
H Y P E R I O N ® I N T E R A C T I V E R E P O R T I N G

R E L E A S E 1 1 . 1 . 1

O B J E C T M O D E L A N D D A S H B O A R D
D E V E L O P M E N T S E R V I C E S D E V E L O P E R ’ S

G U I D E

VOLUME VI: DASHBOARD ARCHITECT

Interactive Reporting Object Model and Dashboard Development Services Developer’s Guide, 11.1.1

Copyright © 2000, 2008, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Chapter 1. Introduction and Concepts . 9

JavaScript Concepts . 9

Definition of JavaScript . 9

How Interactive Reporting Studio Supports JavaScript . 9

Document-Level Customization . 10

Dashboard Section-Level Customization . 10

Object Oriented Concepts . 11

Objects . 11

Examples of Interactive Reporting Studio Objects . 11

Methods . 12

Examples of Interactive Reporting Studio Methods . 13

Properties . 13

Examples of Interactive Reporting Studio Properties . 13

Addressing Objects, Properties, and Methods . 13

Dashboard Architect Concepts . 13

The Dashboard Development Environment . 13

About Dashboard Architect . 15

Architecture . 15

Creation of Projects from Interactive Reporting Documents 16

Editing JavaScript . 17

Testing Capability . 17

Debugging Capability . 17

Synchronization with Interactive Reporting Studio . 17

Re-creation of an Interactive Reporting Document . 18

Chapter 2. Dashboard Architect Features . 19

Opening Dashboard Architect . 19

The Dashboard Architect User Interface . 19

Menu Commands, Shortcuts, and Buttons . 21

The File Menu . 21

The Edit Menu . 22

The View Menu . 23

Contents iii

The Project Menu . 24

The Debug Menu . 24

The Run Menu . 25

The Tools Menu . 25

The Help Menu . 26

The Options Dialog Box . 27

Chapter 3. Creating a Project . 29

Creating Projects . 29

Duplicating Projects . 30

Chapter 4. Making an Interactive Reporting Document . 33

Chapter 5. Editing . 35

General Notes About Editing . 35

Navigation Using the Script Outliner . 36

Code Generation Using the Object Browser . 36

The Find Dialog Box . 36

The Search Feature . 37

The Options Feature . 37

The Find Next Option . 39

The Find All Option . 39

Using the Floating Find Menu . 39

The Replace Feature . 40

Using the Printing Command . 40

Using the Match Brace Feature . 40

The Auto-Code Feature . 41

Macros . 42

Defining a Macro . 42

Simple Macros . 43

Multiple-Line Macros . 44

Macro Parameters . 44

Invoking Macros . 45

Macro Control Codes . 46

Importing Sections from other Interactive Reporting Documents 47

Unicode Functionality . 48

Chapter 6. The Testing and Debugging Processes . 49

Testing and Debugging . 49

About Testing . 49

iv Contents

Testing Rule . 49

Procedural and Declarative JavaScript . 49

About Debugging . 52

Breakpoints . 52

Chapter 7. Adding and Removing Objects . 55

Interaction with Interactive Reporting Studio . 55

Resynchronizing . 55

Adding Controls . 56

Duplicating Controls . 56

Creating Controls . 57

Deleting Controls . 57

Renaming Controls . 57

Adding and Duplicating Sections . 57

Renaming Sections . 58

Deleting Sections . 58

Chapter 8. Documentation . 61

Documentation of Code . 61

Documentation Comments . 61

Documentation of Variables . 62

Documentation of Functions . 62

Documentation of Classes . 63

Documentation of Dashboard Development Services Components 64

Namespace Scope of Entities and the @scope Tag . 65

Documentation Grouping Using the @scope Tag . 66

Documentation Comment Tag Reference . 67

Dashboard Development Services Component-Specific Features 68

Generating Documentation . 68

Inclusion and Exclusion of Documentation Groups . 69

Inclusion and Exclusion of Unscoped Documentation . 69

Dashboard Development Services Component-Specific Features in HTML
Documentation . 69

Chapter 9. Using the Dashboard Development Services Update Utility . 71

About Dashboard Development Services Update Utility . 71

Unicode Functionality . 72

Consolidate Images in Resource Manager . 72

Update Workflow . 72

New Sections File . 72

Contents v

Configure Configuration Files . 73

Modify the Configuration File . 73

Updating Documents . 73

Using the Update One Method . 74

Using the Update Many Method . 74

Command Line Updates . 75

Selecting Documents to Update . 76

Chapter 10. Updating Documents with Advanced Scripting . 79

Customizing Scripts . 79

EPM Workspace Custom Scripting Environment . 79

Calling Scripts . 80

Calling Scripts in EPM Workspace . 80

Calling Scripts in Dashboard Development Services Update Utility 80

Monitoring Script Execution . 81

Custom Scripts . 81

JavaScriptUpdate.js . 81

UpdateDataModels.js . 81

SortDataModelTopics.js . 81

RevertImageResources.js . 82

Script Parameters . 84

Logging . 85

Writing Document Information into the Log . 86

Document Object Model Tree Structure . 86

Document Conversion and Loading Strategies . 87

Traversing the Document Object Model . 88

XPath-Style Searching . 88

Differences Between the Impact Management Services and Interactive Reporting Studio
Document Object Models . 90

Investigating the Impact Management Services DOM Structure 90

Accessing Properties . 91

Collections . 91

Property Types . 92

Accessing the File System . 92

General Java Code in Scripts . 92

Using Batch Input Files . 92

Scripting References . 93

ScriptEnvironment Object . 93

Reporting and Analysis Repository: Repository Artifact . 98

The Node Object . 105

vi Contents

The BqyDocument Object . 109

Method and Properties References . 112

Glossary . 119

Index . 129

Contents vii

viii Contents

1
Introduction and Concepts

In This Chapter

JavaScript Concepts .. 9

Object Oriented Concepts .. .11

Dashboard Architect Concepts .. .13

Architecture... .15

JavaScript Concepts
This topic discusses the JavaScript and the Oracle's Hyperion® Interactive Reporting Studio
relationship. It examines the differences between document-level and dashboard section-level
customization.

Definition of JavaScript
JavaScript is an interpreted programming language, that enables executable content to be
included in Oracle's Hyperion® Interactive Reporting documents. It is a scripting language that
contains a small vocabulary and a simple programming model, enabling developers to create
interactive and dynamic content with syntax loops, conditions, and operations. While JavaScript
is based on the syntax for Java, it is not Java.

How Interactive Reporting Studio Supports JavaScript
Interactive Reporting Studio supports the Netscape JavaScript Interpreter 1.4. Netscape
JavaScript is a superset of the ECMA–262/ISO–16262 standard scripting language, with minor
differences from the published standard. The code in the tree supports JavaScript 1.1, 1.2, 1.3,
and 1.4. JavaScript 1.4 includes support for some ECMAv2 features (for example, exception
handling and new switch behavior).

JavaScript enables developers to customize Interactive Reporting documents at the document,
dashboard section (including controls), computed items, and menu levels.

JavaScript Concepts 9

Document-Level Customization
Documents can include queries, tables, pivots, charts, reports, or dashboard sections. Dashboard
sections can be inserted into documents or can be standalone. Scripts can be included within
Interactive Reporting documents to initiate application functionality, to process queries, activate
sessions, and create filters. A document-level action is initiated when the OnStartUp or
OnShutDown events are fired in a document.

JavaScript enables the developer to define event handlers (code that is executed when an event
occurs). Events are usually initiated by the user; for example, clicking a button, or events can be
set to commence when a document is opened, or a section is activated.

Dashboard Section-Level Customization
Dashboards are interfaces for users to view data, create ad hoc queries, and print reports.
Developers use templates, charts, pivots, and so on to create user-friendly sections. These
sections are the hypertext, push-button interface to the entire query and reporting process. A
dashboard section-level action is initiated when the OnActivate or OnDeactivate events are
fired in a section.

In sections, JavaScript controls the action and behavior of objects such as command buttons,
lists, and graphic controls. Typically, objects are scripted to perform actions based on events,
such as OnClick, OnSelection, or OnDoubleClick.

Table 1 Dashboard Controls

Dashboard Controls Event Supported

Command Buttons OnClick

Option Buttons OnClick

Check Boxes OnClick

Lists OnClick, OnDoubleClick

Drop-down Lists OnSelection

Text Boxes OnChange, OnEnter, OnExit

Table 2 Dashboard Graphics

Dashboard Graphics Event Supported

Lines OnClick

Rectangles OnClick

Round Rectangles OnClick

Ovals OnClick

Text Labels OnClick

10 Introduction and Concepts

Dashboard Graphics Event Supported

Pictures OnClick

Results OnClick, OnRowDoubleClick

Tables OnClick, OnRowDoubleClick

Pivots and Charts OnClick

Object Oriented Concepts
This topic explains key Object Oriented (OO) concepts, provides examples, and discusses how
to address objects, methods, and properties.

Objects
In Object Oriented Programming (OOP) objects represent the real world. An object is a software
package that contains a collection of related characteristics and behaviors, or properties and
methods.

JavaScript objects can package multiple properties and methods together, or provide built-in,
dynamic objects, properties, and methods.

Properties are characteristics that describe data or other objects. For example, a door is a real
world object and can be modeled in a software application. An object property example is a door
in one of two states—open or closed. A door may have a latch. A latch is a property of the door
but because a latch can be locked or unlocked, it is also an object in its own right.

Methods or event handlers are functions associated with objects that can alter the state of the
object. For example, a door can be opened or closed. Open and close are examples of methods,
a sequence of events must occur to move the door from one state to another. For example,
pressure is applied to the door in a direction to close it. In Dashboard Architect, a routine
animates the closing of the modeled door.

Object methods and properties define the characteristics and behavior of an object.

Examples of Interactive Reporting Studio Objects
In Interactive Reporting Studio, documents are accessed through the scripting environment as
a hierarchy of objects. For example, the Interactive Reporting Studio button object contains
these properties and methods.

Table 3 Button Object Properties and Methods

Characteristic Type Description

Alignment Property Align text on button face—left, right, center

Object Oriented Concepts 11

Characteristic Type Description

Enabled Property Availability of objects to be clicked

Font Property Style of text displayed on a button face (an object in its own right that contains its
own characteristics)

Name Property Programmatically addressed object name

OnClick Method Event handler called when button is clicked

Text Property Text displayed on button face

Type Property Type of object (for example, bqButton)

Vertical Alignment Property Align text on button face—top, bottom, middle

Visible Property Visibility of a button

The Font object described in the table also contains these properties.

Table 4 Font Properties

Property Example

Color Red, blue, black

Effect Superscript, subscript

Name Arial, Times New Roman

Size 10pt, 12pt

Style Bold, italic

A collection is another type of object supported by Interactive Reporting Studio and JavaScript.
Collections usually contain a count property to calculate how many elements are included as
parts. A collection contains one or more methods, and provides a way of enabling access to the
elements, to add elements, and other generic facilities to sanction change to the state of the
collection. Different types of collections may behave differently.

The Interactive Reporting Studio application object is a collection that contains one or more
documents including one or more sections. Each section contains other objects specific to it.
For example, queries include a data model, a Request line, and a Filter line. Filters include show
values and custom values lists, and custom SQL.

Each object contains unique methods and properties that enable you to leverage the object
functionality.

Methods
Methods (functions and event handlers) are actions that change the state of the object.
Programmers write JavaScript to determine the actions that are executed when an event is fired.
Dashboard Architect is concerned with scripting these actions, which involves the execution of

12 Introduction and Concepts

one or more methods. For example, when a button is pressed, the Save method in the current
document is invoked.

Examples of Interactive Reporting Studio Methods
Examples of methods include Save in a document, Process in a query, and Recalculate in a results
set.

Properties
Properties are characteristics that describe objects.

Examples of Interactive Reporting Studio Properties
Examples of properties include the visible state of a button or section, the connected state of a
connection, or the size of a font.

Addressing Objects, Properties, and Methods
Properties and methods belong to objects, and as properties can themselves be objects, a
recursive-nested structure evolves. Objects are referenced by including all names in the chain
from the imaginary root object right down to the object, property, or method being addressed.

For example, the user property of a connection object in a data model of the query section of
the active document is expressed as syntax:

ActiveDocument.Sections[“Query”].DataModel.Connection.User

Interactive Reporting Studio and Dashboard Architect provide an object model tree view
navigator that can generate the syntax on behalf of the user and ease the task of addressing objects,
methods, and properties.

Dashboard Architect Concepts
This topic discusses the main Dashboard Architect concepts, including the operating
environment, a description of the software, and the architecture and functions of the program.

The Dashboard Development Environment
The figure illustrates the dashboard development environment and the role of Dashboard
Architect within the test and development cycle.

Dashboard Architect Concepts 13

The test and development cycle of Dashboard Studio templates is displayed on the right side of
the diagram. Dashboard Architect provides a 4GL-programming environment that uses
JavaScript and leverages the Interactive Reporting Studio object model. On the left side of the
diagram, the platform provides a 5GL-development environment that requires no programming
at all. Application development is through a template-driven, point-and-click wizard whose
templates can be extended with plug-and-play components developed by using Dashboard
Architect. See the Hyperion Interactive Reporting – Object Model and Dashboard Development
Services Developer's Guide, Volume 7: Component Reference Guide.

Dashboard Studio templates contain frameworks that provide most basic functions required by
analytical applications or dashboards. These functions are implemented as discrete components
that are plugged together in a variety of combinations to form templates. Templates are
transformed into sophisticated applications with Dashboard Studio, a point-and-click
dashboard constructor.

The JavaScript at the core of these templates was developed initially with the Interactive
Reporting Studio JavaScript editor. A more powerful development environment was required
to cope with the size and complexity of the template, therefore Dashboard Architect was
developed.

Dashboard Architect is a JavaScript editor and debugger that is integrated with Interactive
Reporting Studio. Dashboard Architect is used to create and maintain Interactive Reporting
Studio JavaScript applications, and coupled with Dashboard Studio, it provides a great
productivity advantage to users.

The right side of the dashboard development environment diagram is optional, and applies only
if Dashboard Architect is used to create templates. The left side of the diagram represents a
lifecycle of developing applications directly.

The dashboard development environment is founded on these principles:

● Users capable of surfing the web can use a dashboard

14 Introduction and Concepts

● Users capable of building Interactive Reporting Studio charts or pivots can build
sophisticated dashboards with a point-and-click paradigm

● JavaScript programmers can build Interactive Reporting Studio applications and plug-and-
play components in a productive manner using these facilities

● Interactive Reporting Studio users can increase quality and productivity by reusing data and
code sections

About Dashboard Architect
Dashboard Architect is an integrated development environment (IDE) for Interactive Reporting
Studio. It enables you to swiftly test, debug, and build Interactive Reporting Studio applications,
freeing up development time and increasing productivity.

Dashboard Architect enables programmers to work on JavaScript alongside Interactive
Reporting Studio in a fully interactive integrated manner. Dashboard Architect main
functionality includes these concepts:

● Create a project by importing an Interactive Reporting document that contains JavaScript

● Edit the JavaScript in a project with these facilities:

❍ Powerful search-and-replace

❍ Individual and bulk formatting

❍ Brace matching to create complete syntax

❍ An object model browser to generate syntax

❍ Undo and back-tracking

● Use Dashboard Architect to change an Interactive Reporting document or synchronize the
state of the Interactive Reporting document with the state of the project, where Interactive
Reporting document changes are made outside Dashboard Architect

● Test and debug code with breakpoints and stack traces to verify correct operations and fix
faulty behavior

● Create an Interactive Reporting document from the project and deploy it in production
environments

Note:

Source code can be managed and version-controlled like other application sources as it is stored
externally in text files.

Architecture
Figure 1 depicts the Dashboard Architect structural design.

Architecture 15

Figure 1 Product Architecture

These sub-topics expand the items identified in the architecture diagram.

Creation of Projects from Interactive Reporting Documents
As the starting point of a project, an Interactive Reporting document is composed of many
sections, one or more of which may be a dashboard. Each section contains objects that expose
scriptable events. Documents may contain JavaScript as part of the document and section events.

The regular Interactive Reporting document is disassembled, and all JavaScript is read from
events within the document and stored in a Scripts folder as a text file—one for each section
plus one for the scripts. Provision is made for every event in the Interactive Reporting document
even if it is empty.

Instrumented.bqy is created from the regular Interactive Reporting document. The file
contains a full set of unmodified sections including queries, results, tables, charts, pivots, and
report sections. It also contains altered or instrumented releases of the original sections. All visual
elements remain unchanged but a line of JavaScript is inserted into all object events in place of
the original script. The JavaScript calls the Debug Server to request code. In response, the Debug
Server sends JavaScript back to Interactive Reporting Studio in time for live execution of the
code.

Note:

To successfully duplicate a project, the entire directory tree that contains the project must be
copied.

16 Introduction and Concepts

Editing JavaScript
Interact with Dashboard Architect to view and edit the JavaScript that is outside the Interactive
Reporting document. A window similar to Windows Explorer provides access to the JavaScript,
including a tree view of all sections, objects, and events in each dashboard, as leaves of the tree.

Testing Capability
Code is available to the Interactive Reporting document and Interactive Reporting Studio in real
time, even though it is held outside the Interactive Reporting document. The reason this occurs
is because every Interactive Reporting document event is a call to the Debug Server requesting
its code and passing itself as a parameter. Interactive Reporting Studio is used to execute the
code. Buttons and items are clicked, events are fired, and event handlers call the Debug Server.
The Debug Server examines the object, fetches the JavaScript, and returns it to the event handler
as a string. The event handler completes the operation by passing the returned string through
to the JavaScript eval() function and so the latest code is parsed, interpreted, and executed, all
in real time. The Interactive Reporting Studio environment is thereby able to execute the code
as if it were stored internally, ensuring that the document behaves as if it were running as usual,
instead of being instrumented.

Debugging Capability
Debugging is closely related to testing. When debugging in Dashboard Architect, one or more
breakpoints are typically placed in strategic positions in the code that is being edited. Execution
is interrupted in Interactive Reporting Studio and the current state of the application is examined
at a point within the application logic.

Adding a breakpoint modifies the way the regular JavaScript behaves. Instead of simply
executing, code is inserted that makes calls back to the debugger to highlight the line that is about
to be executed. When such a line is encountered, Dashboard Architect hands control back to
you so the state of the properties and objects can be examined or modified, and the behavior of
the code is understood.

Synchronization with Interactive Reporting Studio
Interactive Reporting Studio enables many powerful actions to be performed through its
programmatic interface. However, it does not sanction the creation or deletion of objects on a
dashboard, nor the dynamic addition of JavaScript into the event handlers of those objects.

To solve these problems, Dashboard Architect provides a synchronization mechanism. Actions
that are performed through the Interactive Reporting Studio user interface, are detected and the
Dashboard Architect structures are adjusted to reflect the current state of
instrumented.bqy. While this is not a seamless way to create and remove objects, it is an easy-
to-use mechanism.

Architecture 17

Re-creation of an Interactive Reporting Document
The final step in the development sequence is the re-creation of a regular Interactive Reporting
document. Merging the code that was edited inside Dashboard Architect with sections and
controls within instrumented.bqy, creates a document that is no longer connected to
Dashboard Architect and that can be deployed in any production environment. No trace of
Dashboard Architect can be found in the compiled Interactive Reporting document. See
“Making an Interactive Reporting Document” on page 33.

18 Introduction and Concepts

2
Dashboard Architect Features

In This Chapter

Opening Dashboard Architect.. .19

The Dashboard Architect User Interface19

Menu Commands, Shortcuts, and Buttons21

The Options Dialog Box... .27

Opening Dashboard Architect
Upon opening Dashboard Architect, a window is presented that enables you to create a new
project or select a project.

To create a new project, click New Project. See “Creating Projects” on page 29.

To select a project, perform an action:

● Click Browse, and locate the Dashboard Architect Project (*.qdp) file

● Select a project from Open Project, and click Open

The Dashboard Architect User Interface
The main Dashboard Architect screen is divided into numbered segments, as illustrated in the
figure. Each segment is described in Table 5.

Opening Dashboard Architect 19

Table 5 Interface Descriptions

Item Label Description

1. Menu bar Access to Dashboard Architect features (Some menu bar entries provide
common keyboard shortcuts and use buttons to activate functionality)

2. Toolbar One-click access to the most functionality

3. Navigation panel The panel contains one of these modes:

1. Sections and the programmable elements within them in the form of an
expanded or contracted tree view. The editing window (6) displays the
JavaScript associated with the selected programmable element.

2. Interactive Reporting Studio objects available in the instrumented
Interactive Reporting document in the form of an expandable tree view.
Double-click an object, method, or property, and the associated syntax is
added at the cursor position in the editing window (6).

4. Line number Line number indicator

5. Event handlers Displayed as content tabs for sections or controls at the top of the editing
window (6)

20 Dashboard Architect Features

Item Label Description

6. Editing window Edit JavaScript or examine executed code with breakpoints

7. Output window and content tabs The output window contains three content tabs.

1. Code Requests—Track calls made by instrumented.bqy to the Debug
Server for the JavaScript that each object must evaluate. If an error is
detected, the last icon in the list is displayed with the red cog over the folder

icon (). Clicking a line of code in the output window causes the editing
window (6) to display the JavaScript for that event handler.

2. Find—Display the lines matching a find specification. Clicking a line in the
find list causes the editing window (6) to display the JavaScript for that
event handler and the cursor is placed where the match is made on the
line.

3. Evaluate—Enable interaction with instrumented.bqy while execution
is paused on a breakpoint. Two sub-panes are visible, one in which
JavaScript expressions can be entered for evaluation and another in which
the results of the evaluation are displayed. The window also contains

buttons for debugging: (Evaluate) and (Stack Trace). Within the

evaluate pane (Cut), (Copy), or (Paste) an expression to

be evaluated, or click (Clear) to delete the expression from this
window.

Note: The output window is visible only if is clicked or Crtl+W is pressed.

Menu Commands, Shortcuts, and Buttons
This topic provides a comprehensive list and description of the Dashboard Architect menu
commands, buttons, and shortcuts.

The File Menu
The commands available in the File menu are discussed in Table 6.

Table 6 File Menu Descriptions

Command Button (where applicable) Shortcut (if applicable) Description

New Project Ctrl+N Create a project file from an
Interactive Reporting document
(The starting point of a project)

Open Project Ctrl+O Open a project to edit and test the
code

Close Project Close an open project

Menu Commands, Shortcuts, and Buttons 21

Command Button (where applicable) Shortcut (if applicable) Description

Save Project Ctrl+S Save an open project, including the
JavaScript and associated
instrumented.bqy

Print Ctrl+P Print a list of the JavaScript for the
whole or part of the project

Print Setup Configure printer settings

Make BQY Create an Interactive Reporting
document from
instrumented.bqy and the
JavaScript in the Dashboard
Architect Scripts folder

<numbered items> Open a recently used project

Exit Ctrl+Q Close the project and the
application

The Edit Menu
The commands available in the Edit menu are discussed in Table 7.

Table 7 Edit Menu Descriptions

Command Button (where applicable) Shortcut (if applicable) Description

Undo Ctrl+Z Revert the document to a previous state
(Operates only on actions in the current
event. Moving to another event handler
and using the Find, Replace, and Save
operations causes discontinuity in the
undo log)

Redo Ctrl+Y Opposite to Undo

Cut Ctrl+X Regular Windows behavior with regard to
selected text

Copy Ctrl+C Regular Windows behavior with regard to
selected text

Paste Ctrl+V Regular Windows behavior with regard to
selected text

Find Ctrl+F Activate Find and specify search criteria
to match a text string or a pattern

Find Next F3 Find the next instance of a matched text
string or a pattern

22 Dashboard Architect Features

Command Button (where applicable) Shortcut (if applicable) Description

Find Previous Ctrl+F3 Find the prior instance of a matched text
string or a pattern

Replace Ctrl+H Activate Replace and specify the criteria
to find one or more occurrences of a string
(Each match is replaced with a different
string)

Match Brace Ctrl+B Starting at the cursor position, locate the
next opening parenthesis ((), brace ({), or
bracket ([) and find the closing
counterpart (If no opening ((), ({), or ([)
exists, the function scans backwards until
one is found and moves forward and finds
the closing counterpart. If a match is
found, the area between the opening and
closing items is highlighted)

Go to Row Ctrl+G Move the cursor to the nominated row
number in an event handler

The View Menu
The commands available in the View menu are discussed in Table 8.

