

HydroGEN:High-Temperature Electrolysis Supernode

G. S. Groenewold, D. Ding, R.D. Boardman

Presenter: Gary Groenewold, INL

Date: 5/13/2020

Venue: 2020 DOE Annual Merit Review

Project ID # P148B

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Advanced Water-Splitting Materials (AWSM) Relevance, Overall Objective, and Impact

AWSM Consortium 6 Core Labs:

Accelerating R&D of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

Approach: HTE Projects & Collaboration

- Efficiency
- Yield
- Cost
- Durability
- Manufacturability

HTE Node Labs

Supernode

Support through:

Personnel

Equipment

Expertise

Capability

Materials

Data

Accomplishments and Progress:

Established Nodes for Project Support

Nodes for HTE

- 9 @ readiness level 1
- 22 @ readiness level 2
- 9 @ readiness level 3

10 nodes used by current HTE projects

Node Classification

6x Analysis

6x Benchmarking

20x Characterization

13x Computation

6x Material Synthesis

5x Process and Manufacturing Scale-Up

5x System Integration

Overview: Advantages/Disadvantages of HTE

- 30-50% higher thermodynamic efficiency is possible for steam compared to water splitting (combined free energy and electricity use)
- Reversible operation is possible with optimal design of cells, stacks and modules
- Does not require highly precious metals
- Concerns: cell degradation, viz., sintering, pore consolidation, Cr migration / poisoning, catalyst deactivation (Ni hydridation), delamination

Overview – HTE Technology, o-SOEC, p-SOEC

Oxygen Ion Transport Solid-Oxide Electrolysis*

(O²⁻-SOEC; Unresolved R&D Material Barriers Remain)

porous cathode H_2O H_2 $H_2O + 4e^- \rightarrow 2H_2 + 2O^{2-}$ porous electrolyte O^{2-} O^{2

Proton-Conducting Solid-Oxide Electrolysis*

(H*-SOEC; Early-Stage Research Needed)

O ² SOEC	Attributes	H+- SOEC
650-850°C	Operating Temperature	550-750°C
0.015 S.cm ⁻¹ at 850°C	Electrolyte Conductivity	0.01 S.cm ⁻¹ at 650°C
$H_2O + H_2$	Cathode Products	Pure H ₂
$H_2O + O_2$	Anode Products	O ₂ + sweep gas
durability decreases: microstructure evolution, ∆ stresses, Cr migration	Challenges	slower kinetics, maturation of electrolyte (synthesis, densification, H ⁺ conduction)

HTE Supernode is focused on attacking o-SOEC issues: elemental migration, unexpected phase formation, crack and void formation, and delamination

HTE Supernode Challenges, Composition, Timeframe, and Funding

Challenges

Durability of o-SOECs

- elemental migration
- new phase formation
- void formation
- delamination and cracking

Performance of p-SOECs

- kinetics, conductivity
- maturation of the electrolyte

Composition

- INL materials R&D, precision cell fab, electrochemical characterization
- NREL custom materials fabrication, synchrotron characterization at SLAC
- Sandia microscopy, materials analysis
- LLNL multiscale modeling
- LBNL synchrotron characterization

Timeline

- Project start date: 2019
- Project end date: BP1 ending Sept., 2020

Budget

- FY20 DOE Funding: \$240K
- FY20 DOE Funding: \$125K
- Total DOE Funds Received to Date: \$365K

HydroGEN HTE Supernode: Five Labs, Coordinated Research Capabilities

Coordinated R&D effort addressing o-SOEC, p-SOEC science

- INL
 - Materials R&D
 - Cell Fabrication and Testing
 - **Intensive Seedling Support**

Sandia

- Materials micro-milling (FIB)
- Microscopy & elemental mapping

NREL

- Custom cell design & fab
- SLAC interface for Micro XRD, XAS, XTM

LLNL

- Multi-scale computational modeling
- Ab initio \rightarrow phase field \rightarrow continuum electrochem (NWU)

LBNL - ALS

- Micro diffraction
- Tomography

post-operation 750° C

HTE Supernode Objectives – o-SOEC technology

- manipulate composition to optimize durability
- accelerate rate of technology development
- achieve \$2/kg target
 for H₂ production of

LLNL: Modeling

LBNL

Processing

& Operando

HTE Supernode Challenges: Characterization of Solid Oxide Electrode Microstructure Evolution

Challenges:

- Market acceptance of hydrogen production using high temperature electrolysis (HTE) relies on <u>cost reduction</u> and <u>durable operation</u>.
- Degradation mechanisms in oxygen-ion conducting solid oxide electrolysis cells (o-SOEC) remain elusive
 - correlation of electrode microstructure evolution to degradation under realistic operation conditions
 → not well understood

Catalyst particle coarsening

Solid-oxide electrode & electrolyte sintering

Electrical currents and ion forces lead to inter-crystalline structure forces

High temperatures and thermal gradients cause non-uniform grain boundary stresses

