

Hydrometallurgical Process Development for Complex Ores and Concentrates

David Dreisinger University of British Columbia Department of Materials Engineering 309-6350 Stores Road Vancouver, B.C., Canada V6T 1Z4 <u>drei@interchange.ubc.ca</u>

Introduction

- Traditionally, copper, nickel, cobalt, zinc and lead recovery from sulfide deposits by, mining, flotation of concentrates and finally smelting/refining of the concentrates through to final products
- ➢ But...
- Complex fine grained ores poor for flotation, suited to leaching
- Pyrometallurgy expensive, environment (gases and dusts), poor by-product recovery versus hydrometallurgy with lower cost, no dust or gases, excellent by-product recovery.

Introduction

Great strides in;
 Copper – Leach, SX-EW, Concentrate Leach
 Nickel/cobalt – Sulfide and laterite leaching
 Zinc – Skorpion Leach SX-EW, Concentrate Leaching
 Lead – Still Waiting!

Mineral Processing Hydrometallurgy Pyrometallurgy

Complex ores Loss of values in tails High capital cost Environmental constraints Loss of byproducts in slags and residues

$\label{eq:Mineral Processing} Mineral Processing \ Hydrometallurgy Pyrometallurgy$

TIME

Hydrometallurgy Process Development

 Problem Driven or Solution Driven?
 Problem Driven – deposit that can not be treated by conventional technology
 Solution Driven – develop general solution to problem and then seek application

Solution Driven Examples

Copper Concentrate Treatment
 +50 Processes developed to replace smelters
 Very few have achieved commercial success
 Currently;

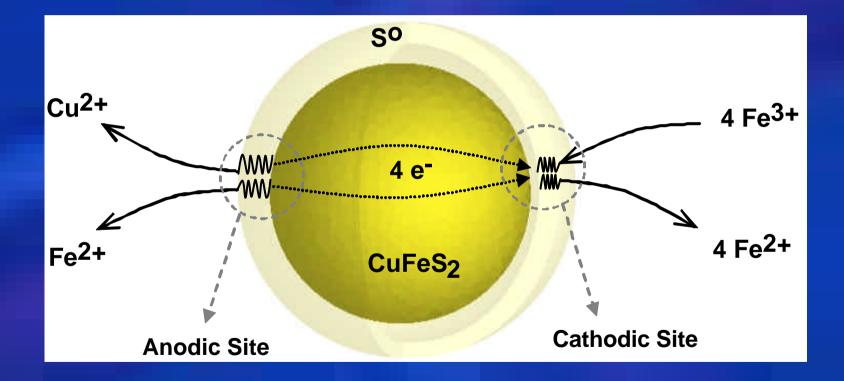
 Total Pressure Oxidation

- Anglo American Corporation Univ. of B.C./Phelps Dodge Process
- CESL Process
- BIOCOP Process
- − GALVANOX[™]

GALVANOX CHEMISTRY

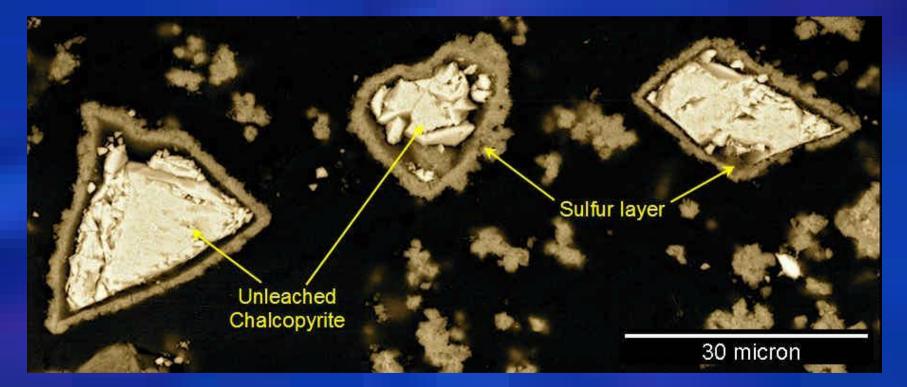
- GALVANOX takes advantage of the galvanic effect between chalcopyrite and pyrite.
- Chalcopyrite is a semiconductor, and therefore corrodes electrochemically in oxidizing solutions.

> In ferric sulphate media, the overall leaching reaction is as follows: $CuFeS_2 + 2 Fe_2(SO_4)_3$? $CuSO_4 + 5 FeSO_4 + 2 S^0$


This reaction may be represented as a combination of anodic and cathodic half-cell reactions:

Anodic: $CuFeS_2$? $Cu^{2+} + Fe^{2+} + 2S^0 + 4e^{-}$

Cathodic: $4 \text{ Fe}^{3+} + 4 \text{ e}^{-}$? 4 Fe^{2+}

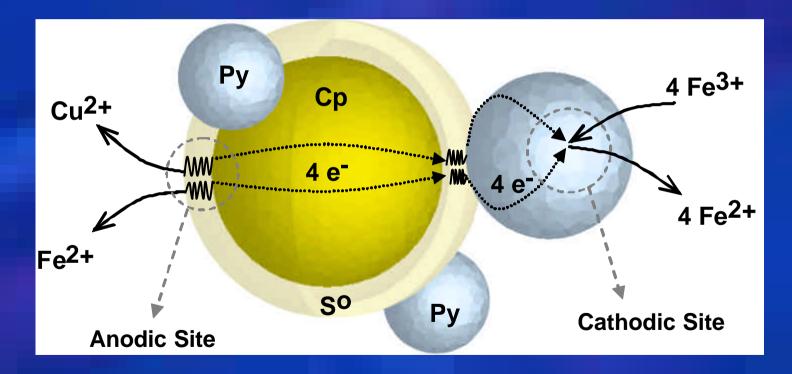


UNASSISTED CHALCOPYRITE LEACHING

UNASSISTED CHALCOPYRITE LEACHING

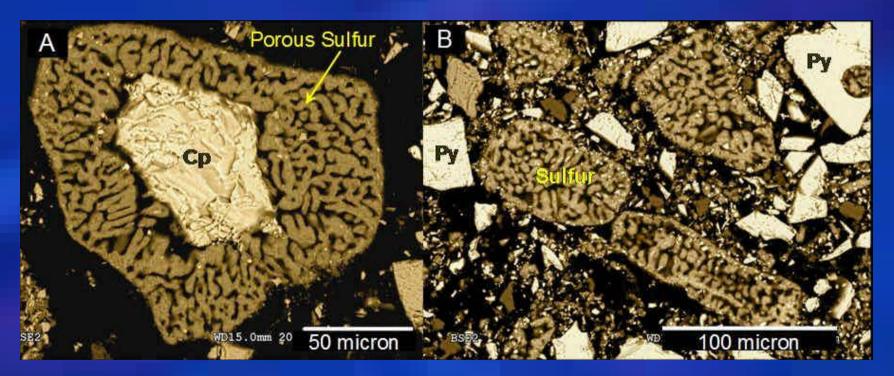
GALVANOX CHEMISTRY

- Typically, chalcopyrite surfaces are passivated (i.e., they become resistant to electrochemical breakdown) in ferric sulfate solutions at even modest solution potential levels.
- It is widely held that this results from the formation of some sort of passivating film on the mineral surface that most likely consists of an altered, partially Fe-depleted sulfide layer.
- Because of this, most investigators have assumed that it is the anodic half-cell reaction that limits the overall rate of leaching.
- However, we discovered that it is primarily the <u>cathodic</u> half-cell reaction (i.e., ferric reduction) that is slow on the passivated chalcopyrite surface.



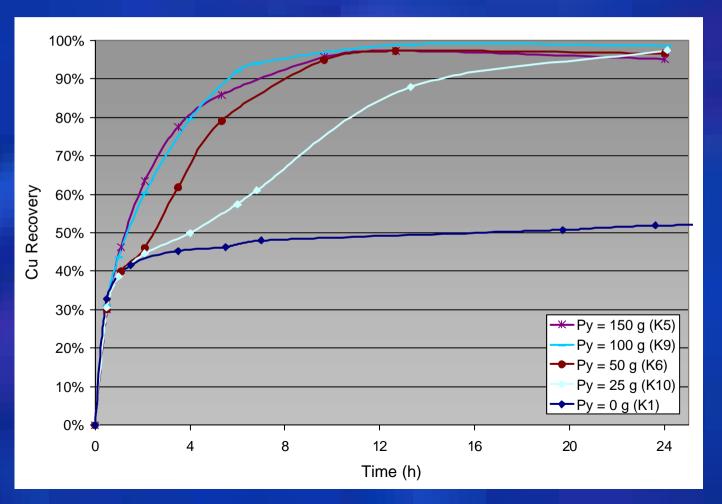
GALVANOX CHEMISTRY

- The presence of pyrite facilitates chalcopyrite leaching by providing an alternative surface for ferric reduction
- This essentially eliminates <u>cathodic</u> passivation of chalcopyrite in ferric sulfate solutions.
- Also, by ensuring rapid chalcopyrite oxidation, the solution potential is easily maintained at levels low enough to prevent <u>anodic</u> passivation of the chalcopyrite
- This also prevents anodic breakdown of the pyrite, which remains more or less completely inert.



GALVANICALLY-ASSISTED CHALCOPYRITE LEACHING

GALVANICALLY-ASSISTED CHALCOPYRITE LEACHING



Partially leached particle David Dixon Completely leached particles

CHALCOPYRITE CONCENTRATE – 35% Cu

Effect of pyrite addition (50 g con, 65 g acid, 470 mV, 80°C)

Problem Driven Examples

- Copper Leach SX-EW key was Cu SX reagent formulation
- Nickel Laterite Leaching key was HPAL digestion of nickel ores and reprecipitation of iron at high temperature
- Zinc Pressure Leach break the zinc acid relationship in the Roast-Leach-Electrowin Process – key was development of the use of surfactants to disperse elemental sulfur during zinc leaching
- Mt. Gordon and Sepon Copper Processes Chalcocite/pyrite and Clay (Sepon) deposits
- PLATSOL Process Leach Cu, Ni, Co, Pt, Pd, Au
- Boleo Process Treat Clay Deposit for Cu, Co, Zn, Mn

Two Process Examples

- The Boleo Process is applied to the recovery of copper, cobalt, zinc and manganese from a mixed sulfide/oxide deposit hosted in clay.
- The keys to process development for Boleo were;
 - novel seawater based leaching
 - high rate thickening for solid/liquid separation
 - CSIRO DSX technology for Co-Zn recovery from Mn
 - Mn precipitation as manganese carbonate by-product.
- The PLATSOLTM Process is applied to process mixed base and precious metal sulfide concentrates containing copper, nickel, cobalt, platinum, palladium, gold and silver
- ➤ The key process development for PLATSOL[™]
 - chloride assisted total pressure oxidation of bulk sulfide concentrates to extract base and precious metals into an autoclave solution.

