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Fig. 1: AFL and AFL + IJON trying to defeat Bowser in Super Mario Bros. (Level 3-4). The lines are the traces of all runs found by the fuzzer.

Abstract—Although current fuzz testing (fuzzing) methods are
highly effective, there are still many situations such as complex
state machines where fully automated approaches fail. State-of-
the-art fuzzing methods offer very limited ability for a human
to interact and aid the fuzzer in such cases. More specifically,
most current approaches are limited to adding a dictionary or
new seed inputs to guide the fuzzer. When dealing with complex
programs, these mechanisms are unable to uncover new parts of
the code base.

In this paper, we propose IJON, an annotation mechanism
that a human analyst can use to guide the fuzzer. In contrast
to the two aforementioned techniques, this approach allows a
more systematic exploration of the program’s behavior based on
the data representing the internal state of the program. As a
consequence, using only a small (usually one line) annotation, a
user can help the fuzzer to solve previously unsolvable challenges.
We extended various AFL-based fuzzers with the ability to
annotate the source code of the target application with guidance
hints. Our evaluation demonstrates that such simple annotations
are able to solve problems that—to the best of our knowledge—
no other current fuzzer or symbolic execution based tool can
overcome. For example, with our extension, a fuzzer is able
to play and solve games such as Super Mario Bros. or resolve
more complex patterns such as hash map lookups. To further
demonstrate the capabilities of our annotations, we use AFL
combined with IJON to uncover both novel security issues and
issues that previously required a custom and comprehensive
grammar to be uncovered. Lastly, we show that using IJON and
AFL, one can solve many challenges from the CGC data set that
resisted all fully automated and human guided attempts so far.

I. INTRODUCTION

In recent years, a large number of software bugs were
uncovered by fuzz testing (short: fuzzing) and this research
area has received significant attention in both the academic
community [7], [14], [43], [45], [53], [60] and practice [1],
[33], [61]. As a result, much attention was placed on further
improving fuzzing methods, often to achieve greater code
coverage and reach deeper into a given software application.
Yet, a significant number of open challenges remain: Even
with clever program analysis techniques such as symbolic
or concolic execution, some constraints cannot be overcome
easily. Furthermore, in some cases, state explosion proves

too much of a hindrance to current techniques—whether they
are fuzzing or symbolic execution based approaches. This is
due to the fact that the underlying problem (finding bugs) is
undecidable in the general case. As a result, we cannot expect
that any single algorithm will perform very well across all
target applications that are tested.

Due to this insight, even though significant progress has
been made in recent works on improving fully autonomous
fuzzers, some constraints will remain unsolvable no matter
which algorithm is used (e.g., if cryptography is used). In
practice, current approaches struggle to explore complex state
machines, where most progress can only be observed in
changes to the program’s state data. Since each update to the
state data is triggered by certain code, a coverage-based fuzzer
is able to explore each individual update in isolation. However,
there is no feedback that rewards exploring combinations of
different updates leading to new states, if all individual updates
have been observed previously. In cases where a specific
sequence of updates is needed to uncover a bug, this prevents
the fuzzer from making progress. Similarly, concolic execution
based approaches fail, since the exact sequence of updates
(and consequently the precise code path chosen) is critical to
uncover the bug. Since concolic execution fixes the path to
the observed execution path, it is impossible for the solver to
obtain an input that triggers the target condition. Lastly, even
fully symbolic execution, which is free to explore different
paths, fails if the state space grows too large.

We note that there is a trend to use more complex solutions,
which only support minimal environments/instruction sets,
based on symbolic execution to overcome harder challenges in
fuzzing [43], [45], [53], [60]. On the downside, as observed by
various sources [10], [60], [62], such methods sometimes scale
poorly to complex applications. As a result, they find little use
in industry, compared to fuzzers such as LIBFUZZER and AFL.
Google’s OSS fuzz project alone was able to uncover over
27.000 bugs [23] in targets as complex as the Chrome browser
using tools such as LIBFUZZER. Often, it seems, the additional



effort to set up and deal with a symbolic environment is not
worth the effort [62].