HTE Supernode Contributions: INL -- Advanced Materials for Elevated Temperature Water Electrolysis

Capability

- Hydrogen Lab: 30 yr. legacy of SOEC development and engineering
 - Button cell & stack testing
- o-SOEC material research, cell fabrication
 - "button-to-large": high temp roll-to-roll, solid oxide additive manufacturing for varied cell components, configurations, electrodes
- Electrochemical, high-throughput materials testing

Accomplishments

controlled layer deposition

button cell fab reproducibility

o-SOEC performance consistency

HTE Supernode Contributions: NREL -- Controlled Materials Synthesis and Defect Engineering

Capability

- Custom materials fabrication, targeted synthesis of representative interfaces
- Advanced synchrotron analyses collaborating with SLAC -- ultimate goal is to use synchrotron beamline spectroscopy (transmission or reflection mode) to resolve <u>high temperature</u> solid-oxide 3-D microstructure to depths of 20-50 μm.
- Analyze representative HTE cell layers & interfaces with high precision at SLAC
- Post-mortem analysis of HTE cells
 - Development of secondary phases (XRD)
 - Interdiffusion of elements (XRD, XAS, XRF)
 - Formation of voids (Tomography TXM)

Accomplishments

Design & fab operando stages for beam line experiments

XAS measurements

GdFeO_x phase identification with micro focused XRD

HTE Supernode Contributions: : Sandia – 2D and 3D Chemical and Morphological Characterization

Capability

- Focused ion beam sample milling
 - micro milling for vertical profiling
- Advanced Electron Microscopy: scanning, transmission
 - high detail morphology
- Electron Backscatter Diffraction
- Energy Dispersive X-ray spectroscopy for High resolution elemental mapping (EDS)

Sandia FIB/SEM/ EDS/EBSD

Accomplishments

morphology characterization

elemental mapping using EDS, and morphology using backscattered electrons – revealing a YSZ crack

HTE Supernode Contributions: : LBNL – Processing & Operando Node

Capability

- Metal-Supported SOEC materials fabrication: significantly less expensive than ceramics, single high sintering step, mechanically strong, welded connections, fast temperature control, intermittent fuel/H₂ fuel tolerant
- Characterization at ALS: tomography, non-ambient diffraction, microdiffraction

Accomplishments

High-detail imaging enabling layer differentiation

Micro-XRD with layerspecific differentiation

HTE Supernode Contributions: : LBNL - Processing & Operando Node

Capability

- Metal-Supported SOEC materials fabrication: significantly less expensive than ceramics, single high sintering step, mechanically strong, welded connections, fast temperature control, intermittent steam/H₂ fuel tolerant
- Characterization at ALS: tomography, non-ambient diffraction,

Accomplishments

Tomography Imaging

Micro-XRD with layerspecific differentiation

MS-SOEC oreus Metall Support Oxygen Electrode Nano-Catalyst Porous Backbone (ScSZ)

Electrolyte (ScSZ)

Porous Backbon

Nano-Cutaly

Porous Metal Sup

ALS

Transmission XRD Detects
All Layers in Full Cell

Metal-Supported

HTE Supernode Contributions: LLNL – Theory and Multi-Scale **Computational Modeling**

- Capability highly complementary to experimental nodes
 - Atomistics (ab initio): interface & phase formation energies, atom transport, reaction kinetics
 - Computational thermodynamics (CALPHAD): phase stability v. composition and operating conditions
 - Microstructural evolution (phase field): phase transformations, coarsening kinetics, redox-driven microfracture

Accomplishments

Advanced SOEC microstructural degradation model

Ni coarsening

Integration with quantitative CALPHAD and ab initio inputs

Ni Zr O

4 phases Ni_{FCC} (Zr in solution) ZrO₂/YSZ

Ni-Zr intermetallic Pore

NiO + ZrO₂ log[p(O₂)](bar)Ni_{FCC} + ZrO₂

Improved predictions of

phase dependence on O₂

HTE Supernode Summary: Advances in Understanding o-SOEC Durability, Degradation

- Major inroads into understanding o-SOEC durability were gained through the first half of FY 2020 by the HTE Supernode
- Excellent progress in identifying phenomena that characterize failure of o-SOECs
 - Consistent, reproducible button cell platform for evaluating o-SOEC performance
 - Microscopy, elemental mapping for investigating morphology alterations and elemental migration in cell materials post-mortem
 - X-ray identification of unmodified- and new phases, and experimental strategies for higher resolution, layer specific cell interrogation of cells
 - Multiscale modeling for unraveling mechanism, key controlling factors
- Result → increased cell durability,
 while maintaining or improving efficiency
 - Operating strategies for current o-SOECs to increase longevity
 - Compositional options for reducing elemental migration
 - Fabrication guidance to mitigate unwanted phase formation

