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Accelerating R&D of innovative materials critical to advanced water splitting 
technologies for clean, sustainable & low cost H2 production, including:

Advanced Water-Splitting Materials (AWSM)
Relevance, Overall Objective, and Impact

Photoelectrochemical

(PEC)

Solar Thermochemical 

(STCH)

High- and Low-Temperature 

Advanced Electrolysis (LTE & HTE)

H H

Water

Hydrogen

Production 
target <$2/kg

AWSM Consortium

6 Core Labs:
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Support through:

Personnel

Equipment

Expertise

Capability

Materials

Data

HTE Node Labs

Approach: HTE Projects & Collaboration 

HTE Projects

• Cost• Efficiency • Durability• Yield • Manufacturability

Supernode
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Nodes for HTE
• 9 @ readiness level 1

• 22 @ readiness level 2

• 9 @ readiness level 3

Node Classification
6x Analysis

6x Benchmarking

20x Characterization

13x Computation

6x Material Synthesis

5x Process and Manufacturing Scale-Up

5x System Integration

}

Accomplishments and Progress:
Established Nodes for Project Support

10 nodes used by 
current HTE projects
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➢ 30-50% higher thermodynamic efficiency is possible for steam compared to water 

splitting (combined free energy and electricity use)

➢ Reversible operation is possible with optimal design of cells, stacks and modules

➢ Does not require highly precious metals

➢ Concerns:  cell degradation, viz., sintering, pore consolidation, Cr migration / 

poisoning, catalyst deactivation (Ni hydridation), delamination

Overview:  Advantages/Disadvantages of HTE
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Overview – HTE Technology, o-SOEC, p-SOEC

* Figure and Table Adapted from: Singh and Hu, UConn

O2-- SOEC Attributes H+- SOEC

650-850°C Operating Temperature 550-750°C

0.015 S.cm-1 at 850°C Electrolyte Conductivity 0.01 S.cm-1 at 650°C 

H2O + H2 Cathode Products Pure H2

H2O + O2 Anode Products O2 + sweep gas

durability decreases:  

microstructure evolution, 

D stresses, Cr migration

Challenges

slower kinetics, maturation of 

electrolyte (synthesis, 

densification, H+ conduction)

Oxygen Ion Transport Solid-Oxide Electrolysis*
(O2- -SOEC; Unresolved R&D Material Barriers Remain)

porous cathode

electrolyte

porous anode

YSZ or ScSZ

Proton-Conducting Solid-Oxide Electrolysis*
(H+-SOEC; Early-Stage Research Needed)

porous cathode

electrolyte

porous anode

BaZY or BaCeY

HTE Supernode is focused on attacking o-SOEC issues: elemental migration, 
unexpected phase formation, crack and void formation, and delamination
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HTE Supernode Challenges, Composition, 
Timeframe, and Funding

Timeline
• Project start date: 2019

• Project end date:  BP1 ending Sept., 2020

Budget
• FY20 DOE Funding: $240K

• FY20 DOE Funding: $125K

• Total DOE Funds Received to Date:                          
$365K

Challenges
Durability of o-SOECs

• elemental migration
• new phase formation
• void formation
• delamination and cracking

Performance of p-SOECs
• kinetics, conductivity
• maturation of the electrolyte

Composition
• INL – materials R&D, precision cell fab, 

electrochemical characterization

• NREL – custom materials fabrication, 
synchrotron characterization at SLAC

• Sandia – microscopy, materials analysis

• LLNL – multiscale modeling

• LBNL – synchrotron characterization
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• Coordinated R&D effort addressing o-SOEC, p-SOEC science

• INL
– Materials R&D

– Cell Fabrication and Testing

– Intensive Seedling Support

• Sandia
– Materials micro-milling (FIB)

– Microscopy & elemental mapping

• NREL
– Custom cell design & fab

– SLAC interface for Micro XRD, XAS, XTM

• LLNL
– Multi-scale computational modeling

– Ab initio → phase field → continuum electrochem (NWU)

• LBNL - ALS
– Micro diffraction

– Tomography

HydroGEN HTE Supernode:  
Five Labs, Coordinated Research Capabilities

8

pre-operation post-operation

750°C
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• higher efficiency, improved durability

• rationalize & predict degradation

• manipulate composition to 
optimize durability

• accelerate rate of technology
development

• achieve $2/kg target 
for H2 production of

HTE Supernode Objectives – o-SOEC technology

INL: Fabrication and 
Testing

SNL: Imaging

LLNL:
Modeling

NREL: 
Surface & 
Interface

LBNL:
Processing 

& Operando
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HTE Supernode Challenges: Characterization of Solid 
Oxide Electrode Microstructure Evolution

Challenges:
• Market acceptance of hydrogen production using high 

temperature electrolysis (HTE) relies on cost reduction and 
durable operation. 