In this paper, we explore how a human can steer the fuzzer
to overcome current challenges in fuzzing. To paraphrase a
well-known, but hard to attribute quote, “Computers are in-
credibly fast, accurate and stupid; humans are incredibly slow,
inaccurate and brilliant; together they are powerful beyond
imagination”. Humans are often better at forming high-level,
strategic plans, while a computer ensures that the tactics are
working out, and the human does not overlook any important
aspect. This approach is typically referred to as human-in-the-
loop, and is a commonly used concept in software verifica-
tion [8], [15], [34], [39], [41], [52] and throughout various
other fields such as machine learning [17], [59], controlling
cyber-physical systems [47], [49], and optimization [24], [51].

Our approach is also motivated by the observation that
many fuzzing practitioners in the industry already use a closed
feedback loop in their fuzzing process [35]: First, they run
the fuzzer for some time and then analyze the resulting code
coverage. After this manual analysis, they tweak and adapt
the fuzzing process to increase coverage. Common strategies
for improving the fuzzing performance include removing chal-
lenging aspects from the target application (e.g., checksums),
changing the mutation strategies, or explicitly adding input
samples that solve certain constraints that the fuzzer did not
generate in an automated way. This approach has two main
reasons: on the one hand, all the “easy” bugs (i.e., the ones
which can be found fully automatically) are found very quickly
during a fuzzing campaign. On the other hand, the more
interesting bugs are—by definition—the ones that cannot be
found using current tools in off-the-shelf configurations and
hence, some manual tuning is required. We believe that by
assisting and steering the fuzzing process, humans interacting
with fuzzers allow for a vastly increased ability to analyze
applications and overcome many of the current obstacles
related to fuzzing of complex applications.

Specifically, we focus on a particular class of challenges: we
observe that current fuzzers are not able to properly explore the
state space of a program beyond code coverage. For example,
program executions that result in the same code coverage, but
different values in the state, cannot be explored appropriately
by current fuzzers. In general, the problem of exploring state
is challenging, as it is difficult to automatically infer which
values are interesting and which are not. However, a human
with a high-level understanding of the program’s goals, often
knows which values are relevant and which are not. For
example, a human might know that exploring different player
positions is relevant to solve a game, while the positions of
all enemies in the game world are not.

We show that a human analyst can annotate parts of the
state space that should be explored more thoroughly, hence
modifying the feedback function the fuzzer can use. The
required annotations are typically small, often only one or
two lines of additional code are needed. To demonstrate the
practical feasibility of the proposed approach, we extended
various AFL-based fuzzers with the ability to annotate the

source code of the target application with hints to guide the
fuzzer. Our extension is called IJON, named after Ijon Tichy,
the famous space explorer from Stanislaw Lem’s books [31].
In four case studies, we show that the annotations can help to
overcome significant roadblocks and to explore more interest-
ing behaviors. For example, using simple annotations, we are
able to play Super Mario Bros. (as illustrated in Figure 1) and
to solve hard instances from the CGC challenge data set.
In summary, we make the following contributions in this paper:

• We systematically analyze feedback methods imple-
mented in current fuzzers, study how they represent state
space, and investigate in which cases they fail in practice.

• We design a set of extensions for current feedback fuzzers
that allow a human analyst to guide the fuzzer through the
state space of the application and to solve hard constraints
where current approaches fail.

• We demonstrate in several case studies how these anno-
tations can be used to explore deeper behaviors of the
target application. More specifically, we show how the
state space of a software emulator for a Trusted Platform
Module (TPM), complex format parsers, the game Super
Mario Bros., a maze, and a hash map implementation
can be efficiently explored by a fuzzer. Additionally, we
demonstrate, that our approach enables us to solve some
of the most difficult challenges in the CGC data set, and
find new vulnerabilities in real-world software.

The implementation of IJON and a complete data set that
illustrates our evaluation results, including playthrough videos
for the case studies we present in this paper, is available at
https://github.com/RUB-SysSec/ijon.

