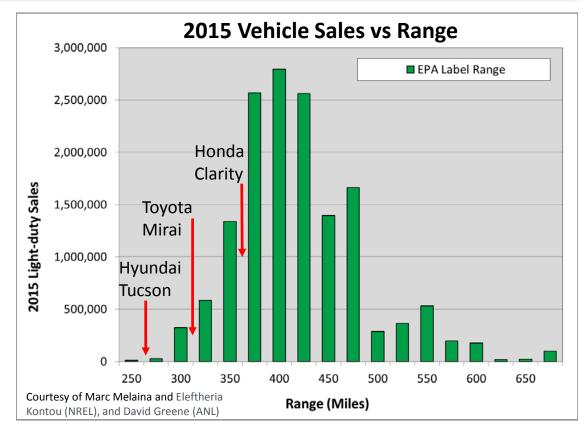


U.S. DEPARTMENT OF

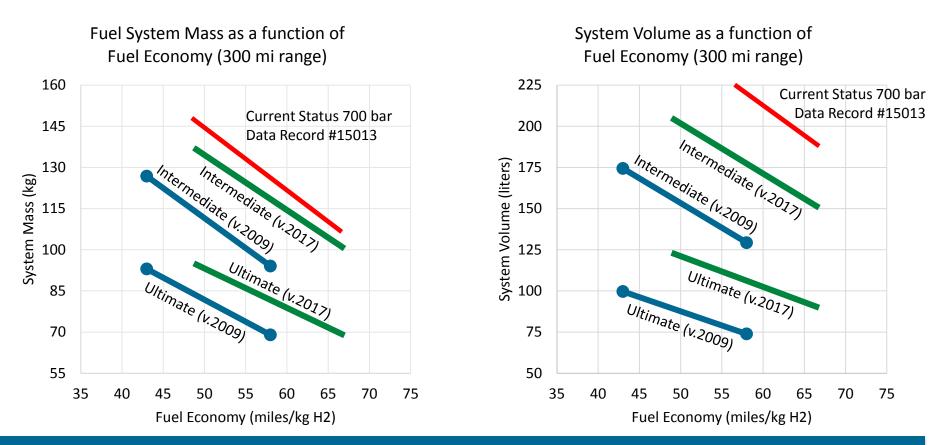
Hydrogen Storage Program Area -Plenary Presentation-

Ned T. Stetson Fuel Cell Technologies Office


2017 Annual Merit Review and Peer Evaluation Meeting June 5 - 9, 2017

Objective: Develop H₂ storage technologies with performance to enable fuel cell products to be competitive with conventional technologies

For Light-Duty Vehicles:


- Comparable driving range
- Similar refueling time (~3 minutes)
- Comparable passenger and cargo space
- Equivalent level of safety

Onboard H₂ storage targets to be reviewed approximately every five years and revised as appropriate

GOAL: Develop advanced hydrogen storage technologies to enable successful commercialization of hydrogen fuel cell products Vehicle performance has improved since the 2008/09 target review

- Fuel economy range increase from 48-53 to 49-67 miles per kg H_2
- Autonomie (ANL) available for full vehicle performance analysis

Onboard storage targets are periodically reviewed in terms of current vehicle performance data and revised as appropriate

Revised System Targets for Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles						
Storage Parameter	Units	2020 (previous)	2020 (new)	2025 (new)	Ultimate (previous)	Ultimate (new)
System Gravimetric	kWh/kg	1.8	1.5	1.8	2.5	2.2
Capacity:	(kg H ₂ /kg system)	(0.055)	(0.045)	(0.055)	(0.075)	(0.065)
System Volumetric	kWh/L	1.3	1.0	1.3	2.3	1.7
Capacity:	(kg H ₂ /L system)	(0.040)	(0.030)	(0.040)	(0.070)	(0.050)
Storage System Cost :	\$/kWh net	10	10	9	8	8
	(\$/kg H ₂)	(333)	(333)	(300)	(266)	(266)
Charging / Discharging						
Rates:						
System fill time	min	3.3	3-5	3-5	2.5	3-5

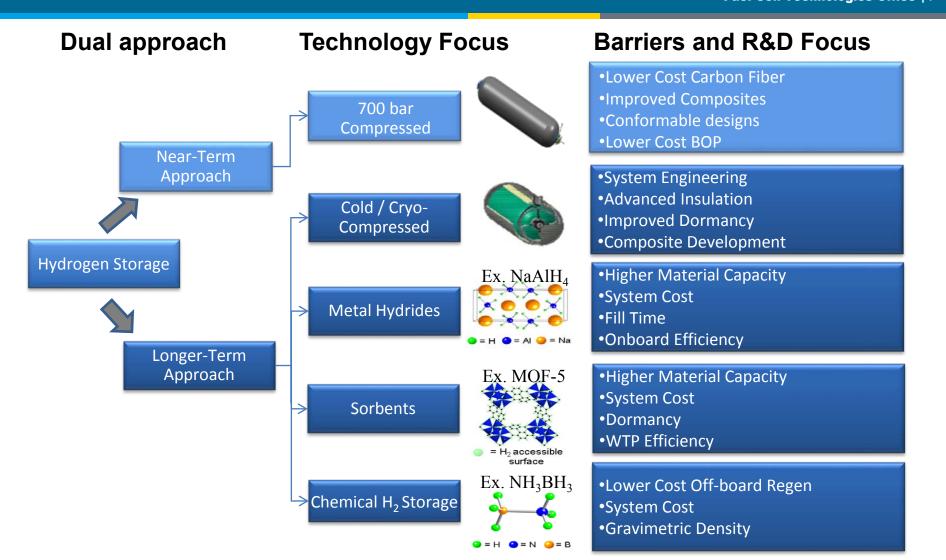
System target revisions considered vehicle performance

New System Targets for Onboard H ₂ Storage for Light-Duty Fuel Cell Vehicles						
Storage Parameter	Units	2020 (new)	2025 (new)	Ultimate (new)	Notes	
Charging / Discharging Rates: Average flow rate	(g/s)/ kW	0.004	0.004	0.004	New target to differentiate between Average flow rate & Minimum full flow rate	
Dormancy: Dormancy time target (minimum until first release from initial	Days	7	10	14	New targets to address Dormancy (a challenge for systems that operate below ambient temperate)	
95% usable capacity) Boil-off loss target (max reduction from initial 95% usable capacity after 30 days)	%	10	10	10		

