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A Advanced Water-Splitting Materials (AWSM)
‘1' Relevance, Overall Objective, and Impact
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Accelerating R&D of innovative materials critical to advanced water splitting
technologies for clean, sustainable & low cost H, production, including:
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&9 Approach: HTE Projects & Collaboration
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o Accomplishments and Progress:
E. Established Nodes for Project Support

Nodes for HTE Node Classification

6x Analysis
6x Benchmarking
20x Characterization
13x Computation

10 nodes used by 6x Material Synthesis
current HTE projects 5x Process and Manufacturing Scale-Up
5x System Integration

e 9 @readiness level 1
e 22 @ readiness level 2
e 9 @ readiness level 3
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N
&P Overview: Advantages/Disadvantages of HTE
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» 30-50% higher thermodynamic efficiency is possible for steam compared to water
splitting (combined free energy and electricity use)

» Reversible operation is possible with optimal design of cells, stacks and modules

» Does not require highly precious metals

» Concerns: cell degradation, viz., sintering, pore consolidation, Cr migration /
poisoning, catalyst deactivation (Ni hydridation), delamination
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Qp Overview — HTE Technology, 0-SOEC, p-SOEC

Oxygen lon Transport Solid-Oxide Electrolysis* Proton-Conducting Solid-Oxide Electrolysis*™
(0% -SOEC; Unresolved R&D Material Barriers Remain) (H*-SOEC; Early-Stage Research Needed)

porous cathode 2H,0+de > 2H, + 20 porous cathode""
electrolyte electrolyte
o 20220 +4¢ Y X
porous anode ' ) 2 0:0-0, porous anode @
_ ) ‘ 2 ®

* Figure and Table Adapted from: Singh and Hu, UConn

O?%- SOEC Attributes H*- SOEC
650-850°C Operating Temperature 550-750°C
0.015 S.cm'at 850°C Electrolyte Conductivity 0.01 S.cm' at 650°C
H,O + H, Cathode Products Pure H,
H,O + 0O, Anode Products O, + sweep gas
durability decreases: slower kinetics, maturation of
microstructure evolution, Challenges electrolyte (synthesis,
A stresses, Cr migration densification, H* conduction)

HTE Supernode is focused on attacking o-SOEC issues: elemental migration,
unexpected phase formation, crack and void formation, and delamination
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HTE Supernode Challenges, Composition,
Timeframe, and Funding

Challenges
Durability of 0-SOECs

elemental migration

new phase formation

void formation
delamination and cracking

Performance of p-SOECs

kinetics, conductivity
maturation of the electrolyte

Composition

INL — materials R&D, precision cell fab,
electrochemical characterization

NREL — custom materials fabrication,
synchrotron characterization at SLAC

Sandia — microscopy, materials analysis
LLNL — multiscale modeling
LBNL — synchrotron characterization

HydroGEN: Advanced Water Splitting Materials

Timeline

Project start date: 2019
Project end date: BP1 ending Sept., 2020

Budget

FY20 DOE Funding: $240K
FY20 DOE Funding: $125K

Total DOE Funds Received to Date:
$365K



HydroGEN HTE Supernode:
Five Labs, Coordinated Research Capabilities

W

* Coordinated R&D effort addressing 0-SOEC, p-SOEC science

* INL
— Materials R&D
— Cell Fabrication and Testing
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 Sandia
— Materials micro-milling (FIB)
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— Microscopy & elemental mapping

* NREL
— Custom cell design & fab
— SLAC interface for Micro XRD, XAS, XTM

* LLNL

— Multi-scale computational modeling

Leboratary

— Abinitio — phase field — continuum electrochem (NWU)

* LBNL-ALS

— Micro diffraction

L |

toperation
750° C

— Tomography

HydroGEN: Advanced Water Splitting Materials g8



W

HTE Supernode Objectives — 0-SOEC technology

INL: Fabrication and

Testing

SNL: Imaging NREL:

8 Surface &
Interface

higher efficiency, improved durability
rationalize & predict degradation

manipulate composition to LBNL: 3./
L O <

optimize durability & onerande = P
b ;

accelerate rate of technology
development

achieve $2/kg target L
for H, production of Modeling
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A HTE Supernode Challenges: Characterization of Solid
ST Oxide Electrode Microstructure Evolution

Challenges:

« Market acceptance of hydrogen production using high Catalyst
temperature electrolysis (HTE) relies on cost reduction and particle
durable operation. coarsening

e Degradation mechanisms in oxygen-ion conducting solid
oxide electrolysis cells (0-SOEC) remain elusive Solid-oxide

e correlation of electrode microstructure evolution to electrode
degradation under realistic operation conditions & electrolyte
— not well understood sintering