II. TECHNICAL BACKGROUND

Our work builds upon fuzzers from the AFL [61] family
such as ANGORA [14], AFLFAST [11], QSYM [60], or LAF-
INTEL [1]. To explain the technical details of our approach,
we hence need to introduce some aspects of the inner working
of AFL itself. Fuzzers from the AFL family generally try to
find a corpus that triggers a large variety of different states
from the state space of the program. Here, a state denotes
one configuration of memory and registers, as well as the
state provided by the OS (e.g., file descriptors and similar
primitives). The state space is the set of all possible states a
program can be in. Since even for trivially small programs, the
state space is larger than the number of atoms in the universe,
the fuzzer has to optimize the diversity of states reached by the
test cases. This class of fuzzers typically uses code coverage to
decide if an input reaches sufficiently different state than the
ones existing in the corpus. We make use of the bitmap that
AFL uses to track this coverage. Hence, we start by explaining
the design of the coverage feedback used by AFL. Afterward,
we discuss some of the consequences of this design when
using a fuzzer to optimize the state coverage.

A. AFL Coverage Feedback

Various forks of AFL use instrumentation to obtain test
coverage information. Typically, AFL-style fuzzers track how
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often individual edges in the control flow graph (CFG) are exe-
cuted during each test input. There are two classes of feedback
mechanisms commonly used: source code based forks of AFL
typically use a custom compiler pass that annotates all edges
with a custom piece of code. Binary-only versions of AFL use
different mechanisms such as Dynamic Binary Instrumentation
(DBI) or hardware accelerated tracing (typically Intel LBR
or Intel PT) to obtain coverage information. Either way, the
probes inserted into the target application then count the
occurrences of each edge in the CFG and store them in a
densely encoded representation.

The resulting information is stored in a shared map that
accumulates all edge counts during each test run. The fuzzer
additionally maintains a global bitmap that contains all edge
coverage encountered during the whole fuzzing campaign. The
global bitmap is used to quickly check if a test input has
triggered new coverage. AFL considers a test input interesting
and stores it if it contains a previously unseen number of
iterations on any edge. Since edges always connect two
basic blocks, edges are encoded as a tuple consisting of two
identifiers, one for the source basic block ids and one for a
target block idt. In the source code based versions, a static
random value is assigned at compile-time to each basic block,
which is used as ids or idt. For binary-only implementations,
it is common to use a cheap hash function applied to the
address of the jump instruction/target instruction to derive the
ids and idt values, respectively. This tuple (ids, idt) is then
used to index a byte in the shared map. Typically, the index
is calculated as (ids ∗ 2) ⊕ idt. The multiplication is used to
efficiently distinguish self-loops.

Before each new test run, the shared map is cleared.
During the test run, each time an edge is encountered, the
corresponding byte in the shared map is incremented. This
implies that edge counts greater than 255 will overflow and
might register as any number between 0 and 255. After the
execution finished, the edge counts are bucketed such that
each byte in the shared map with a non-zero edge count
contains a power of 2. To this end, edge counts are discretized
into the following ranges 1, 2, 3, 4 . . . 7, 8 . . . 15, 16 . . . 31,
32 . . . 127, 128 . . . 255. Each range of edge counts is assigned
to one specific power of 2. To increase the precision on
uncommon edges, 3 also maps to a unique power of 2, while
the range 32 to 64 is omitted. Then we can compare the shared
map against a global bitmap, which contains all bits that were
previously observed in prior runs. If any new bit is set, the
test input is stored because it has led to increased coverage,
and the global bitmap is updated to contain the new coverage.