The full set of onboard H₂ storage targets available online at: <u>https://energy.gov/node/1315186</u>

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs ¹ \$/kWh (\$/kg H ₂)
2020	1.5	1.0	\$10
	(0.045)	(0.030)	(\$333)
2025	1.8	1.3	\$9
	(0.055)	(0.040)	(\$300)
Ultimate	2.2	1.7	\$8
	(0.065)	(0.050)	(\$266)
Current Status ²			
700 bar compressed	1.4	0.8	\$15
(5.6 kg H ₂ , Type IV, Single Tank)	(0.042)	(0.024)	(\$500)

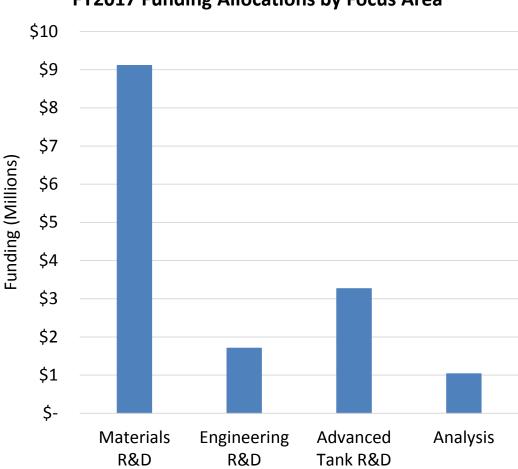
The full set of H₂ storage targets can be found on the Program's website:


https://energy.gov/eere/fuelcells/downloads/doe-targets-onboard-hydrogen-storage-systems-light-duty-vehicles

¹ Projected at 500,000 units/year

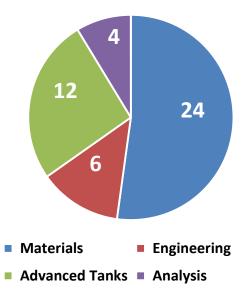
² FCTO Data Record #15013, 11/25/2015: <u>https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf</u>

Hydrogen Storage Team - Strategy and Barriers


ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 7

Objective: Achieve a driving range competitive with conventional vehicles for full span of light-duty vehicles, while meeting packaging, cost, safety, & performance requirements

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 8

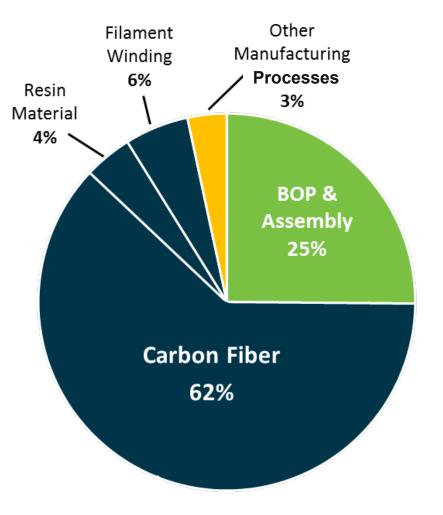

FY 2017 Appropriation = \$15.6M

FY2017 Funding Allocations by Focus Area

Emphasis is on early phase R&D for H₂ storage materials and lower cost physical storage

Number of Projects in Portfolio by Focus Area (Includes subs directly funded by DOE)

Physical Storage Activities


Current Status – 700 Bar System Cost Breakout

ENEKGY | Renewable Energy Fuel Cell Technologies Office | 10

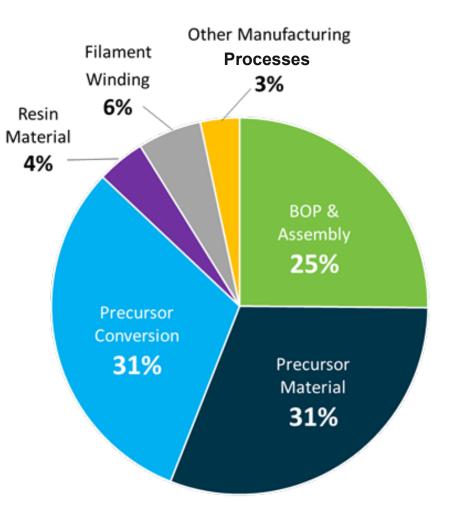
U.S. DEPARTMENT OF

Energy Efficiency &

- Cost breakdown at 500k systems/yr.
- System cost is dominated, 72%, by composite materials and processing
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

Ordaz, G., C. Houchins, and T. Hua. 2015. "Onboard Type IV Compressed Hydrogen Storage System - Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record, https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf, accessed 5 July 2016.

Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems


Current Status – 700 Bar System Cost Breakout

ENERGY | Renewable Energy **Fuel Cell Technologies Office** | 11

Energy Efficiency &

U.S. DEPARTMENT OF

- Cost breakdown at 500k systems/yr.
- System cost is dominated, 72%, by composite materials and processing
- Carbon Fiber composite cost:
 - ~ 50% Carbon fiber precursor
 - ~ 50% Precursor fiber conversion
- BOP costs are a major cost contributor, especially at low annual production volumes

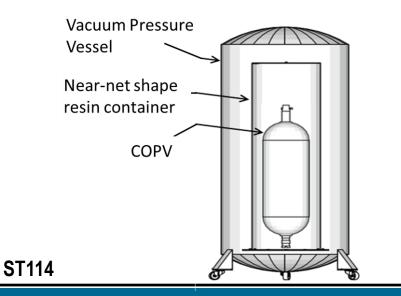
Ordaz, G., C. Houchins, and T. Hua. 2015. "Onboard Type IV Compressed Hydrogen Storage System - Cost and Performance Status 2015," DOE Hydrogen and Fuel Cells Program Record, https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf, accessed 5 July 2016.

Carbon fiber cost reduction is needed to drive down cost of 700 bar storage systems

- Precursor development for low-cost, high-strength carbon fiber (CF) for use in composite overwrapped pressure vessel applications
 - Resulting CF to have properties similar to Toray T700S
 - Target cost of \$12.60/kg of CF

• Areas of interest:

- PAN-based fibers formulated with co-monomers and additives that permit lower cost processing to produce the PAN fiber than conventional solution spinning processes, and or that reduce the conversion cost of the PAN-fiber to CF;
- Polyolefin-based fibers capable of being cost effectively converted into high-strength CF;
- Novel material precursor fibers that can lead to low-cost, high-strength CF production.