• Degradation mechanisms in oxygen-ion conducting solid 
oxide electrolysis cells (o-SOEC) remain elusive

• correlation of electrode microstructure evolution to 
degradation under realistic operation conditions
→ not well understood

Electrical currents 

and ion forces lead 

to inter-crystalline

structure forces 

High temperatures 

and thermal gradients

cause non-uniform

grain boundary stresses 

Catalyst

particle

coarsening

Solid-oxide

electrode

& electrolyte

sintering
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HTE Supernode Contributions:  INL -- Advanced 
Materials for Elevated Temperature Water Electrolysis

• Capability
– Hydrogen Lab:  30 yr. legacy of SOEC development and engineering

• Button cell & stack testing

– o-SOEC material research, cell fabrication

• “button-to-large”:  high temp roll-to-roll, solid oxide additive 
manufacturing for varied cell components, configurations, electrodes

– Electrochemical, high-throughput materials testing

• Accomplishments
controlled layer deposition button cell fab reproducibility
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750 oC, 30% H2O

1st batch:

 Cell #1

 Cell #2

 Cell #3

2nd batch:

 Cell #4

 Cell #5

 Cell #6

· milestone point

o-SOEC performance consistency

YSZ electrolyte

Ni-YSZ electrolyte 

Ni-YSZ  substrate

GDC Buffer layer

LSCF 
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HTE Supernode Contributions: NREL -- Controlled 
Materials Synthesis and Defect Engineering

• Capability
– Custom materials fabrication, targeted synthesis of representative interfaces
– Advanced synchrotron analyses collaborating with SLAC -- ultimate goal is to use synchrotron beam-

line spectroscopy (transmission or reflection mode) to resolve high temperature solid-oxide 3-D 
microstructure to depths of 20-50 µm.

– Analyze representative HTE cell layers &  interfaces with high precision at SLAC
– Post-mortem analysis of HTE cells

• Development of secondary phases (XRD)

• Interdiffusion of elements (XRD, XAS, XRF)

• Formation of voids (Tomography - TXM) 

• Accomplishments GdFeOx phase identification
with micro focused XRDDesign & fab operando stages for beam line experiments

XAS measurements
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HTE Supernode Contributions: :  Sandia – 2D and 3D
Chemical and Morphological Characterization

• Capability
– Focused ion beam sample milling

• micro milling for vertical profiling

– Advanced Electron Microscopy:  scanning, transmission

• high detail morphology

– Electron Backscatter Diffraction

– Energy Dispersive X-ray spectroscopy for High resolution 
elemental 
mapping (EDS)

• Accomplishments

~30 μm

~5 μm

~20 μm

~15 μm

~15 μm

Gd migration to
interface

Sandia

FIB/SEM/

EDS/EBSD

morphology 
characterization

elemental mapping using EDS, and morphology using 
backscattered electrons – revealing a YSZ crack
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HTE Supernode Contributions: :  LBNL – Processing & 
Operando Node

• Capability
– Metal-Supported SOEC materials fabrication:  significantly less 

expensive than ceramics, single high sintering step, mechanically 
strong, welded connections, fast temperature control, 
intermittent fuel/H2 fuel tolerant

– Characterization at ALS:  tomography, non-ambient diffraction, 
microdiffraction

• Accomplishments
High-detail imaging enabling layer differentiation

Micro-XRD with layer-
specific differentiation
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HTE Supernode Contributions: :  LBNL – Processing & 
Operando Node

• Capability
– Metal-Supported SOEC materials fabrication:  significantly less 

expensive than ceramics, single high sintering step, mechanically 
strong, welded connections, fast temperature control, 
intermittent steam/H2 fuel tolerant

– Characterization at ALS:  tomography, non-ambient diffraction, 
microdiffraction

• Accomplishments

Tomography Imaging
Micro-XRD with layer-
specific differentiation

MS-SOEC ALS

Transmission XRD Detects 

All Layers in Full Cell

Anode-Supported

Metal-Supported
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HTE Supernode Contributions:  LLNL – Theory and Multi-Scale 
Computational Modeling

• Capability – highly complementary to experimental nodes

–Atomistics (ab initio):  interface & phase formation energies, 
atom transport, reaction kinetics

–Computational thermodynamics (CALPHAD):  phase stability v. 
composition and operating conditions

–Microstructural evolution (phase field):  phase transformations, 
coarsening kinetics, redox-driven microfracture 

• Accomplishments Integration with quantitative 
CALPHAD and ab initio inputsAdvanced SOEC microstructural 

degradation model

Improved predictions of 
phase dependence on O2

3 elements

Ni Zr   O

4 phases

NiFCC (Zr in solution)

ZrO2/YSZ

Ni-Zr intermetallic

Pore
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HTE Supernode Summary:  Advances in
Understanding o-SOEC Durability, Degradation

• Major inroads into understanding o-SOEC durability were gained 
through the first half of FY 2020 by the HTE  Supernode

• Excellent progress in identifying phenomena that characterize failure 
of o-SOECs

– Consistent, reproducible button cell platform for evaluating o-SOEC 
performance