B. Extending Feedback Beyond Coverage

Fuzzers sometimes get stuck in a part of the search space,
where no reasonable, probable mutation provides any new
feedback. In this paper, we develop novel ways to provide
a smoother feedback landscape. Consequently, we now re-
view various methods that were proposed to extend feedback
mechanism beyond code coverage to avoid getting stuck on
a plateau. Notably, LAF-INTEL [1] was an early approach

to solve magic byte type constraints (e.g., if (input ==
0xdeadbeef)) by splitting large compare instructions into
multiple smaller ones. The same idea was later implemented
by using dynamic binary instrumentation in a tool called
STEELIX [32]. Splitting multi-byte compare instructions into
multiple single byte instructions allows the fuzzer to find new
coverage every time a single byte of the operands is matching.
ANGORA [14] assigns a random identifier to each function. It
uses these identifiers to extend the coverage tuple by a third
field that contains a hash of the current execution context.
To compute this hash, it combines all identifiers of functions
that have been called but have not yet returned (i.e., active
functions) using an XOR operation. This allows finding the
“same” coverage if it was used in a different calling context.
For example, this method is helpful to solve multiple calls to
the strcmp function. However, the downside of this approach
(i.e., considering all calling contexts as unique) is that in
certain situations, this creates a large number of inputs that
are actually not interesting. Therefore, ANGORA requires a
larger bitmap than AFL.

III. DESIGN

Generally speaking, a fuzzer tries to sample from “inter-
esting” regions of the state space as efficiently as possible.
However, it is hard to find an accurate and objective metric
for how “interesting” the state space of any given input is.
The overall success of AFL and its derivative demonstrates
that following the edge coverage is an effective metric to
identify new interesting regions. Edge coverage is probably
the feature with the best signal to noise ratio in practice—
after all, in most (i.e., not obfuscated [25], [30]) programs,
each new edge indicates a special case. However, there are
code constructs where this approach is unlikely to reach new
coverage without exploring intermediate points in the state
space. In the following, we analyze code constructs in which
a user could provide additional feedback that would help the
fuzzer by conceptually describing the intermediate steps which
provide additional feedback. Finally, we introduce a novel set
of primitives that actually allow an analyst to add custom
annotations which provide exactly the feedback needed to
overcome these difficulties.

A. State Exploration

To identify problematic code constructs that are hard to
fuzz with current techniques, we performed several offline
experiments using state-of-the-art fuzzers and manually in-
spected the coverage obtained. In some cases, we used seed
files to find code that can be covered using good seeds, but
not without, indicating hard constructs. In the following, we
summarize the most important problems we encountered in
these experiments:

• Known Relevant State Values: Sometimes, code coverage
adds no feedback to help the fuzzer to advance. If only
a small subset of the states is interesting and a human
analyst is able to identify these values, we can directly
use them to guide the fuzzer.
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• Known State Changes: Sometimes, the program is too
complex, or it is not obvious which variables contain
interesting state and which ones do not. In such situations,
since no sufficiently small set of relevant state values are
known to us, we cannot directly use them to guide the
fuzzer. Instead, a human analyst might be able to identify
positions in the code that are suspected to mutate the
state. An analyst can use the history of such state changes
as an abstraction for the more complex state and guide the
fuzzer. For example, many programs process messages or
chunks of inputs individually. Processing different types
of input chunks most likely mutates the state in different
ways.

• Missing Intermediate State: Unlike the previous two
cases, there might be neither variables that contain the
state, nor code that mutates the state that we care about.
In such situations, an analyst can create artificial inter-
mediate states to guide the fuzzer.

Based on this systematization of important problems in
fuzzing, we provide examples and describe each of the sug-
gested approaches in more detail.

1) Known Relevant State Values: As described before,
sometimes the code coverage yields nearly no information
about the state of the program, because all the interesting state
is stored in data. For example, the coverage tells very little
about the behavior of a branch-free AES implementation. If
the analyst has an understanding of the variables that store
the interesting state, he can directly expose the state to the
fuzzer and the fuzzer is then able to explore inputs that cause
different internal states.

while(true) {

ox=x; oy=y;

switch (input[i]) {

case 'w': y--; break;
case 's': y++; break;
case 'a': x--; break;
case 'd': x++; break;

}

if (maze[y][x] == '#'){ Bug(); }

//If target is blocked, do not advance

if (maze[y][x] != ' ') { x = ox; y = oy; }

}

Listing 1: A harder version of the maze game.