Hydrometallurgy Process Development

Boleo Project Adjacent to Santa Rosalia Baja California, Mexico

SANTA ROSALIA LOOKING EAST

Boleo Project

The Boleo deposit

- 277 million tonnes @1.77% Cu. Eq grade of measured and indicated
- 253 million tonnes @ 1.29% Cu Eq. grade of inferred material
- The ore will be treated by a hydrometallurgical process involving acid – seawater leaching with recovery of copper and cobalt metal cathode, zinc sulfate crystal and eventually manganese carbonate precipitate.

7,500 tpd of ore to produce

- 60,000 tpa Cu
- 2100 tpa Co
- 36,000 tpa ZnSO4.H₂O
- +100,000 tpa MnCO₃

Boleo Project History

- Four substantial departures from early work on Boleo
 - High Rate Thickening for S/L Separation treat solutions for metal recovery – Clay Ores
 - Copper SX/EW as LME Grade A Cathode
 - Co/Zn Recovery using Solvent Extraction
 - Mn precipitation as MnCO₃
- 2004 Proof of Principle Pilot Plant and 2006 Demonstration Pilot Plant

Boleo Project History

➤ Sulfides

- Cu very fine chalcocite
- Minor chalcopyrite, bornite and covellite
- Co cupriferous carrolite and cobaltiferous pyrite
- Zn sphalerite

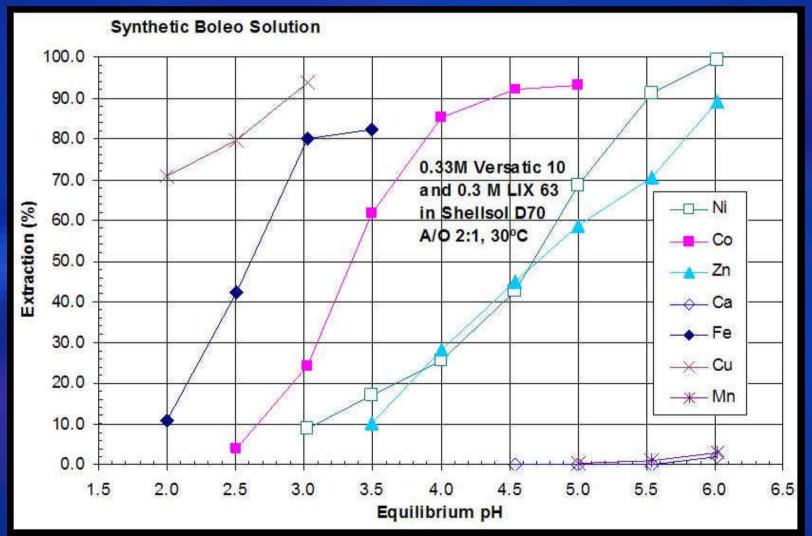
≻Gangue

- Major factor metallurgical process
- Clay dominant (typically 40-50% montmorillonite clay)
- Pulp rheology, settling and filtration
- Carbonates impact on acid consumption

Acid Oxidation and Acid Reduction Oxidation leaching (acid leaching with manganese dioxide in the ore)

Oxidation leaching (addition of acid)

- $Cu_2S + 2MnO_2 + 4H_2SO_4 = 2CuSO_4 + 2MnSO_4 + S + 4H_2O$
- $ZnS + MnO_2 + 2H_2SO_4 = ZnSO_4 + MnSO_4 + S + 2H_2O$ $CoS + MnO_2 + 2H_2SO_4 = CoSO_4 + MnSO_4 + S + 2H_2O$
- Reduction leaching (addition of sulfur dioxide to the ore slurry)
 - $-MnO_2 + SO_2 = MnSO_4$


METALLURGICAL TREATMENT OF BOLEO ORE – Partial Neutralization - CCD

- The leach slurry is partially neutralized using local limestone
- Limestone purity is about 60-65%
- High Rate Thickening 2-3% Solids Using Thickener O/F
- Pocock, Outokumpu and GLV testing

PLS advances to Cu SX-EW, raffinate is split between return to leach and Co/Zn/Mn recovery