Table 8 View Menu Descriptions

Command Button (where applicable) Shortcut (if applicable) Description

BQY Script Outline Turn Object Model mode off and
display sections and objects in the
navigation panel

Object Model Turn BQY Script Outline mode off and
replace the navigation panel with the
Object Model browser

All Events Display all objects with event
handlers in the navigation panel
(Applies in BQY Script Outline mode)

Scripted Events Display objects with event handlers
that are not empty in the navigation
panel (Applies in BQY Script Outline
mode)

Output Window Ctrl+W Hide or reveal the output window

Back Return to where the cursor was last
clicked within a script (Includes a
drop-down arrow which displays a
list of recently visited events)

Menu Commands, Shortcuts, and Buttons 23

The Project Menu
The commands available in the Project menu are discussed in Table 9.

Table 9 Project Menu Descriptions

Command Button (where applicable) Description

Import Import one or more Interactive Reporting Studio
sections from an external Interactive Reporting
document (Sections are instrumented as part of the
import)

Add Section Create a section in instrumented.bqy and a
matching set of event handlers in Dashboard
Architect

Rename Section Rename an Interactive Reporting Studio section
(The corresponding event handlers in Dashboard
Architect are renamed)

Delete Section Delete a section (The corresponding event handlers
are deleted in Dashboard Architect)

Add Control Open a dialog box detailing the process required to
create an object in a dashboard (Interactive
Reporting Studio does not sanction the creation of
this type of object programmatically so the
operation involves a two-step process beginning in
Dashboard Architect and concluding in Interactive
Reporting Studio)

Resynchronize Close instrumented.bqy, examine it, and
instrument new objects (Synchronizes the state of
the event handlers within Dashboard Architect with
the current state of instrumented.bqy)

Include Control Documentation Indicate whether documentation for variables and
functions, not scoped outside a control, are
included in the generated documentation

Generate Documentation Generate the HTML documentation for the current
Interactive Reporting document

The Debug Menu
The commands available in the Debug menu are discussed in Table 10.

Table 10 Debug Menu Descriptions

Command Button (where applicable) Shortcut (if applicable) Description

Toggle Breakpoint F9 Turn a breakpoint on or off (Select
Run, then Fire Current Event
before the breakpoint takes
effect)

24 Dashboard Architect Features

Command Button (where applicable) Shortcut (if applicable) Description

Clear All Breakpoints Turn off all breakpoints

Evaluate Evaluate the expression in the left
text box of the evaluate pane in
the output window (Must be a
valid JavaScript expression,
otherwise a JavaScript error is
generated and execution ceases
at the breakpoint. Only available
when paused on a breakpoint)

Stack Trace Display the sequence of function
calls that lead to the breakpoint
(Only available when paused on a
breakpoint)

The Run Menu
The commands available in the Run menu are discussed in Table 11.

Table 11 Run Menu Descriptions

Command Button (where applicable) Description

Fire Current Event Cause the current event handler to be called, triggering the
evaluation of JavaScript (Used to check for syntax errors, and
to update definitions and breakpoints in functions)

Fire OnStartUp Event Cause the OnStartUp() event of the document to be fired

Fire Document Load Save, close, and reopen instrumented.bqy

Continue Continue past the current breakpoint

The Tools Menu
The commands available in the Tools menu are discussed in Table 12.

Table 12 Tools Menu Descriptions

Command Button (where applicable) Description

Options Display the Options dialog box (See “The
Options Dialog Box” on page 27)

Reload Macro Definitions Reload the macro definitions from the
macros.txt file (Useful when developing,
testing, and modifying macros)

Menu Commands, Shortcuts, and Buttons 25

Command Button (where applicable) Description

Interactive Reporting Studio Type Library
Diagnostics

 Open the Installation Diagnostics window
(As part of the Installation Diagnostics, the
Type Library file (TLB) describes the
interface offered by a COM server such as
Interactive Reporting Studio. Dashboard
Architect uses the TLB to communicate
with the services that Interactive Reporting
Studio offers. If you are using a release
earlier than Release 9.3.1 (except Release
9.2, Service Pack 3), and the version of the
TLB and the release of Interactive Reporting
Studio are not in synch, this can result in
unexpected behaviors in Dashboard
Architect. In a standard installation, the
TLB is located in the Windows system32
folder and is called brioqry.tlb. The
Interactive Reporting Studio installer keeps
the application and the TLB in synch.
However, when non–standard mechanisms
for upgrading are used problems may
arise.)

Line numbers Show or hide line numbers in the editing
window (A discrepancy exists between the
line numbers shown in the Console window
and the line numbers shown in Dashboard
Architect when working with an
instrumented Interactive Reporting
document. To translate the line number
reported in the Console window, subtract
two for line numbers if no breakpoints exist
in the current event, or the breakpoints
come after the line being reported.
Subtract a further five for each breakpoint)

Always On Top Dashboard Architect window is always be
on top of other windows (Comments are
unavailable when running in this mode)

Cause the application to behave as a
typical window

The Help Menu
The commands available in the Help menu are discussed in Table 13.

Table 13 Help Menu Descriptions

Command Shortcut (if applicable) Description

Contents F1 Display Dashboard Architect help

About Hyperion Dashboard Architect Display product release information

26 Dashboard Architect Features

The Options Dialog Box
Options enables you to change the look and feel of the Dashboard Architect interface. To display
the Options dialog box, select Tools, then Options.

These settings can be modified with the Options dialog box:

● Tab Indent—Represents the number of spaces to add when the Tab key is pressed (The
current line in the editing window is applied to the next line if Tab Indent is not altered)

● History Entry Total—Access up to 20 event handlers that were previously visited (Contains
a limit of 20 entries)

● Show Welcome dialog on startup—Displays the Welcome dialog when Dashboard Architect
is launched

● Strip INCLUDES on Creation—Removes references to all INCLUDES when a project is
created, if selected

● Enable automatic coding extensions—Enables the Auto-Code feature, if selected (See “The
Auto-Code Feature” on page 41)

● Show warning for invalid documentation tags—Enables the displayed warning dialog box
when an invalid documentation tag is encountered, if selected (See“Documentation” on
page 61)

● Code Font—Customizes the code font displayed in Dashboard Architect (Select a font, font
style, and size from the Font dialog box, and apply it to the code)

● User Interface Font—Customizes the Dashboard Architect user interface font

● Language—Enables the user interface language to be set (A necessary option for localized
or Unicode releases, as different languages display characters differently)

The remaining commands under Editor Format enable modification of the colors and font type
used for syntax highlighting. Select a syntax format from the list, and apply color and font type.

Note:

Color is applied to text only as it is being viewed. It is not stored with the text in the JavaScript
files.

The Options Dialog Box 27

28 Dashboard Architect Features

3
Creating a Project

In This Chapter

Creating Projects .. .29

Duplicating Projects .. .30

Creating Projects
The process of creating or duplicating a project is the starting point for developing or maintaining
code with Dashboard Architect. Dashboard Architect does not however, create Interactive
Reporting documents, Interactive Reporting Studio sections, or dashboard objects, because
there is no API facility enabling it to do so.

Dashboard Architect complements the strengths of Interactive Reporting Studio and provides
value in scripting and debugging event handlers in sections.

➤ To create a project:

1 Start Interactive Reporting Studio, and, on the Welcome dialog, click Cancel.

Starting Interactive Reporting Studio before starting Dashboard Architect avoids the screen
flicker caused by the intermittent display of menu bars as Dashboard Architect interacts with
Interactive Reporting Studio.

2 Start Dashboard Architect.

3 Alternatively, to open Dashboard Architect, start Interactive Reporting Studio, and select Tools, then Launch
Dashboard Architect.

4 Select File, then New, or click .

Create New Project is displayed.

5 Click (next to Original BQY Location), and navigate to the Interactive Reporting document that contains
the JavaScript to be to maintained or redeveloped.

The Interactive Reporting document selected for this example is Arch_tut.bqy, located in the
Samples directory.

Dashboard Architect Project Folder is filled with a project folder name (that matches the initial
Interactive Reporting document), to be created in the folder that contains the original Interactive
Reporting document.

Creating Projects 29

Project Title is automatically filled to reflect the original selected Interactive Reporting
document. Use the default title or specify another title.

6 Optional: To override the default Dashboard Architect Project Folder, click to locate another folder.

The folder must be empty because files and folders are added to create the directory structure.

7 Click OK.

Dashboard Architect examines the selected Interactive Reporting document, disassembles it,
and creates a JS file for each section, in which it makes provision for event handlers for all
dashboard objects. JavaScript found in the Interactive Reporting document is placed in the event
handler locations within the JS files.

Dashboard Architect creates instrumented.bqy, which looks identical to the original
Interactive Reporting document, except the JavaScript within it is replaced with instrumented
debug code. The debug code calls the Debug Server, which returns the JavaScript code from the
JS files to the Interactive Reporting document under test, in real time.

Instrumented.bqy behaves similarly to the original Interactive Reporting document in the
presence of the Debug Server and Dashboard Architect. The original Interactive Reporting
document is left unchanged and a copy is placed in the Backup folder. The file name adopts the
form of ORIGINAL-<date and time>. For example,
ORIGINAL-2004-10-09-18-26-40.bqy.

At the end of the development cycle, an Interactive Reporting document is re-created from the
JavaScript in the JS files and instrumented.bqy.

The Project structure contains these folders:

● Backup—The original Interactive Reporting document that was used to create
instrumented.bqy

● Compiled—The starting Interactive Reporting document (Additional Interactive Reporting
document files are added each time the Make BQY command is selected)

● Instrumented—Contains instrumented.bqy

● Scripts—One JS script file for each section and one for the document

● Library, ESInfo, and Doc—Reserved for future use

After the instrumentation process is complete, Dashboard Architect displays the JavaScript for
the created project. The project is ready for testing and editing.

Duplicating Projects
This procedure follows on from “Creating Projects” on page 29.

To duplicate a project, the directory tree that contains the project must be copied.

➤ To duplicate a project:

1 Open Windows Explorer.

2 Locate the project to be duplicated.

30 Creating a Project

For example, locate the Arch_tut folder.

3 Select the directory tree, including the project file, the instrumented Interactive Reporting document, and
the JavaScript files.

In short, select everything that the project requires to work. Individual Dashboard Architect
projects are self-contained and can be copied with no side-effects.

4 Right-click, and select Copy.

5 Create a folder to paste the duplicate project directory into.

For example, create Arch_tut_copy.

6 Paste the copied directory into the folder.

For example, paste the files into Arch_tut_copy.

7 Open the duplicate project file in Dashboard Architect.

The duplicated project functions just like the original.

Optional: An alternative duplication method for developers who use source code control
systems, is to use a branch in the source code control system. This option is a more traditional
software development technique.

Duplicating Projects 31

32 Creating a Project

4
Making an Interactive
Reporting Document

At the end of the development process, Dashboard Architect re-creates a regular Interactive
Reporting document from instrumented.bqy and the updated JavaScript from the JS files.

Instrumented debug code is replaced with the JavaScript from the JS file for each event in each
dashboard. The regular Interactive Reporting document can now run in environments where
Dashboard Architect is not available, as a regular Interactive Reporting document. For example,
it can be deployed in these environments:

● Client; for example, Interactive Reporting Studio

● Plug-in; for example, Oracle's Hyperion® Interactive Reporting Web Client

➤ To create an Interactive Reporting document of the project that is open in Dashboard Architect:

1 Select File, then Make BQY.

Save As is displayed. By default the file is saved into the folder which was specified when the
project was created. A backup of the file is also created and stored in the Compiled folder of the
project.

2 Click Save.

No trace of Dashboard Architect instrumentation remains in the compiled Interactive Reporting
document.

33

34 Making an Interactive Reporting Document

5
Editing

In This Chapter

General Notes About Editing35

Navigation Using the Script Outliner .. .36

Code Generation Using the Object Browser .. .36

The Find Dialog Box... .36

Using the Floating Find Menu... .39

The Replace Feature40

Using the Printing Command40

Using the Match Brace Feature40

The Auto-Code Feature41

Macros42

Importing Sections from other Interactive Reporting Documents... .47

Unicode Functionality.. .48

General Notes About Editing
Editing JavaScript in Dashboard Architect is similar to most editing operations in programs such
as UltraEdit, VisualBasic, and Notepad. Use the Dashboard Architect editing window to edit
code in an Interactive Reporting document.

The changes made in the editing window are saved to the JS files in the Scripts folder when save

is next performed, by clicking , or reloading the document. Code changes are kept in memory
and are available to the Interactive Reporting document when event handlers request code
through the Debug Server.

The keyboard and buttons behave in familiar ways. These are special features to note.

● Syntax is color-coded—Dashboard Architect uses a dictionary of reserved words to control
how it applies color to syntax (Color-coding is controlled in Options, select Tools, then
Options. Color is applied to text only as it is viewed, and is not stored with text in the
JavaScript files. See “The Options Dialog Box” on page 27)

● Indentation—Applied to the current and the next line (The number of spaces to add when
Tab is pressed is controlled in Options. See “The Options Dialog Box” on page 27)

● Shift+Enter and Enter are not identical—Enter terminates a line of JavaScript, whereas Shift
+Enter does not terminate a JavaScript statement; it continues it on the next line (Do not

General Notes About Editing 35

use Shift+Enter with breakpoints, because these cannot be set across continuation lines. If
breakpoints are added to these lines, JavaScript syntax errors are generated. See
“Breakpoints” on page 52)

● Back operations—Return to previously visited event handlers (Up to 20 event handlers are
kept in the execution stack for back-tracking purposes)

● Discontinuity in the undo log—Caused by operations such as Save, Find, Replace, Fire
Current Event, Fire StartUp, Reload Document, and navigation to another event handler
(After these operations are executed, undo cannot go past them. It is possible to Undo, Cut,
Delete, and Paste up until, but not past, a point of discontinuity)

Navigation Using the Script Outliner
Use the script outliner view to navigate in Dashboard Architect.

Dashboard Architect uses a mechanism similar to Windows Explorer to assist in navigating
through a project.

Click (BQY Script Outline) and select an object in the navigation panel. The JavaScript for
the selected object is displayed in the editing window.

The contents of the editing window can be changed by clicking a row in the Code Requests or
Find panes of the output window.

Code Generation Using the Object Browser
Click (BQY Object Model) to replace the navigation panel with an object browser. Use the
object browser to explore the objects and properties that Interactive Reporting Studio exports
through the COM interface. The set of objects and properties is similar to the object browser
view available in Interactive Reporting Studio.

Expand and contract the nodes in the tree by clicking [+] or [-]. Or double-click the object or
property to generate a reference in the editing window.

The object or property declaration is displayed beneath the object browser in the description

information box. Click to access the Interactive Reporting Studio Help. Click (Reset
Object Browser) to collapse the object tree and clear the local cache. Obtaining the object
information is an expensive operation, so the retrieval is done in real time. Dashboard Architect
caches the results. If the Interactive Reporting document changes, the cache may be out-of-date
and must be reset. For example, if a filter or computed item is added in the part of the tree that
is expanded, refreshing or resetting enables the object to be viewed by starting from the top.

The Find Dialog Box
Access Find by selecting Edit, then Find or clicking .

36 Editing

The Find dialog box is divided into three parts:

● Search conditions (The Search Feature)

● Extent of the Find operation (The Options Feature)

● Search preferences; that is, find the next instance (The Find Next Option) or find every
instance (The Find All Option)

To use Find, in the Find What, enter the string or pattern to search, and click Find Next or Find
All. Or select a previously entered Find criteria from the drop-down list.

The Search Feature
The scope of Find can be limited to these areas:

● Current Event—The event handler currently displayed

● Current Section—The section of which the event handler is a part

● Current Project—The entire project

The Options Feature
Several options are available to focus a Find process.

Find Whole Words Only
Whole elements of JavaScript syntax are searched, not sets of characters separated by spaces. The
example contains seven words:

ActiveDocument.Sections[“Query”].Limits[“Cust_Id”].SelectedList.Count

Match Case
Locate instances of uppercase and lowercase letters, depending upon how the string or pattern
is entered in Find What.

Use Pattern Matching
Pattern matching is implemented through regular expressions just as JavaScript recognizes them.
Discussion of regular expressions is outside the scope of this guide, because regular expressions
are a language unto themselves. See the resource on the internet called WebReference.com:

http://www.webreference.com/js/column5/

Strings and numbers usually represent themselves. Some characters have special meaning and
are meta characters. To use these characters in a literal sense, escape them with a backslash (\).

The Find Dialog Box 37

http://www.webreference.com/js/column5/

Table 14 Character Examples

Character Explanation

0–9a–zA–Z The character

. A character other than a new line

* Zero or more occurrences of the previous item

+ One or more occurrences of the previous item

? Zero or one occurrence of the previous item

\f Form feed or new page

\n New line

\r Carriage return

\t Tab

\/ /

\\ \

\. .

\Xnn An ASCII character specified by the hex nn

\w A word character (a–zA–a0–9)

\W A non-word character

\s A white space character

\S A non-white space character

\d A digit 0–9

$ End of string (In this case, as the last character in an event handler)

^ Match start of string (In this case, the first character in an event handler)

| Or = any of an alternate set

(…) A grouping

Table 15 Pattern Examples

Pattern Explanation

if|else Match if or else

m.*(Parent|Name) Match m followed by one or more characters and Parent or m followed by one or more characters
and Name

38 Editing

Pattern Explanation

Active.*Name Match anything that contains the string Active, followed by one or more characters followed by
Name

.*\} Match a string that contains zero or more characters before a closing brace (}) (A brace is a
special meta character in regular expressions, and it must be escaped with a backslash (\))

.+\} Match a string that contains one or more characters before a closing brace (})

\{\r\n Match a line that contains a brace ({) followed by a carriage return and a line feed

e\r\n|e$ Match a line that ends in an e or an event handler that ends in an e

\r\nf|^f Match a line break that is followed by an f, or an event handler that starts with f

Dashboard Architect supports the Find and Replace utility for these symbols when pattern
matching is not enabled.

Table 16 Symbols

Symbol Function

^t Matches a Tab character

^p Matches a new line (CR/LF) (paragraph)

^^ Matches a "^" character

The Find Next Option
Use Find Next to move to the next instance of a search. The Find dialog box can be active while

you are editing. To move to the next found item, click Find Next, , or the F3 key.

The Find All Option
If Find All is clicked, a Find operation is executed across the whole search context (event, section,
or project) and one list of results is returned. To view the results click the Find tab in the output
window.

The output window lists sets of items found in the project, and can be used as a navigation
mechanism. Click a line of interest, and Dashboard Architect displays the event handler, the line
in question, and highlights the found instance in the editing window.

Using the Floating Find Menu
The floating menu provides several Find operations. To find a simple string, highlight the string
in the editing window. Right-click, and select the extent of the Find operation. For example,
select Find In Event, Find In Section, or Find In Project. Dashboard Architect finds the specified
string, and the results are presented in the output window.

Using the Floating Find Menu 39

Find Function is an example in floating Find menu that provides a quick way to find the
definition of a function that is being called.

➤ To use Find Function:

1 Highlight the text that corresponds to a function name.

2 Right-click, and select Find Function.

Dashboard Architect prefixes the Find string with the word function and initiates a project-wide
Find. The editing window displays the start of the function that is found, and the function is
examined.

3 After the examination is complete, return to the launch point of the find, by clicking .

The Replace Feature
The Replace feature is similar to Find, it searches for text or patterns, and replaces the matched
items with text in the Replace With drop-down list.

Access Replace by clicking , or selecting Edit, then Replace. The Replace dialog box is a subset
of the Find dialog box.

Using the Printing Command
Several printing options are available in the Dashboard Architect Print command.

➤ To print:

1 Select File, then Print to launch Select Print Range.

2 From Section to Print, select an option.

3 From Control to Print, select an option.

4 From Event to Print, select an option.

5 Optional: Select Print Line Numbers.

6 Click OK.

7 Optional: To configure the printer settings, click Setup.

Using the Match Brace Feature
Use Match Brace to reduce the time spent identifying incomplete sets of braces. Complete sets
of braces consist of these symbols:

● Braces {}

● Parentheses ()

40 Editing

● Brackets []

➤ To use Match Brace:

1 Place the cursor after an opening brace, press Ctrl+B, or select Edit, then Match Brace.

Match Brace moves forward to find the opening brace from the current position. If no opening
brace is found, the feature looks backwards until one is found. When an opening brace is located,
the feature searches until it finds a matching closing brace, and highlights the extent of the brace
pair.

2 Repeat the operation by pressing Ctrl+B.

If no closing brace is found, the operation ends without highlighting text.

The Auto-Code Feature
Dashboard Architect includes an Auto-Code feature that increase the speed of entering source
code. To function correctly, Auto-Code must be enabled in Options. See “The Options Dialog
Box” on page 27.

Auto-Code automatically adds closing quotation marks, brackets, and parentheses immediately
after the opening character. The cursor waits in between the opening and closing characters for
you to type. Entering the closing character overwrites the automatically added character.

Closing braces are added two lines down with a blank line in between the opening and closing
braces. The cursor waits on the blank line, indented one tab.

Auto-Code enables a special class of macros that are triggered by the spacebar. See “Macros” on
page 42. Table 17 lists and describes these Auto-Code macros that are available in Dashboard
Architect. The caret position at the end of the expansion is substituted with I.

Tip:

To prevent Auto-Code macros from being expanded, press Ctrl+Space rather than space after
the macro name. For example, if Ctrl+Space.

Table 17 Auto-Code Examples

Auto-Code Expansion Description Example

if Expands to an if statement including braces, with the caret in
parentheses

if (I) {

}

else Expands to an else statement including braces, with the caret
on the blank line between the braces

else {

 I

}

while Expands to a while loop including braces, with the caret in
parentheses

while (I) {

The Auto-Code Feature 41

Auto-Code Expansion Description Example

}

for Expands to a for loop including braces, with the caret in
parentheses at the loop index initialization position

for (I;;) {

}

function (or fn) Expands to an empty function with the caret placed before the
parentheses for the function, where the function name is placed

function I() {

}

try Expands to a try and catch block, with the caret on the first
line of the try block indented one tab

try {

 I

}

catch(e) {

}

ad Expands to ActiveDocument with the caret in the next
character position

ActiveDocumentI

cn Expands to a Console.Writeln statement with the caret
between the quotation marks of the message to be printed

Console.Writeln(“I”)

Macros
Macros are another means of entering source code quickly, and some features of Auto-Code are
implemented with special macros.

Use macros to assign short character strings to commonly used snippets of code, so you enter
the string and expand it into the code snippet. Macros can be simple, single line text substitutions
such as ad and cn, or they can expand into complex multi-line code snippets, including
replaceable parameters with default values.

Typical macros are invoked by entering the macro name and pressing Ctrl+P. The macro is
expanded, only if the caret is immediately after the macro name, and the macro name is at the
beginning of the line, or it contains at least one space before it.

Defining a Macro
Macros are defined in a text file called macros.txt that is in the config directory with the Dashboard
Architect installation.

Each macro definition requires two lines. The first line contains the macro name, and the second
contains the definition of the macro including parameters and caret control codes. To invoke
the macro enter the macro name (the short character string) into the editing window. Each
macro must have a unique name. Auto-Code macros must have names that begin with internal.

42 Editing

Caution!

The macros.txt file must end with a blank line.

Simple Macros
This topic defines simple macros that take no parameters, beginning with single-line macros
and introducing caret control codes for macros whose output spans multiple lines.

The ad Macro
The ad macro is a simple macro that expands from ad to ActiveDocument and positions the caret
at the end of the word.

The definition in the macros.txt file is:

ad
ActiveDocument

When ad is entered, and Ctrl+P is pressed, ad is replaced by ActiveDocument. The caret remains
at the end of the text entered by the macro expansion.

The cn Macro
The cn macro expands cn to Console.Writeln(“”) and demonstrates simple caret control codes
by positioning the caret inside the quotation marks.

The definition in the macros.txt file is:

cn
Console.Writeln{(}””{)}{LEFT 2}

The definition contains three places where characters are surrounded by braces.

Each parenthesis must be enclosed in braces, because each has a special meaning. The macro
expansion feature is alerted that these characters are to be part of the expansion rather than using
their special meaning.

Note:

Switching off the special meaning of a character, when it is enclosed in braces, is called quoting.

The {LEFT 2} expression at the end of the macro definition, means move the caret left two
characters, as if the left-arrow had been pressed twice. These caret control codes may be placed
anywhere within the macro definition and are executed as they are located.

