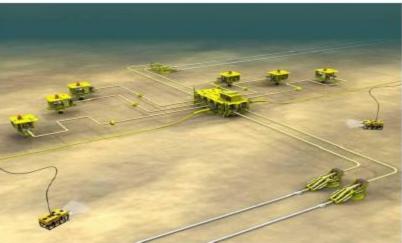


1

Hydrogen Induced Stress Cracking (HISC) in duplex stainless steel caused by cathodic protection

9 October 2013

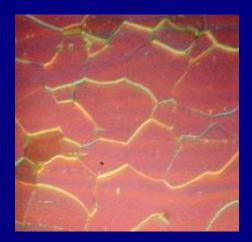

FTUI Metalurgi dan material

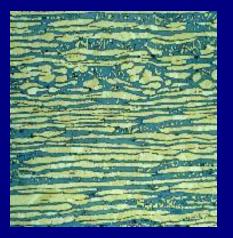
Kukuh W. Soerowidjojo Metalurgi 80

Deepwater field

Total Angola - Dalia Field lay-out + SPS / SURF

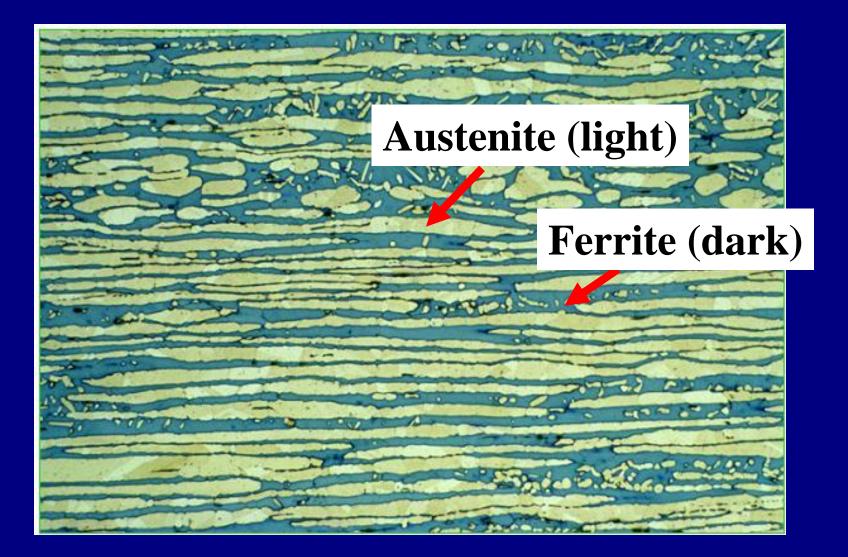
What is **Duplex Stainless**


- An equal percentage of ferrite and austenite is essential for the microstructure to the welded joint in SAF2507
- It is essential for UNS S32750 weld chemistry and HAZ to have a correct balance of ferrite and austenite optimum similar to the parent metal.
 - Austenite produces a toughness in the alloy
 - Ferrite helps provide rigidity and strength
 - UNS S32750 is alloyed so that both phases have the same corrosion resistance
 - By combining the best properties of both phases the alloy UNS S32750 develops excellent stress corrosion resistance essential for this service