Consider the code in Listing 1. It implements a small
game, in which the player has to navigate a labyrinth by
moving in one of four possible directions. It is based on the
famous labyrinth demo that is commonly used by the symbolic
execution community to demonstrate how a symbolic executor
can explore the state space of a maze. In this modified version,
it is possible to walk backward and to stay in the same place.
This creates a vast amount of different paths through the
program. At the same time, there are effectively only four
branches that can be covered, thus the coverage alone is not a

(a) The abstract state machine of the maze
game reduced to x, y pairs. Since the
mazes have only a few states, the fuzzer
can enumerate all.

(b) The analyst can abstract the large set
of states into smaller set of states that are
supposedly separated by certain operations.
The fuzzer can then explore edge tuples on
this state machine.

Fig. 2: An analyst view on two fuzzing problems.

Fig. 3: The circles mark the best observed x values so far. Optimizing x
for each altitude independently helps overcoming dead ends. In this case, the
input maximizing the value observed at y = 12 (x12) is very unlikely to be
helpful (Mario will hit the wall or the ceiling). However, the inputs with the
best observed values for other altitudes (such as x10) are not caught in a dead
end.

good indicator of interesting behavior. In this harder version,
even KLEE [12] fails to solve the labyrinth. Here, it is essential
to understand that the x and y coordinates are relevant states
that need to be explored. In mazes with dead ends, it is even
impossible to find a solution by trying to increase x or y
individually. The combination of both x and y has to be
considered to uncover a solution. Since the maze is rather
small (at most only a few hundred different x, y pairs are
reachable), the analyst can instruct the fuzzer to consider any
new pair as new coverage (Figure 2.a).

Similar scenarios, where the user is aware of the precise
aspect of the state that is interesting to explore also occur with
larger state spaces. One example that demonstrates a similar
scenario is the game Super Mario Bros. (Figure 3). Again,
we mostly care about the player coordinates. However, the
space of player coordinates is significantly larger (in the order
of the 106) than in the maze game. As a consequence, the
analyst needs to be able to provide a goal that the fuzzer
can work towards (i.e., increase the x coordinate), instead of
simply exploring all different states. This way, the fuzzer can
discard inferior intermediate results.

2) Known State Changes: In some scenarios, the user
might not be aware of which parts of the relevant state are
interesting to explore or the state might be spread out across
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the application and hard to identify. Alternatively, the state
might be known, but no sufficiently small subset can be
identified to be used to guide the fuzzer directly. However,
it might be possible to identify parts of the code that are
expected to change the state. This situation commonly occurs
in applications that consume highly structured data such as
sequences of messages or lists of chunks in file formats. In
such situations, instead of directly exposing the state itself, the
user can create a variable that contains a log of messages or
chunk types. This variable can act as a proxy for the actual
state changes and can be exposed to the feedback function
(Figure 2.b). As a consequence, the fuzzer can now try to
explore different combinations of those state changes. In such
scenarios, the state change log serves as an abstraction layer
to the real state that cannot easily be exposed to the fuzzer.
We further elaborate on this in Example 4 of Section III-D.

msg = parse_msg();

switch(msg.type) {

case Hello: eval_hello(msg); break;
case Login: eval_login(msg); break;
case Msg_A: eval_msg_a(msg); break;

}

Listing 2: A common problem in protocol fuzzing.

Consider the dispatcher code shown in Listing 2, which is
based on many common protocol implementations. The fuzzer
will successfully uncover the different messages. However,
AFL has difficulties to generate interesting sequences of mes-
sages, as no novel coverage is produced for chaining messages.
The fundamental problem here is that the fuzzer is not able
to distinguish between different states in the program state
machine. By using a log of the types of messages that were
successfully processed, the fuzzer is able to explore different
states, resulting from combinations of messages, much more
effectively.