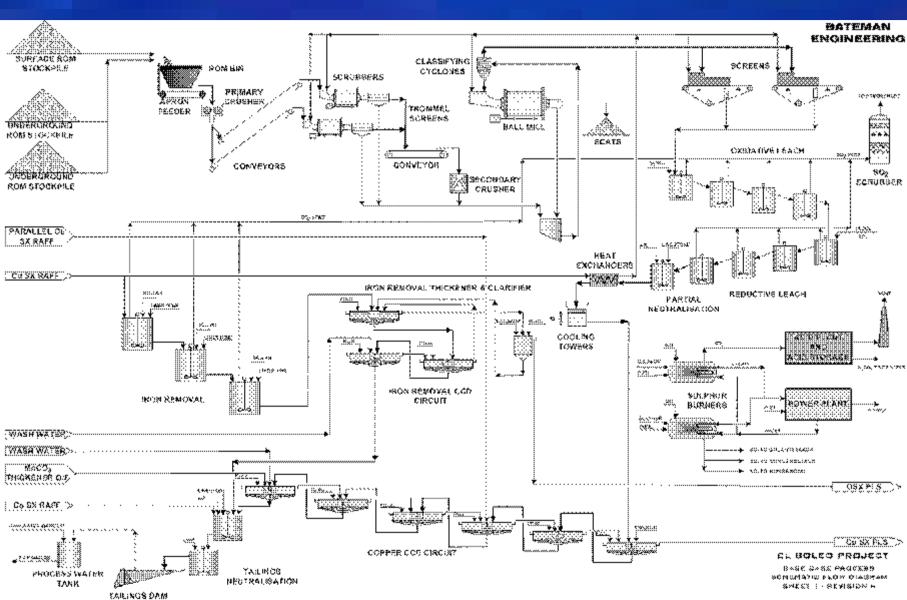
Typical CSIRO DSX Result

ZINC SULFATE AND COBALT METAL RECOVERY FROM DSX STRIP SOLUTION

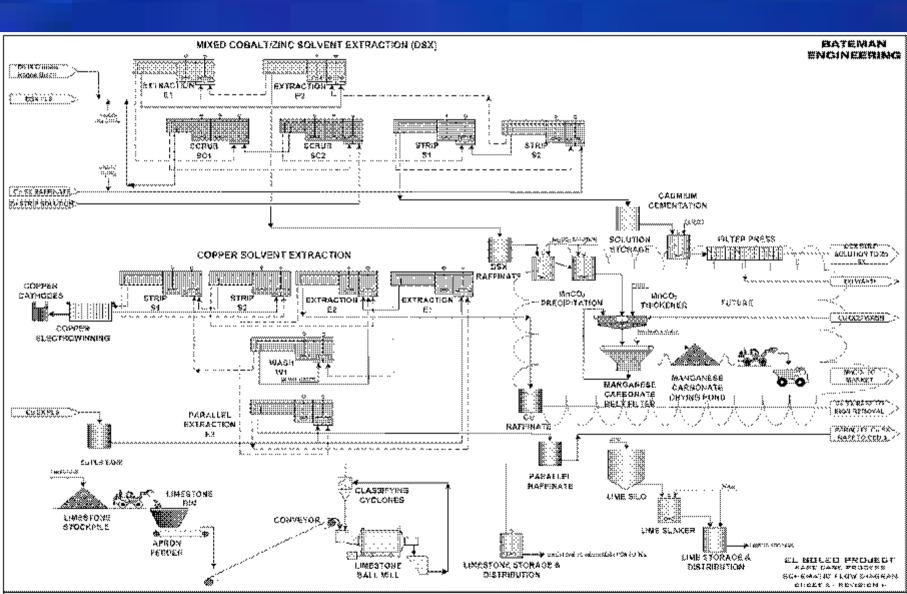
- Zinc as zinc sulfate and cobalt as metal
- Zinc Extraction
 - $ZnSO_4 + 2HR(org) + Na_2CO_3 = ZnR_2(org) + Na_2SO_4 + CO_2(g) + H_2O$
- Zinc Stripping
 - $ZnR_2(org) + H_2SO_4 = ZnSO_4 + 2HR(org)$
- Zinc Sulfate Recovery
 - $ZnSO_4$ (aqueous) + $xH_2O = ZnSO_4.xH_2O$ (crystals)
- Cobalt Extraction
 - $CoSO_4 + 2HR(org) + Na_2CO_3 = CoR_2(org) + Na_2SO_4 + CO_2(g) + H_2O_2(g)$
- Cobalt Stripping
 - $CoR_2(org) + H_2SO_4 = CoSO_4 + 2HR(org)$
- Cobalt Electrowinning
 - $\text{CoSO}_4 + \text{H}_2\text{O} = \text{Co} + \text{O}_2(\text{gas}) + \text{H}_2\text{SO}_4$

MANGANESE CARBONATE RECOVERY FROM DSX RAFFINATE

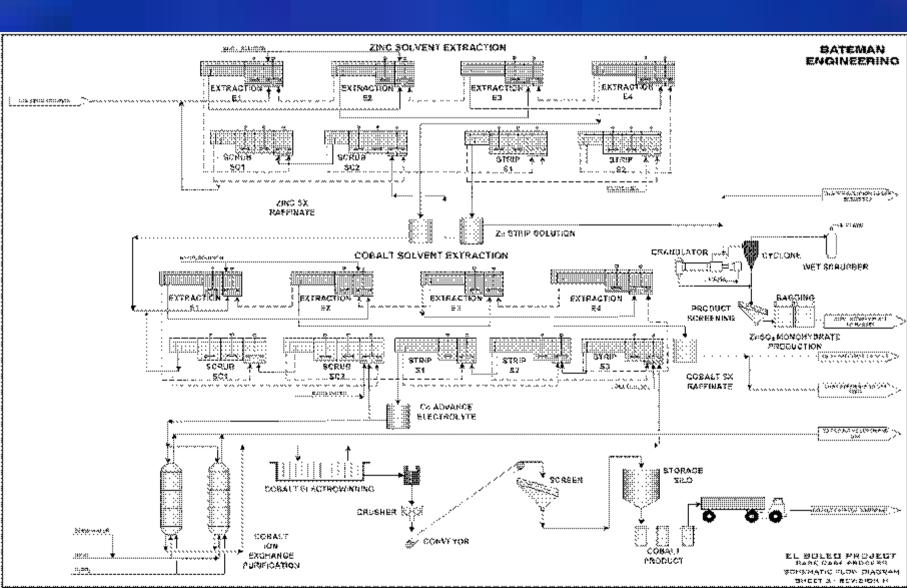
 Manganese Precipitation
 Manganese carbonate can be selectively precipitated using sodium carbonate