Addressing the cost of high-strength carbon fiber

Accomplishments - Project Highlights

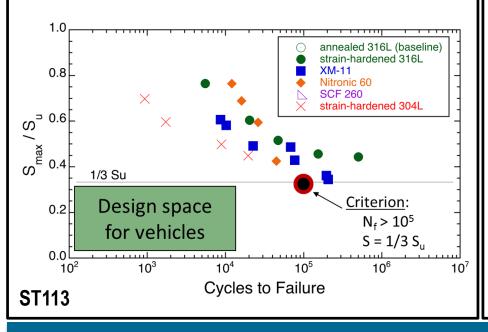
Alternative Resin and Manufacturing [Materia/MSU/Spencer Composites/ Hypercomp Engineering]

- Reducing composite volume/mass through use of alternative resin and manufacturing processes
- Improved process cut resin infusion time in half for prototype tanks

Nested Assembly for New Process

Conformable 700 bar H₂ Storage Systems [CTE/HECR/UT/Stan Sanders]

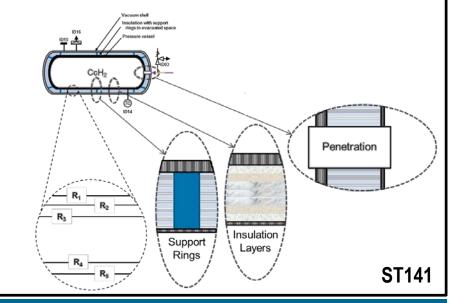
- Developing conformable 700 bar pressure vessels without use of carbon fiber composites
- Demonstrated vessel with a 34,000 psi burst (2345 bar), exceeding the 2.25 safety margin for 700 bar systems



ST126

Addressing cost through reduced carbon fiber use

Alternative Materials for BOP [SNL/Hy-Performance Materials]


- Identifying alternative alloys to lower BOP cost and weight through testing and computational material screening
- Identified alloys with potential to reduce cost and weight by >50% compared to 316L SS baseline

Insulation for Cryogenic Storage Tanks

[Vencore/Aspen Aerogels/Energy Florida/Hexagon Lincoln/IBT/NASA-KSC/SRNL]

- Developing integrated advanced insulation system capable of meeting dormancy requirements for vehicle applications
- Down-selection of concept technologies in-progress

Addressing Balance-of-Plant

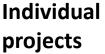
Cross-cutting: IACMI-The Composites Institute

Institute for Advanced Composites Manufacturing Innovation

- Institute of Manufacturing USA
- Managed by the EERE Advanced Manufacturing Office
- Technology Focus Areas:
 - Vehicles
 - Wind Turbine Blades
 - Compressed Gas Storage Vessels
 - Design, Modeling & Simulation
 - Composite Materials & Processes

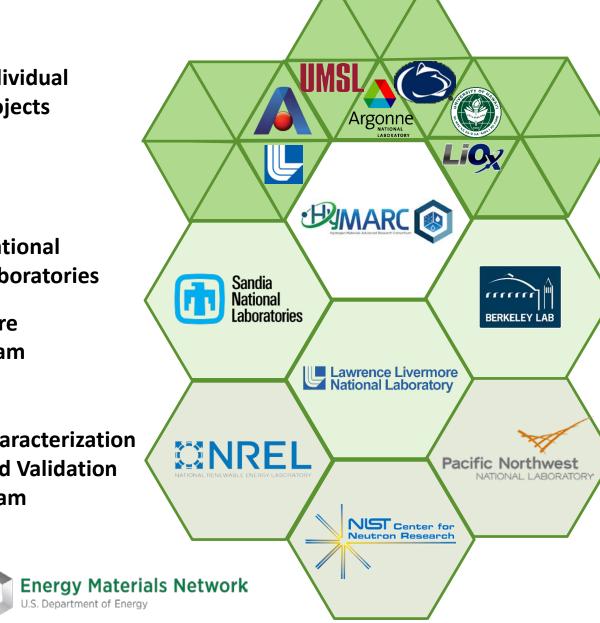
Leveraged project: Thermoplastic Composite Compressed Gas Storage Tanks

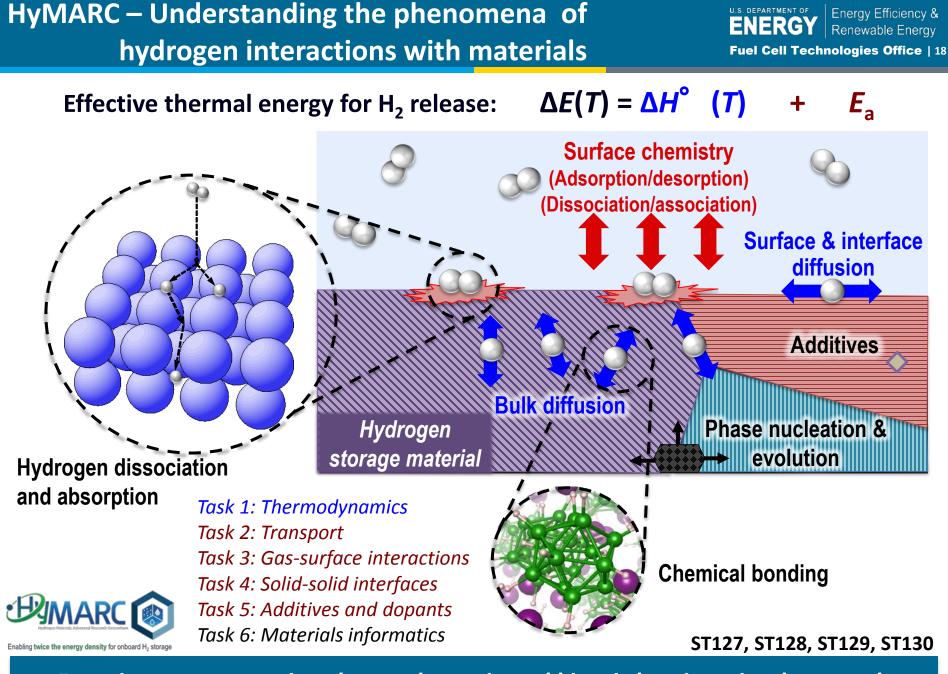
- Project lead: DuPont
- Partners:
 - Composite Prototyping Center (CPC)
 - Steelhead Composites
 - University of Dayton Research Institute (UDRI)
- Kick-off: FY2017, Q1