Electrical currents

and ion forces lead { Ay and thermal gradients

cause non-uniform

to inter-crystalline

structure forces grain boundary stresses
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HTE Supernode Contributions: INL -- Advanced
Materials for Elevated Temperature Water Electrolysis

e Capability
— Hydrogen Lab: 30 yr. legacy of SOEC development and engineering
e Button cell & stack testing
— 0-SOEC material research, cell fabrication

* “button-to-large”: high temp roll-to-roll, solid oxide additive
manufacturing for varied cell components, configurations, electrodes

— Electrochemical, high-throughput materials testing

* Accomplishments

controlled layer deposition button cell fab reproducibility 0-SOEC performance consistency
T 5 15
= L2k 1.4
I LSCE iy - 1.3 p [milestone point}——
I‘ “GDC Buffgr layer %1-2 '*fa(t:cem #1
I —@— Cell #2
YSZ electrolyte S114—-A cel#3
> 2nd batch:
Ni-YSZ electrolyte DA
—&— Cell #5
09l |0 cel#6
Ni-YSZ substrate 08
2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0
H C

Current density (A cm™?)
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. HTE Supernode Contributions: NREL -- Controlled
& Materials Synthesis and Defect Engineering

* Capability
— Custom materials fabrication, targeted synthesis of representative interfaces
— Advanced synchrotron analyses collaborating with SLAC -- ultimate goal is to use synchrotron beam-
line spectroscopy (transmission or reflection mode) to resolve high temperature solid-oxide 3-D
microstructure to depths of 20-50 um.
— Analyze representative HTE cell layers & interfaces with high precision at SLAC
— Post-mortem analysis of HTE cells

* Development of secondary phases (XRD)
* Interdiffusion of elements (XRD, XAS, XRF)
* Formation of voids (Tomography - TXM)

* Accom pl ishments GdFeO, phase identification

Design & fab operando stages for beam line experiments with micro focused XRD
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. HTE Supernode Contributions: : Sandia — 2D and 3D

\ ‘rl’ Chemical and Morphological Characterization

) -
* Capability
— Focused ion beam sample milling Sandia
* micro milling for vertical profiling EIB/SEM/
— Advanced Electron Microscopy: scanning, transmission
« high detail morphology EDS/EBSD
— Electron Backscatter Diffraction
— Energy Dispersive X-ray spectroscopy for High resolution
elemental
mapping (EDS)
* Accomplishments
Gd migration to morphology elemental mapping using EDS, and morphology using
interface characterization backscattered electrons — revealing a YSZ crack

T ——

BSE Image

(57 Elacirolyes r ~20 um

x s .-
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HTE Supernode Contributions: : LBNL — Processing &
Operando Node

N,

0

« Capability
— Metal-Supported SOEC materials fabrication: significantly less
expensive than ceramics, single high sintering step, mechanically
strong, welded connections, fast temperature control,

intermittent fuel/H, fuel tolerant
— Characterization at ALS: tomography, non-ambient diffraction,

microdiffraction

¢ Accompl ishments Micro-XRD with layer-
High-detail imaging enabling layer differentiation specific differentiation

LSCF cathode (30 um)

GOC buffer layer(3~5 um)
NI-YSZ functional layer {10 um}

Ni-YSZ anode support
(~0.3 mm)

Porous Metal Support

Oxygen Electrode

Nano-Catalyst
Porous Backbone
{scs2)
Electrolyte |Sc52)
Porous Backbone VS e NEV GOC:» LCE W Agd WO -
(5¢52) .
S00 v -
Fuel Electrode -
Nano-Catalyst g l e .
600 . v .
£ SOTE B X A sl ks v |, Cothode
Porous Metal Support 300 ——} _.A_U__I_Ln.'_ _A._h it a0 l
,._1 _.lA_LL_L- et d 1 Anode
0 40 50 60 70

2Theta (°)
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. HTE Supernode Contributions: : LBNL — Processing &
Operando Node

MS-SOEC ALS

e Capability
— Metal-Supported SOEC materials fabrication: significantly less , |
expensive than ceramics, single high sintering step, mechanically ==

strong, welded connections, fast temperature control, -
intermittent steam/H, fuel tolerant el |
— Characterization at ALS: tomography, non-ambient diffraction, B
microdiffraction '_ '
e Accomplishments
. Micro-XRD with layer- Transmission XRD Detects
Tomography Imaging specific differentiation All Layers in Full Cell

LSCF cathode (30 um)]

Anode-Supported

-

MNi-¥5Z ancde support
[~0.3 mm]

YSZ: ¢ Ni: V. GDC:+ LSCF:¥ Ag:& NiO:+

Intensity

95 Cathode

40

1 Anode

Metal-Supported

70
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& HTE Supernode Contributions: LLNL — Theory and Multi-Scale
ﬁ’ Computational Modeling

* Capability — highly complementary to experimental nodes

—Atomistics (ab initio): interface & phase formation energies,
atom transport, reaction kinetics

—Computational thermodynamics (CALPHAD): phase stability v.
composition and operating conditions