 $- MnSO_4 + Na_2CO_3 = MnCO_3 + Na_2SO_4$

- > Whole ore leaching of the Boleo Ore
- Leach circuit designed for maximum metal extraction with minimum reagent consumption and cost
- Seawater based
- High rate thickeners for CCD
- Conventional SX/EW for Cu
- Separation of cobalt and zinc using CSIRO DSX Extractant
- Cobalt as metal by SX/EW
- Zinc as zinc sulfate crystal
- Manganese by-product will be manganese carbonate



Flowsheet – Part 1



Flowsheet – Part 2

Flowsheet – Part 3

DEMONSTRATION PILOT PLANT RESULTS

14 kg/hr for 16 days - 5 tonnes of total material

Feed samples

	Chemical Analysis (%)									
Sample	Cu	Со	Zn	Mn	Fe	Са	Mg	AI	Ni	Si
1	2.16	0.102	0.48	4.14	8.04	NA	2.75	5.29	0.014	18.7
2	2.25	0.123	0.47	5.58	8.15	NA	2.76	5.21	0.011	19.4
3	2.26	0.141	0.48	5.99	8.22	0.996	2.74	5.39	0.013	18.5
4	2.26	0.124	0.53	4.27	8.9	0.978	3.08	4.93	0.013	20.4
5	2.27	0.157	0.50	5.21	7.9	1.32	2.86	5.35	0.017	19.0
6	2.18	0.137	0.51	5.25	8.59	1.16	2.96	5.67	0.016	20.1
7	2.04	0.155	0.46	5.45	7.71	1.03	2.67	4.73	0.015	20.6
8	2.04	0.137	0.50	4.16	8.58	0.979	3.01	4.83	0.016	21.2
Average	2.18	0.135	0.49	5.01	8.26	1.08	2.85	5.18	0.014	19.7

Leach Extraction

OL2 pH	RL2 ORP	H ₂ SO ₄	SO ₂	Limestone	Extraction (%)				
	(mV) –	(kg/t)	(kg/t)	(kg/t)	Cu	Со	Zn	Mn	
1.7	399	225	80	68	90.9	82.6	53.9	97.1	
1.5	397	235	73	75	90.9	81.4	55.4	96.4	
1.4	399	315	124	113	92.7	83.8	61.0	98.0	
1.2	427	513	152	368	94.4	90.3	72.3	96.7	

 Extraction based on residue assay after CCD 6
 Design at pH 1.7 for Oxidative Leach

LEACH PILOT PLANT

CCD Results – 6 stage "High Rate" **Thickener Circuit** Dilution of the feed to ~ 3% solids was effective \succ The solids settled rapidly, producing a well clarified, low-solids overflow as feed to copper SX. Outokumpu, Pocock Industrial and GL and V – independent testwork using Pilot Plant Samples

Vendor results used to size and design thickeners

Copper Metal Assays

Sample					An	alysi					
	Se	Те	Bi	Sb	Pb	As	Fe	Ni	Sn	Ag	S
Cathode 1	<1	<1	<1	<1	<1	<1	2.4	<1	<1	<25	<15
Cathode 2	<1	<1	<1	<1	1.2	<1	1.4	<1	<1	<25	17.4
Cathode 3	<1	<1	<1	<1	<1	<1	1.3	<1	<1	<25	<15

Hydrometallurgy Process Development

Co, Zn Recovery by DSX

CSIRO DSX system

- 13.2% LIX 63 and 6.25% Versatic 10 in Orfom SX80CT
- >3E stages (pH ~ 4.5)
- 2 scrub stages (with zinc sulfate solution)
- ≥2 zinc strip stages at pH 3.2
- ≥2 bulk strip stages at pH 1
- +99% Extraction and Recovery of Co/Zn - ~ 0% Extraction of Mn

Hydrometallurgy Process Development

DSX Results

Zinc Strip Solution

Cobalt Strip Solution

Excellent Recovery and Separation of Zinc and Cobalt away from Manganese For Final Design Moved to a Single Bulk Strip

Zn SX Results

> 30% Cyanex 272 in Orfom SX 80CT ➤ 4 E at pH 2.6 - 2.9 \geq 2 scrub stages (using zinc strip solution) 2 strip stages at pH 1. Raffinate ~ 100 mg/L Zn. Zn strip solution approached 80 g/L (80,000) mg/L Zn) with Zn:Co ratio of 4,000:1 Subsequent work has shown up to 160 g/L Zn in strip solution

Cobalt SX/EW Results

- 4 E stages at pH 5.2 to 5.5 using 30% Cyanex 272 in Orfom SX 80CT
- 2 stages of scrubbing
- > 3 stages of stripping (with spent electrolyte)
- > 1 stage of conditioning before organic recycle.
- Co strip solution was polished by using DOWEX M4195 and PUROLITE S-950 resins for minor element capture prior to cobalt electrowinning in a divided cell.
- Cobalt was deposited at 250 A/m2 at 70°C.
- Feed of 6000 mg/L of Co with raffinates of less than 1 mg/L
- 90 g/L Co in cell feed