Leveraging efforts of the Institute for Advanced Composites Manufacturing Innovation

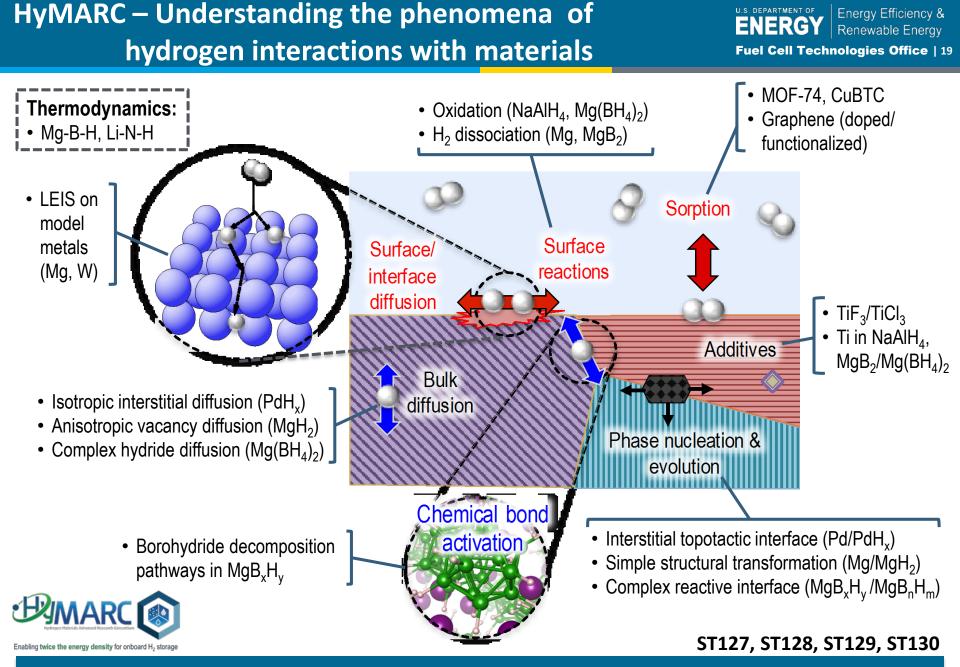
Materials-Based Storage Activities

HyMARC: Hydrogen Materials – Advanced Research Consortium Enabling twice the energy density for onboard H₂ storage


Energy Efficiency & ENERGY Renewable Energy Fuel Cell Technologies Office | 17


National Laboratories

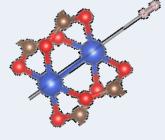
Core Team


Characterization and Validation Team

- **Applied materials development**
 - Novel material concepts
 - High-risk, high-reward
- **Concept feasibility** demonstration
- Advanced development of viable concepts
- Foundational research •
- **Material development tools**
 - Foundational R&D
 - Computational modeling development
 - Synthetic/characterization protocol development
- Guidance to individual projects ٠
- **Database development**
- Characterization resources ٠
 - "User-facility" for HyMARC projects
- Characterization method development
- Validation activities
 - Validation of Performance
 - Validation of "Theories"

Focusing on overcoming thermodynamic and kinetic barriers simultaneously

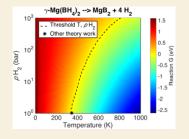
Studying model systems to isolate physical factors and mechanisms


HyMARC accomplishments – *theory capabilities*

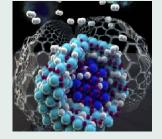
 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 20

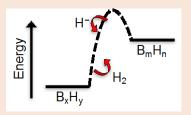

Improved sorbent isotherms

Recipes for integrating different levels of theory in sorbent isotherm models


Seedling: Chung/PSU

Accurate hydride thermodynamics

Finite-*T* free energy, environment- and morphology-dependent thermodynamics


Seedlings: Liu/ANL, Severa/U. Hawaii Solid mechanics & interfaces in hydrides

Internal and confinement stress effects; reactive diffuse interfaces

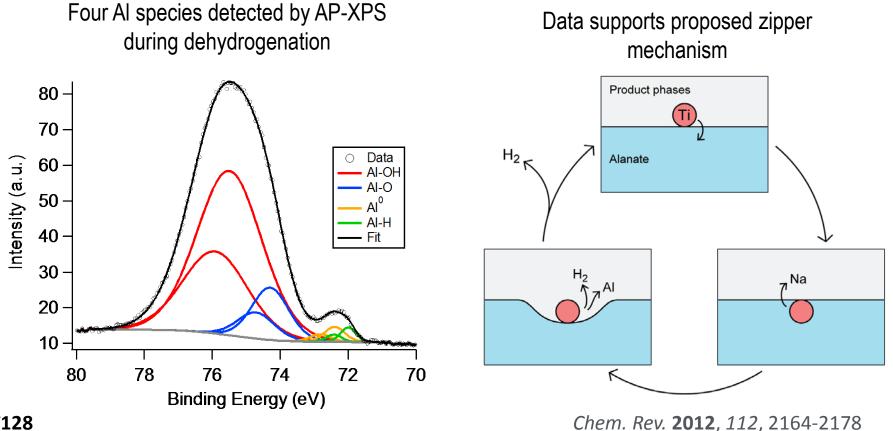
Seedlings: Liu/ANL, Severa/U. Hawaii

Kinetic modeling

Semiempirical kinetic modeling and rate analysis; phase evolution kinetics

> Seedlings: Liu/ANL, Severa/U. Hawaii

Additional accomplishments in compiling databases and reference libraries ("Task 6"):

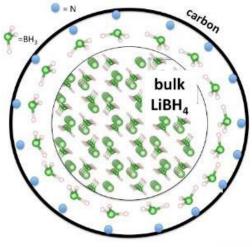

- Simulated & measured spectroscopy database (NMR, FTIR, XAS/XES) for identifying MgB_xH_y (preparing manuscript w/LBNL/SNL/HySCORE)
- Library of analytical free energies for Li-N-H (published) and Mg-B-H (preparing manuscript), with validation at a range of pressures via NMR (w/SNL/HySCORE)
- Database of classical potentials for simulating borohydride mixtures and interfaces (w/SNL)