<u>Austenite</u>

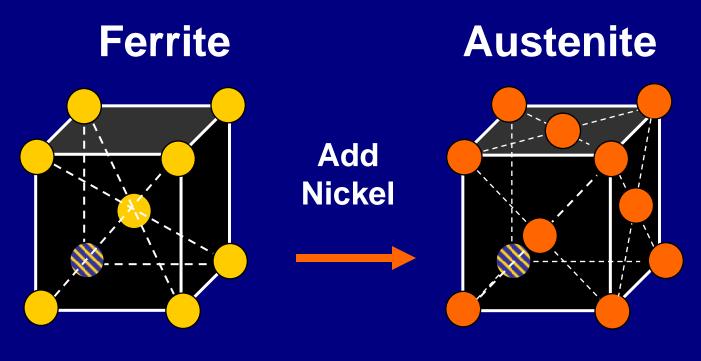
Ferrite

<u>Duplex</u>



Duplex Microstructure

Duplex Stainless Family



Alloy	C max	Si max	Mn max	P max	S max	Cr	Ni	Мо	Others
UNS S32101	0.030	1.0	5.0	0.04	0.03	21.5	1.5	0.3	PREN > 22
UNS S32304	0.030	1.0	2.0	0.035	0.015	22.5	4.5	0.3	Cu=0.3 N=0.1 PREN > 24
UNS S32205	0.030	1.0	2.0	0.030	0.015	22	5	3.2	N = 0.18 PREN > 35
UNS S32750	0.030	0.8	1.2	0.035	0.015	25	7	4	N = 0.3 PREN > 42
UNS S33207	0.030	0.8	1.5	0.035	0.010	32	7	3.5	N = 0.5 PREN > 50
UNS S32707	0.030	0.5	1.5	0.035	0.010	27	6.5	4.8	N=0.4 Co=1.0 PREN > 48

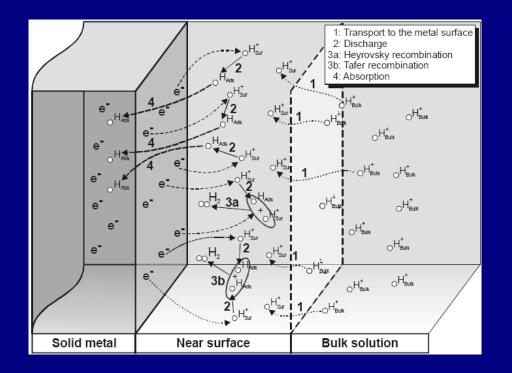
PREN = % Cr + 3.3 x (% Mo + 0.5x% W) + 16 x % N