Cobalt Metal

Cobalt Metal Analysis

Sample	Analysis (ppm)							
	Cd	Cu	Fe	Mn	Ni	Pb	Zn	
Cathode 1	66	<2	<4	<0.3	55	40	<10	
Cathode 2	43	<2	<4	<0.3	56	41	<10	

Manganese Carbonate Assay (Typical)

Species	Analysis	Units
Mn	47	%
Ca	1	%
Mg	0.3	%
Na	0.6	%
AI	0.5	%
Ni	350	g/t
Zn	300	g/t
Fe	200	g/t
Cu	<5	g/t
Со	50	g/t
Cd	<5	g/t
CO ₃	45	%
SO ₄	2	%
CI	100	g/t

200 kg of MnCO₃ Recovered

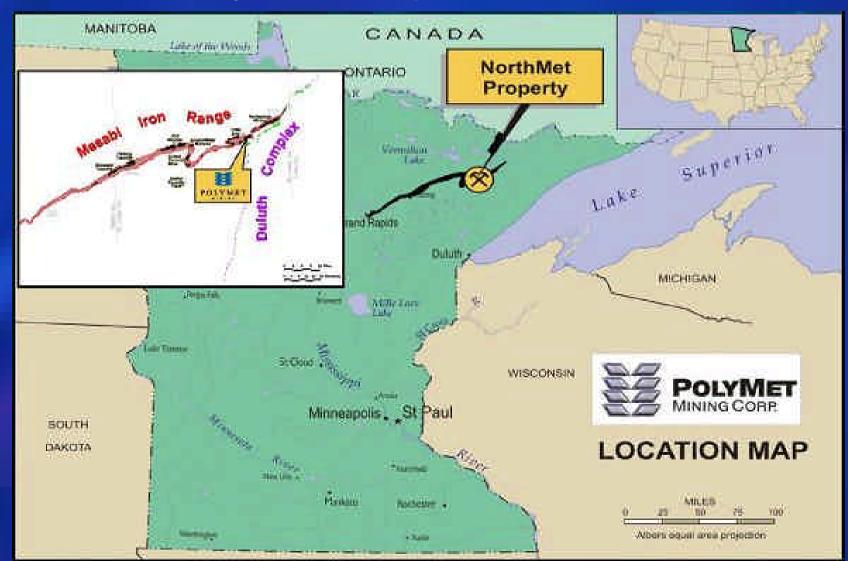
Hydrometallurgy Process Development Next Step – Construction ML Example: Sepon Copper and Gold Operation

Copper Operation

Khanong Copper Orebody

Gold Operation

The PLATSOLTM Process



NorthMet (PolyMet Mining)

- Northern Minnesota, adjacent to the historic Iron Range.
- Large, polymetallic sulfide deposit with values in Cu, Ni, Co, Zn, Au and Platinum Group Metals (PGM).
- The NorthMet measured and indicated resource is 638 million tons (August 2007)
 Flotation of Concentrates then PLATSOLTM

PolyMet Project - Location

Former LTV Plant Site

Hydrometallurgy Process Development

Existing Rod and Ball Mills

OWNERSESSMENT OF THE OWNERS OF THE OWNERS

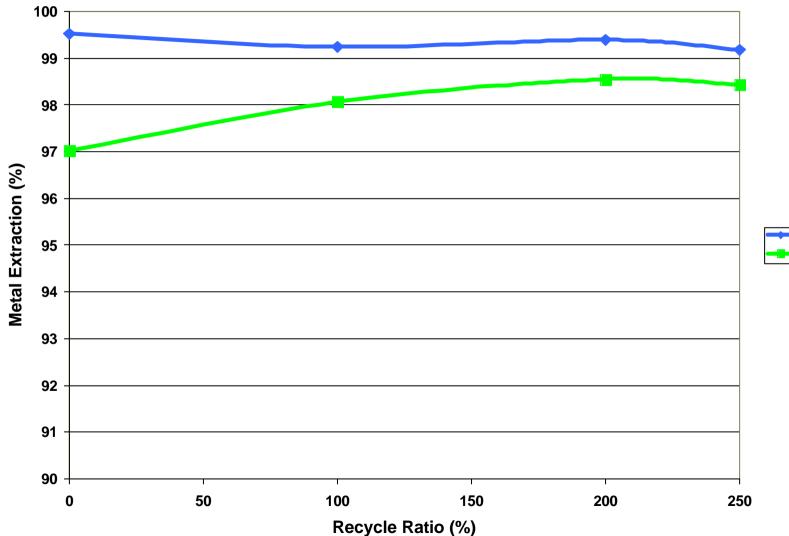
Pilot Scale Testwork at SGS Lakefield **Research Limited in Ontario, Canada.** Mineral Processing -Hydrometallurgy -Final products copper cathode, Au/PGM Precipitate, Mixed or Separate Ni/Co Hydroxide, Gypsum Close to 50 tonnes of material from NorthMet were processed in Pilot Scale Testwork

