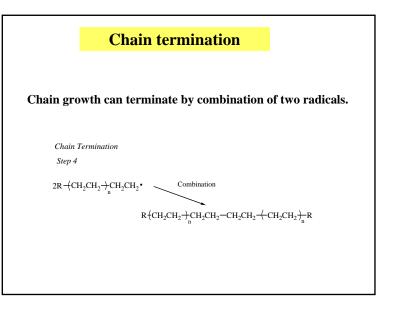


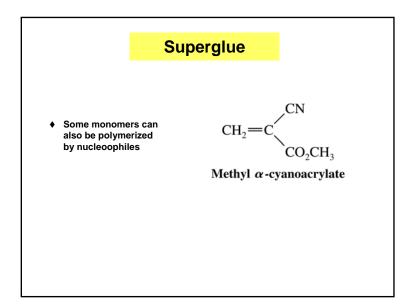












Monomer	Polymer	Names		
CH2=CHCH3	-(-CH ₂ CH), I CH ₃	Polypropylene		
CH2=CHCI	-(CH ₂ -CH) _n	Poly(vinyl chloride), PVC Polyacrylonitrile, Orlon		
CH2-CHCN	-(-CH ₂ CH) _n			
CF2=CF2	+ CF2-CF2)	Polytetrafluoroethene, Teflo		
CH ₃ I CH ₂ =CCO ₂ CH ₃	CH ₃ -+CH ₂ -C+, CO ₂ CH ₃	Poly(methyl methacrylate),		
	ĊO ₂ CH ₃	Lucite, Plexiglas, Perspex		
	r alternation of the X gr			