See “Macro Control Codes” on page 46, for a complete list of caret control codes.

Macros 43

Multiple-Line Macros
This topic demonstrates how caret control codes are used to define macros whose output spans
multiple lines. The for macro is an example.

The for macro expands into a simple for loop including braces.

The definition in the macros.txt file is:

for
for {(};;{)} {{}{ENTER 2}{}}{UP 2}{END}{LEFT 5}

As in the cn macro, the parentheses and braces are quoted.

The control code {LEFT 5} at the end of the macro means move the caret left five characters,
and other control codes are introduced.

{ENTER 2} means press the Enter key twice, and leave a blank line between the two braces.

{UP 2} is similar to {LEFT 2}, press the up arrow key twice.

{END} press the End key to move the caret to the end of the current line.

Therefore, the overall effect of the macro is seen by reading it from left to right, imagining the
special keys being pressed where the caret control codes are located.

The macro expands with the caret between the opening parenthesis and the first semicolon; that
is, where the loop index variable is initialized.

for (;;) {

}

Macro Parameters
Macro definitions can include parameters. The text given with the macro name is used in the
macro expansion enabling the same macro to expand differently each time it is invoked.

This topic discusses defining macros that take parameters, and how to invoke macros that require
parameters.

A for Macro with a Loop Index Parameter
Most for statements start with “for (var x = 0;…),” where x is a variable identifier that is used
within the for loop. If for loops are nested, the variable identifier must be unique for each loop
inside another loop.

The for macro presented previously is improved to provide the loop index variable initialization,
and to enable a different variable identifier to be used in nested loops:

for
for {(}var ${1} = 0;;{)} {{}{ENTER 2}{}}{UP 2}{END}{LEFT 4}

In the macro definition, the loop index variable identifier is given as ${1}, which stands for the
value of the first parameter supplied to the macro.

44 Editing

Macros can take up to nine parameters called ${1} to ${9}. Macro parameters are inserted
anywhere in a macro definition except inside other special codes enclosed in braces, such as caret
control codes. Each macro parameter is used as many times as necessary. For example, the macro
definition can be modified to add the loop index variable increment code automatically, by
placing ${1}{+}{+} after the second semicolon.

for
for {(}var ${1} = 0;; ${1}{+}{+}{)} {{}{ENTER 2}{}} {UP 2}{END}{LEFT 8}

The plus signs are quoted because they have a special meaning within the macro definition. Macro
definitions must be on one line.

Default Values for Parameters
The previous macro example requires the value for the parameter to be supplied each time the
macro is invoked. It is only necessary to change the value of the parameter when for loops are
nested. The macro definition can be improved further by giving the parameter a default value
so it is not specified unless the default value cannot be used (such as in nested for loops).

A macro parameter is given a default value by specifying the value the first time the macro
parameter is displayed in a macro definition:

for
for {(}var ${1=a} = 0;; ${1}{+}{+}{)} {{}{ENTER 2}{}} {UP 2}{END}{LEFT 8}

The syntax ${1=a} assigns a as a default value to the parameter ${1}. If the macro is invoked
with no value for ${1}, it expands to read:

for (var a = 0;; a++) {

}

Invoking Macros
In general, to invoke macros, enter the name as a stand-alone word (that is, at the beginning of
a line or with at least one space in front of the macro name), and press Ctrl+P.

Invoking Macros without Giving Parameter Values
If a macro takes no parameters or all the parameters are given default values in the macro
definition, a macro is invoked as described in the previous paragraph.

The macro name is removed and replaced with the expanded macro definition.

Invoking Macros Giving Parameter Values
If a macro contains parameters that contain no default value, or the default value is not sufficient,
give the value of each parameter by appending it to the macro name separated by colons:

for:b—Sets the value of parameter 1 to b

Macros 45

for:in_startVal—Sets the value of parameter 1 to in_startVal

When macros contain multiple parameters and some parameters contain default values, the
parameters with default values need not be specified. For example, a macro test that takes three
parameters, where the first and third parameter contain default values assigned in the definition,
can be invoked in these ways:

test:a:b:c—Assigns the value a to parameter 1, b to parameter 2, and c to parameter 3

test:a:b—Assigns the value a to parameter 1, b to parameter 2, and parameter 3 takes the
default value

test::b:c—Parameter 1 takes the default value, b is assigned to parameter 2, and c to parameter
3

test::b—Parameters 1 and 3 take the default values, and parameter 2 is assigned a value of b.

The parameters with default values that are followed by parameters without default values must
include a colon as a placeholder. Parameters at the end of the list, which contain default values,
need not be included.

Macro Control Codes
Macro control codes enable the use of non-printing keys, such as Enter or the arrow keys, in
macro definitions.

The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have special meanings
in macro definitions. To specify one of these characters, enclose it with braces. For example, to
specify the plus sign, use {+}. Brackets {[]} have no special meaning but must also be quoted
because of the routines that are used to implement macros.

To specify brace characters, use {{} and {}}.

To specify characters that are not displayed when you press a key, such as Enter or Tab, and
action keys use the codes displayed in Table 18.

Table 18 Macro Control Codes

Key Code

Backspace {BACKSPACE}, {BS}, or {BKSP}

DEL or Delete {DELETE} or {DEL}

Down arrow {DOWN}

End {END}

Enter {ENTER} or ~

Home {HOME}

INS or Insert {INSERT} or {INS}

Left arrow {LEFT}

46 Editing

Key Code

Right arrow {RIGHT}

Tab {TAB}

Up arrow {UP}

To specify keys used in combination with the Shift, Ctrl, and Alt keys, precede the key code with
one or more of the codes in Table 19.

Table 19 Combination Key Codes

Key Code

Shift +

Ctrl ^

Alt %

To specify a combination of Shift, Ctrl, and Alt to be held down while several other keys are
pressed, enclose the code for those keys in parentheses. For example, to specify that the user
must hold down Shift while E and C are pressed, use "+(EC)". To specify that the user must
hold down Shift while E is pressed, followed by C without Shift, use "+EC".

To specify repeating keys, use the form {key number}, and insert a space between key and
number. For example, {LEFT 42} means press the left arrow key 42 times; {h 10} means press
h, 10 times.

Importing Sections from other Interactive Reporting Documents
The Dashboard Architect Import Utility enables other Interactive Reporting documents to be
imported into the current document. It eliminates the re-creation of identical information in
other documents.

➤ To use the Dashboard Architect Import Utility:

1 Select Project, then Import.

Import is displayed.

2 Click (next to Secondary Document), and locate the Interactive Reporting document to be imported.

3 Click OK.

4 Optional: To specify one or more sections to import, select Select and Re-order Sections.

Select and Re-order Sections is displayed.

5 If Select and Re-order Sections is displayed, perform an action to move sections between Available
Sections and Selected Sections:

Importing Sections from other Interactive Reporting Documents 47

● Select one or more sections, and click or

● Click or to move all sections

● Double-click a section

All dependent sections are also selected and moved.

6 Optional: Select Remove Duplicate Images from the Final Document to consolidate duplicate images
into the Resource Manager.

All instances of an image are changed to reference the single copy of the image in the Resource
Manager. The Interactive Reporting document file size and memory footprint are reduced,
which improves the loading speed, and makes reuse of existing images from the Resource
Manager possible when creating dashboards and reports. See “Resource Manager” in the
Hyperion Interactive Reporting Studio User's Guide.

7 Optional: Reorder Selected Sections by clicking or .

8 Click OK.

The sections are imported into the open project in Dashboard Architect.

A report is displayed detailing the imported sections, and if one or more of the sections from
the secondary Interactive Reporting document required renaming.

9 Optional: Save the report for future reference.

The imported sections are instrumented and become part of the project.

Unicode Functionality
The Dashboard Architect Import Utility automatically converts old code page based Interactive
Reporting documents to Unicode before use, enabling documents with different languages to
be imported. Only the resulting documents are converted, originals remain unchanged.

48 Editing

6
The Testing and Debugging

Processes

In This Chapter

Testing and Debugging49

About Testing49

About Debugging... .52

Breakpoints.. .52

Testing and Debugging
Testing and debugging activities are closely associated with editing. Testing is often accompanied
by making corrections which involves editing. Editing is not complete until the code being edited
is tested and performs as required. See “Editing” on page 35.

About Testing
Testing is accomplished by placing Dashboard Architect in the background and working with
the instrumented.bqy. The user clicks the buttons, processes queries, selects items from lists,
and selects options and check boxes. Each of these clicks causes events to be fired. The event
handler that Interactive Reporting Studio calls, in turn calls the Debug Server and requests the
JavaScript, which is returned as a string. The event handler executes the string, using the
JavaScript eval() function, and so instrumented.bqy behaves similarly to an ordinary
Interactive Reporting document.

Testing Rule
A simple rule must be remembered when working with Dashboard Architect.

JavaScript code is sent to an event handler when, and only when, that handler calls the Debug Server
and requests it.

Procedural and Declarative JavaScript
Two distinct types of JavaScript exist, JavaScript that is declarative and JavaScript that is
procedural. Declarative code acts to set up or declare shared or public resources such as global
variables, properties, and functions that can be called later using the public handles from

Testing and Debugging 49

procedural code. Procedural code acts immediately on shared or public, or local or private
resources.

The rule operates equally to the sets of code, but declarative code is usually associated with
OnStartUp() events or events in hidden objects that the user does not typically see.

Changes to procedural code require that the event they are declared in be fired before the change
is observed. Procedural code changes occur immediately in real time. The code associated with
the OnClick() event of a button can be changed. In instrumented.bqy, click the button to
run with the new code and observe the behavior.

Changes to declarative code also require the event they are declared in be fired before the change
is observed. Causing an event that uses the results of a declaration is not the same as causing the
event that creates the declaration. Consequently, changes to declarations require re-declaration
before calls on the re-declarations can display the changes made in Dashboard Architect.

Consider example 1:

 MyEIS.Button_X

Instrumented.bqy Dashboard Architect

eval(<QIQDebug_call>) ListBox1.RemoveAll()

ListBox1.Add(“select a Country”)

ListBox1.Add(“Australia”)

ListBox1.Add(“Britain”)

ListBox1.Add(“France”)

ListBox1.Add(“Germany”)

ListBox1.Add(“United States”)

When the user clicks Button_X on the MyEIS section, the Debug Server is called and returns the
JavaScript held by Dashboard Architect for the OnClick() event of Button_X.

As soon as the code is changed, the button can be clicked again. The Debug Server is called and
finds the new code. It returns the code to instrumented.bqy. The code is passed to the
JavaScript eval() function. The new behavior is immediately observed.

An example is illustrated in the section called Query EIS, in the Arch_tut.bqy that is provided
as a sample with the Dashboard Architect installation.

Consider example 2:

 OnStartUp

Instrumented.bqy Dashboard Architect

eval(<QIQDebug_call>) var eis=ActiveDocument.Sections[“MyEIS”]

eis.Shapes[“Button_X”].OnClick()

 MyEIS.Button_X

50 The Testing and Debugging Processes

Instrumented.bqy Dashboard Architect

eval(<QIQDebug_call>) function fill_ListBox(lbx){

lbx.RemoveAll()

lbx.Add(“select a Country”)

lbx.Add(“Australia”)

lbx.Add(“Britain”)

lbx.Add(“France”)

lbx.Add(“Germany”)

lbx.Add(“United States”)

}

ActiveDocument.fill_ListBox=fill_ListBox

 MyEIS.Button_Y

Instrumented.bqy Dashboard Architect

eval(<QIQDebug_call>) ActiveDocument.fill_ListBox(ListBox1)

1. Upon start up, the document calls the Debug Server for code. For example, the OnClick
() event of Button_X is caused, creating a function called fill_ListBox available as a property
of ActiveDocument.

2. When a user clicks Button_Y on the MyEIS section, the fill_ListBox function is called
and identical behavior occurs as in example 1.

3. A change is made to the JavaScript in the OnClick() event of Button_X.

4. Button_Y is pressed.

5. Unlike example 1, the code is executed as if no changes were made, when in fact Button_X
was just changed. The reason is because unless the OnClick() event of Button_X (or the
OnStartUp() event of the document) is caused, the changes to the code of Button_X are
not sent to instrumented.bqy. Therefore, Button_X must be clicked first and then
Button_Y for the new code to be effectual.

The (Fire Current Event) is provided for the purpose of executing the event associated with
the JavaScript currently in view.

It is vital to remember the distinction between simple procedural code (statements that perform
operations directly as in the first example) and declarative code (code that creates functions to
be called and used later) as in the second example.

It is highly recommended to open the Console window, when is clicked so errors are seen
and reported. If an error occurs, the cog associated with the failed JavaScript event handler,

changes to red () in the Code Requests pane of the output window.

About Testing 51

About Debugging
Debugging is closely associated with testing and editing. Debugging involves determining why
a behavior occurs and how to change it. Traditional debugging includes one of these options to
determine what is occurring:

● Console.Writeln() statements are interspersed with regular code

● Debug functions are interspersed with regular code

In the first option, the code must be removed after the problem is located. In the second option,
the code can stay, because debug functions can be turned on and off providing permanent
instrumentation. While the second option is the better option, both have the disadvantage that
manual instrumentation is not flexible, and is used only when identifying a specific situation
that was anticipated by the programmer when the code was originally written.

Breakpoints
In Dashboard Architect, setting breakpoints makes debugging easier than the two traditional
approaches.

Breakpoints are required when one or more areas of code come under suspicion. The cursor is

positioned on a strategic line and a breakpoint is inserted by clicking or F9.

Internally, a breakpoint is implemented as a set of additional dynamic instrumentation
instructions alongside the regular JavaScript. As a breakpoint is extra JavaScript, it behaves just
like other code changes. If it is placed inside declarative code such as a function, you must click

 so the breakpoint can become part of the declaration for the function.

When all breakpoints are set, move to instrumented.bqy, and activate the event (for example,
clicking a button). The code is executed and at some point it encounters the breakpoint. The
instrumented.bqy calls the Debug Server and requests that execution is suspended and
highlights the line associated with the breakpoint.

The Debug Server keeps Interactive Reporting Studio suspended and hands control to the user
interface of Dashboard Architect, so the execution state of the application can be examined. The
evaluate pane in the output window is activated, and JavaScript expressions can be entered for
evaluation.

To see the value of a local variable, enter the name of the variable, and click . To see the value
of an Interactive Reporting Studio property, enter it into the evaluate pane. As a shortcut,
highlight text in the editing window, right-click, and click Evaluate, or copy and paste the text
into the evaluate pane and modify the expression as required. To clear the evaluate pane, click

.

If incorrect syntax is entered, the JavaScript engine generates a syntax error and aborts the current
thread of execution. Return to instrumented.bqy and recommence the test by clicking the
control to reactivate the breakpoint.

52 The Testing and Debugging Processes

Limitations exist as to where breakpoints can be placed in code. Breakpoints are implemented,
as JavaScript is inserted, so they must be syntactically valid. Dashboard Architect does not have
direct access to the JavaScript engine and therefore cannot guarantee the correctness of
breakpoints. These guidelines help with writing code that is straightforward to maintain, read,
and set breakpoints upon.

Table 20 Breakpoints Working With JavaScript

JavaScript Comment

Line 01 function f(param){ Break occurs when the function is being parsed, not when it is called

Line 02 var x

Line 03 if (condition){

Line 04 statement_1

Line 05 }else{

Line 06 statement_2

Line 07 }

Line 08 switch (x){

Line 09 case 1: Breakpoint is not OK as nothing can come before case

Line 10 statement_3

Line 11 break

Line 12 case 2: Breakpoint is not OK as nothing can come before case

Line 13 statement_4

Line 14 break

Line 15 default: Breakpoint is not OK as nothing can come before default

Line 16 }

Line 17 // comment

Line 18 }

As seen in Table 20, only a few distinct and recognizable places exist where a breakpoint
cannot be placed. If the code is not written in this manner, the options for breakpoints are
restricted. Examples are provided in Table 21.

Table 21 Areas Where Breakpoints Do Not Work With JavaScript

JavaScript Comment

Line 01 function f(param){

Breakpoints 53

JavaScript Comment

Line 02 var x

Line 03 if (condition)

Line 04 {statement_1} Breakpoint is not OK

Line 05 else Breakpoint is not OK

Line 06 {statement_2} Breakpoint is not OK

Line 07 switch (x){

Line 08 case 1: statement_3;break Breakpoint is not OK

Line 09 case 2: statement_3;break Breakpoint is not OK

Line 10 default: Breakpoint is not OK

Line 11 }

Line 12 // comment

Line 13 }

54 The Testing and Debugging Processes

7
Adding and Removing Objects

In This Chapter

Interaction with Interactive Reporting Studio55

Resynchronizing55

Adding Controls .. .56

Deleting Controls.. .57

Renaming Controls.. .57

Adding and Duplicating Sections... .57

Renaming Sections58

Deleting Sections58

Interaction with Interactive Reporting Studio
Dashboard Architect interacts with Interactive Reporting Studio through a COM programming
interface. The interface defines the operations that Interactive Reporting Studio can perform on
behalf of its clients.

The creation of objects (such as buttons, drop-down lists, check boxes, lists, and option buttons)
and the addition of JavaScript into event handlers are operations that are not currently available
through programmatic means. You must perform these operations inside Interactive Reporting
Studio.

Operations that can be performed in only one environment are problematic, because two sets
of structures are required. Interactive Reporting Studio contains one set of structures in
instrumented.bqy, and Dashboard Architect holds the other. Unless these two structures are
in synch, correct operation cannot be provided.

Operations that must be performed through the user interface of Interactive Reporting Studio
must also be incorporated into the development environment of Dashboard Architect.

Resynchronizing
The simplest way for Dashboard Architect to incorporate objects is through resynchronizing,
which can be initiated by selecting Project, then Resynchronize.

Resynchronize works in a similar way to the create project operation, see “Creating Projects” on
page 29. It closes instrumented.bqy, and performs these actions:

Interaction with Interactive Reporting Studio 55

1. Instrumented.bqy is disassembled.

2. Instrumented.bqy is analyzed.

3. Objects that exist in instrumented.bqy but not in Dashboard Architect are added. These
are new objects created with the Interactive Reporting Studio user interface. The JS files are
extended to include references to these objects. JavaScript added by the user is transferred
to the JS files and is replaced by instrumentation code.

4. Objects that exist in Dashboard Architect but not in the instrumented.bqy are removed.
Dashboard Architect removes all references to the deleted objects and they cease to exist.

5. Instrumented.bqy is reassembled.

6. Instrumented.bqy is reopened in Interactive Reporting Studio.

Resynchronization may take a few minutes to complete depending on the size of the project. It
is the simplest operation from the viewpoint of the user, but it may not be the most convenient
as instrumented.bqy must be closed, analyzed, and reopened.

If an object is renamed in Interactive Reporting Studio, the old object is deleted in Dashboard
Architect (as it no longer exists in Interactive Reporting Studio), and a blank object is created.
JavaScript associated with the old object is lost.

Adding Controls
Add a control by duplicating or creating a control.

Duplicating Controls
The quickest way to add a control is to duplicate one that exists and is instrumented.

➤ To duplicate a control:

1 In Interactive Reporting Studio, and press Ctrl+D to enter Design mode.

2 Select a control and duplicate it.

3 Double-click the control.

Properties is displayed.

4 Enter an object name, and click OK.

5 Press Ctrl+D to exit Design mode.

6 Click the control.

Dashboard Architect gets a call from the control for code. Dashboard Architect fails to find a
reference to the control so it creates an event handler on the fly, and immediately synchronizes
itself with the state of instrumented.bqy.

56 Adding and Removing Objects

Creating Controls
If no controls are available to be duplicated, a control without instrumented code must be
created.

➤ To create a control:

1 Select Project, then Add Control.

Add Control is displayed.

2 Click Copy to Clipboard to copy the instrumentation code.

3 Click Cancel.

4 In Interactive Reporting Studio, press Ctrl+D to enter Design mode.

5 Create the control and paste the instrumentation code into each of the event handlers.

6 Press Ctrl+D to exit Design mode.

7 Click the control.

Dashboard Architect gets a call from the control for code. Dashboard Architect fails to find a
reference to the control so it creates one, and immediately synchronizes itself with the state of
instrumented.bqy.

Deleting Controls
A control can be deleted in Interactive Reporting Studio. After deleting the control,
resynchronize immediately, or wait until an Interactive Reporting document is next created, as
Dashboard Architect performs a Resynchronize operation every time it makes an Interactive
Reporting document.

Renaming Controls
Renaming a control is problematic, as Dashboard Architect perceives that a control is deleted
and another control is added. JavaScript held for the control under the old name must be
manually cut and pasted into the event handler for the new control.

Adding and Duplicating Sections
Adding and duplicating sections relates only to dashboard sections. Other sections do not
contain JavaScript and are outside the domain of Dashboard Architect.

➤ To add or duplicate a section:

1 Select Project, then Add Section.

Add Section is displayed.

Deleting Controls 57

a. To add a section, select Create a New Section.

b. To duplicate a section, perform an action:

● Select Duplicate an Existing Section

● From the navigation panel, select a section node, right-click, and select Duplicate

2 Enter a Name for the new or duplicated section, and click OK.

The section is added or duplicated.

Dashboard Architect provides for the creation of sections in these ways:

1. The new section is added programmatically (or copied from a section if duplicated).

2. Instrumented.bqy is closed.

3. Instrumented.bqy is disassembled.

4. Instrumented JavaScript is added to the OnActivate() and OnDeactivate() events.

5. Instrumented.bqy is reassembled.

6. Instrumented.bqy is reopened in Interactive Reporting Studio.

A matching section with all basic event handlers is added to Dashboard Architect. If the section
is duplicated, a copy of all original event handlers is inserted into the node in the navigation
panel. The operation is relatively fast.

Renaming Sections
Renaming sections relates only to dashboard sections. Other sections do not contain JavaScript
and are outside the domain of Dashboard Architect.

➤ To rename a section:

1 Select Project, then Rename Section.

Alternatively, from the navigation panel, select a section node, right-click, and select Rename.

Rename Section is displayed.

2 From Current Name, select a section.

3 Enter a New Name.

4 Click OK.

The section is renamed.

Deleting Sections
Deleting sections relates only to dashboard sections. Other sections do not contain JavaScript
and are outside the domain of Dashboard Architect.

58 Adding and Removing Objects

➤ To delete a section:

1 Select Project, then Delete Section.

Alternatively, from the navigation panel, select a section node, right-click, and select Delete.

Delete Section is displayed.

2 In Delete Section, highlight one or more sections.

3 Click OK.

The sections are removed.

Deleting Sections 59

60 Adding and Removing Objects

8
Documentation

In This Chapter

Documentation of Code61

Generating Documentation68

Documentation of Code
Good documentation enhances reuse of code and makes code easier to maintain.

Dashboard Architect provides features that enable you to document code easily and consistently,
and to extract documentation from the code to be published in other forms.

Features are provided for documenting variables, functions, classes, and components. A special
format of comment is used to recognize formal documentation, and a number of tags are
supplied to define information such as the type of a variable (@type), parameter, or function,
the formal parameters of a function (@param), and the visibility of a variable (@scope).

Documentation Comments
Comments to be published in the documentation must be entered in the format of block
comments that start with /** and end with */.

Documentation comments follow the general form of one or more paragraphs of descriptive
text, the first of which is used when a summary is required, followed by special tags. Paragraphs
within the descriptive text are marked by a blank line. Documentation tags are placed after the
general description, and descriptive text after a tag must be in one paragraph with no blank lines.

For example, a documentation comment to describe the function multiply, which takes two
parameters, multiplies them, and returns the result, is structured as follows:

/**
 * Returns the result of in_intA * in_intB.
 *
 * If either parameter is not a number, the result is
 * undefined.
 *
 * @param in_intA Integer the number to be multiplied by
 * in_intB
 * @param in_intB Integer the number to be multiplied by
 * in_intA
 * @type Number the result of in_intA * in_intB

Documentation of Code 61

 */
function multiply(in_intA, in_intB) {...

The function is described in two paragraphs. The first is a summary of the functionality. Also
described are the names and suggested parameters types, and how to interpret the return value.

Documentation of Variables
To document a variable, describe how and what the variable does, and provide a type so users
know the acceptable data type for the variable.