Two circuits at NorthMet

- Mineral processing flowsheet to produce a bulk concentrate
- Hydrometallurgy flowsheet for recovery of Cu-Ni-Co-Zn-Au-PGM products
- Hydrometallurgy
 - chloride-assisted leaching of base and precious metals
 - metal recovery steps for the base and precious metals

Sample	Weight (t)	Assay (% or g/t)							
		Cu	Ni	S	Pt	Pd	Au		
Composite 4	4.4	0.31	0.10	0.91	0.05	0.28	0.08		

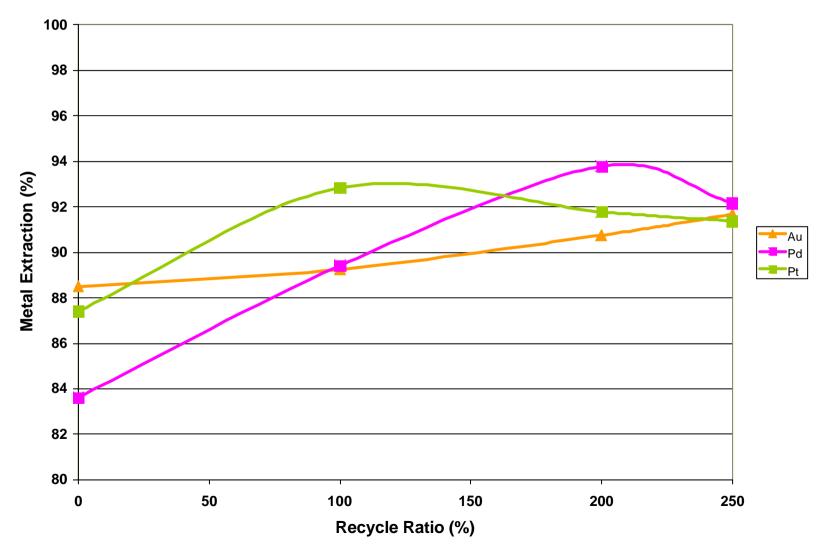
Produce concentrate containing 10-12% Cu+Ni, 8-12 g/t Pt+Pd+Au

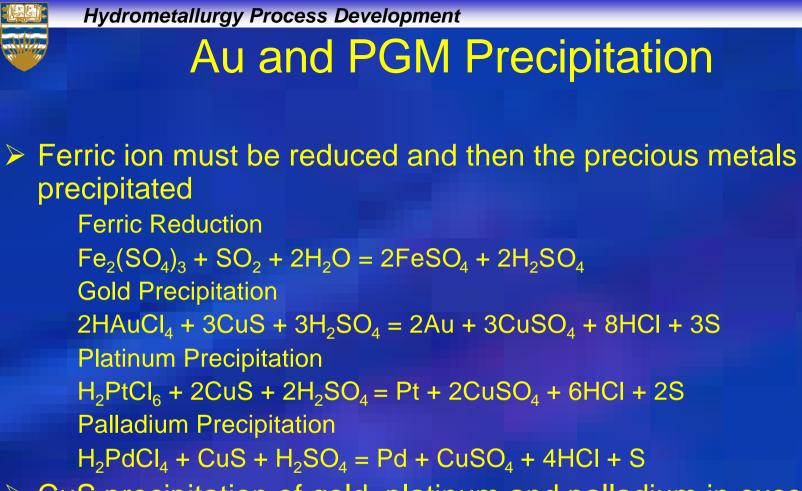


Autoclave Leaching Base Metals

- Chloride Assisted Total Pressure Oxidation (220 C, 6 g/L Cl)
- Chalcopyrite Oxidation/Iron Hydrolysis:
- $CuFeS_2 + 4.25O_2 + H_2O = CuSO_4 + 0.5Fe_2O_3 + H_2SO_4$ Pyrite Oxidation:
- $FeS_2 + 3.75O_2 + 2H_2O = 0.5Fe_2O_3 + 2H_2SO_4$ Pyrrhotite Oxidation
- $Fe_7S_8 + 16.25O_2 + 8H_2O = 3.5Fe_2O_3 + 8H_2SO_4$ Nickel Sulfide Oxidation: NiS + 2O₂ = NiSO₄

Autoclave Leaching Precious Metals Gold Oxidation/Chlorocomplex Formation: $Au + 0.75O_2 + 4HCI = HAuCI_4 + 1.5H_2O$ **Platinum Oxidation/Chlorocomplex** Formation: $Pt + O_2 + 6HCI = H_2PtCI_6 + 2H_2O$ **Palladium Oxidation/Chlorocomplex** Formation: $Pd + 0.5O_2 + 4HCI = H_2PdCI_4 + H_2O$ Temperature of 220 to 230°C. Barren solids washed and discarded


Recycle PLATSOL® Cu and Ni Extraction



Cu

Ni

Recycle PLATSOL® Au, Pt, Pd Extraction

- CuS precipitation of gold, platinum and palladium in excess of 99.5%
- Base metal losses were negligible.
- 4 kg of precipitate from 2005 pilot plant
- 56 g/t Au, 211 g/t Pt and 907 g/t Pd. 35.7% Cu and 49% S

Solution Neutralization

- Excess acid from the autoclave is neutralized ahead of Cu SX
- Limestone neutralization with 300% "seed" to grow coarse, clean, crystals of gypsum.
- Gypsum Precipitation
- $H_2SO_4 + CaCO_3 + 2H_2O = CaSO_4.2H_2O$
- Carbonate utilization exceeded 99% in the pilot tests
 Gypsum Analysis 98.6% CaSO₄.2H₂O