Crystal Structures

Body Centered Cubic

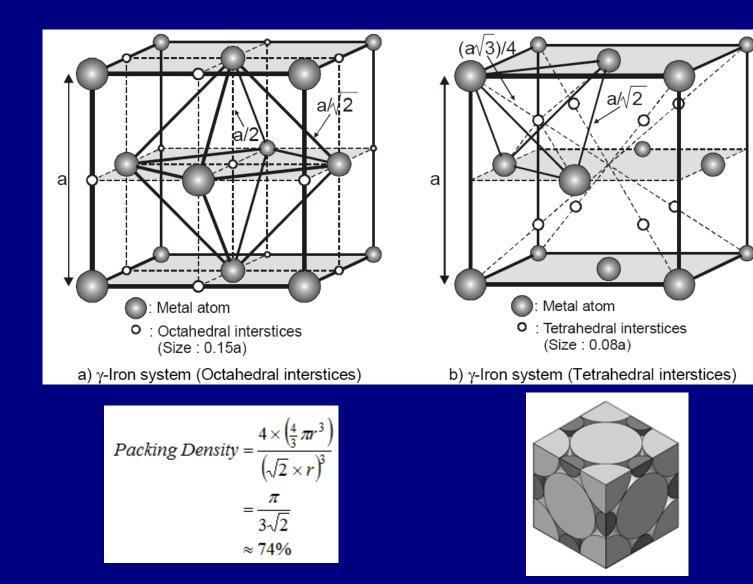
Face Centered Cubic

Hydrogen formation and evolution

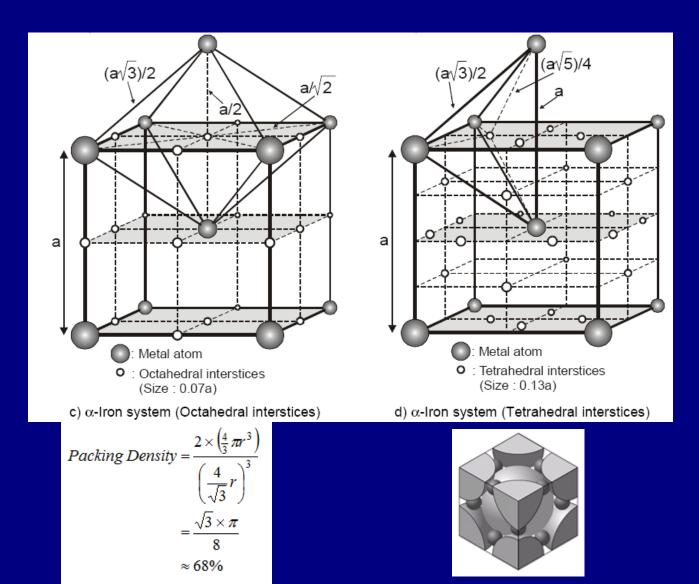


Cathodic reactions:

 $H2O \rightarrow H^{+} + OH^{-}$ $H^{+} + e \rightarrow H_{(ads)}$


Hydrogen evolution

 $\begin{array}{c} M + H_{(ads)} \rightarrow MH_{(ads)} \\ MH_{(ads)} + MH_{(ads)} \rightarrow 2M + H_2 \end{array}$


Hydrogen interstitial in austenite

Hydrogen interstitial in ferrite

Size references

Sizes:

Fe atomic diameter: 2.80 Å Mo atomic diameter: 2.90 Å Ni atomic diameter: 2.70 Å H atomic diameter: 0.50 Å

BCC unit size: 2.87 Å FCC unit size: 11.85 Å

Ferrite tetrahedral interstice: 0.37 Å Austenite octahedral interstice: 1.177 Å

Austenite spacing in bars microstructure

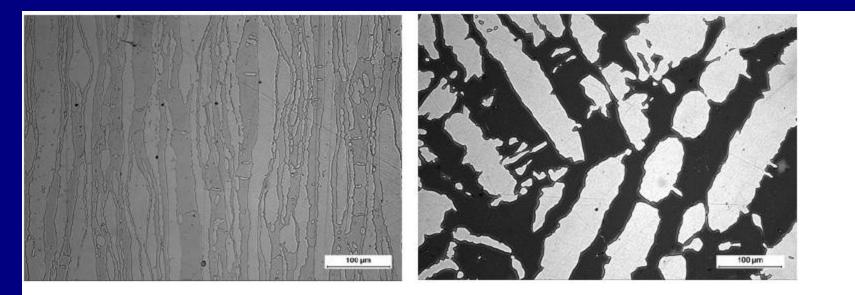


FIGURE 3 – Left, the microstructure of extruded tube (sample 1, 90 % $R_{p0.2\%}$) and right, the microstructure of the large diameter bar (sample 2, 84 % of $R_{p0.2\%}$). The samples are etched in Murakami, which makes the austenite appear white and the ferrite tanned.

Tests at super duplex bars

Test conditions:

- ➢ Bar and extruded material of SAF2507 − UNS S32750
- Small test bars and extruded tube with <u>austenite spacing 15–16</u> <u> μm </u>
- \blacktriangleright Large test bars with austenite <u>spacing between 32-51 µm</u>
- Pre-charged at 20 mA/cm2 in 10% H2SO4 with 30 mg/l As2O3 as cathodic poison for 24 hours.
- Testing time 500 hours or until failure with constant load relative to yield strength.
- Polarized to -1050 mV SCE at 4°C in artificial sea water 3.5% NaCl
- Testing specimen: standard tensile specimen with total length of 100 mm, gauge length: 25.4 mm diameter 3 mm.
- Constant load testing, exposure time 500 hrs, or until failure