The only documentation tags to be used in a variable comment are @type to specify the typical
variable, and @scope to define the visibility of a variable. See “Namespace Scope of Entities and
the @scope Tag” on page 65. The tags are optional, but it is recommended to use the @type
tag. If the @scope tag is not used the documentation system assumes the variable is not visible
outside the current event handler.

Variable documentation comments must be placed immediately before the variable declaration
or immediately before the variable in an assignment statement, in which case the variable on the
left side of the equals sign is assumed to be the variable that is being documented and the variable
name may only have white space before it on the line.

A simple documentation comment for a variable.

/**
 * Points to the BQY Section that contains this shape.
 * objSection can be used to access other shapes within the
 * dashboard section.
 *
 * @type Section
 */
var objCurrentSection = this.Parent

Variable documentation is useful when variables are exposed at a section level or as a property
of a class, so they are used outside the event handler in which they are defined.

Documentation of Functions
Documentation of functions enable programmers to determine which functions are available,
the expected parameters, and what they will return.

The @param tag is used for variables, and to declare the parameters of the function, the suggested
type, and a description. When used in a function documentation comment, the @type tag
declares the typical return type of the function. A function documentation comment must be
placed immediately before the function declaration. An example of a documentation comment
for a function is provided in “Documentation Comments” on page 61.

62 Documentation

Documentation of Classes
Classes are collections of related functions (member functions) that can share and expose a
persistent state by means of properties (variables). Member functions and properties can be
documented with the techniques described in the previous two topics.

A member function or variable of a class must be given an @scope tag with the name of the class
as the value. Thus binding the function or variable to the class definition.

The function that defines the class is the class constructor. These are documented like other
functions in the class, the @scope tag illustrates that they belong to the class, and the @type tag
shows that they return an instance of the class.

The fact that the functions and variables are related to each other by membership to the class
makes it necessary to add an extra level of documentation that binds them and gives an overview
of what the class is used for.

The class comment provides this overview. The class comment can be anywhere in the source
code, but it is useful when placed before the class constructor comment. A class comment is
created using an @class tag with the class name as the first word after the tag. A class comment
for a persistent property bag is illustrated with the constructor comment.

/**
 * The PropertyBag class is used to store, retrieve, and access
 * a set of persistent properties.
 *
 * Properties are stored in a Shape, which must be a text label
 * or text box.
 *
 * Properties are key/value pairs, where both the key and the
 * value must be Strings.
 *
 * @class PropertyBag
 */

/**
 * The PropertyBag constructor creates a new PropertyBag
 * instance.
 *
 *
 * If the in_objPersistenceShape parameter is not given the
 * PropertyBag is initialized to be empty.
 *
 * If the in_objPersistenceShape parameter is given, the
 * constructor attempts to load the property values from the
 * given shape.
 *
 * @param in_objPersistenceShape Shape an option parameter that
 * can be used to define the Shape to load the property values
 * from.
 * @type PropertyBag
 * @scope PropertyBag
 */
function PropertyBag(in_objPersistenceShape) {

 /**

Documentation of Code 63

 * Returns the value of the property identified by
 * in_strKey.
 *
 * If the PropertyBag does not contain a value for the
 * given key it will return null unless the optional
 * in_strDefaultValue parameter is supplied, in which
 * case that parameter value is returned.
 *
 * @param in_strKey String the key of the property
 * whose value is to be returned
 * @param in_strDefaultValue String an optional default
 * value to be returned if the PropertyBag does not
 * contain the property identified by in_strKey.
 * @type String
 * @scope PropertyBag
 */
 function getProperty(in_strKey, in_strDefaultValue) {
 ...
 }
}

In the example, the @class tag in the first comment marks it as the class overview comment; the
@type and @scope tags in the function comment for the PropertyBag function reference back
to the @class value of the class overview comment, and mark the function as the class constructor.
The comment for the getProperty function contains an @scope tag that links it to the
PropertyBag class, but the @type tag shows it returns a string, so the documentation system
knows it is a member function and not a constructor.

Note:

Classes may expose member functions or properties that are not defined within the body of the
class constructor, using an assignment statement that references a function or variable declared
outside the constructor. In this case, the @scope tag still works to bind the externally declared
function or variable to the class.

Documentation of Dashboard Development Services
Components
The Dashboard Architect documentation system can provide extra information about Oracle's
Hyperion® Dashboard Development Services components, and list them in another section of
the documentation.

Each Dashboard Development Services component contains a number of text labels within
sections that contain information about the component and the runtime requirements. These
text labels are txlName, txlReqBrio, txlReqTemplate, txlDescription, and
VersionInfo. See “Component Fingerprints” in the Hyperion Interactive Reporting – Object
Model and Dashboard Development Services Developer's Guide, Volume 7: Component Reference
Guide.

Dashboard Architect reads and formats the values of these text labels for use in the component
documentation page, and provides a summary of the components at the top of the page.

64 Documentation

Caution!

For the feature to work, instrumented.bqy must be loaded in Interactive Reporting Studio.
If the Interactive Reporting document is not loaded, Dashboard Development Services
components are treated like a standard dashboard.

Namespace Scope of Entities and the @scope Tag
The visibility of a function or variable and how to describe it are vital concepts to understand
when using the Dashboard Architect documentation system.

In JavaScript, variables (including variables that are pointers to functions) may be visible in
various scopes. In the context of JavaScript within Interactive Reporting Studio, the default scope
for a variable is to be visible within the current event handler, anywhere after it is declared or
first used.

It is common practice to expose a variable to other event handlers by attaching the variable to
the parent section of the event handler or to the active document.

The @scope tag enables the visibility of a variable to be documented, making it clear in the
generated documentation how the variable is accessed or how the function is called. Previous
examples have illustrated one use of the @scope tag in associating functions and variables with
classes.

For example, if a variable is defined and used in an event handler and not exposed, no other
event handler can use it. If a variable is defined and attached to the parent section object, other
event handlers can access that variable through the parent section. If a variable is defined and
attached to the active document, other event handlers can access that variable by name because
it is visible at the highest level. These examples illustrate different levels of visibility and how to
use the @scope tag to document the levels.

/**
 * Returns the result of in_intA * in_intB.
 *
 * If either parameter is not a number, the result is
 * undefined.
 *
 * @param in_intA Integer the number to be multiplied by
 * in_intB
 * @param in_intB Integer the number to be multiplied by
 * in_intA
 * @type Number the result of in_intA * in_intB
 */
function multiply(in_intA, in_intB) {...
}

In the previous example, the function is not visible anywhere other than the current event
handler. Because code in other event handlers cannot generally call the function. For this reason,
no @scope tag is provided and the documentation system considers this to be a local function
and it is not included in the documentation unless control level documentation is requested.

/**

Documentation of Code 65

 * Returns the result of in_intA * in_intB.
 *
 * If either parameter is not a number, the result is
 * undefined.
 *
 * @param in_intA Integer the number to be multiplied by
 * in_intB
 * @param in_intB Integer the number to be multiplied by
 * in_intA
 * @type Number the result of in_intA * in_intB
 * @scope Section
 */
function multiply(in_intA, in_intB) {...}
this.Parent.multiply = multiply

The previous example illustrates that the function is exposed through the parent section of the
correct shape by the assignment after the closing brace of the function. Because code in other
event handlers can easily call the function if they contain a reference to the section. The
documentation comment explicitly provides an @scope tag with a scope of Section.

/**
 * Returns the result of in_intA * in_intB.
 *
 * If either parameter is not a number, the result is
 * undefined.
 *
 * @param in_intA Integer the number to be multiplied by
 * in_intB
 * @param in_intB Integer the number to be multiplied by
 * in_intA
 * @type Number the result of in_intA * in_intB
 * @scope Document
 */
function multiply(in_intA, in_intB) {...}
ActiveDocument.multiply = multiply

Finally, the preceding example shows a function that is available to an event handler in the
current document by naming the function with no namespace qualifiers. The documentation
comment explicitly provides an @scope tag with a scope of Document.

The @scope tag is necessary because JavaScript is type-less, and because the exposure of a
function or variable through an assignment need not be done immediately after the function is
declared. No reliable method exists for the Dashboard Architect documentation system to
determine the visibility of a function or variable from the source code alone.

Documentation Grouping Using the @scope Tag
The @scope tag may be given a second parameter, which is used to define other groups for parts
of the documentation. For example, the feature is used to differentiate the public and private
parts of an API of an object—when the documentation is generated for use by in-house
developers the private API calls are included in the documentation. When external developers
generate documentation they can exclude the private API calls to ensure they do not call private
methods by mistake.

66 Documentation

The feature imparts no impact on the code visibility—the notions of public and private are a
logical convenience. Other groupings are possible, with different parameters.

These are examples of the use of the parameter:

/**
 * A private API function that should not be called from
 * outside the class it is defined in.
 *
 * @type void
 * @scope SomeClass private
 */
function privateAPICall() {...
}

/**
 * This function does something useful and can be called
 * by any code with a reference to an object of this
 * class.
 *
 * @type Integer
 * @scope SomeClass public
 */
function publicAPICall() {...
}

See “Generating Documentation” on page 68.

Documentation Comment Tag Reference
This topic illustrates the information that is provided to each documentation tag.

@class classname [documentation_group]

The @class tag must be given a class name. The name that is used to bind the constructor, member
functions, and properties back to the class.

The optional documentation_group is one word used to group sets of classes, functions, and
variables so they can be included or excluded from the generated documentation as a group. See
“Generating Documentation” on page 68.

@param param_name type_name [description]

The @param tag must be given the name of the parameter, and its expected type (such as number,
section, object, shape, and so on). As JavaScript is type-less the parameter type can only be a
suggestion but it enables callers to see what types of values are expected by the function.

The optional description may be given on multiple lines, but cannot contain blank lines.

@type type_name [description]

The @type tag must be given the type of the variable or the return type of the function being
documented (such as number, section, object, or shape).

If documenting a function the optional description is given next to the return type of the function,
so the caller can see how to interpret the return value.

Documentation of Code 67

@scope namespace [group]

The @scope tag may be given a namespace of Document, Section, Control, or the name of a class
defined with an @class tag.

The optional group is one word used to group sets of classes, functions, and variables so they can
be included or excluded from the generated documentation as a group. See “Generating
Documentation” on page 68.

Dashboard Development Services Component-Specific
Features
The documentation feature recognizes Dashboard Development Services components and
includes additional information regarding those components.

Dashboard Development Services component-specific information is held in text labels on the
component code section. All additional information is optional. The information in Table 22
may be specified for a Dashboard Development Services component.

Table 22 Dashboard Development Services Component–Specific Information in Text Labels

Text Label Information

txlName Component display name (For example, dynamic headings rather than QIQ_fmtHeading)

txlDescription One or more paragraphs of descriptive text about the component

txlReqBrio Interactive Reporting Studio release information in the format:

“VersionMajor=a\nVersionMinor=b\nVersionRelease=c\nVersionPatch=d” where a, b, c, and d are
numbers, and \n represents a new line sequence. For example,

VersionMajor=8

VersionMinor=3

VersionRelease=0

VersionPatch=647

txlReqTemplate Dashboard Studio template release information in the format:

“VersionMajor=a\nVersionMinor=b\nVersionRelease=c” where a, b, and c are numbers, and \n
represents a new line sequence. For example,

VersionMajor=8

VersionMinor=3

VersionRelease=45

Generating Documentation
To create HTML documentation, select Project, then Generate Documentation.

68 Documentation

Inclusion and Exclusion of Documentation Groups
If documentation groups are defined using the second parameter of the @scope tag. The Select
Documentation Groups dialog box is displayed that enables the selection of documentation
groups to be included in the HTML output.

Select one or more of the documentation groups, and click OK. If no documentation groups are
selected, or if Cancel is clicked, only documentation without a documentation group specifier
(that is, an @scope tag with one parameter) is included in the HTML documentation.

Inclusion and Exclusion of Unscoped Documentation
Documentation blocks that exclude an @scope tag are not included in the generated HTML
documentation, unless Project, then Include Control Documentation is selected. See “The
Project Menu” on page 24.

If the command is selected, the unscoped documentation is included at the end of the section
of the documentation, grouped by shape.

Dashboard Development Services Component-Specific
Features in HTML Documentation
If instrumented.bqy cannot be located in the list of open Interactive Reporting documents,
a warning is displayed.

The HTML documentation is generated, but the documentation generator cannot distinguish
Dashboard Development Services components from other sections, so Oracle's Hyperion®
Dashboard Development Services component-specific information is not included in the
generated documentation.

Generating Documentation 69

70 Documentation

9
Using the Dashboard

Development Services Update
Utility

In This Chapter

About Dashboard Development Services Update Utility .71

Update Workflow72

New Sections File .. .72

Configure Configuration Files .. .73

Modify the Configuration File .. .73

Updating Documents73

About Dashboard Development Services Update Utility
You use the Dashboard Development Services Update Utility to update JavaScript in Interactive
Reporting documents, provided that the JavaScript is designed to create a layered architecture
using dashboard sections.

● Layer 1—Data and views (queries, charts, pivots, and reports)

● Layer 2—Sections with which you interact; charts, pivots, and user interface controls (lists,
buttons, drop-down lists, and so on that contain very simple, one-line calls to Library
routines)

● Layer 3—Sections that contain reusable JavaScript functions, classes, and components

The Dashboard Development Services Update Utility updates only the contents of layer 3. It
uses a newsections.bqy document (an Interactive Reporting document that contains the
latest layer 3 sections) to push new layer 3 sections into old dashboards, thus converting old
dashboards into new dashboards.

Within documents that are being updated, sections that are common to the current document
and the newsections.bqy document are replaced by sections from the newsections.bqy
document. As of Release 8.3.1, release information within sections is used to ensure that
earlier sections do not replace later sections. Therefore, as of Release 8.3.1, a section is replaced
only if its corresponding newsections.bqy section references a more recent release.

In summary, the update rests on these assumptions:

● JavaScript is developed in layers

● A layer is one or more Interactive Reporting document sections that together implement
some discrete function or set of related functions

About Dashboard Development Services Update Utility 71

● Document scripts are treated as if they are sections with onStartUp, onShutDown,
onPreprocess, onPostProcess events

Unicode Functionality
The Dashboard Development Services Update Utility automatically converts old code page based
Interactive Reporting documents to Unicode before use, enabling documents with different
languages to be updated.

Tip:

If running a non-Unicode Interactive Reporting document through the Dashboard
Development Services Update Utility results in an error, open and save the non-Unicode
document in Interactive Reporting Studio before an update.

Consolidate Images in Resource Manager
The utility automatically removes duplicate and unused images from the Resource Manager.
See “Resource Manager” in the Hyperion Interactive Reporting Studio User's Guide.

Update Workflow
The workflow to update or transform sections is described in this topic.

1. Create or update a new sections file (see “New Sections File” on page 72).

2. Configure JavaScriptUpdateConfig_dds.js. A
JavaScriptUpdateConfig_dds.js is provided with the installation (see “Configure
Configuration Files” on page 73).

3. Update documents (see “Updating Documents” on page 73).

Note:

If templates are not and will not be customized, proceed directly to step 3 to update
documents.

New Sections File
The Dashboard Development Services Update Utility uses a new sections file as its input. It is
an Interactive Reporting document that contains the latest version of the infrastructure (the
shared JavaScript function and object constructors). The utility opens each Interactive Reporting
document in a nominated list and performs a compare operation which checks if section names
from the list exist in the new sections file and the Interactive Reporting document to be updated.
If a section exists in both, the section in the Interactive Reporting document is removed and
replaced with the section from the new sections file.

72 Using the Dashboard Development Services Update Utility

Configure Configuration Files
In a pre-9.3 Release of the Dashboard Development Services Update Utility, an Upgrade.ini
file was included with the installation. That file has been replaced by a less restrictive
configuration file, that contains a set of JavaScript functions called by the update script at crucial
points in the process. The configuration file enables the update process to be refined or
customized to suit your requirements. Together with the new sections file, this configuration
file updates Dashboard Studio templates or documents.

The Dashboard Development Services Update Utility enables you to move values from the
contents of text labels, drop-down lists, and lists from the old dashboard sections that are to be
discarded, and copy them into the equivalent shapes of the new sections when they are inserted
into the Interactive Reporting document. The configuration file is used to identify the text labels,
drop-down lists, and lists in the sections whose values are to be transferred when updating a file.
Values to be maintained must be specified in this file.

Refer to the JavaDoc within the configuration file on how to customize the configuration file
and the update process.

Two configuration files are provided with the installation:
JavaScriptUpdateConfig_dds.js and JavaScriptUpdateConfig_blank.js. You can
customize either file, however, JavaScriptUpdateConfig_dds.js works specifically with
Dashboard Studio.

Modify the Configuration File
The configuration file can be modified to include custom components, and to add or remove
sections.

The Dashboard Development Services Update Utility compares the available sections in the
documents to update and the specified new sections file. If a section exists in the new sections
file and the Interactive Reporting document to be updated, the corresponding section from the
new sections file replaces the section in the Interactive Reporting document. The configuration
file enables you to specify sections that are to be added to the documents to update even if these
sections did not previously exist. Similarly, you can specify sections to be removed from the
documents to update.

Updating Documents
The Dashboard Development Services Update Utility enables you to update documents in one
of three ways:

● Using the Update One Method—Update one Interactive Reporting document at a time with
a GUI

● Using the Update Many Method—Update a folder of Interactive Reporting documents with
a GUI

● Selecting Documents to Update with Command Line Updates

Configure Configuration Files 73

Using the Update One Method
Update one Interactive Reporting document at a time using the utility GUI.

➤ To update one Interactive Reporting document:

1 Open Dashboard Development Services Update Utility.

2 From Update Method, select Update One.

3 Select the preferred backup option.

● Selecting Place Updates in the Update Folder, creates an Update folder in the source path
and the updated document is saved to the folder (If a document with an identical name
exists in the Update folder, a timestamp is added to the document currently being updated.
The original document in the Update folder is not overwritten)

● Selecting Place Originals in Backup Folder, creates a Backup folder in the source path (The
original document is saved to the Backup folder with a timestamp added to the file name.
The updated document is saved to the source path and takes the name of the original
document)

When the option to create a backup of the document is selected, the original document must
not be set to read-only.

4 Click (next to JavaScript Configuration File), to locate the configuration file.

The JavaScript configuration file determines the sections to replace, add, delete, or preserve in
the specified document to update. Use the default configuration file that is provided, unless you
have a customized script to use.

5 Click (next to New Sections File), and locate the new sections file.

A new sections file is provided with the Dashboard Studio installation, which contains the latest
version of the infrastructure sections. If custom components have been added, you will need to
use a different new sections file.

6 Click (next to Document to Update), and locate the document to update.

The save path of the updated document is generated in Save Path of Updated Document(s).

7 Click Update.

When the update process is complete, a report confirms a successful or unsuccessful update.

8 Click View to launch the updated document in Interactive Reporting Studio.

Using the Update Many Method
Update multiple Interactive Reporting documents using the utility GUI.

➤ To update a folder of Interactive Reporting documents:

1 Open Dashboard Development Services Update Utility.

2 From Update Method, select Update Many.

74 Using the Dashboard Development Services Update Utility

3 Select the preferred backup option.

● Selecting Place Updates in the Update Folder, creates an Update folder in the source path
and the updated documents are saved to the folder (If a document with an identical name
exists in the Update folder, a timestamp is added to the document you are currently being
updated. The original document in the Update folder is not overwritten)

● Selecting Place Originals in Backup Folder, creates a Backup folder in the source path (The
original documents are saved to the Backup folder with a timestamp added to the file name.
The updated documents are saved to the source path and take the name of the original
documents)

When the option to create a backup of the documents is selected, the original documents must
not be set to read-only.

4 Click (next to JavaScript Configuration File), to locate the configuration file.

The JavaScript configuration file determines the sections to replace, add, delete, or preserve in
the specified document to update. Use the default configuration file that is provided, unless you
have a customized script to use.

5 Click (next to New Sections File), and locate the new sections file.

A new sections file is provided with the Dashboard Studio installation, which contains the latest
version of the infrastructure sections. If custom components have been added, you will need to
use a different new sections file.

6 Click (next to Document Folder to Update), and locate the folder to update.

The save path of the updated documents is generated in Save Path of Updated Document(s).

7 Click Update.

When the update process is complete, a report confirms a successful or unsuccessful update.

8 Click View to open the updated folder.

Tip:

If Interactive Reporting Studio does not launch properly after an Update Many operation in the
Dashboard Development Services Update Utility, open the Windows Task Manager and end
any brioqry.exe process before trying to launch the document.

Command Line Updates
The Dashboard Development Services Update Utility gives you the option of updating
documents with a command line. The major advantages of this method include:

● Multiple documents from different locations can be updated simultaneously

● A permanent list of documents to update can be built

Dashboard Development Services Update Utility performs generic transformations based on a
specified script. Generic transformations are only available using the command line. Any
customized script can be run from the command line.

Updating Documents 75

Selecting Documents to Update
Use scripts that are provided or customized scripts to perform the transformation.

➤ To select files or folders to update using the command line:

1 Navigate to the bin folder.

If the installation was not customized, the bin folder is under C:\Hyperion\products
\biplus\bin. However, if the installation was customized, fix the path to be relative.

2 Select runTransformScript.bat, right-click, and select Edit.

This enables you to specify the script, parameters, and options to run.

The BAT file includes these lines:

set PARAM=%PARAM% -js ""
set PARAM=%PARAM% -param:name=""

The first line is the script to run and the second line is a parameter placeholder.

3 Specify the script.

The script to run must be entered after the -js option in the BAT file. For example, -js
"JavaScriptUpdate.js".

4 Specify the script parameters using one of these two methods:

A script can have many or no parameters.

a. Using the -param option.

All \ and " must be escaped.

The -param option has this syntax for single values:

-param:name="value"

The -param option has this syntax for an array with two items:

-param:name="[\"value\", \"C:\\Hyperion\\products\\biplus\"]"

The first item is value and the second item is C:\Hyperion\products\biplus\.

For example, JavaScript Update requires these parameters:

● The configuration file (parameter name: updateConfig)

● The new sections file (parameter name: newSectionFile)

● The document or file to update (parameter name: targetBQYs)

● The update folder (parameter name: updateFolder) OR the backup folder (parameter
name: backupFolder)

An example:

set PARAM=%PARAM% -js "C:\\Hyperion\\products\\biplus\\DDS\\scripts\
\DDSUpdate\\JavaScriptUpdate.js"
set PARAM=%PARAM% -param:updateConfig="C:\\Hyperion\\products\\biplus\
\DDS\\scripts\\DDSUpdate\\JavaScriptUpdateConfig_dds.js"
set PARAM=%PARAM% -param:newSectionFile="C:\\Hyperion\\products\

76 Using the Dashboard Development Services Update Utility

\biplus\\DDS\\scripts\\DDSUpdate\\newsections.bqy"
set PARAM=%PARAM% -param:targetBQYs="C:\\Folder or Document to update"
set PARAM=%PARAM% -param:updateFolder="C:\\Update folder"

Optional: Replace the last line, if creating a backup folder:

set PARAM=%PARAM% -param:backupFolder="C:\\Backup folder"

b. Using the -batch option.

This option enables you to execute a script, multiple times with different parameters. Each
line in the batch file represents one execution of a script. The parameters are comma-
separated; for example, name1="value1", name2="value2".

This example is an equivalent batch file for the JavaScript Update example in step 4a. It is
an example of the contents of a BAT file:

updateConfig="C:\\Hyperion\products\biplus\\DDS\\scripts\\DDSUpdate\
\JavaScriptUpdateConfig_dds.js", newSectionFile="C:\\Hyperion\products
\biplus\\DDS\\scripts\\DDSUpdate\\newsections.bqy", targetBQYs="C:\
\Folder to update", updateFolder="C:\\Update folder"

Use this code to point to the BAT file:

set PARAM=%PARAM% -js "C:\\Hyperion\products\biplus\\DDS\\scripts\
\DDSUpdate\\JavaScriptUpdate.js"
set PARAM=%PARAM% -batch "C:\\Hyperion\products\biplus\\DDS\\scripts\
\DDSUpdate\\batchFile.txt

BatchFile.txt is used as an example name for the parameter file.

5 Optional: To include an instruction in the BAT file, to fail on error (foe), add the parameter:

set PARAM=%PARAM% -foe

If this parameter is included and the file encounters an error when running the transformation,
the process will stop and an error message will be displayed in the log. If the line is not included,
any errors that are encountered are skipped. The log alerts you to errors. This works only for
JavaScript Update.