ST129

Seedling projects help focus theory method development prioritization

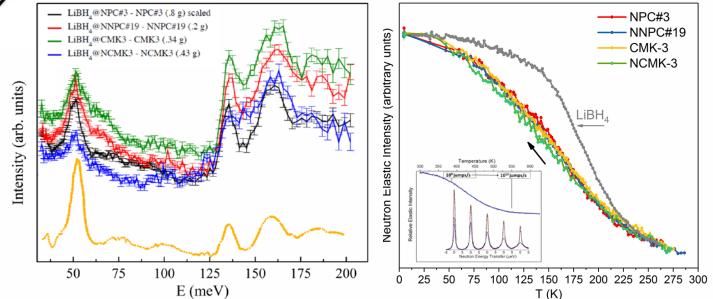
HyMARC accomplishment – understanding role of additives on sorption kinetics

- U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 21
- Investigated model system Ti-doped NaAlH₄ via AP-XPS, LEIS and Auger spectroscopy
 - Detected no Ti species on sample surface before or during desorption, reappears during absorption
 - Disproved models invoking surface Ti during dehydrogenation reaction



ST128

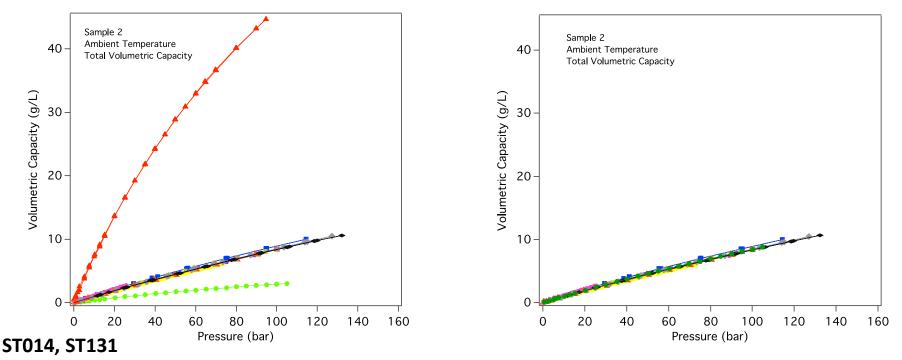
Proposed mechanisms are evaluated based on experimental data


HyMARC accomplishment – providing support to seedling projects

NREL and NCNR carries out neutron vibrational spectroscopy measurements on LiBH₄ infiltrated mesoporous carbon samples from UMSL

Can nanoconfinement in functionalized porous materials facilitate reversible hydrogen storage reactions?

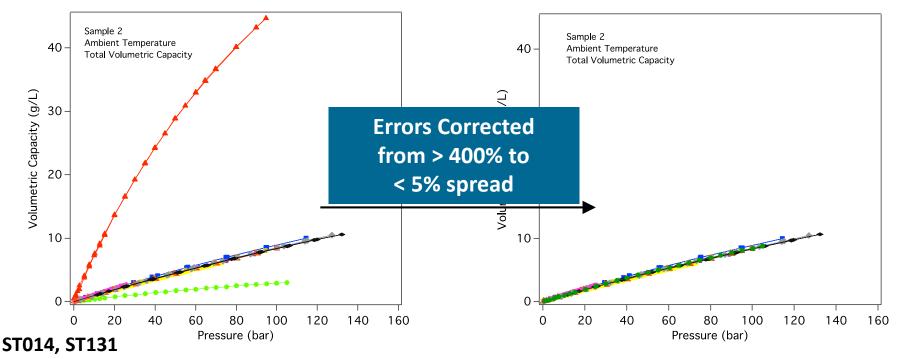
- NVS show LiBH₄ infiltrated
- Shifting and broadening show there is an effect of confinement
- Degree of N-doping enhances BH₄⁻ orientational mobilities



ST135, ST139

Accelerating rate of progress in the development of H₂ storage materials

Led an international inter-laboratory volumetric capacity H₂ adsorption measurement round-robin study

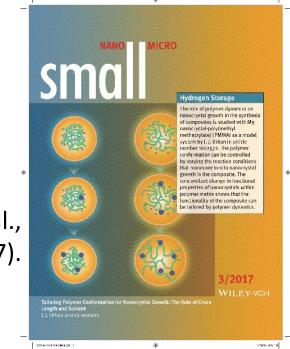

- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and "black box" errors
 - NREL gives direct feedback on data
- Determining a "natural" spread of data from instrument and operator variables

Promoting standard protocols for performing and reporting sorption measurements

Led an international inter-laboratory volumetric capacity H₂ adsorption measurement round-robin study

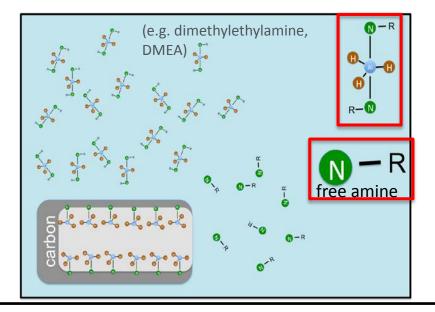
- Promoted valid comparisons of hydrogen-storage materials
 - necessary to evaluate implementations of protocols
- Decreased irreproducibility due to systematic and "black box" errors
 - NREL gives direct feedback on data
- Determining a "natural" spread of data from instrument and operator variables

Promoting standard protocols for performing and reporting sorption measurements

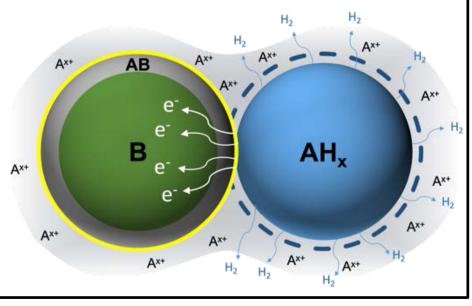

Accomplishments: Lab Team Publications

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 26

- 32: Publications published or submitted for publication
- 4: Patents applications submitted
- 7: Manuscripts in preparation as of April 2017
- 2: Selected as cover features