Cracks at super duplex bars

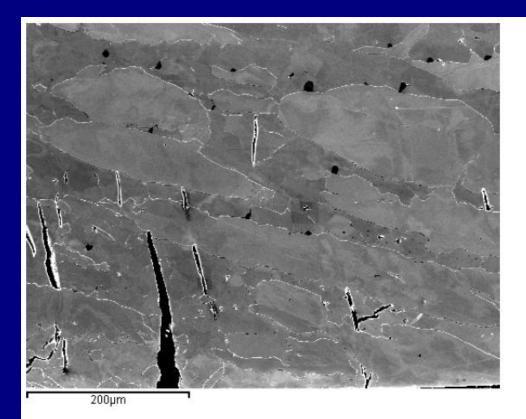


FIGURE 2 – The microstructure of the large dimension bar specimen that failed at 93% of $R_{p0.2\%}(4^{\circ}C)$. The surface of the specimen is at the base of the picture.

Austenite spacing in HIP'ed and forged materials microstructure

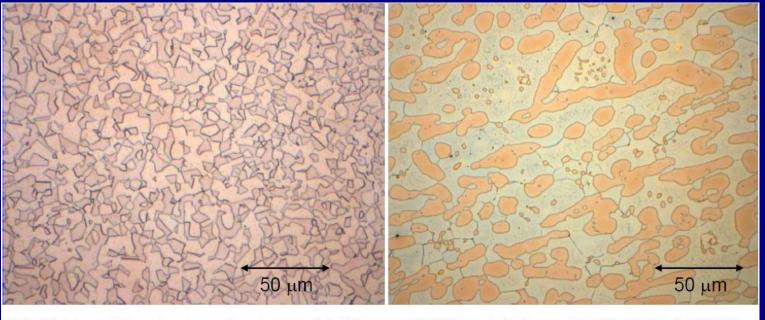


FIGURE 1 - Microstructure of materials: (a) HIP SDSS 32760 and (b) forged SDSS 32760 (M X200).

Grain size: 12.7 µm

Grain size: 47.9 – 50.9 µm

Tests at superduplex HIP'ed and forged materials

HIP'ed materials from UNS S31803, UNS S32550 and UNS S32760 Forged materials from UNS S32760 HIP material austenite spacing average $12.7 - 14.6 \mu m$ Forged material austenite spacing average $47.9-50.9 \mu m$ Test temperature: 4°C in artificial sea water 3.5% NaCl Polarized to -1050 mV SCE Single edge notch bend testing with crack tip opening displacement, exposure time 30 days.

Crack tip opening displacement (CTOD) test

METALURGI DAN MATERIAL U

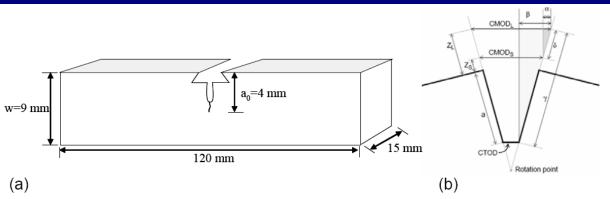


FIGURE 2 - SENB sample dimensions and notch/fatigue pre-crack geometry (a), relationship between measured CMOD and CTOD (b).

FIGURE 3 - Specimen 32-3(M) SDSS UNS S32760 CTOD=0.08 (Mx500): Crack extends 160 μm from end of fatigue pre-crack, region of cracked ferrite phase extends 280 μm from end of fatigue pre-crack.

Results and conclusion

Results:

- 1. Large bars with austenite spacing between 38-45 µm failed
- 2. No failure was detected for materials with <u>austenite spacing</u> <u> $15-16 \mu m$ </u>
- 3. COTD 0.06-0.08 mm for HIP materials and COTD 0.016-0.03 mm for forged materials.

Conclusion

- 1. The importance of product form and austenite spacing is significant
- DNV limit of allowable stress max. 80% of yield strength with max. austenite spacing 30 µm is a little bit too conservative that 90% of yield strength is acceptable.
- 3. For coarser austenite spacing, allowable stress max. 80% of yield strength is reasonable.