3) Missing Intermediate State: A simple example for issues
where neither coverage nor values in the program provide
relevant feedback are magic byte checks. Out of the box, AFL-
style fuzzers will not be able to solve them. Note that various
approaches try to solve this case using additional methods [1],
[7], [14], [53], [60]. However, the same problem persists in
more complex cases: if the relationship between the input and
the final comparison gets more complex, even techniques like
concolic execution will fail. A human analyst on the other
hand, can usually reason about how the program behaves and
can often provide an indicator of progress. By encoding this
indicator as additional artificial intermediate states, the analyst
is able to guide the fuzzer. Note that for simple magic bytes
like situations, this is exactly what LAF-INTEL does.

Consider the code in Listing 3, which is based on a hard
case found in the well-known objdump binary. The program
contains a function that performs a hash table lookup and
one if condition where the lookup result is used to search
for a given string. More specifically, the key is first hashed,
and the corresponding bucket is checked. If the bucket is

empty, no further processing takes place. If the bucket contains
some values, they are compared individually. This poses a
significant challenge both to a concolic execution based tools
as well as fuzzers: solving this constraint requires to find a
very specific combination of both a path (i.e., number of loop
iterations necessary to calculate the hash) and the hash value
that all share the same coverage. Even if the exact path is
found, we now still depend on both the hash and the actual
string matching. The fuzzer has to solve the comparison while
maintaining that the hash of the input is always equal to the
hash of the target string. A concolic executor would have great
trouble finding the exact path to solve this constraint.

//shortened version of a hashmap lookup from binutils

entry* bfd_get_section_by_name(table *tbl, char *str) {

entry *lp;

uint32_t hash = bfd_hash_hash(str);

uint32_t i = hash % tbl->size;

//Every hash bucket contains a linked list of strings

for (lp = tbl->table[i]; lp != NULL; lp = lp->next) {

if (lp->hash == hash && strcmp( lp->string, str) == 0)

return lp;

}

return NULL;

}

// used somewhere else

section = bfd_get_section_by_name (abfd, ".bootloader");

if (section != NULL){ ... }

Listing 3: A hash map lookup that is hard to solve (from binutils libbfd,
available at bfd/section.c).

We found that similar conditions occur more than 500 times
with various strings throughout the binutils code base. In
most cases, the hash table is filled with values from the input,
and a fixed string is looked up. A human can recognize that
this effectively implements a one-to-many string comparison.
Using this insight, she can guide the fuzzer to find a solution,
by turning this complex constraint into a series of simple string
comparisons that can be solved with LAF-INTEL-like feedback.

B. Feedback Mechanisms

As no current fuzzer allows a human analyst to directly pro-
vide feedback to the fuzzer, we design a set of annotations that
allow the analyst to influence the fuzzer’s feedback function.
Our goal is that an analyst can use these annotations to provide
high-level steering for the fuzzing process. In an interactive
fuzzing session, the analyst inspects the code coverage from
time to time to identify branches that seem hard to cover for
the fuzzer. Then the analyst can identify the reason why the
fuzzer is unable to make progress. Typically, this is an easy
task for a human. When the road block is found, the analyst
can start a second fuzzing session that focuses on solving
this road block using a custom annotation. The annotation
itself is a small patch to the target application, typically
consisting of one, sometimes two lines of code that provide
additional feedback information. When the fuzzer solves the
road block, the long-running fuzzing session picks the inputs
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that produce new coverage from the temporary session and
continues fuzzing, hence overcoming the hard case.

To facilitate a workflow like this, we designed four general
primitives that can be used to annotate source code:

1) We allow the analyst to select which code regions are
relevant to solve the problem at hand.

2) We allow direct access to the AFL bitmap to store
additional values. Bitmap entries can either be directly
set or incremented, hence enabling to expose state values
to the feedback function.

3) We enable the analyst to influence the coverage calcu-
lation. This allows the same edge coverage to result in
different bitmap coverage. This allows to create much
more fine-grained feedback in different states.

4) We introduce a primitive that allows the user to add
hill climbing optimization [48]. This way, the user can
provide a goal to work towards if the space of possible
states is too large to explore exhaustively.

In the following, we explain these annotations in more detail
and illustrate how they work and can be used to implement the
additional feedback mechanisms described in Section III-A.