E. S. Cho, J. J. Urban et al., Small, in press (2017).

The lab teams are producing high-value R&D and disseminating it to the R&D community


Surface functionalized mesoporous carbons [HyMARC seedling—UMSL]

- Demonstrating ability of functionalized mesoporous carbons to facilitate reversible H₂ sorption reactions of hydride materials
- Prepared N-doped carbons and demonstrated infiltration of Al and B-based materials

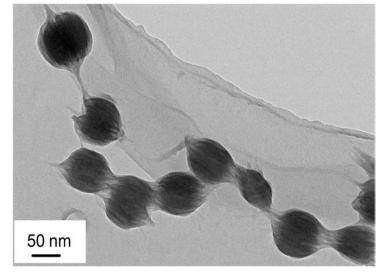
Electrolyte Assisted Storage Reactions [HyMARC seedling—Liox Power]

- Improving reaction kinetics through use of electrolytes to facilitate atomic rearrangement and diffusion
- Have carried out initial screening studies of possible electrolytes

ST139

Accomplishments - HyMARC Project Highlights

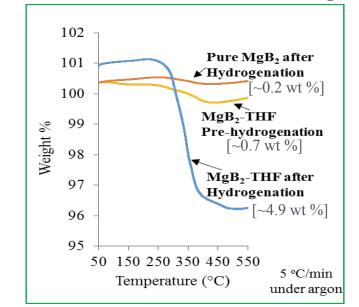
 U.S. DEPARTMENT OF
 Energy Efficiency &


 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 28

"Graphene-wrapped" hydrides [HyMARC seedling—ANL]

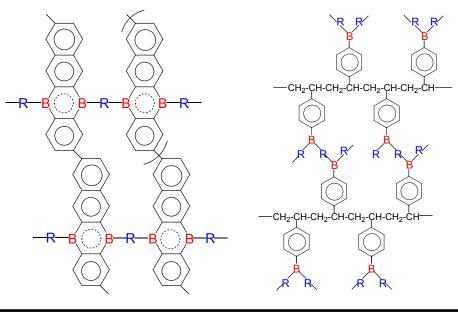
- Encapsulating nanoparticles of complex hydrides with graphene to enhance reversibility and kinetics
- Demonstrated 9 wt% uptake in NaBH₄ systems with 80% regenerable release over 6 cycles


SEM of NaBH₄ nanoparticles wrapped in graphene

Magnesium boride etherates [HyMARC seedling—U. Hawaii]

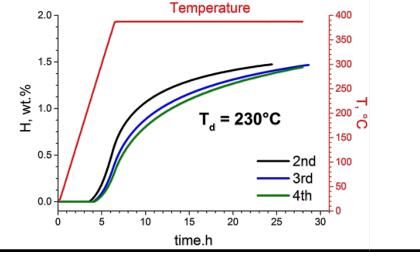
- Improve reversibility of Mg(BH₄)₂ through formation of MgB₂-etherates
- Demonstrated the formation of significant amounts of β-Mg(BH₄)₂ at 300 °C

TGA of hydrogenated ball milled MgB₂-THF



ST136

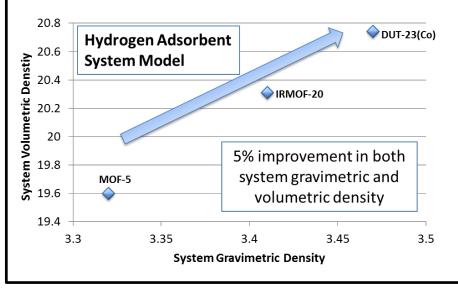
Novel boron-containing polymers [HyMARC seedling—Penn State]


- Developing novel boron containing porous polymers with higher H₂ binding energy
- Designed and synthesized two new classes of microporous polymers that contain boron.

High-capacity Hydrogen Storage Materials via Mechanochemistry [Ames Laboratory]

- Prepare high hydrogen capacity silicon-based borohydrides through mechanochemical methods
- Demonstrated several new materials with reversibility for part of their total capacity

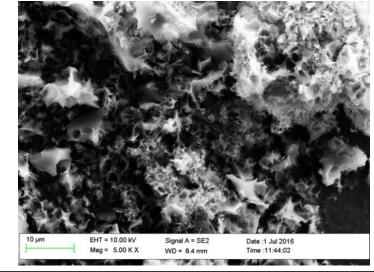
ST140


ST119

FY2017 FOA Topic

- Hydrogen Storage Materials Discovery (HyMARC)
 - innovative, high-risk, high-payoff concepts for hydrogen storage materials
 - project teams will be integrated into HyMARC as individual projects
 - phase I Go/No-Go milestone must provide confidence that the proposed concept has reasonable potential to result in a hydrogen storage material capable of meeting automotive performance requirements
- Areas of interest:
 - novel, advanced <u>onboard-rechargeable</u> hydrogen storage materials
 - physi- and chemisorption materials acceptable
- Only Phase I effort will be supported until Go/No-Go criteria is met, additional support will be contingent on meeting criteria

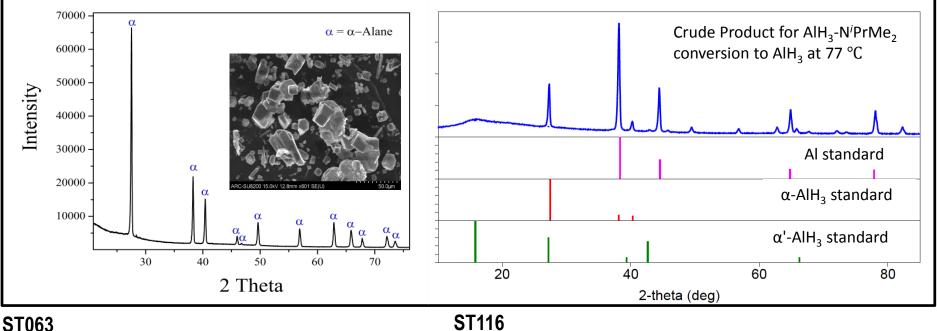
Computational Screening of MOFs with High Volumetric Density [U. Michigan]