6 Optional: To include an instruction in the BAT file, to create a report, enter this line:

set PARAM=%PARAM% -rep "C:\\Hyperion\\products\\biplus\\DDS\\report"

A file path and folder must be specified; for example, C:\Hyperion\products\biplus\DDS
\report.

7 Save and close the BAT file.

8 In Interactive Reporting Studio, open a Command window.

9 Navigate to the bin folder.

For example, navigate to C:\Hyperion\products\biplus\bin.

10 Run runTransformScript.bat.

The BAT file must be run from the bin directory.

The Command window displays output. If successful, a message is displayed.

Updating Documents 77

78 Using the Dashboard Development Services Update Utility

10
Updating Documents with

Advanced Scripting

In This Chapter

Customizing Scripts .. .79

EPM Workspace Custom Scripting Environment .. .79

Calling Scripts .. .80

Custom Scripts .. .81

Script Parameters .. .84

Logging... .85

Writing Document Information into the Log86

Document Object Model Tree Structure... .86

Accessing Properties.. .91

Accessing the File System.... .92

General Java Code in Scripts .. .92

Using Batch Input Files .. .92

Scripting References... .93

Customizing Scripts
This topic discusses customizing scripts to update documents in Oracle Enterprise Performance
Management Workspace, Fusion Edition or on the desktop in Interactive Reporting Studio.

EPM Workspace Custom Scripting Environment
The custom scripting environment of the Oracle's Hyperion® Impact Management Services
provides a mechanism for manipulating the content and structure of an Interactive Reporting
document through a Document Object Model (DOM) and JavaScript. Although this
environment is similar to the scripting environment in Interactive Reporting Studio, there are
differences. For example, the custom scripting environment of the Impact Management Services:

● Does not work in the context of an active Interactive Reporting document

● Provides access to all properties in the document

● Does not perform logical system-level integrity checks

● Is not contained inside the Interactive Reporting document

● Executes a script over multiple documents

Customizing Scripts 79

The custom scripting environment performs arbitrary, common transformations on one or
more documents. This mechanism is used to implement the Update Data Models and Update
JavaScript features of the Impact Management Services.

Scripts can be imported into EPM Workspace and then run using the Custom Update feature
of the Impact Management Services to make changes to other imported documents. These scripts
can also be run on a desktop by the Dashboard Development Services Update Utility. From the
desktop, changes can be made only to files on disks visible from that desktop. The desktop is
typically a development and test environment.

Scripts in EPM Workspace run under the control of the Impact Management Services and
consequently can use the Undo feature. If a change made through scripts is unwanted, the task
that used the script can be undone and the documents are returned to the pre-script state.

See “Using Impact Management Services” in the Hyperion Workspace Administrator's Guide.

Calling Scripts
The Impact Management Services scripts can be executed within EPM Workspace or on a client
desktop in Dashboard Development Services Update Utility.

Calling Scripts in EPM Workspace
Within EPM Workspace, the Custom Update feature of the Impact Management Services is
used. The feature presents three steps to execute scripts:

1. Browse for and select a script.

2. Enter parameters required by the script. The Impact Management Services builds a
parameter form that is specific to that script. Or you can specify sets of parameter values by
using a batch input file.

3. Optional: Schedule when to execute the script.

Calling Scripts in Dashboard Development Services Update
Utility
Use the Dashboard Development Services Update Utility to execute scripts using batch files; for
example, runTransformScript.bat. Each script requires a specific batch file containing the
parameters required by the script. See “Selecting Documents to Update” on page 76.

The JavaScript Update transformation replaces earlier sections that contain JavaScript with later
versions of sections. Property settings from the earlier section are transferred to the later section,
so the later code can work with earlier properties. The Dashboard Development Services Update
Utility supports both batch and interactive mode. See “Updating Documents” on page 73.

80 Updating Documents with Advanced Scripting

Monitoring Script Execution
The Show Task Status list in EPM Workspace enables progress monitoring of script execution.
While awaiting execution, and during the running of a script, the status is displayed as Waiting
(gray). Upon completion, the status changes to Success (green) or Fail (red).

When a task is complete, double-clicking the entry in the Show Task Status list displays generated
log messages. Use logs to debug errant scripts.

In Interactive Reporting Studio, logging is written to the file called dds.log. In a standard
installation, the logs folder is located under C:\Hyperion\products\biplus\logs.

Custom Scripts
These scripts are available to update documents in EPM Workspace or Interactive Reporting
Studio.

JavaScriptUpdate.js
The JavaScriptUpdate script enables users to take advantage of the latest dashboard features
without having to re-create documents from scratch. See “Using Impact Management Services”
in the Hyperion Workspace Administrator's Guide.

UpdateDataModels.js
The UpdateDataModels script enables data models in documents to be updated to reflect
changes in underlying databases. See “Using Impact Management Services” in the Hyperion
Workspace Administrator's Guide.

SortDataModelTopics.js
The SortDataModelTopics script enables documents to be updated so the topics in data models
are displayed in EPM Workspace in a user-defined order or alphabetically.

When an Interactive Reporting document is opened in EPM Workspace and a query is visible,
a list of topics is displayed in the catalog pane under Tables. The topics are displayed in the order
in which they were added to the Interactive Reporting document which makes locating topics
difficult if there are many in the list.

The SortDataModelTopics script enables the user to specify the order in which the topics are
displayed in these lists, using three parameters.

There are two ways to specify the sort order:

1. Use the first parameter to select a file containing a list of topic names, in the order preferred
by the user.

Custom Scripts 81

2. Use the second parameter (true or false) to specify whether topics that are not included in
the sorted file should be ordered alphabetically.

Topics that are not mentioned in the sorted file are placed after topics that are mentioned, and
are ordered according to the second parameter. Therefore, if you provide an empty file and the
second parameter is true, all topics will be ordered alphabetically, making it easy to locate a topic
in the list.

Note:

The empty file should contain a blank line.

The third parameter enables selection from a set of files to be updated, through a multi-file
picker.

A version is added for each successfully updated file. Therefore, double-clicking a file in EPM
Workspace displays the updated content.

RevertImageResources.js
The RevertImageResources script is desktop-specific, and is not used in EPM Workspace.

In releases earlier than Interactive Reporting Studio Release 9.3, if an Interactive Reporting
document contained identical images in multiple places, the image content was duplicated and
the Interactive Reporting documents were larger than necessary, slower to load, and less efficient
to maintain. Interactive Reporting Studio Release 9.3 and later implements a Resource Manager
that centralizes image content storage. For Interactive Reporting documents created in earlier
releases, duplicate images can be optionally merged for efficiency.

A side effect of this merging is that if a pre-9.3 release document is opened, optimized, and saved
in the 9.3 or later release, the document loses its images when opened in an earlier release of
Interactive Reporting Studio, since the relocation and rationalization of the images is not
understood by earlier releases.

To retain compatibility with earlier releases in practical terms, the RevertImageResources script
provides a facility to undo the relocation and image merging and return the Interactive Reporting
document to the pre-9.3 format.

Caution!

The script is useful only with documents saved using Interactive Reporting Studio Release 9.3
and later, after the new image consolidation and translation features have been used. See
“Consolidate Images in Resource Manager” on page 72.

Running the RevertImageResources Script
The RevertImageResources script can be run using
runRevertImageResourcesScript.bat. If the installation was not customized,

82 Updating Documents with Advanced Scripting

runRevertImageResourcesScript.bat is located in C:\Hyperion\products\biplus
\bin.

This script accepts a path as a command line parameter:

● This can be the absolute path to an Interactive Reporting document to revert it to its pre-9.3
release format

● This can be the absolute path to a folder of Interactive Reporting documents to revert them
all to their pre-9.3 release format

Note:

Any backslashes (\) in the path should be duplicated. For example, C:\\docs\
\mydocument.bqy.

Using the RevertImageResources Script on a Folder
The example assumes that Oracle's Hyperion Reporting and Analysis is installed in C:
\Hyperion\products\biplus, and that the folder of Interactive Reporting documents to be
reverted is located in and called Q:\files_to_revert.

➤ To use runRevertImageResourcesScript.bat on a folder:

1 In Windows, open a Command window by selecting Start, then Run, and enter cmd.

2 Click OK.

3 Enter cd C:\Hyperion\products\biplus\bin, and press Enter.

The path changes to the bin directory.

4 Enter runRevertImageResourcesScript Q:\\files_to_revert, and press Enter.

The Interactive Reporting documents in the folder are examined, restructured, and new files are
created with (images reverted) in their names. At the end of the process there are double the
amount of files in the folder.

Using the RevertImageResources Script on a File
The example assumes that Reporting and Analysis is installed in C:\Hyperion\products
\biplus, and that the Interactive Reporting document to be reverted is located in and called
Q:\files_to_revert\my_revenue.bqy.

➤ To use runRevertImageResourcesScript.bat on a file:

1 In Windows, open a Command window by selecting Start, then Run, and enter cmd.

2 Click OK.

3 Enter cd C:\Hyperion\products\biplus\bin, and press Enter.

The path changes to the bin directory.

Custom Scripts 83

4 Enter runRevertImageResourcesScript Q:\\files_to_revert\\my_revenue.bqy,
and press Enter.

The Interactive Reporting document is examined, restructured, and a new file is created called
my_revenue(images reverted).bqy. The document can be used with earlier releases of Interactive
Reporting Studio.

Note:

New features cannot be converted to earlier features. For example, if a Release 9.3 or later
Interactive Reporting document contains scatter and bubble charts, these are lost when the
document is opened in an earlier release of Interactive Reporting Studio.

Script Parameters
The parameters required by a script are specified using comments in the header. These are similar
in format to the JavaDoc comments used to document Java.

The minimum that can be specified to define a parameter is the name; for example, @param
sourceLanguage.

This assumes that the input is a simple string and displays an (initially empty) text box on the
UI.

Optional: An @inputType line enables more specific data input methods:

● text—Text

● password—Text displayed as asterisks (*)

● file_picker_single_value—Select one file from the repository

● file_picker_multi_values—Select multiple files from the repository, all of which constitute
one value

● file_picker_multi_values_parallel_execution—Select multiple files from the repository, all
of which can be processed in parallel by separate instances of the script

● dropdown—Select from a predefined set of fixed values

Input types can be given a default value using @defaultValue. The @defaultValue of file_picker
type is the fully qualified path and name; for example,

/Administration/Impact Manager/Script Repository/SortDataModelTopics.js.

Note:

If this is not unique or the file does not exist, then a warning dialog is displayed and the parameter
default value is not set. It has the same effect as not specifying the default value.

Drop-down lists require a separate @comboValues line that specifies possible choices, separated
by commas.

84 Updating Documents with Advanced Scripting

Note:

For custom scripts, parameter values are validated only when the script is executed, not at
submission time. For example, if an unacceptable value is specified for a script, the user is not
informed at the time of task submission. If a script cannot recover from invalid data, it logs a
message and throws an exception, causing the status to display as Fail (red) in Show Task Status,
alerting the user to the problem.

Logging
Scripts use log messages to communicate with users. In EPM Workspace, logs are accessed
through the Show Task Status list. On the desktop, in Interactive Reporting Studio, users view
dds.log, which is the default name for script log files, and can be changed in the BAT file. In
a standard installation, logs are located in the default folder C:\Hyperion\products\biplus
\logs. Each execution of the script clears the log file. On the desktop, the log represents the
entire set of tasks one for the folder and one for each file.

Note:

In the Dashboard Studio Inspector Utility Custom Update Script feature logging messages are
also displayed in Task Options, in the Results window. See “Dashboard Studio Inspector Utility”
in the Hyperion Interactive Reporting – Object Model and Dashboard Development Services
Developer's Guide, Volume 5: Dashboard Studio.

The higher the level set, the more messages are displayed in the logs. The levels are explained in
Table 23.

Table 23 Logging Levels

Level Description

Debug Determines what is happening during script development or to track down problems

Warn Warns of recoverable problems that require correcting

Error Indicates the inability to correctly perform the requested processing

Fatal Indicates the script cannot continue

Always Messages that are always displayed

There are env methods available to log messages at each of these levels. For example, env.logInfo
(), env.logDebug(), and so on. See “ScriptEnvironment Object” on page 93.

There is also a default logging level associated with the script execution. The env.log() method
logs messages at that level. The default level is initially debug, but can be changed by using
env.setLogLevel().

Logging 85

The env.logClassName() method provides information on the type of an object, because values
returned by methods are a combination of JavaScript and Java objects.

Writing Document Information into the Log
A simple script that works with an Interactive Reporting document or a folder of Interactive
Reporting documents can be used to determine each file name and the number of sections it
contains.

Example: Using a Windows command file for desktop execution

Rhino.bat is a general purpose command file that is used to launch most Impact Management
Services scripts on the desktop. Parameters must be entered in the form: <documentOrPath>
param_1=value_1 param_2=value_2.

Example: Using a script file for one file or a folder of files

Where the document parameter of the script is a folder, then the script instructs the environment
to expand the folder into a list of files and calls the script once for each file in the list. Script
execution is called a task and is monitored in EPM Workspace using the Show Task Status and
Task Management lists. If the document parameter of the script is one file, then the script is
called once.

Document Object Model Tree Structure
The Document Object Model (DOM) is a tree structure of nodes and properties; each node is
made up of more nodes and properties. The DOM and JavaScript engine provide the ability to
interrogate and update the state. In Impact Management Services, it is not necessary to expand
the whole Interactive Reporting document, only those nodes with properties of interest. For
example, when doing a data model update, only query and data model sections need to be
expanded. However, this procedure requires no expansion, as the information is available at the
top level of the DOM.

Expanding part of an Interactive Reporting document speeds up document loading and
consumes less memory. The document loading routines expand only what is required as it is
requested. Any scripts that make use of this optimization continue to work; the Document
Conversion Strategy parameter is ignored.

Note:

You can include bqReadWriteDom and bqReadOnlyDom scripts; however, their values are
ignored.

Each document manipulated by a script is stored in the form of a DOM, represented by a tree
of nodes, each of which contains a set of associated properties.

The DOM for a document is acquired by retrieving the file and loading the content; for example,

86 Updating Documents with Advanced Scripting

var uuid = env.getParameterValue(“document”);
var file = repository.retrieveFile(uuid);
var dom = env.getBqyDocument(file, bqReadWriteDom,
bqDashboardReportStrategy)

The first line retrieves the parameter that contains the document UUID. The second line is used
to copy the file from the repository to a temporary file which is deleted when the script ends.
The third line loads the content of the file, providing a BqyDocument object that represents the
DOM.

Note:

The second parameter, bqReadWriteDom, specifies that the document is to be rewritten. If it is
not to be rewritten, specify bqReadOnlyDom to reduce the amount of memory required for the
DOM. The third parameter is the document conversion strategy, bqDashboardReportStrategy.
It determines how much of the underlying document structure is accessible to the script.

Using different strategies, the amount of memory required by a script can be reduced, as can the
time spent loading the document.

Document Conversion and Loading Strategies
When loading documents, you can save memory by loading only those portions of the DOM
that are required by a given script; for example, JavaScript Update uses only dashboard sections.
If you want to log a list of section names in a document, you do not need to load the entire tree
of nodes that lie beneath the sections. An example of the required syntax:

env.getBqyDocument(documentFile, bqReadWriteDom,
bqJavascriptUpdateStrategy);
env.getBqyDocument(documentFile, bqReadOnlyDom, bqDashboardReportStrategy)
env.getBqyDocument(documentFile, bqReadOnlyDom, bqDashboardReportStrategy)

These strategies are provided for loading sections:

● bqDashboardReportStrategy—Only dashboards and reports

● bqDatamodelUpgradeStrategy—All data models and queries

● bqJavascriptUpdateStrategy—Only dashboards

● bqTopLevelSectionsStrategy—All sections and section level properties (a minimal DOM is
created)

● null—The whole document

Note:

A just-in-time approach to DOM building makes document loading strategies redundant. Any
strategy parameter provided is ignored, and the bqReadWriteDom script is ignored.

Document Object Model Tree Structure 87

Traversing the Document Object Model
To manipulate the content of a node in the DOM, you must locate the node.

The top-level nodes that represent the sections of a document can be accessed directly by using
the Sections collection. The shapes within a dashboard are accessible through its Shapes
collection. However, there is no collection for the children of a node.

Methods are provided to access the children of a node:

● getChildren()—Returns a complete list of children of a node

● getChildrenOfType()—Returns a list of children of a node that have a specific type

● addChild()—Adds a new child to the end of a list of children of a node

● removeChild()—Removes the specified node from a list of children of a node

● setChildren()—Replaces a list of children of a node with another list

● dump()—Dumps the DOM tree, starting at the given node, for debugging

To iterate over all subnodes of a given node, use getChildren() to retrieve a list that contains
them. Use getChildrenOfType() to limit this to the children of a particular type. For example,
the Root.MyDocument node contains a Rpt.DocComp node for each section in the document,
which can be located using this line:

var sections = root.getChildrenOfType(“Rpt.DocComp”);

A node is added as a child of another by using addChild(). Use this to copy a node from one
part of the DOM (or the DOM of another document) to another location.

To remove a child node, use removeChild().

Note:

The list of children returned by getChildren() and getChildrenOfType() is read-only. If you
update the list by assigning a new value to an entry, this does not affect the node. However, the
current list of nodes can be replaced using setChildren().

The content of a sub-tree of the document can be written to the log using dump(). By default,
this dumps the tree to standard output, but by supplying parameters, it can be written to any
print stream.

XPath-Style Searching
While obtaining lists of child nodes enables access to the entire DOM, you can search for nodes
that satisfy a set of criteria.

For example, this code can be used to log the names of all shapes within a document:

for (var i = 0; i < dom.Sections.length; i++) {
 var section = dom.Sections[i];

 if (section.Type == bqDashboard) {

88 Updating Documents with Advanced Scripting

 env.log(“Dashboard “ + section.AnnotName + “ has shapes”);

 var shapes = section.Shapes;

 for (var j = 0; j < shapes.length; j++)
 env.log(shapes[j].Name);
 }
}

The DOM provides user-friendly collection names for both the Sections inside a document and
the Shapes inside a dashboard. However, a complex search example that looks for all
DataThreshold.DataThreshold nodes inside all ThreshFmt.ThreshFmt nodes, inside all
ColColl.Item nodes, inside all table sections, results in multiple nested loops.

The Impact Management Services scripting provides an alternative approach, through XPath-
style searches. For example, this is the code to use for the complex search example:

var items = dom.findNodesByPattern(“/BQY/Root.MyDocument/Rpt.DocComp”
 + “/ColColl.Item/ThreshFmt.ThreshFmt”
 + “/DataThreshold.Threshold”);

This single statement provides an array that contains the required nodes. Property matching
requirements can be included to narrow down which nodes are to be returned.

For example, to limit the result to those nodes in the column named Drawn inside the table
named Rankings.

var items = dom.findNodesByPattern(“/BQY/Root.MyDocument”
 + “/Rpt.DocComp[AnnotName=’Rankings’]”
 + “/ColColl.Item[Label=’Drawn’]/ThreshFmt.ThreshFmt”
 + “/DataThreshold.Threshold”);

Searches need not begin at the root of the DOM. If a variable that contains a section node is
searched, use a relative path to find other nodes beneath that section; for example:

var table = dom.findNodesByPattern(“/BQY/Root.MyDocument”
 + “/Rpt.DocComp[AnnotName=’Rankings’]”);

var items = table.findNodesByPattern(“ColColl.Item[Label=’Drawn’]”
 + “/ThreshFmt.ThreshFmt/DataThreshold.Threshold”);

Use getNodesByPattern() if there is a possibility that a node may not exist (that is, if documents
to be processed using a script may not contain this node) or where there can be many of these
nodes. In these cases, the length of the returned array is used to determine the situation.

However, if one node matching the pattern is guaranteed, use getNodeByPattern() which returns
one object, rather than an array.

The search mechanism provides two wildcard facilities. An asterisk (*) in place of a node name,
represents any type of node. A pair of slashes (//) represents any number of intervening nodes.

For example, to find all images in a document, in dashboards or reports (in the body, header,
footer, section header, or section footer), use this example code:

var pattern = “//Box.Item[RuntimeClassName='PictField']”;
var pictures = dom.findNodesByPattern(pattern);

Document Object Model Tree Structure 89

Differences Between the Impact Management Services and
Interactive Reporting Studio Document Object Models
Impact Management Services provides the DOM to its scripts and Interactive Reporting Studio,
including Interactive Reporting Web Client, provides the BQY object model (BOM) to scripts
embedded within Interactive Reporting documents.

The DOMs available in the Impact Management Services scripting differ from those provided
to event handlers in Interactive Reporting Studio scripting:

● All collection indices start at zero, rather than one

● The node names and properties match those stored in the underlying document, as displayed
in the Dashboard Studio Inspector Utility

● The BOM provides user-friendly names to resemble the view through the Interactive
Reporting Studio; whereas, the DOM provides fewer user-friendly names

● The BOM does not provide access to the majority of properties, however the DOM provides
access to all properties

● Using the DOM, the BOM event handlers for sections and shapes cannot be called to effect
changes to the document

● The BOM provides safety checks and restrictions, however the DOM provides only basic
type checking

● Using the DOM, you can change and transform anything; for example, you can create files
that are not recognized by other software

For example, display the SQL associated with all request line items in all queries by using this
code:

var pattern = “//BQY/Qry.MyQry/QryCol.MyQryCol”;
var nodes = dom.findNodesByPattern(pattern);

for (var i = 0; i < nodes.length; i++)
 env.log(nodes[i].SQL);

Note:

Both loop indices start at zero and access to the name of the section is through AnnotName,
rather than Name.

Investigating the Impact Management Services DOM
Structure
The Dashboard Studio Inspector Utility, included with the Interactive Reporting Studio
installation, provides an explorer-style view of the DOM. See “Dashboard Studio Inspector

90 Updating Documents with Advanced Scripting

Utility” in the in the Hyperion Interactive Reporting – Object Model and Dashboard Development
Services Developer's Guide, Volume 5: Dashboard Studio.

The left pane displays the nodes contained within the document as a tree. The right pane displays
the names of all properties of the selected node, and their current values and associated data
types.

Use the Inspector Utility when writing scripts, to determine where in the DOM the data resides
that must be manipulated to achieve the intended change, and to generate the path that provides
programmatic access to data of interest.

Accessing Properties
Access properties in Impact Management Services, as you do in Interactive Reporting Studio.
The only difference is the DOM exported by Interactive Reporting Studio provides more user-
friendly names for frequently used properties.

To learn the names of properties associated with a node in the DOM use the Dashboard Studio
Inspector Utility. See “Dashboard Studio Inspector Utility” in the in the Hyperion Interactive
Reporting – Object Model and Dashboard Development Services Developer's Guide, Volume 5:
Dashboard Studio.

For example, this code accesses the IsHidden property of a dashboard, making the section visible
if it is hidden.

var dashboard = dom.Sections[“Dashboard”];

if (dashboard.IsHidden) {
 env.log(“Making section “ + dashboard.Name + “ visible”);

 dashboard.IsHidden = 0;
}

Collections
An important difference between the Interactive Reporting Studio scripting DOM and the
Oracle's Hyperion® Impact Management Services DOM is that all collections are zero-based,
not one-based. For example, a loop that would have been coded as:

for (var i = 1; i <= collection.Count; i++)
 // some processing on collection[i]

is now written as:

for (var i = 0; i < collection.length; i++)
 // some processing on collection[i]

Accessing Properties 91

Property Types
Every property of a DOM node has one of these data types:

● Byte

● DWord

● Long

● String

● Structure

● Word

Accessing the File System
To access the underlying file system from within a script; for example, where a large amount of
configuration information is needed that does not change from execution to execution, use these
methods.

● env.getFileSystem()—Retrieve an object that provides access to the underlying file system

● env.createTempFile()—Create a temporary file that is cleaned up when the script completes

● fs.getFile()—Retrieve a Java File object that refers to the file with a given path within EPM
Workspace

● fs.writeBytesToStream()—Write the contents of a byte array to a file

General Java Code in Scripts
It can be necessary to construct Java objects as part of processing a script. For example,
RevertImageResources creates a FileOutputStream using the call:

var fos = new Packages.java.io.FileOutputStream(imageFile);

The call is of the form:

var object = new Packages.java.some.package.ClassName(necessary,
parameters);

Using Batch Input Files
All parameters for a transformation script can be entered interactively by using the user interface,
or you can request the processing of many sets of parameters by providing them as a batch input
file.