—Microstructural evolution (phase field): phase transformations,

coarsening kinetics, redox-driven microfracture
Improved predictions of

phase dependence on O,

* Accomplishments Integration with quantitative
Advanced SOEC microstructural ~ CALPHAD and ab initio inputs | NG+ 250,
degradation model ( h
3 elements =
Ni coarsening _ g
= L Ni Zr O " S Nigce + Z10;
1 '-25
/" 4phases ) 9
_ ) ) 5 =0 Nigce
Nigce (Zr in solution) o N2 = 20,
L IMNiecd Ni,Zr, + 210,
M| R ] O i o re—
Ni-Zr intermetallic IZ03 iz |5 D] Nizry + 20
k Pore j B T o he _WV‘ T W‘\\’Wx.o
Zrl(Ni+Zr)
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A HTE Supernode Summary: Advances in
Understanding o-SOEC Durability, Degradation

* Major inroads into understanding o-SOEC durability were gained
through the first half of FY 2020 by the HTE Supernode

* Excellent progress in identifying phenomena that characterize failure
of 0-SOECs

— Consistent, reproducible button cell platform for evaluating o-SOEC
performance

— Microscopy, elemental mapping for investigating morphology alterations and
elemental migration in cell materials post-mortem

— X-ray identification of unmodified- and new phases, and experimental strategies
for higher resolution, layer specific cell interrogation of cells

— Multiscale modeling for unraveling mechanism, key controlling factors
e Result — increased cell durability,
while maintaining or improving efficiency
— Operating strategies for current 0-SOECs to increase longevity
— Compositional options for reducing elemental migration
— Fabrication guidance to mitigate unwanted phase formation

HydroGEN: Advanced Water Splitting Materials



A HTE Supernode: Future Work in 0-SOEC
< Development, p-SOEC Evolution

e Supernode: poised to conduct the second round of experimental and
theoretical studies, guided by initial results
e Capitalize on initial synchrotron X-ray, microscopy studies
e tomographic studies using synchrotron beamline
e stoichiometry, oxidation state using micro-XAS coupled XRF:
* Fe segregation, localization, and secondary Gd,Fe O, phase formation
e defect and void formation: Nano-TXM (30 nm resolution)
e I|nitiate In-operando testing of cells & model systems: XRD, XAS, and TXM
* Model systems to isolate degradation mechanisms
* identify and track elemental diffusion and redox in cell
* role of sintering-aids
* Enhanced multi-scale modeling to predict migration, phase alteration, and
material failure
* thermodynamic viability using adapted DFT approaches

* Initiate p-SOEC research
— initiate studies to identify mechanisms of electrical leakage
— conduct durability testing to establish viability as a lower temperature alternative

HydroGEN: Advanced Water Splitting Materials 18



é\ HydroGEN HTE Supernode Approach:
’ Close Interactions with Industrial, Academic Partners

e Approach

— Strong communication with seedling partners collaborating with the Advanced Electrode and Solid
Electrolyte Materials node at INL

* A gateway for leveraging the microscopy, accelerator characterization and multiscale
modeling capability at NREL/SLAC, Sandia, Berkeley, and Livermore

. r‘ﬁ || ] ‘REDOX ’ V- WestVirginia
- Unive

Northvs}éstern 181
University SAI NT- GO BAI N Redox Power Systems, LLC -'h\\’ﬁ'/- I;)T

{ B
£ tcnitmer UGONN GONEXCERIS o mtens
 Goal

— Accelerate research, development, and deployment of advanced water splitting technologies for
clean, sustainable hydrogen production
* Technical Objectives
— Improve cell fabrication process steps, manufacturing, & cell supports
— Improve cell performance, optimize operations parameters

19
— Elucidate, eliminate, or mitigate mechanisms of degradation
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Supernode connection with HTE Seedling Projects

High-level strategy: take results and approach from the HTE Supernode,
apply to technology development conducted in the seedling projects

The seedlings encounter issues related to the Supernode research,

only at a higher TRL

e 0-SOEC development

— Northwestern University:
Optimize cell fabrication, testing

— Saint Gobain: Thermal & chemical
expansion measurement

— University of South Carolina:
Oxygen evolution in symmetrical,
and in planar cells

— Nexceris: Coupon interconnect
evaluation, extending to reduced
temperature evaluation in p-SOECs
in BP2

HydroGEN: Advanced Water Splitting Materials

* p-SOEC development

— UTRC: Experimental full cell
testing, focused on Faradaic
efficiency measurements, and data
acquisition

— University of Connecticut:

Cell fabrication and testing,
education and training

— Redox: Electrolyte stability and
new compositions

— West Virginia University:
Electronic leakage investigations
(conductivity measurement),
correlated with defect chemistry
and fundamental calculations

20



é\" Collaboration: HydroGEN HTE Node Utilization
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é\" Collaboration: HydroGEN HTE Node Utilization
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