Recommended practice: DNV-RP-F112 – October 2008

Allowable SMYS factor $\sigma_{m+b} < 100\% \cdot \gamma_{HISC} \cdot SMYS$ Smooth sections without stress raisers or welds outside of L_{res} Table D1 Allowable SMYS factor for duplex stainless steel $\sigma_{m+b} < 80\% \cdot \gamma_{HISC} \cdot SMYS$ (See also Figure 2) Stress raisers and welds within L_{res} Area considered Details α Membrane 80% Everywhere D303 stress (α_m) Smooth sections without stress 100% raiser or welds - outside of Lres Smooth sections within Lres 90% Lres Membrane plus Weld toes attachments bending stress D304 90% (see C403) and stress raisers - (α_{m+b}) outside of Lres $\sigma_{m+b} < 90\% \cdot \gamma_{HISC} \cdot SMYS$ $\sigma_{m+b} < 90\% \cdot \gamma_{HISC} \cdot SMYS$ Stress raisers outside of L_{res} Smooth sections within L_{res} Weld toes and stress raisers -80% within L_{res}

Note:

The value for SMYS at elevated temperatures shall be adjusted for temperature effects, see B100.

$$\sigma_{m} < \alpha_{m} * \gamma_{HISC} * SMYS$$

 $\sigma_{m+b} < \alpha_{m+b} * \gamma_{HISC} * SMYS$

Table D2 HISC material quality factor							
(See also C300)							
Material	HISC	Details					
Fine austenite spacing	100%	D305					
Coarse austenite spacing	85%						

Recommended practice: DNV-RP-F112 – October 2008

Scope:

This is a recommended practice covers all components made from duplex stainless steel that are installed subsea and are exposed to cathodic protection

Material requirement of duplex/super duplex Stainless steel according to DNV-RP-F112

- Material should be solution annealed and water quenched.
- Material categorized as fine austenite spacing
 - HIP materials
 - Weld metal. HAZ follows the base material.
 - Tube and pipe produce by extrusion, seamless rolling or drawing in all dimensions and wall thickness.
 - Rolled plates with wall thickness < 25 mm
- Materials that do not fall into the category above should be considered have coarse austenite spacing (> $30 \mu m$) unless physical measurement of the austenite spacing indicate otherwise.
- Metallographic and material tests:
 - Metallographic characterization of microstructure ferrite content, inter-metallic phase, austenite spacing.
 - Corrosion test according to ASTM G48
 - Impact test at an appropriate temperature.

References

References:

- 1. Recommended Practice DNV-RP-F112, "Design of Duplex stainless steel subsea application equipment exposed to cathodic protection" October 2008
- Gro Ostensesn Lauvstad Roy Johnsen ,Bard Nyhus Sintef , Norway Martin Bjurstrom and Carl-Gustav Hjorth - Metso Powdermet AB, Sweden. "Improved Resistance towards hydrogen induced stress cracking (HISC) of hot isostatically pressed (HIP) duplex stainless steel under cathodic protection"
- 3. Sabina Ronneteg, Anna Juhlin and Ulf Kivisakk, AB Sandvik Materials Technology AB R&D Sandviken, Sweden. "Hydrogen embrittlement of duplex stainless steels testing of different product forms at low temperature". Paper 07498 NACE Corrosion, Conference and Expo 2007.
- Per Olsson, Anna Delblanc Bauer and Hans Eriksson AB Sandvik Steel R&D center, Sandviken Sweden. "Hydrogen embrittlement of duplex grades UNS S32750 and UNS S31803 in connection with cathodic protection in chloride solutions". Presented at Duplex Stainless Steel 97, 5th World conference and Expo, 21-23 October 1997, Maastricht, The Netherland.
- 5. Ekkarut Viyanit, M.Eng Helmut Schmidt Universitat Hamburg, Germany, "Numerical Simulation of Hydrogen Assisted Cracking in Supermartensitic Stainless Steel Welds", Doktor-Ingenieurs dissertation, 2005.