Each line of a batch input file contains a complete set of parameters, as a comma-separated list
of name="value" specifications.

92 Updating Documents with Advanced Scripting

For example, to use the SortDataModelTopics script to transform the three documents “/
some.bqy”, “/some/other.bqy” and “/yet/another/example.bqy”, using the topic orderings in “/
order.txt”, and sorting unspecified topic names alphabetically, use this input file:

orderings="/order.txt",sortUnknownTopics="true",document="/some.bqy"
orderings="/order.txt",sortUnknownTopics="true",document="/some/other.bqy"
orderings="/order.txt",sortUnknownTopics="true",document="/yet/another/
example.bqy"

Note:

Each parameter value is quoted and all of them must be included on each line, even where the
value does not change.

In EPM Workspace, the values of any parameters that represent files need to be UUIDs. The
sample scripts are explicitly coded to enable batch files to specify file paths, by using code similar
to this to convert them into UUIDs where necessary:

var document = env.getParameterValue(“document”);

if (document.substring(0, 1) == “/”)
 document = repository.getFileUuid(document);

To enable annotation of batch input files, blank lines and any lines beginning with # are ignored.

Note:

The code also works on the desktop, because there the UUID of a file is identical to the file system
path.

Scripting References
This topic includes scripting references and examples of objects, methods, and properties that
are available to use on the desktop and in EPM Workspace.

ScriptEnvironment Object
Each script has a global variable called env, which provides access to the ScriptEnvironment
object within which it runs and hosts the features that lead to granting access to documents and
the document repository. A repository can be the Reporting and Analysis repository, if the script
is running in EPM Workspace, or the file system, if the script is running on the desktop.

expandRequestAction()
Actions are added to the list for the task. Generally expandRequestAction() is used to generate
multiple additional tasks to handle a collection of input files. For example, a user requests that

Scripting References 93

an action occurs for a folder. The folder is expanded into an array of files and the script runs for
each file in the array.

Example using expandRequestAction():

env.expandRequestAction(strParam, arrUuidValues)

Parameter Description

strParam Represents the file descriptor that is to be expanded

arrUuidValues An array of the unique identifiers of the set of files on which to act. In EPM Workspace this is a set
of real UUID values, on the desktop it is the list of paths of the files as expanded

getBqyDocument()
Used to retrieve a document from the repository, create the DOM, and provide access to the
nodes and properties of the Interactive Reporting document.

Example using getBqyDocument():

var domBqy = env.getBqyDocument(filBqy, bqOpenMode, bqStrategy)

Parameter Description

filBqy Represents the Interactive Reporting document, generally retrieved using the retrieveFile method of
the repository artifact

bqOpenMode Defines the way the file is opened. For example, using bqReadOnlyDom the file is read-only, or using
bqReadWriteDom the file has read/write properties. For scripts running in Release 9.3.1 or later this
parameter is ignored because the Rhino engine loads nodes only if scripts attempt to reference them
or the properties below them (see following table).

bqStrategy Determines, as an efficiency measure, how much of the DOM is built. For scripts running in Release
9.3.1 or later this parameter is ignored because the Rhino engine loads nodes only if scripts attempt
to reference them or the properties below them (see following table).

Property Description

bqDashboardReportStrategy Loads only dashboards and reports

bqDatamodelUpgradeStrategy Loads only data models and queries

bqJavaScriptUpdateStrategy Loads only dashboards

bqTopLevelSectionsStrategy Loads all sections and the section level properties

null Loads the whole document

getFileLines()
Used to retrieve file content from the repository as an array of strings, given the UUID.

Example using getFileLines():

94 Updating Documents with Advanced Scripting

var arrLines = env.getFileLines(filToRead)

Parameter Description

filToRead The text file from the repository to expand into the constituent lines. A file object consists of information
about the file, but is not the content of the file.

getMimeTypeUuid()
Used to retrieve the UUID of the MIME type with the specified name.

Example using getMimeTypeUuid():

var uuiMimeType = env.getMimeTypeUuid(strMimeType)

Parameter Description

strMimeType The string representation of the MIME type to be returned; for example, application/x-brioquery

getParameterValue()
Values are obtained for a single-valued parameter, based on the name. If the named parameter
value does not exist, return null.

The parameter value can be entered on the command line or through the Custom Update
parameter gathering screen in EPM Workspace

Example using getParameterValue():

var strVal = env.getParameterValue(strName)

Parameter Description

strName The name of the parameter as supplied in the command file. For example, script.js –
param:document=c:\docs\myBqy –param:type=Query In this case, strName is either
document or type.

getParameterValues()
All values are obtained for a potentially multi-valued parameter as an array, based on the name.
If the named parameter value does not exist, return null.

Example using getParameterValues():

var arrValues = env.getParameterValues(strName)

Parameter Description

strName The name of the parameter as supplied in the command file. For example, script.js -
param:document="[\"c:\\docs\\file1.bqy\", \"d:\\docs\\file2.bqy \"]" In
this case, strName is document.

Scripting References 95

getRepository()
Used to retrieve the repository artifact in whose context the script is running. If the script is
running on the desktop, this is the file system.

Example using getRepository():

var repLocal = env.getRepository();

getScriptUuid()
The repository UUID of this script is retrieved.

Example using getScriptUuid():

var uuiScript = env.getScriptUuid();

Use this in EPM Workspace and on the desktop.

isDesktopMode()
Returns true if the script is running on the desktop.

Example using isDesktopMode():

var blnDesktop = env.isDesktopMode();

isServerMode()
Returns true if the script is running in EPM Workspace.

Example using isServerMode():

var blnWorkspace = env.isServerMode();

loadScript()
The JavaScript file is loaded and merged with the main script.

Example using loadScript():

env.loadScript(strPath, strDesc, uuiScript);

Example using loadScript():

env.loadScript(filScript, strDesc, uuiScript);

Parameter Description

strPath The string path that is used to locate the script file

filScript The file object that references the JavaScript file

strDesc Optional: The description that enables logging and debugging to identify whether an error occurred in
the main script or a loaded script

96 Updating Documents with Advanced Scripting

Parameter Description

uuiScript Optional: The UUID of the script being loaded

Example 1: Use the string to search for the file in the same location as the script. If it fails to
locate the file it searches the root of the script repository folder: in EPM Workspace the root is /
Administration/Impact Manager/Script Repository, and on the desktop it is C:\Hyperion
\products\biplus\DDS\scripts.

env.loadScript(“lib_hysl_core.js”);

Example 2: Use the file object (env.loadScript(filScript, strDesc, uuiScript);) to
implement a similar mechanism to Example 1.

function _loadScript(in_strScript){
 var uuid, fil
 var folServer = "/Administration/Impact Manager/Script Repository/lib/"
 var folDesktop = "C:\\Hyperion\\products\\BIP\\\biplus\\DDS\\scripts\\"
 if (env.isServerMode()){
 uuid = cn_repLocal.getFileUuid(folServer + in_strScript)
 } else {
 uuid = folDesktop + in_strScript
 }
 fil = cn_repLocal.retrieveFile(uuid)
 env.loadScript(fil, in_strScript, uuid)
}
_loadScript("lib_hysl_core.js");

setParameterValues()
Used to set the value of named parameter. For example, if the same values are set up over and
over, a separate script can be written that lists only a subset of the parameters, which are the only
ones displayed in the parameter screen, setParameterValues() is used to set the others, and
loadScript() is used to read in the original.

Example using setParameterValues()

setParameterValue(strName, strValue)

writeBqyDom()
A document is written to disk that is ready to import into the repository as a new version of an
existing document or as a new document.

Example using writeBqyDom():

var filBqy = env.writeBqyDom(domBqy);

Parameter Description

domBqy The DOM that contains all the document nodes

Scripting References 97

Reporting and Analysis Repository: Repository Artifact
The repository artifact provides access to the features of the container that holds the documents.
If the script is run in EPM Workspace it uses the Oracle's Hyperion Reporting and Analysis
repository. Publications that are stored here include; documents, connection information, and
the folder hierarchy. If the script is run on the desktop, the file system represents the repository
artifact with reduced features.

A repository artifact is created by calling env.getRepository(), and the object has these
methods.

addVersion Method
A new version of the file is added to the repository. This method applies only in EPM Workspace.
If the number and names of sections are not changed by your script, then the Interactive
Reporting database connection (oce) information is not required.

Example 1 using addVersion:

var intV = objRep.addVersion(strUuid, objFile, strDesc);

Parameter Description

strUuid The document UUID

objFile The file that contains the new content, created by calling env.writeBqyDom() method

strDesc The description to add to the repository

Example 2 using addVersion:

var intV = objRep.addVersion(strUuid, objFile, strDesc, objOce);

Use this method format if the Interactive Reporting database connection files associated with
the sections require change, or if you have modified the query or data model. This is used by
Data Model Update; see “Using Impact Management Services” in the Hyperion Workspace
Administrator's Guide.

Parameter Description

strUuid The document UUID

objFile The file that contains the new content, created by calling the env.writeBqyDom() method

strDesc The description to add to the repository

objOce An object that represents section information for the Interactive Reporting document, including the
Interactive Reporting database connection information that is associated with each query and data
model.

Example 3 using addVersion:

var intV = objRep.addVersion(strUuid, objFile, strDesc, objOceOld,
objOceNew);

98 Updating Documents with Advanced Scripting

This form of the method is tailored to a specific situation, where the updated document has the
same query and data model sections as the original (one for one mapping, the same number of
each as the original, with identical names to the original) and you want to retain the settings of
the previous version.

The oce details are copied from objOceOld (the previous version in repository) to objOceNew,
as is.

JavaScript Update uses this form of the method, because it retains the oce settings of the previous
version. See “Using Impact Management Services” in the Hyperion Workspace Administrator's
Guide.

Parameter Description

strUuid The document UUID

objFile The file that contains the new content, created by calling the env.writeBqyDom() method

strDesc The description to add to the repository

objOceOld An object that represents section information for the earlier version of the Interactive Reporting
document, including Interactive Reporting database connection information that is associated with each
query or data model.

convertBqyFileToUnicode Method
The Interactive Reporting document file is converted from a code page based format to Unicode
format. To convert the format the desktop calls to Interactive Reporting Studio through its COM
interface. This operation requires both brioqry.exe and brioqry.tlb.

Use this method if you are trying to convert an Interactive Reporting document to the latest
format. All images are updated to the Resource Manager format as well as converting to Unicode.

Example using convertBqyFileToUnicode:

var objFile = objRep.convertBqyFileToUnicode(objFileOld, intCodePage)

Parameter Description

objFileOld The original file in the earlier format

inCodePage The code page of the original document which is accessible from the DOM of the original file; that is,
the attribute StdCodePage2

findFiles Method
A list of the files is retrieved that are contained within the folder represented by a UUID. The
UUIDs of the files are returned in an array. The call can return the files in the folder, or all the
files in a hierarchy of folders under that folder.

Example 1 using findFiles:

var clcFiles = objRep.findFiles(uuiFolder, uuiMimeType, blnRecursive)

Scripting References 99

Parameter Description

uuiFolder The UUID of the folder. On the desktop, this is the path name.

uuiMimeType The file type to search for; for example, an Interactive Reporting document

blnRecusrive False: examine just the folder or True: expand all sub-folders

Example 2 using findFiles:

var repLocal = env.getRepository()
var uuiFolder = env.getParameterValue("document")
if (repLocal.isFolder(uuiFolder){
 var uuiMime = env.getMimeTypeUuid("application/x-brioquery")
var clsUuid = objRep.findFiles(uuiFolder, uuiMime, true)
var a = 1
for (var it = clcUuid.iterator(); it.hasNext(); a++) {
 env.log("clcUuid[" + a + "] = " + it.next());
}
 env.expandRequestAction("document", clsUuid)
 return
}

folderExists Method
Returns true if the specified folder path exists within the repository.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using folderExists:

var blnExists = objRep.folderExists(strPath)

Parameter Description

strPath The path that represents the folder. In EPM Workspace, a folder is represented by a UUID, and on the
desktop, the UUID is the same as a path.

getCurrentFolder Method
Returns the string that represents the current working folder.

Example using getCurrentFolder:

var uuiPath = objRep.getCurrentFolder()

Parameter Description

uuiPath The UUID of the folder path that is the current working folder

getFileUuid Method
The UUID that corresponds to the given absolute path of a file is returned. On the desktop,
complete paths and the UUID are identical, but when writing scripts that are intended for the

100 Updating Documents with Advanced Scripting

desktop or EPM Workspace, treat UUID values and paths as if they are different and make the
extra calls that convert paths to UUID values.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using getFileUuid:

var uuiFile = objRep.getFileUuid(strPath)

Parameter Description

strPath The complete path that represents the file

getFolderContentsFor Method
A list of the names of the files are retrieved that are contained within the folder represented by
the given path. The call returns the names in just the folder, or in the entire hierarchy of folders
under the folder.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using getFolderContentsFor:

var arrNames = objRep.getFolderContentsFor(strPath, blnRecursive)

Parameter Description

strPath The complete path that represents the folder

blnRecursive False: examine just the folder or True: expand all sub-folders

getFolderUuid Method
The UUID that corresponds to the given absolute path of a folder is returned. On the desktop,
complete paths and the UUID are identical, but when writing scripts that are intended for the
desktop or EPM Workspace, treat UUID values and paths as if they are different and make the
extra calls that convert paths to UUID values.

Example using getFolderUuid:

var uuiFolder = repLocal.getFolderUuid(strPath)

Parameter Description

strPath The complete path that represents the file

getNameForUuid Method
The name that represents the leaf node of the path for the file referenced by the UUID is retrieved.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using getNameForUuid:

Scripting References 101

var strName = objRep.getNameForUuid(uuiPath)

Parameter Description

uuiPath The UUID of the files whose name is required

getPathForUuid Method
The path of the file referenced by the UUID is retrieved.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using getPathForUuid:

var strPath = objRep.getPathForUuid (uuiPath)

Parameter Description

uuiPath The UUID of the file whose path is required

getSubfolderPathsFor Method
A list of sub-folders for a folder is retrieved.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using getSubfolderPathsFor:

var arrPaths = objRep.getSubfolderPathsFor(uuiPath, blnRecusrive)

Parameter Description

uuiPath The UUID of the files whose name is required

blnRecursive False: examine just the folder or True: expand all sub-folders

isFile Method
Returns true if the UUID is a file.

Example using isFile:

var bln = objRep.isFile(uuiPath)

Parameter Description

uuiPath The UUID of the object type that is being tested

isFolder Method
Returns true if the UUID is a folder.

Example using isFolder:

102 Updating Documents with Advanced Scripting

var bln = objRep.isFolder(uuiPath)

Parameter Description

uuiPath The UUID of the object type that is being tested

makeFolder Method
One or more folders are created.

Optional: Creates a hierarchy of folders if they do not exist.

This method is only available in EPM Workspace and does not apply to the desktop.

Example using makeFolder:

objRep.makeFolder(strPath, strDesc, blnRecursive)

Parameter Description

strPath The path that describes the folder to be created

strDesc Optional: The description to be added to the repository for the path

blnRecursive Optional: If this is set to true and the full parent sub-folders do not exist above the lowest node in the
path, then folder creation starts at the first missing node and continues until all sub-folders in the
path are created

publishBqyFile Method
An Interactive Reporting document is published or imported into the repository, configures the
Interactive Reporting database connection mappings, and identifies how the EPM Workspace
server treats sections. This function performs the work also done by the publishing wizard when
an Interactive Reporting document is imported into EPM Workspace.

Example using publishBqyFile:

var uuid = objRep.publishBqyFile(objF, strN, strD, uuiF, blnD, strH, oceP)

Parameter Description

objF The Interactive Reporting document that is being published

strN The file name being published

strD The description associated with the file being published

uuiF The folder UUID under which this is to be published

blnD True indicates that the Interactive Reporting document contains dashboard sections

stwH The section name that is displayed when the Interactive Reporting document is activated on the thin

client and when (Home) is clicked

Scripting References 103

Parameter Description

oceP An object that represents section information for the Interactive Reporting document, including the
Interactive Reporting database connection information is associated with each query and data model

The example illustrates publishing a copy of an Interactive Reporting document. For example,
if the selected file is called sales analysis, it is published with a name provided by the user, or if
no name is provided as Copy of sales analysis, into the same folder as the source document. The
Interactive Reporting database connection mappings from the source file are also copied to the
new file so it can be processed in the same way as the source file. The script works on the desktop
and in EPM Workspace.

Example: Publishing a copy of an Interactive Reporting document.

/**
 *
 * @param document Select the source to copy.
 * @inputType file_picker_single_value
 *
 * @param target Provide a name to call the copied file
 *
 */

var uuiSrc = env.getParameterValue("document");
var repLocal = env.getRepository();
var filSrc = repLocal.retrieveFile(uuiSrc);
var vrsSrc = repLocal.retrieveVersionedDocument(uuiSrc);
var strSrc = vrsSrc.getName();
var strTrg = env.getParameterValue("target");
if (strTrg == null){
 strTrg = "Copy of " + strSrc;
}
var uuiFolder = vrsSrc.getParentIdentity();
var domSrc = env.getDocument(filSrc, bqReadWriteDom, null);
var oceMapOld = vrsSrc.getSectionOCEMapping();
var oceMapNew = domSrc.sectionOCEPairInfos(uuiFolder);
for (var a = 0; a < oceMapOld.length; a++) {
 if (oceMapOld[a].isOCEEnabled()) {
 oceMapNew[a].setOCEDocument(oceMapOld[a].getOCEDocument());
 oceMapNew[a].setOCEEnabled(true);
 }
}
var strDesc = "this file was copied by a Rhino script from " + strSrc
var blnD =domSrc.isDashboard()
var strH = domSrc.getInitialTCSection()
repLocal.publish(filSrc, strTrg, strDesc, uuiFolder, blnD , strH,
oceMapNew);

retrieveFile Method
The latest or a specific version of a file is retrieved from the repository.

Example using retrieveFile:

var filBqy = objRep.retrieveFile(uuiBqy, intVersion)

104 Updating Documents with Advanced Scripting

Parameter Description

uuiBqy The UUID of the specified file. On the desktop the UUID is identical to the full path of the file.

intVersion Optional: If omitted, then the latest version is obtained

retrieveVersionedDocument Method
The latest version of a versioned document object identified by UUID is retrieved. This method
provides access to the document description, the keywords, the display name of the published
file, the Interactive Reporting database connection file, and how the database connection maps
to the document.

Note:

retrieveVersionedDocument is not for use on the desktop.

Example using retrieveVersionedDocument:

var vrsBqy = objRep.retrieveVersionedDocument(uuiBqy)

Parameter Description

uuiBqy The UUID of the specified document

The Node Object
An Interactive Reporting document is composed of hierarchically arranged node sets. Most
nodes have commonalities and share methods and properties that apply to most Interactive
Reporting document node types.

addChild()
An existing node is added as a child of another node.

Tip:

Useful to copy a node from one location to another.

Example using addChild():

nodTrg = nodMyNode.addChild(nodSrc)

Parameter Description

nodSrc References the source node to be replicated

Scripting References 105

addProperty()
An existing property is added to another node.

Tip:

Useful to copy a property from one node to another.

Example using addProperty():

prpRef = nodMyNode.addProperty(prpSrc)

Parameter Description

prpSrc References the source property to be replicated

cloneNode()
The entire node and its subordinates are cloned.

Example using cloneNode():

var bsndNew = nodMyNode.bsndSrc.cloneNode()

findNodeByPattern()
A single node, if any, that matches the specified pattern is retrieved.

Note:

If a node is not found, an exception is thrown.

Example using findNodeByPattern():

nodFound = nodMyNode.findNodeByPattern(strPattern)

Parameter Description

strPattern The search pattern

findNodesByPattern()
Nodes that match the specified pattern are retrieved.

Note:

No exception is thrown if none are found.

Example using findNodesByPattern():

106 Updating Documents with Advanced Scripting

arrNodes = nodMyNode.findNodesByPattern(strPattern)

Parameter Description

strPattern The search pattern

getChildren()
Returns an array of nodes that are directly under this node.

Example using getChildren():

arrNodes = nodMyNode.getChildren()

getNodeType()
Returns the type of the node; for example, a string.

Example using getNodeType():

strType = nodMyNode.getNodeType()

getPathWithContext()
Returns the path, as a slash-separated list of node names, with name attribute values that remove
ambiguity as to the node identity.

Example using getPathWithContext():

strPath = nodMyNode.getPathWithContext()

getProperty()
The object that represents a given property is retrieved.

Tip:

Useful for getting values of out arrays.

Example using getProperty():

prpResult = nodMyNode.getProperty(strName)
arrValues = prpResult.getValues()

Property Object Description

prpResult An array of values that require reading or modification.

Parameter Description

strName The property name

Scripting References 107

getProperty() may be accompanied by a getValues() call; for example:

arrScripts = nodDocScripts.getProperty(“EScript”).getValues()
var startUp = arrScripts[0]
var shutDown = arrScripts[1]
var preProc = arrScripts[2]
var postProc = arrScripts[3]

Use the EScript property to access multi-valued properties that correspond to simple arrays; for
example:

var someScript = docAnnotation.EScript[i]

In you are using a release earlier than 9.3.1, use this code:

var eScripts = docAnnotation.EScript.getValues()

var someScript = eScripts[i]

hasProperty()
Returns true if the named property exists, otherwise returns false.

Example using hasProperty():

blnResult = nodMyNode.hasProperty(strName)

Parameter Description

strName The property name

Use hasProperty() rather than performing a Boolean test on the property name, as this returns
false if the property is false or zero.

// this is not safe because if Offset is 0 it will return false
if (node.Offset){
 // do whatever is needed if the node has an Offset property
}

// this is safe
if (node.hasProperty(“Offset”){
 // do whatever is needed if the node has an Offset property
}

removeChild()
The nominated child node is removed.

Example using removeChild():

nodMyNode.removeChild(nodChild)

Parameter Description

nodChild The child node to remove

108 Updating Documents with Advanced Scripting

removeProperties()
The properties identified by the array of names are removed.

Example using removeProperties():

nodMyNode.removeProperties(arrNames)

Parameter Description

arrNames The array of property names to delete

Note:

removeProperties() is useful to downgrade the format of an Interactive Reporting document to
one that is generated by an earlier format or Interactive Reporting Studio Release. However, you
are not required to do this because any properties or nodes not understood by Oracle's
Hyperion® Interactive Reporting Studio are ignored when the document is loaded, and therefore
lost when the document is saved.

replaceChildNode()
The old child node is replaced with a new node.

Example using replaceChildNode():

nodRef = nodMyNode.replaceChildNode(nodChild, nodNew)

Parameter Description

nodChild A node that exists as a child

nodNew The new node to replace the child

The BqyDocument Object
The BQY Document Object Model (DOM) provides access to the features of Interactive
Reporting documents. Use this object to modify the internal properties of documents.

Example: Retrieving a DOM for a document.

var uuiBqySrc = env.getParameterValue("document");
var objRep = env.getRepository();
var bqySrc = objRep.retrieveFile(uuiBqySrc);
var domSrc = env.getBqyDocument(bqySrc, bqReadWriteDom, null);

Note:

A DOM is a collection of BQYNode objects arranged in a hierarchy or tree structure.

Scripting References 109

close()
The document is closed.

Example using close():

domSrc.close()

Note:

It is important to use this if a single script processes many documents as it saves resources.

compressBqy()
The Interactive Reporting document is compressed into the specified file.

Note:

Returns true if the file is compressed, or false if the file does not require compression.

Example using compressBqy():

var bln = domSrc.compressBqy(strNameOld, strNameNew, intInsHdrLen)

Parameter Description

strNameOld The Interactive Reporting document name to be compressed

strNameNew The name of the compressed Interactive Reporting document. If it is identical to strNameOld, then the
old uncompressed file is removed

intInsHdrLen The number of bytes of Oracle's Hyperion® Interactive Reporting Web Client (Insight) Header to skip
to get to the main header

copy()
A copy is created on the specified section, and the copy is added to the DOM as a section node
(Rpt.DocComp).

Example using copy():

var rdcTarget domSrc.copy(rdcSource)

Parameter Description

rcdSource The section to be copied, the Rpt.DocComp object

getInitialTCSection()
A string is returned that identifies the Home section of an Interactive Reporting document for
publishing to the thin client.