- Identifying high-performing MOF's through screening of large structure databases
- Synthesized and tested several MOFs for their H₂ adsorption properties; IRMOF-20 and DUT-23(Co) both projected to surpass MOF-5 in system performance

Graphene-based carbon sorbents [Caltech]

- Design and synthesize porous graphene materials as high-capacity H₂ sorbents
- Demonstrated progress in preparing highsurface area carbons and inserting metal atoms to achieve higher heats of adsorption

SEM of high surface area graphene prepared from graphene oxide

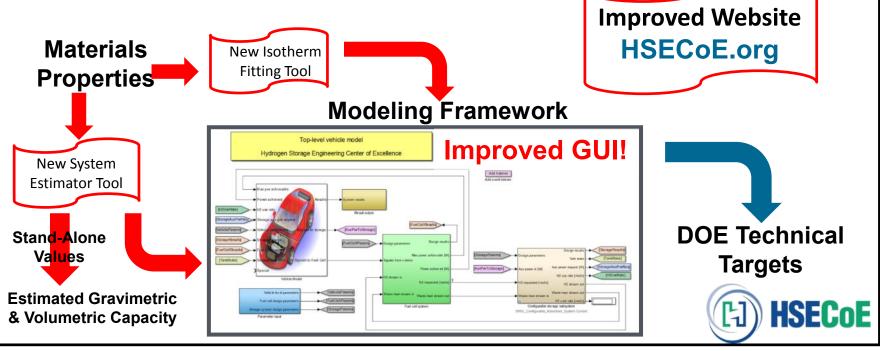

ST122

Developing improved adsorbent storage materials

Low-cost methods for α -alane production [SRNL, Greenway; Ardica, SRI]

- Developing and demonstrating low-cost processes for scale-up of alane (AlH₃) preparation
- Demonstrated improved crystallization and passivation process to produce high-purity, stable α -alane from chemical synthesis in batches of up to 200 grams (SRNL, Greenway)
- Demonstrated ability to yield α-alane from electrochemical synthesis, however further improvements are needed (Ardica, SRI)

XRD of crystalized α -alane from chemical (left) and electrochemical (right) syntheses


Developing low-cost α -alane (AIH₃) production processes

Engineering

Maintenance and Enhancements for HSECoE Models [NREL/PNNL/SRNL]

- Collaborative effort to maintain, update and enhance system models developed under HSECoE to provide a resource to hydrogen storage materials developers
- Posted models include metal hydride, chemical, and sorbent H₂ storage systems
- Improved framework utility for materials researchers through new isotherm fitting and estimator tools.


ST008

Online system models maintained and accessible to the research community

Accomplishments - Project Highlights

Materials-based H₂ Storage for UUV Applications [SRNL/US Navy/Ardica]

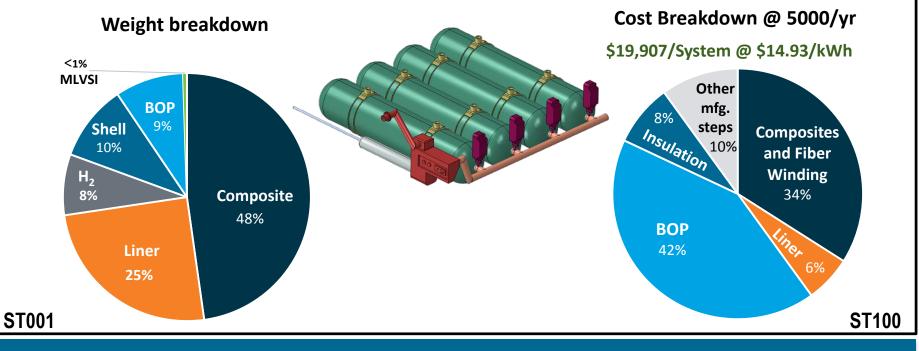
- Developing a materials-based H₂ storage system to extend UUV mission duration
- Preliminary analysis indicate ≥2 times longer mission capability over battery operation

Metal Hydride H₂ Storage for Forklift Applications [Hawaii H₂ Carriers/SRNL]

- <u>Small Business Voucher</u> project to demonstrate MHHS performance on a forklift under realistic conditions and its fast fill capabilities; perform preliminary DFMA analysis
- System originally designed and built under a SBIR program

ST134

Leveraging HSECoE models and capabilities for high-value applications



Analysis

Hydrogen Storage System Performance [ANL] and Cost Analyses [SA/PNNL/ANL]

- Analyses are carried out to estimate system performance and cost of various technologies to help identify focus areas for the Program and to gauge technology development progress
- Cryo-compressed H₂ storage systems were evaluated for heavy duty fleet (bus) applications
- 500 bar, 40 kg H₂ capacity systems projected to be able to achieve 7.3 wt.% and 43 g/L storage densities with a cost of \$15/kWh

Analysis of a 40 kg H₂ capacity, 500 bar cryo-compressed system for bus applications

Techno-economic and performance analyses used to target key R&D areas

Collaborations

Collaborating and leveraging of national and international activities

Summary

Physical Storage

- Focus is on developing technologies to lower the cost of 700 bar systems
- On-going projects on alternative materials and manufacturing processes
- Conformable tank designs may provide improved packaging onboard vehicles
- FOA topic on low-cost, alternative precursors for high-strength carbon fiber

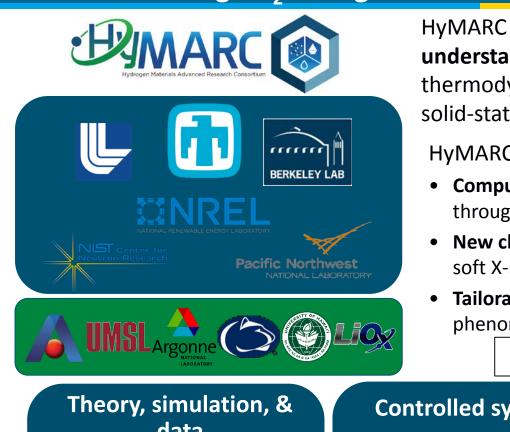
• Materials-based Storage

- Focus is to accelerate development of H₂ storage materials with targeted properties
- HyMARC core team performing foundational research to develop computational tools
- Rechargeable metal hydrides and hydrogen sorbents are primary materials areas
- First round of seedling projects underway and FOA topic to select second round
- Engineering activities leverage prior work to meet needs of high-value applications