HTE Supernode: Future Work in o-SOEC Development, p-SOEC Evolution

- Supernode: poised to conduct the second round of experimental and theoretical studies, guided by initial results
- Capitalize on initial synchrotron X-ray, microscopy studies
 - tomographic studies using synchrotron beamline
 - stoichiometry, oxidation state using micro-XAS coupled XRF:
 - Fe segregation, localization, and secondary $Gd_xFe_vO_z$ phase formation
 - defect and void formation: Nano-TXM (30 nm resolution)
 - Initiate In-operando testing of cells & model systems: XRD, XAS, and TXM
- Model systems to isolate degradation mechanisms
 - identify and track elemental diffusion and redox in cell
 - role of sintering-aids
- Enhanced multi-scale modeling to predict migration, phase alteration, and material failure
 - thermodynamic viability using adapted DFT approaches
- Initiate p-SOEC research
 - initiate studies to identify mechanisms of electrical leakage
 - conduct durability testing to establish viability as a lower temperature alternative

HydroGEN HTE Supernode Approach: Close Interactions with Industrial, Academic Partners

Approach

- Strong communication with seedling partners collaborating with the Advanced Electrode and Solid Electrolyte Materials node at INL
 - A gateway for leveraging the microscopy, accelerator characterization and multiscale modeling capability at NREL/SLAC, Sandia, Berkeley, and Livermore

Goal

 Accelerate research, development, and deployment of advanced water splitting technologies for clean, sustainable hydrogen production

Technical Objectives

- Improve cell fabrication process steps, manufacturing, & cell supports
- Improve cell performance, optimize operations parameters
- Elucidate, eliminate, or mitigate mechanisms of degradation

19

Supernode connection with HTE Seedling Projects

High-level strategy: take results and approach from the HTE Supernode, apply to technology development conducted in the seedling projects. The seedlings encounter issues related to the Supernode research, only at a higher TRL

- o-SOEC development
 - Northwestern University:
 Optimize cell fabrication, testing
 - Saint Gobain: Thermal & chemical expansion measurement
 - University of South Carolina:
 Oxygen evolution in symmetrical,
 and in planar cells
 - Nexceris: Coupon interconnect evaluation, extending to reduced temperature evaluation in p-SOECs in BP2

- p-SOEC development
 - <u>UTRC</u>: Experimental full cell testing, focused on Faradaic efficiency measurements, and data acquisition
 - University of Connecticut:
 Cell fabrication and testing,
 education and training
 - Redox: Electrolyte stability and new compositions
 - West Virginia University:
 Electronic leakage investigations (conductivity measurement),
 correlated with defect chemistry and fundamental calculations

Collaboration: HydroGEN HTE Node Utilization

Lab	Node	Node PI	Nex- ceris	NWU	Redox	Saint Gobain	UConn	USC	UTRC	wvu	Super -Node
INL	Analysis and Characterization of Hydrided Material Performance	Gabriel Ilevbare, Michael Glazoff	√								
INL	Advanced Materials for Elevated Temperature Water Electrolysis	Ding, Dong	✓	✓	√	√	√	✓	√	✓	√
SNL	Advanced Electron Microscopy	Sugar, Josh									√
NREL	Controlled Materials Synthesis and Defect Engineering	Ginley, David Parilla, Philip Bell, Robert									√
NREL	Engineering of Balance of Plant (BOP) for High- Temperature Systems	Ma, Zhiwen Martinek, Janna							√		

Collaboration: HydroGEN HTE Node Utilization

Lak	Node	Node PI	Nex- ceris	NWU	Red ox	Saint Gobain	UConn	USC	UTRC	wvu	Super- Node
SNL	High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis	Coker, Eric				√					
LBNL	Metal-Supported SOEC	Tucker, Michael Wang, Ruofan		✓					✓		√
LLNL	Multi-Scale Modeling of Solid-Sate Interfaces and Microstructures in High- Temperature Water Splitting Materials	Wook, Tase Wood, Brandon Frolov, Timofey									✓
NRE	Thin Film Combinatorial Capabilities for Advanced Water Splitting Technologies	Zakutayev, Andriy					√			✓	
INL	SOEC Characterization	O'Brien, James		√		√					√

Acknowledgements

Authors

Richard Boardman Huyen Dinh Michael Tucker Dong Ding Zhiwen Ma James O'Brien Adam Weber Andriy Zakutayey

Node Experts

Dong Ding
Michael Tucker
Zhiwen Ma
James O'Brien
Andriy Zakutayev
Brandon Wood
David Ginley
Josh Sugar
Eric Coker

HTE Project Leads

Scott Barnet, NU
Tianli Zhu, UTRC
Prabhakar Singh, UConn
John Pietras, Saint Gobain
Xingo Liu
Olga Marina, PNNL

Research Teams

Redox Power Systems, LLC

Acknowledgements

HTE Supernode Team - 18 experts