110 Updating Documents with Advanced Scripting

Example using getInitialTCSection():

strName = domSrc.getInitialTCSection()

isBQYProcessable()
Determines whether the Interactive Reporting document contains at least one section to be
processed.

Example using isBQYProcessable():

blnResult = domSrc.isBQYProcessable()

isCompressed()
Determines whether the document, from which the DOM derives, is compressed.

Note:

isCompressed() is useful if a requirement for the script is to change the compression status of
an Interactive Reporting document.

Example using isCompressed():

blnResult = domSrc.isCompressed()

isDashboard()
Determines whether the Interactive Reporting document contains at least one dashboard
section.

Example using isDashboard():

blnResult = domSrc.isDashboard()

sectionOCEPairInfos()
An array of Interactive Reporting database connection mappings is provided for the DOM.

Note:

These arrays are not the published Interactive Reporting database connection files associated
with the document. However, you can associate the array of mappings with each query published
Interactive Reporting database connection, and enable the document to access a data source
defined in EPM Workspace.

Example using sectionOCEPairInfos():

oceMap = domSrc.sectionOCEPairInfos(uuiParentFolder)

Scripting References 111

Parameter Description

uuiParentFolder The folder UUID where the document is published

Example 1: Copying the Interactive Reporting database connection mappings from one DOM
to another, and republishing the DOM as a new publication or a new version.

function copyBqy(in_repSrc, in_bqySrc, in_bqyTrg){
 var uuiFold = in_repTrg.getFolderUuid(in_bqyTrg.strFolder)
 var oceMapO = in_bqySrc.vrs.getSectionOCEMapping();
 var oceMapN = in_bqySrc.dom.sectionOCEPairInfos(uuiFold);
 for (var a = 0; a < oceMapO.length; a++) {
 if (oceMapO[a].isOCEEnabled()) {
 oceMapN[a].setOCEDocument(oceMapO[a].getOCEDocument());
 oceMapN[a].setOCEEnabled(true);
 }
 }
 var strD = "created by copyBqy"
 var blnD =in_bqyTrg.dom.isDashboard()
 var strH = in_bqyTrg.dom.getInitialTCSection()
 var uuiFound = hysl_getUuid(uuiFolder, in_bqyTrg.strName)
 var filBqy = in_bqyTrg.file
 var strN = in_bqyTrg.strName
 if (uuiFound != null){
 in_repSrc.addVersion(in_uuiToAdd, in_filBqy, in_strDesc)
 }else{
 in_repSrc.publishBqy(filBqy, strN, strD, uuiFold, blnD , strH,
oceMapN);
 }
}

Example 2: Publishing a new document and assigning a specific Interactive Reporting database
connection to the queries of the new document.

var uuiFold = rep.getFolderUuid("/sales/monthly")
var oceMap = bqySrc.dom.sectionOCEPairInfos(uuiFold);
var uuiOCE = rep.getFileUuid("/OCE/salesInfo.oce")
for (var a = 0; a < oceMap.length; a++) {
 if (oceMap[a].isOCEEnabled()){
 oceMap[a].setOCEDocument(uuiOCE);
 }
}
var strD = "my description"
var blnD =bqySrc.dom.isDashboard()
var strH = bqySrc.dom.getInitialTCSection()
var filBqy = bqySrc.file
var strN = bqySrc.strName
in_repSrc.publishBqy(filBqy, strN, strD, uuiFold, blnD , strH, oceMap);

Method and Properties References
This topic includes reference tables for methods and properties.

Reference for env Methods

112 Updating Documents with Advanced Scripting

Method Description

createTempFile() Create a temporary file that is cleaned up when the script completes

expandRequestAction() Add a new sub-task for each set of values

getBqyDocument() Construct a DOM from the content of an Interactive Reporting document

getDescription() Retrieve the description associated with the script

getFileLines() Read the lines of a file and construct an array that contains one string per line

getLogLevel() Retrieve the current default log level that is used when calling log()

getMimeTypeUuid() Retrieve the UUID of the specified MIME type

getNullUuid() Retrieve a null UUID constant

getParameterValue() Retrieve the value of the specified script parameter

getParameterValues() Retrieve all of the values assigned to a multi-value script parameter

getRepository() Retrieve an object that can be used to access the content of the repository

isDesktopMode() Determine whether the script is being run on the desktop

isServerMode() Determine whether the script is being run in EPM Workspace

loadScript() Load the content of another script into this script environment

log() Post a message at the current default logging level

logAlways() Post a message that is always written to the log

logClassName() Post a message that contains the specified Java class name of the object

logDebug() Post a message for debugging

logError() Post a message associated with a detected error condition

logFatal() Post a message associated with a detected error condition

logInfo() Post an informational message

logWarn() Post a warning message

md5Hash() Generate an MD5 hash from the specified string

setLogLevel() Set the default level at which logging is to be performed

setProgress() Update the progress of the script

updateDescription() Set a new description for this script invocation

writeBqyDom() Write the specified DOM out to a file

Scripting References 113

Reference for Repository Methods

Method Description

addVersion() Add a version of a document

convertBqyFileToUnicode() Convert the specified document from code page to Unicode

findFiles() Find all files in a folder

getFileUuid() Retrieve the UUID of the file with a specified path

getFolderUuid() Retrieve the UUID of the folder with a specified path

isFile() Determine whether the specified UUID represents a file

isFolder() Determine whether the specified UUID represents a folder

publishBqyFile() Import a file into the repository with the specified content

remapOCEs() Remap the OCEs of the specified document to the provided set

retrieveFile() Retrieve the document with the specified UUID as a temporary file

retrieveVersionedDocument() Retrieve the versioned document associated with the specified UUID

EPM Workspace-Specific Repository Methods

Method Description

changeToFolder() Change the logical position within EPM Workspace to the specified folder path

folderExists() Determine whether a folder with the specified path exists in EPM Workspace

getCurrentFolder() Retrieve the path to the current folder where this script is located in EPM Workspace

getFolderContentsFor() Retrieve the UUIDs of all files in the folder

getPathForUuid() Get the path in Oracle Enterprise Performance Management Workspace, Fusion Edition
represented by the specified UUID

getSubfolderPathsFor() Retrieve the UUIDs of all subfolders of the folder

makeFolder() Create a subfolder with the specified name

Reference for Node Methods

Method Description

addChild() Add a child under this node

114 Updating Documents with Advanced Scripting

Method Description

addProperty() Add the specified property to this node

dump() Dump the content of the node and the children of the node to standard output

findNodeByPattern() Find one node that matches the specified pattern

findNodesByPattern() Find all nodes that match the specified pattern

getChildren() Retrieve a list of all the children of this node

getChildrenOfType() Retrieve a list of all the children of this node with the specified node type

getContextualName() Retrieve the logical name of this node

getNodeType() Retrieve the type of this node

getPathWithContext() Retrieve a string that represents the location of this node in the document, including
contextual information to make the path unique

getProperties() Retrieve a list of properties for this node

getProperty() Retrieve the property of this node with the specified name

getRoot() Retrieve the root node of the DOM in which this node is stored

hasProperty() Determine whether this node has a property with the specified name

newNode() Construct a node

removeChild() Remove the specified child node

removeProperties() Remove the specified list of properties from this node

replaceChildNode() Replace the specified child node with the node provided

setChildren() Replace the list of children of this node with the provided list

Reference for document
A document retrieved by using env.getBqyDocument() contains these properties.

Property Description

DesignPassword Password required to enter Design mode

DocumentPassword Password required to open the document

EncryptedScripts Determines whether scripts in the document are encrypted

EventScripts Document-level scripts

Name Document name

Scripting References 115

Property Description

Path Path to the document

Root_MyDocument Root.MyDocument node

Root_MyResources Root.MyResources node (or null if the document does not include Resource Manager data)

Sections All sections contained in the document

Type Retrieve the runtime class name

Unicode Determines whether the document string content is in Unicode or code page format

The same document also contains these methods.

Method Description

copy() Copy the specified section to the document, rename it, if necessary, to avoid
duplicates

getChartSections() Retrieve a list of all chart sections

getChildrenWithRuntimeClass() Retrieve all child nodes with a specified RuntimeClassName

getCodePage() Retrieve the code page used by the document

getDashboardSections() Retrieve a list of all the dashboard sections

getInitialTCSection() Retrieve the home section identifier

getPivotSections() Retrieve a list of all pivot sections

getQuerySections() Retrieve a list of all query sections

getResultsSections() Retrieve a list of all results sections

getSource() Get the path to the Interactive Reporting document from which this document was
loaded

getTableSections() Retrieve a list of all table sections

isBQYPasswordProtected() Determine whether the document has a password

isBQYProcessable() Determine whether the document has at least one processable section

load() Load a document from an Interactive Reporting document on disk

optimizeImages() Optimize all of the Resource Manager images to remove duplicates

save() Save the document to an Oracle's Hyperion® Interactive Reporting document on
disk

sectionOCEPairInfos() Retrieve a list of all the document OCE mappings

setCodePage() Set the document code page

116 Updating Documents with Advanced Scripting

Method Description

setEndianness() Set whether the document should be stored as big- or small-endian

setHeader() Set the document header

setSource() Set the path to the source from which this document was loaded

Scripting References 117

118 Updating Documents with Advanced Scripting

Glossary

access permissions A set of operations that a user can

perform on a resource.

accountability map A visual, hierarchical representation of

the responsibility, reporting, and dependency structure of

the accountability teams (also known as critical business

areas) in an organization.

active service A service whose Run Type is set to Start rather

than Hold.

active user A user who is entitled to access the system.

active user/user group The user or user group identified as

the current user by user preferences. Determines default

user preferences, dynamic options, access, and file

permissions. You can set the active user to your user name

or any user group to which you belong.

adaptive states Interactive Reporting Web Client level of

permission.

aggregate cell A cell comprising several cells. For example,

a data cell that uses Children(Year) expands to four cells

containing Quarter 1, Quarter 2, Quarter 3, and Quarter 4

data.

aggregate limit A limit placed on an aggregated request line

item or aggregated metatopic item.

alias An alternative name. For example, for a more easily

identifiable column descriptor you can display the alias

instead of the member name.

appender A Log4j term for destination.

application (1) A software program designed to run a

specific task or group of tasks such as a spreadsheet program

or database management system. (2) A related set of

dimensions and dimension members that are used to meet

a specific set of analytical and/or reporting requirements.

artifact An individual application or repository item; for

example, scripts, forms, rules files, Interactive Reporting

documents, and financial reports. Also known as an object.

attribute Characteristics of a dimension member. For

example, Employee dimension members may have

attributes of Name, Age, or Address. Product dimension

members can have several attributes, such as a size and

flavor.

attribute dimension A type of dimension that enables

analysis based on the attributes or qualities of dimension

members.

authentication service A core service that manages one

authentication system.

axis (1) A straight line that passes through a graphic used

for measurement and categorization. (2) A report aspect

used to arrange and relate multidimensional data, such as

filters, pages, rows, and columns. For example, for a data

query in Simple Basic, an axis can define columns for values

for Qtr1, Qtr2, Qtr3, and Qtr4. Row data would be retrieved

with totals in the following hierarchy: Market, Product.

bar chart A chart that can consist of one to 50 data sets,

with any number of values assigned to each data set. Data

sets are displayed as groups of corresponding bars, stacked

bars, or individual bars in separate rows.

batch POV A collection of all dimensions on the user POV

of every report and book in the batch. While scheduling the

batch, you can set the members selected on the batch POV.

book A container that holds a group of similar Financial

Reporting documents. Books may specify dimension

sections or dimension changes.

book POV The dimension members for which a book is

run.

Glossary 119

bookmark A link to a reporting document or a Web site,

displayed on a personal page of a user. The two types of

bookmarks are My Bookmarks and image bookmarks.

bounding rectangle The required perimeter that

encapsulates the Interactive Reporting document content

when embedding Interactive Reporting document sections

in a personal page, specified in pixels for height and width

or row per page.

cache A buffer in memory that holds data temporarily.

calculation The process of aggregating data, or of running

a calculation script on a database.

Catalog pane Displays a list of elements available to the

active section. If Query is the active section, a list of database

tables is displayed. If Pivot is the active section, a list of

results columns is displayed. If Dashboard is the active

section, a list of embeddable sections, graphic tools, and

control tools are displayed.

categories Groupings by which data is organized. For

example, Month

cause and effect map Depicts how the elements that form

your corporate strategy relate and how they work together

to meet your organization's strategic goals. A Cause and

Effect map tab is automatically created for each Strategy

map.

cell (1) The data value at the intersection of dimensions in

a multidimensional database; the intersection of a row and

a column in a worksheet. (2) A logical group of nodes

belonging to one administrative domain.

chart A graphical representation of spreadsheet data. The

visual nature expedites analysis, color-coding, and visual

cues that aid comparisons.

chart template A template that defines the metrics to

display in Workspace charts.

child A member with a parent above it in the database

outline.

choice list A list of members that a report designer can

specify for each dimension when defining the report's point

of view. A user who wants to change the point of view for a

dimension that uses a choice list can select only the members

specified in that defined member list or those members that

meet the criteria defined in the function for the dynamic list.

clustered bar charts Charts in which categories are viewed

side-by-side; useful for side-by-side category analysis; used

only with vertical bar charts.

column A vertical display of information in a grid or table.

A column can contain data from one field, derived data from

a calculation, or textual information.

computed item A virtual column (as opposed to a column

that is physically stored in the database or cube) that can be

calculated by the database during a query, or by Interactive

Reporting Studio in the Results section. Computed items

are calculations of data based on functions, data items, and

operators provided in the dialog box and can be included in

reports or reused to calculate other data.

connection file See Interactive Reporting connection file

(.oce).

content Information stored in the repository for any type

of file.

cookie A segment of data placed on your computer by a

Web site.

correlated subqueries Subqueries that are evaluated once

for every row in the parent query; created by joining a topic

item in the subquery with a topic in the parent query.

critical business area (CBA) An individual or a group

organized into a division, region, plant, cost center, profit

center, project team, or process; also called accountability

team or business area.

critical success factor (CSF) A capability that must be

established and sustained to achieve a strategic objective;

owned by a strategic objective or a critical process and is a

parent to one or more actions.

cube A block of data that contains three or more

dimensions. An Essbase database is a cube.

custom calendar Any calendar created by an administrator.

custom report A complex report from the Design Report

module, composed of any combination of components.

dashboard A collection of metrics and indicators that

provide an interactive summary of your business.

Dashboards enable you to build and deploy analytic

applications.

120 Glossary

data function That computes aggregate values, including

averages, maximums, counts, and other statistics, that

summarize groupings of data.

data layout The data layout interface is used to edit a query,

arrange dimensions, make alternative dimension member

selections, or specify query options for the current section

or data object.

data model A representation of a subset of database tables.

database connection File that stores definitions and

properties used to connect to data sources and enables

database references to be portable and widely used.

descendant Any member below a parent in the database

outline. In a dimension that includes years, quarters, and

months, the members Qtr2 and April are descendants of the

member Year.

Design Report An interface in Web Analysis Studio for

designing custom reports, from a library of components.

detail chart A chart that provides the detailed information

that you see in a Summary chart. Detail charts appear in the

Investigate Section in columns below the Summary charts.

If the Summary chart shows a Pie chart, then the Detail

charts below represent each piece of the pie.

dimension A data category used to organize business data

for retrieval and preservation of values. Dimensions usually

contain hierarchies of related members grouped within

them. For example, a Year dimension often includes

members for each time period, such as quarters and months.

dimension tab In the Pivot section, the tab that enables you

to pivot data between rows and columns.

dimension table (1) A table that includes numerous

attributes about a specific business process. (2) In Essbase

Integration Services, a container in the OLAP model for one

or more relational tables that define a potential dimension

in Essbase.

display type One of three Web Analysis formats saved to

the repository: spreadsheet, chart, and pinboard.

dog-ear The flipped page corner in the upper right corner

of the chart header area.

drill-down Navigation through the query result set using

the dimensional hierarchy. Drilling down moves the user

perspective from aggregated data to detail. For example,

drilling down can reveal hierarchical relationships between

years and quarters or quarters and months.

drill-through The navigation from a value in one data

source to corresponding data in another source.

dynamic report A report containing data that is updated

when you run the report.

Edit Data An interface for changing values and sending

edits to Essbase.

employee A user responsible for, or associated with,

specific business objects. Employees need not work for an

organization; for example, they can be consultants.

Employees must be associated with user accounts for

authorization purposes.

ending period A period enabling you to adjust the date

range in a chart. For example, an ending period of “month”,

produces a chart showing information through the end of

the current month.

exceptions Values that satisfy predefined conditions. You

can define formatting indicators or notify subscribing users

when exceptions are generated.

external authentication Logging on to Oracle's Hyperion

applications with user information stored outside the

applications, typically in a corporate directory such as

MSAD or NTLM.

externally triggered events Non-time-based events for

scheduling job runs.

Extract, Transform, and Load (ETL) Data source-specific

programs for extracting data and migrating it to

applications.

fact table The central table in a star join schema,

characterized by a foreign key and elements drawn from a

dimension table. This table typically contains numeric data

that can be related to all other tables in the schema.

filter A constraint on data sets that restricts values to

specific criteria; for example, to exclude certain tables,

metadata, or values, or to control access.

folder A file containing other files for the purpose of

structuring a hierarchy.

Glossary 121

footer Text or images at the bottom of report pages,

containing dynamic functions or static text such as page

numbers, dates, logos, titles or file names, and author

names.

format Visual characteristics of documents or report

objects.

free-form grid An object for presenting, entering, and

integrating data from different sources for dynamic

calculations.

generic jobs Non-SQR Production Reporting or non-

Interactive Reporting jobs.

grid POV A means for specifying dimension members on

a grid without placing dimensions in rows, columns, or page

intersections. A report designer can set POV values at the

grid level, preventing user POVs from affecting the grid. If

a dimension has one grid value, you put the dimension into

the grid POV instead of the row, column, or page.

group A container for assigning similar access permissions

to multiple users.

highlighting Depending on your configuration, chart cells

or ZoomChart details may be highlighted, indicating value

status: red (bad), yellow (warning), or green (good).

host A server on which applications and services are

installed.

host properties Properties pertaining to a host, or if the

host has multiple Install_Homes, to an Install_Home. The

host properties are configured from the LSC.

hyperlink A link to a file, Web page, or an intranet HTML

page.

Hypertext Markup Language (HTML) A programming

language specifying how Web browsers display data.

image bookmarks Graphic links to Web pages or

repository items.

implied share A member with one or more children, but

only one is consolidated, so the parent and child share a

value.

inactive group A group for which an administrator has

deactivated system access.

inactive service A service suspended from operating.

inactive user A user whose account has been deactivated by

an administrator.

Install_Home A variable for the directory where Oracle's

Hyperion applications are installed. Refers to one instance

of Oracle's Hyperion application when multiple

applications are installed on the same computer.

Interactive Reporting connection file (.oce) Files

encapsulating database connection information, including:

the database API (ODBC, SQL*Net, etc.), database

software, the database server network address, and database

user name. Administrators create and publish Interactive

Reporting connection files (.oce).

intersection A unit of data representing the intersection of

dimensions in a multidimensional database; also, a

worksheet cell.

Investigation See drill-through.

Java Database Connectivity (JDBC) A client-server

communication protocol used by Java based clients and

relational databases. The JDBC interface provides a call-

level API for SQL-based database access.

job output Files or reports produced from running a job.

job parameters Reusable, named job parameters that are

accessible only to the user who created them.

jobs Documents with special properties that can be

launched to generate output. A job can contain Interactive

Reporting, SQR Production Reporting, or generic

documents.

join A link between two relational database tables or topics

based on common content in a column or row. A join

typically occurs between identical or similar items within

different tables or topics. For example, a record in the

Customer table is joined to a record in the Orders table

because the Customer ID value is the same in each table.

JSP Java Server Pages.

122 Glossary

layer (1) The horizontal location of members in a

hierarchical structure, specified by generation (top down)

or level (bottom up). (2) Position of objects relative to other

objects. For example, in the Sample Basic database, Qtr1 and

Qtr4 are in the same layer, so they are also in the same

generation, but in a database with a ragged hierarchy, Qtr1

and Qtr4 might not be in same layer, though they are in the

same generation.

legend box A box containing labels that identify the data

categories of a dimension.

level A layer in a hierarchical tree structure that defines

database member relationships. Levels are ordered from the

bottom dimension member (level 0) up to the parent

members.

line chart A chart that displays one to 50 data sets, each

represented by a line. A line chart can display each line

stacked on the preceding ones, as represented by an absolute

value or a percent.

link (1) A reference to a repository object. Links can

reference folders, files, shortcuts, and other links. (2) In a

task flow, the point where the activity in one stage ends and

another begins.

linked data model Documents that are linked to a master

copy in a repository

linked reporting object (LRO) A cell-based link to an

external file such as cell notes, URLs, or files with text, audio,

video, or pictures. (Only cell notes are supported for Essbase

LROs in Financial Reporting.)

local report object A report object that is not linked to a

Financial Reporting report object in Explorer. Contrast with

linked reporting object (LRO).

local results A data model's query results. Results can be

used in local joins by dragging them into the data model.

Local results are displayed in the catalog when requested.

locked data model Data models that cannot be modified by

a user.

LSC services Services configured with the Local Service

Configurator. They include Global Services Manager

(GSM), Local Services Manager (LSM), Session Manager,

Authentication Service, Authorization Service, Publisher

Service, and sometimes, Data Access Service (DAS) and

Interactive Reporting Service.

Map Navigator A feature that displays your current

position on a Strategy, Accountability, or Cause and Effect

map, indicated by a red outline.

master data model An independent data model that is

referenced as a source by multiple queries. When used,

“Locked Data Model” is displayed in the Query section's

Content pane; the data model is linked to the master data

model displayed in the Data Model section, which an

administrator may hide.

MDX (multidimensional expression) The language that

give instructions to OLE DB for OLAP- compliant

databases, as SQL is used for relational databases. When you

build the OLAPQuery section's Outliner, Interactive

Reporting Clients translate requests into MDX instructions.

When you process the query, MDX is sent to the database

server, which returns records that answer your query. See

also SQL spreadsheet.

measures Numeric values in an OLAP database cube that

are available for analysis. Measures are margin, cost of goods

sold, unit sales, budget amount, and so on. See also fact

table.

member A discrete component within a dimension. A

member identifies and differentiates the organization of

similar units. For example, a time dimension might include

such members as Jan, Feb, and Qtr1.

member list A named group, system- or user-defined, that

references members, functions, or member lists within a

dimension.

metadata A set of data that defines and describes the

properties and attributes of the data stored in a database or

used by an application. Examples of metadata are

dimension names, member names, properties, time

periods, and security.

metric A numeric measurement computed from business

data to help assess business performance and analyze

company trends.

MIME Type (Multipurpose Internet Mail Extension) An

attribute that describes the data format of an item, so that

the system knows which application should open the object.

A file's mime type is determined by the file extension or

HTTP header. Plug-ins tell browsers what mime types they

support and what file extensions correspond to each mime

type.

Glossary 123

minireport A report component that includes layout,

content, hyperlinks, and the query or queries to load the

report. Each report can include one or more minireports.

missing data (#MISSING) A marker indicating that data in

the labeled location does not exist, contains no value, or was

never entered or loaded. For example, missing data exists

when an account contains data for a previous or future

period but not for the current period.

model (1) In data mining, a collection of an algorithm's

findings about examined data. A model can be applied

against a wider data set to generate useful information about

that data. (2) A file or content string containing an

application-specific representation of data. Models are the

basic data managed by Shared Services, of two major types:

dimensional and non-dimensional application objects. (3)

In Business Modeling, a network of boxes connected to

represent and calculate the operational and financial flow

through the area being examined.

multidimensional database A method of organizing,

storing, and referencing data through three or more

dimensions. An individual value is the intersection point for

a set of dimensions.

native authentication The process of authenticating a user

name and password from within the server or application.

note Additional information associated with a box,

measure, scorecard or map element.

null value A value that is absent of data. Null values are not

equal to zero.

online analytical processing (OLAP) A multidimensional,

multiuser, client-server computing environment for users

who analyze consolidated enterprise data in real time. OLAP

systems feature drill-down, data pivoting, complex

calculations, trend analysis, and modeling.

origin The intersection of two axes.

page member A member that determines the page axis.

palette A JASC compliant file with a .PAL extension. Each

palette contains 16 colors that complement each other and

can be used to set the dashboard color elements.

performance indicator An image file used to represent

measure and scorecard performance based on a range you

specify; also called a status symbol. You can use the default

performance indicators or create an unlimited number of

your own.

personal pages A personal window to repository

information. You select what information to display and its

layout and colors.

personal recurring time events Reusable time events that

are accessible only to the user who created them.

personal variable A named selection statement of complex

member selections.

perspective A category used to group measures on a

scorecard or strategic objectives within an application. A

perspective can represent a key stakeholder (such as a

customer, employee, or shareholder/financial) or a key

competency area (such as time, cost, or quality).

pie chart A chart that shows one data set segmented in a pie

formation.

pinboard One of the three data object display types.