C. IJON-Enable

The IJON-ENABLE (and IJON-DISABLE) annotation can be
used to enable and disable coverage feedback. This way, we
can effectively exclude certain parts of the code base or guide
the fuzzer to only explore code if certain conditions are met.

IJON_DISABLE();

//...

if(x<0)
IJON_ENABLE();

Listing 4: Using the IJON-ENABLE annotation. The green highlight indicates
an added annotation.

Example 1. Consider the annotation (green highlight) in List-
ing 4. In this example, IJON-ENABLE restricts the temporary
fuzzing sessions to inputs that reach the annotated line and
have a negative value for x. This annotation allows the fuzzer
to focus on the hard problem without wasting time exploring
the many other paths in the input queue.

D. IJON-INC and IJON-SET

The IJON-INC and IJON-SET annotations can be used to
increment or set a specific entry in the bitmap. This effectively
allows new values in the state to be considered as equal
to new code coverage. The analyst can use this annotation
to expose aspects of the state to the fuzzer selectively. As
a result, the fuzzer can then explore many different values
of this variable. Effectively, this annotation adds a feedback
mechanism beyond code coverage. The fuzzer is now also
rewarded for new data coverage obtained via its test cases.
This annotation can be used to provide feedback in all three
scenarios that we described earlier.

IJON_INC(x);

Listing 5: Using the IJON-INC annotation to expose the value x to the
feedback function.

Example 2. Consider the annotation shown in Listing 5. Every
time x changes, a new entry in the bitmap is incremented. For
example, if x is equal to 5, we calculate an index in the bitmap
based on a hash of the current file name and the current line
number and the value 5. The corresponding entry in the bitmap
is then incremented. This allows the fuzzer to learn a variety
of inputs that display a large range of behaviors, bit by bit.

Similarly, to the IJON-INC annotation, we also provide
the IJON-SET annotation. Instead of incrementing the entry,
this annotation sets the least significant bit of the bitmap
value directly. This enables to control specific entries in the
bitmap to guide the fuzzer. This primitive is used in all three
annotation approaches introduced earlier.

while(true) {

ox=x; oy=y;

IJON_SET(hash_int(x,y));

switch (input[i]) {

case 'w': y--; break;
//....

Listing 6: Annotated version of the maze.

Example 3. We added a one-line annotation (see Listing 6)
to the maze game introduced in Section III-A1. It uses the
combination of both x and y coordinates as feedback. As a
result, any newly visited position in the game is considered
as new coverage. We used IJON-SET instead of IJON-INC,
since we do not care how often the given position was visited.
Instead, we are only interested in the fact that a new position
was visited.

If the state cannot easily be observed, we can use state
change logging (as described earlier), in which we annotated
operations which are known to affect the state that we care
about and use the log of state changes as index for the
feedback.

Example 4. As another example, consider Listing 7. After
each successfully parsed and handled message, we append
the command index, which represents the type of the message,
to the state change log. Then we set a single bit, addressed
by the hash of the state change log. As a consequence,
whenever we see a new combination of up to four successfully
handled messages, the fuzzer considers the input as interesting,
providing a much better coverage in the state space of the
application.

E. IJON-STATE

If the messages cannot easily be concatenated (e.g., because
there is a message counter), the state change log might be
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//abbreviated libtpms parsing code in ExecCommand.c

msg = parse(msg);

err = handle(msg);

if(err != 0){goto Cleanup;}

state_log=(state_log<<8)+command.index;

IJON_SET(state_log);

Listing 7: Annotated version of libtpms.

insufficient to explore different states. To produce a more fine-
grained feedback, we can explore the Cartesian product of
the state and the code coverage. To enable this, we provide
a third primitive that is able to change the computation of
the edge coverage itself. Similar to ANGORA, we extended
the edge tuple with a third component named the “virtual
state”. This virtual state component is also considered when
calculating the bitmap index of any edge. This annotation is
called IJON-STATE. Whenever the virtual state changes, any
edge triggers new coverage. This primitive has to be used
carefully: if the number of virtual states grows too large, the
fuzzer is overwhelmed with a large number of inputs which
effectively slows down the fuzzing progress.