– Microscopy, elemental mapping for investigating morphology alterations and 
elemental migration in cell materials post-mortem

– X-ray identification of unmodified- and new phases, and experimental strategies 
for higher resolution, layer specific cell interrogation of cells

– Multiscale modeling for unraveling mechanism, key controlling factors

• Result → increased cell durability,
while maintaining or improving efficiency

– Operating strategies for current o-SOECs to increase longevity

– Compositional options for reducing elemental migration

– Fabrication guidance to mitigate unwanted phase formation
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HTE Supernode:  Future Work in o-SOEC 
Development, p-SOEC Evolution

• Supernode: poised to conduct the second round of experimental and 
theoretical studies, guided by initial results

• Capitalize on initial synchrotron X-ray, microscopy studies
• tomographic studies using synchrotron beamline
• stoichiometry, oxidation state using micro-XAS coupled XRF:

• Fe segregation, localization, and secondary GdxFeyOz phase formation

• defect and void formation: Nano-TXM (30 nm resolution)
• Initiate In-operando testing of cells & model systems: XRD, XAS, and TXM

• Model systems to isolate degradation mechanisms
• identify and track elemental diffusion and redox in cell
• role of sintering-aids

• Enhanced multi-scale modeling to predict migration, phase alteration, and 
material failure
• thermodynamic viability using adapted DFT approaches

• Initiate p-SOEC research
– initiate studies to identify mechanisms of electrical leakage
– conduct durability testing to establish  viability as a lower temperature alternative
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• Approach
– Strong communication with seedling partners collaborating with the Advanced Electrode and Solid 

Electrolyte Materials node at INL

• A gateway for leveraging the microscopy, accelerator characterization and multiscale 
modeling capability at NREL/SLAC, Sandia, Berkeley, and Livermore

• Goal
– Accelerate research, development, and deployment of advanced water splitting technologies for 

clean, sustainable hydrogen production

• Technical Objectives
– Improve cell fabrication process steps, manufacturing, & cell supports

– Improve cell performance, optimize operations parameters

– Elucidate, eliminate, or mitigate mechanisms of degradation

HydroGEN HTE Supernode Approach:
Close Interactions with Industrial, Academic Partners

19
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Supernode connection with HTE Seedling Projects

• o-SOEC development
– Northwestern University:  

Optimize cell fabrication, testing

– Saint Gobain:  Thermal & chemical 
expansion measurement

– University of South Carolina:
Oxygen evolution in symmetrical, 
and in planar cells

– Nexceris:  Coupon interconnect 
evaluation, extending to reduced 
temperature evaluation in p-SOECs 
in BP2

• p-SOEC development
– UTRC:  Experimental full cell 

testing, focused on Faradaic 
efficiency measurements, and data 
acquisition

– University of Connecticut:  
Cell fabrication and testing, 
education and training

– Redox:  Electrolyte stability and 
new compositions

– West Virginia University:  
Electronic leakage investigations 
(conductivity measurement), 
correlated with defect chemistry 
and fundamental calculations

High-level strategy: take results and approach from the HTE Supernode, 
apply to technology development conducted in the seedling projects

The seedlings encounter issues related to the Supernode research, 
only at a higher TRL
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Lab Node Node PI
Nex-

ceris
NWU Redox

Saint 

Gobain
UConn USC UTRC WVU

Super

-Node

INL

Analysis and 

Characterization 

of Hydrided 

Material 

Performance

Gabriel 

Ilevbare, 

Michael 

Glazoff

✓

INL

Advanced 

Materials for 

Elevated 

Temperature 

Water 

Electrolysis

Ding, Dong ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SNL
Advanced 

Electron 

Microscopy

Sugar, 

Josh ✓

NREL

Controlled 

Materials 

Synthesis and 

Defect 

Engineering

Ginley, 

David
Parilla, 
Philip
Bell, Robert

✓

NREL

Engineering of 

Balance of Plant 

(BOP) for High-

Temperature 

Systems

Ma, 

Zhiwen 

Martinek, 

Janna

✓

Collaboration: HydroGEN HTE Node Utilization
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Lab Node Node PI
Nex-

ceris
NWU

Red

ox

Saint 

Gobain
UConn USC UTRC WVU

Super-

Node

SNL

High-Temperature X-Ray 
Diffraction (HT-XRD) and 
Complementary 
Thermal Analysis

Coker, Eric ✓

LBNL Metal-Supported SOEC

Tucker,

Michael

Wang, 

Ruofan

✓ ✓ ✓

LLNL

Multi-Scale Modeling of 
Solid-Sate Interfaces and 
Microstructures in High-
Temperature Water 
Splitting Materials

Wook, 

Tase
Wood, 
Brandon
Frolov, 
Timofey

✓

NREL

Thin Film Combinatorial 

Capabilities for 

Advanced Water 

Splitting Technologies

Zakutayev, 

Andriy ✓ ✓

INL SOEC Characterization
O’Brien,

James ✓ ✓ ✓

Collaboration: HydroGEN HTE Node Utilization
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