Pinboards are graphics, composed of backgrounds and

interactive icons called pins. Pinboards require traffic

lighting definitions.

pins Interactive icons placed on graphic reports called

pinboards. Pins are dynamic. They can change images and

traffic lighting color based on the underlying data values and

analysis tools criteria.

plot area The area bounded by X, Y, and Z axes; for pie

charts, the rectangular area surrounding the pie.

predefined drill paths Paths used to drill to the next level

of detail, as defined in the data model.

presentation A playlist of Web Analysis documents,

enabling reports to be grouped, organized, ordered,

distributed, and reviewed. Includes pointers referencing

reports in the repository.

primary measure A high-priority measure important to

your company and business needs. Displayed in the

Contents frame.

Production Reporting See SQR Production Reporting.

124 Glossary

promotion The process of transferring artifacts from one

environment or machine to another; for example, from a

testing environment to a production environment.

property A characteristic of an artifact, such as size, type,

or processing instructions.

proxy server A server acting as an intermediary between

workstation users and the Internet to ensure security.

public job parameters Reusable, named job parameters

created by administrators and accessible to users with

requisite access privileges.

public recurring time events Reusable time events created

by administrators and accessible through the access control

system.

publish The process that enables a model owner to forward

a model or model changes for inclusion in an enterprise

model.

range A set of values including upper and lower limits, and

values falling between limits. Can contain numbers,

amounts, or dates.

reconfigure URL URL used to reload servlet configuration

settings dynamically when users are already logged on to the

Workspace.

recurring time event An event specifying a starting point

and the frequency for running a job.

relational database A type of database that stores data in

related two-dimensional tables. Contrast with

multidimensional database.

report object In report designs, a basic element with

properties defining behavior or appearance, such as text

boxes, grids, images, and charts.

resources Objects or services managed by the system, such

as roles, users, groups, files, and jobs.

result frequency The algorithm used to create a set of dates

to collect and display results.

role The means by which access permissions are granted to

users and groups for resources.

row heading A report heading that lists members down a

report page. The members are listed under their respective

row names.

RSC services Services that are configured with Remote

Service Configurator, including Repository Service, Service

Broker, Name Service, Event Service, and Job Service.

scale The range of values on the Y axis of a chart.

schedule Specify the job that you want to run and the time

and job parameter list for running the job.

score The level at which targets are achieved, usually

expressed as a percentage of the target.

scorecard Business Object that represents the progress of

an employee, strategy element, or accountability element

toward goals. Scorecards ascertain this progress based on

data collected for each measure and child scorecard added

to the scorecard.

scorecard report A report that presents the results and

detailed information about scorecards attached to

employees, strategy elements, and accountability elements.

secondary measure A low-priority measure, less important

than primary measures. Secondary measures do not have

Performance reports but can be used on scorecards and to

create dimension measure templates.

Section pane Lists all sections that are available in the

current Interactive Reporting Client document.

security agent A Web access management provider (for

example, Netegrity SiteMinder) that protects corporate

Web resources.

security platform A framework enabling Oracle's

Hyperion applications to use external authentication and

single sign-on.

services Resources that enable business items to be

retrieved, changed, added, or deleted. Examples:

Authorization and Authentication.

servlet A piece of compiled code executable by a Web

server.

Servlet Configurator A utility for configuring all locally

installed servlets.

sibling A child member at the same generation as another

child member and having the same immediate parent. For

example, the members Florida and New York are children

of East and each other's siblings.

Glossary 125

single sign-on Ability to access multiple Oracle's Hyperion

products after a single login using external credentials.

SmartCut A link to a repository item, in URL form.

snapshot Read-only data from a specific time.

SPF files Printer-independent files created by a SQR

Production Reporting server, containing a representation

of the actual formatted report output, including fonts,

spacing, headers, footers, and so on.

Spotlighter A tool that enables color coding based on

selected conditions.

SQL spreadsheet A data object that displays the result set

of a SQL query.

SQR Production Reporting A specialized programming

language for data access, data manipulation, and creating

SQR Production Reporting documents.

stacked charts A chart where the categories are viewed on

top of one another for visual comparison. This type of chart

is useful for subcategorizing within the current category.

Stacking can be used from the Y and Z axis in all chart types

except pie and line. When stacking charts the Z axis is used

as the Fact/Values axis.

Start in Play The quickest method for creating a Web

Analysis document. The Start in Play process requires you

to specify a database connection, then assumes the use of a

spreadsheet data object. Start in Play uses the highest

aggregate members of the time and measures dimensions to

automatically populate the rows and columns axes of the

spreadsheet.

strategic objective (SO) A long-term goal defined by

measurable results. Each strategic objective is associated

with one perspective in the application, has one parent, the

entity, and is a parent to critical success factors or other

strategic objectives.

Strategy map Represents how the organization

implements high-level mission and vision statements into

lower-level, constituent strategic goals and objectives.

structure view Displays a topic as a simple list of

component data items.

Structured Query Language A language used to process

instructions to relational databases.

subscribe Flags an item or folder to receive automatic

notification whenever the item or folder is updated.

Summary chart In the Investigates Section, rolls up detail

charts shown below in the same column, plotting metrics at

the summary level at the top of each chart column.

super service A special service used by the

startCommonServices script to start the RSC services.

target Expected results of a measure for a specified period

of time (day, quarter, etc.,)

time events Triggers for execution of jobs.

time scale Displays metrics by a specific period in time,

such as monthly or quarterly.

token An encrypted identification of one valid user or

group on an external authentication system.

top and side labels Column and row headings on the top

and sides of a Pivot report.

top-level member A dimension member at the top of the

tree in a dimension outline hierarchy, or the first member

of the dimension in sort order if there is no hierarchical

relationship among dimension members. The top-level

member name is generally the same as the dimension name

if a hierarchical relationship exists.

trace level Defines the level of detail captured in the log file.

traffic lighting Color-coding of report cells, or pins based

on a comparison of two dimension members, or on fixed

limits.

transformation (1) Transforms artifacts so that they

function properly in the destination environment after

application migration. (2) In data mining, modifies data

(bidirectionally) flowing between the cells in the cube and

the algorithm.

transparent login Logs in authenticated users without

launching the login screen.

trusted password A password that enables users

authenticated for one product to access other products

without reentering their passwords.

trusted user Authenticated user

user directory A centralized location for user and group

information. Also known as a repository or provider.

126 Glossary

Web server Software or hardware hosting intranet or

Internet Web pages or Web applications.

weight Value assigned to an item on a scorecard that

indicates the relative importance of that item in the

calculation of the overall scorecard score. The weighting of

all items on a scorecard accumulates to 100%. For example,

to recognize the importance of developing new features for

a product, the measure for New Features Coded on a

developer's scorecard would be assigned a higher weighting

than a measure for Number of Minor Defect Fixes.

ws.conf A configuration file for Windows platforms.

wsconf_platform A configuration file for UNIX platforms.

Y axis scale Range of values on Y axis of charts displayed in

Investigate Section. For example, use a unique Y axis scale

for each chart, the same Y axis scale for all Detail charts, or

the same Y axis scale for all charts in the column. Often,

using a common Y axis improves your ability to compare

charts at a glance.

Zero Administration Software tool that identifies version

number of the most up-to-date plug-in on the server.

zoom Sets the magnification of a report. For example,

magnify a report to fit whole page, page width, or percentage

of magnification based on 100%.

ZoomChart Used to view detailed information by

enlarging a chart. Enables you to see detailed numeric

information on the metric that is displayed in the chart.

Glossary 127

128 Glossary

Index

A
access file system, script, 92
add control, 56
add section, 57
adding objects, 55
advanced scripting

access file system, 92
addChild(), 105
addProperty(), 106
addVersion method, 98
batch input files, 92
BqyDocument object, 109
calling scripts, 80

Dashboard Development Services Update
Utility, 80

EPM Workspace, 80
cloneNode(), 106
close(), 110
compressBqy(), 110
convertBqyFileToUnicode method, 99
copy(), 110
custom scripting environment, EPM Workspace,

79
custom scripts, 81
customize scripts, 79
document object model

access properties, 91
collections, 91
Dashboard Studio Inspector Utility, 90
described, 86
differences, 90
document conversion and loading strategies, 87
Impact Management Services, EPM Workspace,

90
property types, 92
traverse, 88
xpath-style searching, 88

expandRequestAction(), 93

findFiles method, 99
findNodeByPattern(), 106
findNodesByPattern(), 106
folderExists method, 100
getBqyDocument(), 94
getChildren(), 107
getCurrentFolder method, 100
getFileLines(), 94
getFileUuid method, 100
getFolderContentsFor method, 101
getFolderUuid method, 101
getInitialTCSection(), 110
getMimeTypeUuid(), 95
getNameForUuid method, 101
getNodeType(), 107
getParameterValue(), 95
getParameterValues(), 95
getPathForUuid method, 102
getPathWithContext(), 107
getProperty(), 107
getRepository(), 96
getScriptUuid(), 96
getSubfolderPathsFor method, 102
hasProperty(), 108
isBQYProcessable(), 111
isCompressed(), 111
isDashboard(), 111
isDesktopMode(), 96
isFile method, 102
isFolder method, 102
isServerMode(), 96
Java code, 92
javascriptupdate.js, 81
loadScript(), 96
logging, 85
makeFolder method, 103
monitor script environment, 81
node object, 105

A B C D E F G I J L M N O P Q R S T U

Index 129

publishBqyFile method, 103
references

document, 115
env methods, 112
methods and properties, 112
node methods, 114
repository methods, 114
repository methods, EPM Workspace-specific,

114
removeChild(), 108
removeProperties(), 109
replaceChildNode(), 109
repository artifact, 98
retrieveFile method, 104
retrieveVersionedDocument method, 105
revertimageresources.js, 82
script parameters, 84
scriptenvironment object, 93
scripting references, 93
sectionOCEPairInfos(), 111
setParameterValues(), 97
sortdatamodeltopics.js, 81
update documents, 79
updatedatamodels.js, 81
write document information into log, 86
writeBqyDom(), 97

architecture, 15
auto-code, 41

B
batch input files

scripts, 92
using, 92

BqyDocument object
Interactive Reporting Studio, 109
EPM Workspace, 109

breakpoints
about, 52

buttons, 21

C
calling scripts, 80

Dashboard Development Services, 80
EPM Workspace, 80

case matching, 37
code generation using the object browser, 36

configuration file, 73
modify, 73

configure
configuration file, 73

consolidate images in resource manager
Dashboard Development Services Update Utility,

72
controls

add, 56
create, 57
delete, 57
duplicate, 56
rename, 57

create control, 57
create project, 29
creating a new project, 29
creating a new project from an Interactive Reporting

document, 16
custom scripting environment

EPM Workspace, 79
custom scripts

Interactive Reporting Studio, 81
javascriptupdate.js, 81
revertimageresources.js, 82
revertimageresources.js, run, 82, 83
sortdatamodeltopics.js, 81
updatedatamodels.js, 81
EPM Workspace, 81

customize scripts, 79

D
Dashboard Architect

about, 15
advanced scripting

customize scripts, 79
advanced scripting to update documents, 79
architecture, 15
concepts, 13
menus, shortcuts and buttons, 21
new project, create, 19
open project, 19
options, 27
user interface, 19

Dashboard Architect Import Utility
importing sections from other Interactive

Reporting documents, 47
Unicode, 48

A B C D E F G I J L M N O P Q R S T U

130 Index

dashboard development environment
about, 13

Dashboard Development Services Component-
Specific features, 68

Dashboard Development Services Component-
Specific features, in HTML documentation, 69

Dashboard Development Services Update Utility, 71
consolidate images in resource manager, 72
Unicode, 72
update process, 72

dashboard section-level customization
dashboard controls, 10
dashboard graphics, 10

Dashboard Studio Inspector Utility (advanced
scripting)

document object model
access properties, 91
collections, 91
investigate, 90
property types, 92

debugging
about, 52
breakpoints, 52
capability, 17

declarative JavaScript, 49
delete control, 57
delete section, 58
document object model. See DOM
documentation

comment tag reference, 67
comments, 61
Dashboard Development Services Component-

Specific features, 68
Dashboard Development Services Component-

Specific features in HTML documentation, 69
generating, 68
grouping using the @scope tag, 66
inclusion and exclusion of documentation groups,

69
inclusion and exclusion of unscoped

documentation, 69
namespace scope of entities and the @scope tag,

65
documenting

classes, 63
Dashboard Development Services Components,

64

functions, 62
variables, 62

documenting code, 61
DOM

access properties
Impact Management Services, EPM Workspace,

91
Interactive Reporting Studio, 91

collections
Impact Management Services, EPM Workspace,

91
Interactive Reporting Studio, 91

differences
Impact Management Services, EPM Workspace,

90
Interactive Reporting Studio, 90

document conversion and loading strategies, 87
investigate structure, Impact Management Services,

EPM Workspace, 90
property types

Impact Management Services, EPM Workspace,
92

Interactive Reporting Studio, 92
traversing, 88
tree structure, 86
xpath-style searching, 88

duplicate control, 56
duplicate section, 57
duplicating a project, 30

E
editing

ad macro, 43
auto-code, 41
cn macro, 43
code generation using the object browser, 36
define a macro, 42
find, 36
floating find menu, 39
general notes, 35
import sections, 47
JavaScript, 17
macro invoke, 45
macro invoke, with parameter values, 45
macro invoke, without parameter values, 45
macro parameters, 44

for macro with loop index parameter, 44

A B C D E F G I J L M N O P Q R S T U

Index 131

for parameters default values, 45
macro, control codes, 46
macros, 42
match brace, 40
multiple-line macros, 44
navigation using the outliner, 36
printing, 40
replace, 40
simple macros, 43

F
file system

accessing within script, 92
find

all, 39
Find dialog box, 36
floating menu, 39
function, 40
match case, 37
next, 39
options, 37
pattern matching, 37
replace, 40
search, 37
whole words, 37

floating find menu, 39
for macro with loop index parameter, 44
for parameters default values, 45

G
generate code, object browser, 36
generating documentation, 68

I
import sections from other Interactive Reporting

documents, 47
Interactive Reporting document

import sections, 47
Interactive Reporting Studio

interaction, 55
synchronizing, 17

J
Java code in scripts, 92
JavaScript

concepts, 9
dashboard section-level customization, 10
declarative, 49
definition of JavaScript, 9
document-level customization, 10
editing, 17
Interactive Reporting Studio, 9
procedural, 49

javascriptupdate.js
EPM Workspace, 81

L
logging

Interactive Reporting Studio, 85
EPM Workspace, 85
write documentation information

Interactive Reporting Studio, 86
EPM Workspace, 86

M
macros, 42

ad, 43
cn, 43
control codes, 46
define, 42
invoke, 45
invoke with parameter values, 45
invoke without parameter values, 45
multiple-line, 44
parameters, 44

for macro with loop index parameter, 44
for parameters default values, 45

quoting, 43
simple, 43

making a bqy, 33
making an Interactive Reporting document, 33
match brace, 40
match case, 37
menu

debug, 24
edit, 22
file, 21
help, 26
project, 24
run, 25
tools, 25

A B C D E F G I J L M N O P Q R S T U

132 Index

view, 23
menu commands, 21
menu commands, shortcuts and buttons, 21
methods

examples, 13
methods and properties

references, 112
document, 115
env methods, 112
node methods, 114
repository methods, 114
repository methods, EPM Workspace-specific,

114
modify

configuration file, 73
monitor script environment

Interactive Reporting Studio, 81
EPM Workspace, 81

N
navigation using the outliner, 36
new project, create, 29
new sections file, 72
node object

Interactive Reporting Studio, 105
EPM Workspace, 105

O
object browser, code generation, 36
object oriented concepts, 11

methods, 12
objects, 11
properties, 13

objects
adding and removing, 55
examples, 11

objects, properties and methods, addressing, 13
options dialog box, 27

P
pattern matching, 37
printing, 40
procedural JavaScript, 49
project

create new, 29
duplicate, 30

properties
examples, 13

Q
quoting

macros, 43

R
re-creation of an Interactive Reporting document, 18
references

document, 115
env methods, 112
methods and properties, 112
node methods, 114
repository methods, 114
repository methods, EPM Workspace-specific, 114

removing objects, 55
rename control, 57
rename section, 58
replace, 40
repository

addVersion method, 98
artifact, 98

Interactive Reporting Studio, 98
EPM Workspace, 98

convertBqyFileToUnicode method, 99
findFiles method, 99
folderExists method, 100
getCurrentFolder method, 100
getFileUuid method, 100
getFolderContentsFor method, 101
getFolderUuid method, 101
getNameForUuid method, 101
getPathForUuid method, 102
getSubfolderPathsFor method, 102
isFile method, 102
isFolder method, 102
makeFolder method, 103
publishBqyFile method, 103
retrieveFile method, 104
retrieveVersionedDocument method, 105

resynchronize, 55
revertimageresources.js

Interactive Reporting Studio, 82
run, 82
run on a file, 83

A B C D E F G I J L M N O P Q R S T U

Index 133

run on folder, 83

S
script outliner, navigation, 36
script parameters

EPM Workspace, 84
scriptenvironment object

Interactive Reporting Studio, 93
EPM Workspace, 93

scripting references
addChild(), 105
addProperty(), 106
BqyDocument object, 109
cloneNode(), 106
close(), 110
compressBqy(), 110
copy(), 110
expandRequestAction(), 93
findNodeByPattern(), 106
findNodesByPattern(), 106
getBqyDocument(), 94
getChildren(), 107
getFileLines(), 94
getInitialTCSection(), 110
getMimeTypeUuid(), 95
getNodeType(), 107
getParameterValue(), 95
getParameterValues(), 95
getPathWithContext(), 107
getProperty(), 107
getRepository(), 96
getScriptUuid(), 96
hasProperty(), 108
Interactive Reporting Studio, 93
isBQYProcessable(), 111
isCompressed(), 111
isDashboard(), 111
isDesktopMode(), 96
isServerMode(), 96
loadScript(), 96
node object, 105
removeChild(), 108
removeProperties(), 109
replaceChildNode(), 109
scriptenvironment object, 93
sectionOCEPairInfos(), 111
setParameterValues(), 97

EPM Workspace, 93
writeBqyDom(), 97

scripting, advanced
customize scripts, 79
update documents, 79

scripts
batch input files, 92
Java code, 92

search, 37
sections

add, 57
delete, 58
duplicate, 57
rename, 58

shortcuts, 21
sortdatamodeltopics.js

EPM Workspace, 81
synchronize releases

tlb (type library file), 26
synchronizing with Interactive Reporting Studio, 17

T
testing

about, 49
capability, 17
rule, 49

testing and debugging, 49
tlb (type library file)

synchronize releases, 26
tools, options dialog box, 27

U
Unicode

Dashboard Architect Import Utility, 48
Dashboard Development Services Update Utility,

72
update

command line, 75
command line, select documents, 76
documents, 73
documents with advanced scripting, 79
many method, 74
one method, 74
utility, 71

updatedatamodels.js
EPM Workspace, 81

A B C D E F G I J L M N O P Q R S T U

134 Index

user interface, 19

A B C D E F G I J L M N O P Q R S T U

Index 135

A B C D E F G I J L M N O P Q R S T U

136 Index

	Contents
	Introduction and Concepts
	JavaScript Concepts
	Definition of JavaScript
	How Interactive Reporting Studio Supports JavaScript
	Document-Level Customization
	Dashboard Section-Level Customization

	Object Oriented Concepts
	Objects
	Examples of Interactive Reporting Studio Objects
	Methods
	Examples of Interactive Reporting Studio Methods
	Properties
	Examples of Interactive Reporting Studio Properties
	Addressing Objects, Properties, and Methods

	Dashboard Architect Concepts
	The Dashboard Development Environment
	About Dashboard Architect

	Architecture
	Creation of Projects from Interactive Reporting Documents
	Editing JavaScript
	Testing Capability
	Debugging Capability
	Synchronization with Interactive Reporting Studio
	Re-creation of an Interactive Reporting Document

	Dashboard Architect Features
	Opening Dashboard Architect
	The Dashboard Architect User Interface
	Menu Commands, Shortcuts, and Buttons
	The File Menu
	The Edit Menu
	The View Menu
	The Project Menu
	The Debug Menu
	The Run Menu
	The Tools Menu
	The Help Menu

	The Options Dialog Box

	Creating a Project
	Creating Projects
	Duplicating Projects

	Making an Interactive Reporting Document
	Editing
	General Notes About Editing
	Navigation Using the Script Outliner
	Code Generation Using the Object Browser
	The Find Dialog Box
	The Search Feature
	The Options Feature
	The Find Next Option
	The Find All Option

	Using the Floating Find Menu
	The Replace Feature
	Using the Printing Command
	Using the Match Brace Feature
	The Auto-Code Feature
	Macros
	Defining a Macro
	Simple Macros
	Multiple-Line Macros
	Macro Parameters
	Invoking Macros
	Macro Control Codes

	Importing Sections from other Interactive Reporting Documents
	Unicode Functionality

	The Testing and Debugging Processes
	Testing and Debugging
	About Testing
	Testing Rule
	Procedural and Declarative JavaScript

	About Debugging
	Breakpoints

	Adding and Removing Objects
	Interaction with Interactive Reporting Studio
	Resynchronizing
	Adding Controls
	Duplicating Controls
	Creating Controls

	Deleting Controls
	Renaming Controls
	Adding and Duplicating Sections
	Renaming Sections
	Deleting Sections

	Documentation
	Documentation of Code
	Documentation Comments
	Documentation of Variables
	Documentation of Functions
	Documentation of Classes
	Documentation of Dashboard Development Services Components
	Namespace Scope of Entities and the @scope Tag
	Documentation Grouping Using the @scope Tag
	Documentation Comment Tag Reference
	Dashboard Development Services Component-Specific Features

	Generating Documentation
	Inclusion and Exclusion of Documentation Groups
	Inclusion and Exclusion of Unscoped Documentation
	Dashboard Development Services Component-Specific Features in HTML Documentation

	Using the Dashboard Development Services Update Utility
	About Dashboard Development Services Update Utility
	Unicode Functionality
	Consolidate Images in Resource Manager

	Update Workflow
	New Sections File
	Configure Configuration Files
	Modify the Configuration File
	Updating Documents
	Using the Update One Method
	Using the Update Many Method
	Command Line Updates
	Selecting Documents to Update

	Updating Documents with Advanced Scripting
	Customizing Scripts
	EPM Workspace Custom Scripting Environment
	Calling Scripts
	Calling Scripts in EPM Workspace
	Calling Scripts in Dashboard Development Services Update Utility
	Monitoring Script Execution

	Custom Scripts
	JavaScriptUpdate.js
	UpdateDataModels.js
	SortDataModelTopics.js
	RevertImageResources.js

	Script Parameters
	Logging
	Writing Document Information into the Log
	Document Object Model Tree Structure
	Document Conversion and Loading Strategies
	Traversing the Document Object Model
	XPath-Style Searching
	Differences Between the Impact Management Services and Interactive Reporting Studio Document Object ...
	Investigating the Impact Management Services DOM Structure

	Accessing Properties
	Collections
	Property Types

	Accessing the File System
	General Java Code in Scripts
	Using Batch Input Files
	Scripting References
	ScriptEnvironment Object
	Reporting and Analysis Repository: Repository Artifact
	The Node Object
	The BqyDocument Object
	Method and Properties References

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /FranklinGothic-BookCnd
 /FranklinGothic-BookCndItal
 /FranklinGothic-DemiCnd
 /FranklinGothic-DemiCndItal
 /FranklinGothic-MedCnd
 /FranklinGothic-MedCndItal
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-Italic
 /Minion-Regular
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (This file has been modified for Distiller 7.0 PDF, as described in the Oracle Documentation Processes Guide to Creating PDF. Also, Franklin Gothic and Minion fonts are set to Always Embed.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