	FY 2017		FY 2018
•	HyMARC team to prepare sorbent strategy prioritization	•	First round of seedlings have go/no-go decisions
•	First round of seedlings working with HyMARC	•	Second round of seedlings working with HyMARC
•	Second round of seedlings to be selected	•	Low-cost high-strength CF precursor
•	Low-cost high-strength CF precursor		projects up and running

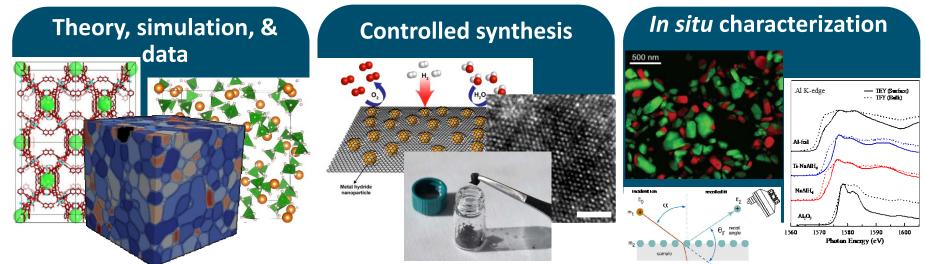
 Low-cost high-strength CF precursor projects to be selected

Ned Stetson – Program Manager 202-586-9995 ned.stetson@ee.doe.gov					
Jesse Adams	Katie Randolph				
720-356-1421	720-356-1759				
jesse.adams@ee.doe.gov	katie.randolph@ee.doe.gov				
Grace Ordaz	Bahman Habibzadeh				
Now retired and	202-287-1657				
enjoying life after DOE!	bahman.habibzadeh@ee.doe.gov				
Zeric Hulvey	John Gangloff				
ORISE Fellow	ORISE Fellow				
202-586-1570	202-586-7009				
zeric.hulvey@hq.doe.gov	john.gangloff@ee.doe.gov				
Vanessa Trejos	Chris Werth				
Support contractor	Support contractor				
202-586-5153	240-562-1434				
vanessa.trejos@ee.doe.gov	chris.werth@ee.doe.gov				

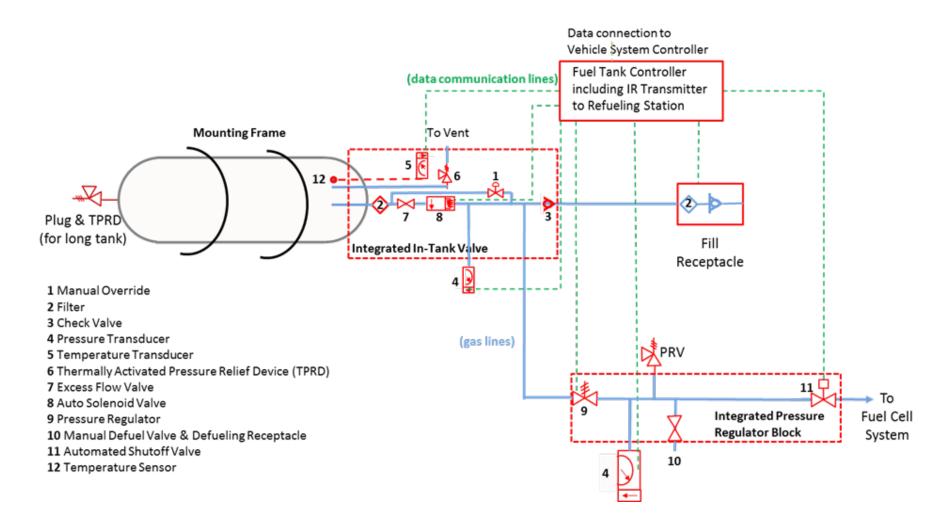

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office

BACK UP

HyMARC: Accelerating the discovery of breakthrough H₂ storage materials

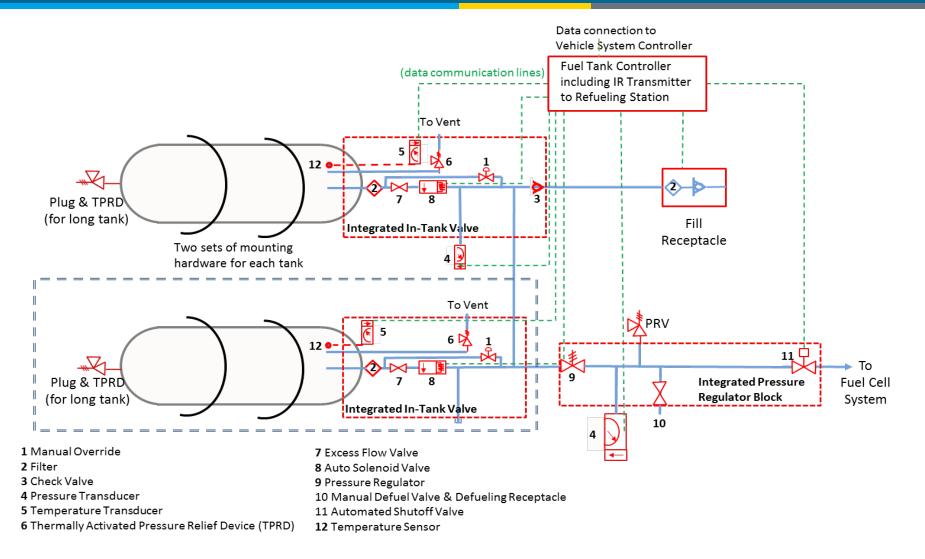


HyMARC provides **capabilities** and **foundational understanding** of phenomena governing thermodynamics and kinetics for the development of solid-state hydrogen storage materials


HyMARC delivers community tools and capabilities:

- **Computational models and databases** for highthroughput materials screening
- New characterization tools and methods (surface, bulk, soft X-ray, synchrotron)
- **Tailorable synthetic platforms** for probing nanoscale phenomena

Website: <u>hymarc.org</u>


Single tank system schematic

Lowest cost, but most difficult to package onboard a vehicle

Baseline system projections based on single tank design

Dual tank system schematic

Higher cost, but most easier to package onboard a vehicle

All current commercial FCEVs have dual tank designs