Copper Cathode Assay

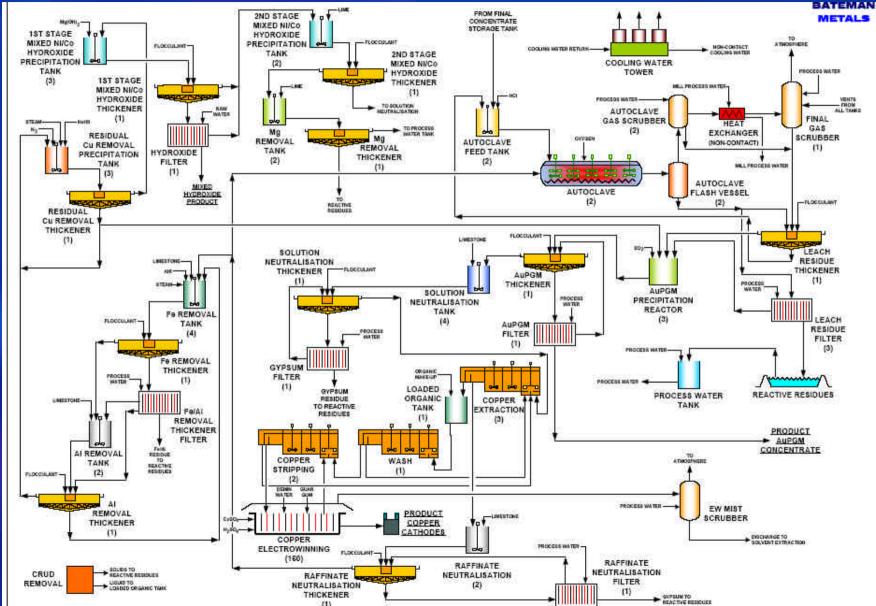
	Analysis (g/t)							
Sample	Fe	S	Pb	Ag				
Cathode 1	1.02	10.50	0.52	<1				
Cathode 2	1.31	6.00	3.63	<1				
LME Grade A	10	15	5	25				

Raffinate Treatment

Raffinate is split between return to autoclave for cooling and Ni/Co/Zn recovery Raffinate Neutralization Fe and Al Removal Two stage oxidation/hydrolysis circuit - Fe < 5 mg/L, AI < 38 mg/L with negligible Ni/Co loss Copper Removal with NaSH Precipitation - $CuSO_4 + NaSH = CuS + 0.5Na_2SO_4 + 0.5H_2SO_4$ \succ In the 2005 pilot plant, Cu < 50 mg/L CuS to Au/PGM Recovery

Ni/Co Mixed Hydroxide Route

Two Step Precipitation – First with MgO then CaO **Nickel Precipitation with Magnesia** $NiSO_4 + MgO + H_2O = Ni(OH)_2 + MgSO_4$ **Cobalt Precipitation with Magnesia** $CoSO_4 + MgO + H_2O = Co(OH)_2 + MgSO_4$ Zinc Precipitation with Magnesia $ZnSO_4 + MgO + H_2O = Zn(OH)_2 + MgSO_4$ **Residual Nickel Precipitation with Lime** $NiSO_4 + CaO + 3H_2O = Ni(OH)_2 + CaSO_4.2H_2O$ **Residual Cobalt Precipitation with Lime** $CoSO_4 + CaO + 3H_2O = Co(OH)_2 + CaSO_4.2H_2O$ **Residual Nickel Precipitation with Lime** $ZnSO_4 + CaO + 3H_2O = Zn(OH)_2 + CaSO_4.2H_2O$


Mixed Hydroxide Product

Sample	H ₂ O	Ni	Со	Cu	Fe	Zn	AI	Mg	Ca	Si	Mn
	%	%	%	%	%	%	%	%	%	%	%
1	51.2	36.3	1.92	0.37	0.59	4.84	0.07	1.04	0.02	0.05	0.03
2	41.2	31.5	1.67	0.31	0.51	4.31	0.04	0.62	0.04	0.03	0.02
		31.3	1.67	0.32	0.54	4.27	0.04	0.62	0.04	0.03	0.02
3	56.3	40.6	2.17	0.41	0.68	0.56	0.05	0.76	<0.08	0.04	0.03

Hydrometallurgy Process Development

HYDROMET – MIXED NI/Co HYDROXIDE

Continuous Pilot Plant Successfully Completed

- Bulk Concentrate Production Demonstrated
- Hydromet Process for Concentrate Treatment Demonstrated
 - Copper Cathode of LME Grade A Quality
 - Au and PGM Precipitate for Toll Processing
 - Mixed Hydroxide Product Containing Ni-Co-Zn
 - Synthetic Gypsum

Conclusions

- Hydrometallurgical processing of complex ores and concentrates offers the possibility of unlocking new and valuable mineral deposits for production of metals.
- The Boleo process offers the promise of being able to unlock the value in a complex, clayey ore containing significant amounts of copper, cobalt, zinc and manganese.
 - High rate thickeners
 - CSIRO DSX
 - Manganese Carbonate
- ➤ The PLATSOL[™] process has opened the way to treat the NorthMet ore of PolyMet mining.
 - Small additions of chloride to extract platinum, palladium and gold.

Thank You!

Any Questions?