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1 Introduction

Parameterization is the process to find explicit equations of a curve (R2) or a surface (R3),
or a manifold (Rn) in general. Intuitively, a parameterization of a geoemtry shape is to
represent the shape in terms of “parameters”. In this paper, I will refresh the concept of
parameterization from calculus, introduce a specific problem exists in the parameterization
in R3, and provide a solution.

2 Parameterization, and Reparameterization in R2

2.1 Parameterization

I believe readers have seen the parameterization of a circle before in multi-variable calculus.
Therefore, let’s review the common definition of parameterization.

Definition: A parameterized curve in Rn is a map γ : (α, β) → Rn, for some α, β with
−∞ ≤ α < β ≤ ∞.

The symbol (α, β) denotes the open interval

(α, β) = {t ∈ R | α < t < β}

Therefore, a parameterized curve in R2 is

γ(t) = σ(u(t), v(t))
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2.2 Reparameterization

Now, as we can imagine, there exists a process to reparameterize the curve, which is to
express the curve with a different set of “parameters”.

Definition: A parameterized curve curve γ̃ : (α̃, β̃) → Rn is a reparamatrization of a pa-
rameterized curve γ : (α, β)→ Rn if there is a smooth bijective map θ : (α̃, β̃)→ (α, β) (the
reparameterization map) such that the inverse map φ−1 : (α, β)→ (α̃, β̃) is also smooth and

γ̃(t̃) = γ(φ(t̃)) for all t̃ ∈ (α̃, β̃)

Note that, since φ has a smooth inverse, γ is a reparameterization of γ̃:

γ̃(φ−1(t)) = γ(φ(φ−1(t))) = γ(t) for all t ∈ (α, β)

Two curves that are reparameterizations of each other have the same image, so they should
have the same geometric properties. Informally, we can perceive this as a changing of the
”speed” of t.

2.3 Example: Parameterization of a Circle

I believe the form of parameterization function must be familiar to the readers, we recall the
implicit formula of a circle is in the form of

x2 + y2 = 1

The unit circle has a parameterization

γ̃(t) = (sin t, cos t)

Then we could find a reparameterization of σ, we have to find a reparameterization map φ
such that

(cosφ(t), sinφ(t)) = (sin t, cos t)

One solution could be θ(t) = π/2 − t. The images before reparameterization and after the
transition maintain the same shapes and geometric properties.
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Figure 1: Parameterization of a Circle

3 Parameterization in R3

3.1 Surface and Surface Patch (Parameterization)

Definition: A subset S of R3 is a surface if, for every point p ∈ S, there is an open set U
in R2 and an open set W in R3 containing p such that S ∩W is homemorphic to U .

Similarly, we could find a parameterization, or surface patch for R3 as we did for R2.

Definition: A homemorphism σ : U → S ∩W as in this definiton is called a surface patch
or parameterization of the open subset S ∩W of S.

Definition: A collection of such surface patches whose images cover the whole of S is called
an atlas of S.

As we can see, there is analogy between parameterization in R2 and R3. In fact, the most
important application in R3 is UV mapping, commonly used in Computer Graphics and
Visual Effects. As you can see, this is also a bijective mapping.
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Figure 2: Parameterization of a 3D Model, credit to Keenan Crane

3.2 Genus 1 Surface and the Parameterization of a Torus

The most common form of a Genus 1 Surface is a torus. Given the parameterization equa-
tions:

x(θ, ϕ) = (a+ b cos θ) cosϕ

y(θ, ϕ) = (a+ b cos θ) sinϕ

z(θ, ϕ) = b sin θ

Therefore,
σ(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ)

Figure 3: Parameterization of a Torus, credit to Rob Womersley

To get this parameterization, we could imagine the first two terms define the circle, then the
third term construct another circle whose radius is perpendicular to the first circle at any
given point on the first circle.
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4 The Problem in the Parameterization of A Genus 2

Surface

4.1 Genus 2 Surface and its Common Construction

Since Genus 1 Surface is a Torus, Genus 2 surface, occasionally called Double Torus, is a a
surface formed by the connected sum of 2 tori. A famous exemple of a non-orientable surface
genus two is the Klein bottle.

Figure 4: Klein Bottle and Its Fundamental Polygon, credit to Wikipedia user Inductiveload

The common construction of a double torus is a octagon with opposite identified.

Figure 5: A Octagon to Double-Torus

By our definition of surface patch, this process is a parameterization of the genus surface in
R3.

4.2 the Importance of Euclidean Intuition

As we all know, we live in a world where Euclidean space is the “norm”. However, it is
impossible to always obtain an understandable Euclidean graph when study geometry. In
the case mentioned in the last sub-section, we could obtain 4 lines intersect one point, which
implies the sum of 4 angles produced is equal to 360◦ since genus 2 surface is locally Euclidean.

Apparently, the octagon is in R2 and the sum of its interior angles is 1080◦. Let us assume
the octagon is an equilateral octagon, then each angle has the degree of 135◦. Apparently,
the angles deformed during the surface patch since the sum of angles changed.
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However, as we have mentioned before, we want to preserve this Euclidean intuition to help
us solving more questions. Then it is clear we want a better way to that preserve the angle
and length of the R2 open set in surface patch.

5 The Solution to the Problem

5.1 Conformal Mapping and Its Limitation

Firstly, let us think within the box: start with R2, there exists a mapping that can preserve
angles.

Definition: If S1 and S2 are surfaces, a conformal map f : S1 → S2 is a local diffeomorphism
s.t. if γ1 and γ̂1 are any two curves on S1 that intersect, say at a point p ∈ S1, and if γ2 and
γ̂2 are their images under f , the angle of intersection of γ1 and γ̂1 at p are equal to the angle
of intersection of γ2 and γ̂2 at f(p).

However, conformal map does not preserve the length of our equilateral octagon, here is an
example of in Computer Graphics: as you can see, the disproportional stretch of polygons is
not ideal to our mapping.

Figure 6: An Example of Conformal Mapping in Computer Graphics, credit to CCGL

5.2 Poincaré Disk Model and Hyperbolic Geometry

The only difference between Hyperbolic Geometry and Euclidean Geometry is the one pos-
tulate: the parallel postulate (Playfair’s axiom). In the following of this paper, I will use the
Poincaré Disk Model to demonstrate some properties of hyperbolic geometry.
Definition: Here is the five axioms of Hyperbolic Geometry :

(1) To draw a straight line from any point to any point.

(2) To produce (extend) a finite straight line continuously in a straight line.
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(3) To describe a circle with any centre and distance (radius).

(4) That all right angles are equal to one another.

(5) For any given line R and point P not on R, in the plane containing both line
R and point P there are at least two distinct lines through P that do not
intersect R. An alternative way to say it is there exists two or more parallel line to a
line through a given point that is not on the line.

Figure 7: A Straight Line in Hyperbolic Plane H2

Now, let us denote hyperbolic space as H. Based on Poincaré disk model, H2 is an open
disk and H2 is a subspace of R2. This implies we could use Euclidean intuition to construct
hyperbolic lines/shape (H2) in R2.

5.3 Properties of Hyperbolic Geometry in H2

Back to the equilateral octagon we used in double torus parameterization, we could recon-
struct the equilateral octagon in hyperbolic plane H2 that preserve the same length yet have
a different sum of interior angles.
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Figure 8: An equilateral octagon with each interior angles equal to 90◦ in H2

Now, let me use triangles to demonstrate some “magical” properties on hyperbolic plane. It

Figure 9: Three equilateral triangles in H2 with different degree of interior angle

is easy to notice that all triangles are equilateral, but the closer the triangle to the center of
hyperbolic plane, the more geometrically similar it is to its counterpart in Euclidean plane.
Vice versa: if the triangle is far from the center, its shape will “deformed” (in an Euclidean
intuition) and the sum of interior angles will approach to 0. To put it simply: while all three
triangles are equilateral triangles, they have different interior angle sum.

5.4 The Solution: An Octagon on A Hyperbolic Plane

In summary, instead of traditional R2 based shapes, we choose an equilateral octagon on
H2. Using the similar idea we used in last sub-section, we could construct arbitrary equi-
lateral octagon with ideal interior angle degree. Therefore, even after the surface patch, the
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sum of interior angles of our hyperbolic shape can be preserved. Furthermore, with careful
construction, we could potentially preserve the length as well.

6 Conclusion

Paramatrization of a surface in R3 can be challenging. In this paper, I provided an interesting
solution to the problem of angle deformations in R2 → R3 surface patch with introducing hy-
perbolic geometry. Lastly and most importantly, thanks to my DRP mentor Neža’s patience
and effort in helping me compiling this note.
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Appendices

A Basic Topology Definition

Definition Quantifier Statement Notation
p is an interior point of G (∃r > 0)(Nr(p) ∈ G) p ∈ G◦

p is in the closure of E (∀r > 0)(Nr(p) ∩ E 6=) p ∈ E
G is open N/A G◦ = G

F is closed N/A F 6⊂ F or F = F

Figure 10: Basic Topology Definition Chart
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