IJON_STATE(has_hello + has_login);

msg = parse_msg();

//...

Listing 8: Annotated version of the protocol fuzzing example (using IJON-
STATE).

Example 5. Consider the example provided in Listing 8.
As discussed previously, without annotations, the fuzzers may
have difficulties exploring the combination of various mes-
sages. By explicitly adding the protocol state to the fuzzer’s
virtual state, we create multiple virtual copies of the code,
depending on the protocol state.

Therefore, the fuzzer is able to fully explore all possible
messages in various states of the protocol state machine.
Effectively, the same edge coverage can now result in different
bitmap coverage, and hence the fuzzer can efficiently explore
the state space of the program under test. Note that, to prevent
state explosion, there are only three possible values for the
state. As a result, the fuzzer can fully re-explore the whole
code base, once successfully authenticated.

F. IJON-MAX

So far, we mostly dealt with providing feedback that can
be used to increase the diversity of the inputs stored. In some
cases, however, we want to optimize towards a specific goal
or the state space is simply too large to cover completely.
In such cases, we might not care about a diverse set of
values or want to discard all intermediate values. To allow
effective fuzzing in such cases, we provide a maximization
primitive called IJON-MAX. It effectively turns the fuzzer into
a generic hill climbing-based black box optimizer. To enable
maximizing more than one value, multiple (by default 512)

slots are provided to store those values. Like the coverage
bitmap, each value is maximized independently. Using this
primitive, it is also possible to easily build a minimization
primitive for x, by maximizing −x.

//inside main loop, after calculating positions

IJON_MAX(player_y, player_x);

Listing 9: Annotated version of the game Super Mario Bros.

Example 6. Consider the video game Super Mario Bros., in
which a player controls a character in a side-scrolling game.
In each level, the objective is to reach the end of the level,
while avoiding hazards such as enemies, traps, and pits. In
case the character is touched by an enemy or falls into a pit,
the game ends. To properly explore the state space of the game,
it is important to reach the end of each level. As illustrated
in Listing 9, we can finish the level by asking the fuzzer to
try to maximize the player’s x coordinate. Given that it is a
side-scrolling game, this effectively guides the fuzzer to find a
way through the level to successfully finish it.

The IJON-MAX (slot,x) annotation then tells the fuzzer to
maximize the x coordinate of the character. Note that we use
the player’s y coordinates (height) to select the slot. This
allows us to maximize the progress at different altitudes within
the level independently. By increasing the diversity in the set
of inputs, we reduce the chance of getting stuck in a dead end
as shown in Figure 3. Using this technique, we can quickly
find solutions for 29 out of 32 levels of the game. More details
are available in Section V-C.

IV. IMPLEMENTATION

We implemented IJON as an extension for multiple fuzzers
whose implementation is based on AFL: AFLFAST, LAF-
INTEL, QSYM, and ANGORA. All of these fuzzers share the
same underlying code base, and thus, the required changes to
implement our method were similar for all fuzzers. Overall, we
performed two different kinds of changes. On the one hand,
we implemented a way to apply annotations to the target ap-
plication. On the other hand, we extended the communication
channel between IJON and the target.

A. Adding Annotations
To enable coverage feedback, AFL comes with a special

compiler pass for clang that instruments every branch in-
struction. Additionally, AFL provides a wrapper that can be
used instead of clang to compile the target. This wrapper
automatically injects the custom compiler pass. We extended
both the wrapper and the compiler pass. To support our
changes, we introduced an additional runtime library that
the compiler links statically. The runtime implements various
helper functions and macros that can be used to annotate the
target application. In particular, we added support for fast hash
functions that can be used to generate better-distributed values
or compress strings to an integer. In summary, we used the
primitives from Section III and added some more high-level
helper functions.
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1) IJON-ENABLE: To implement IJON-ENABLE, we intro-
duce a mask that is applied to all bitmap index calculations.
If the mask is set to zero, only the first bitmap entry can be
addressed and updated. If it is set to 0xffff, the original
behavior is used. This way, we can effectively disable and
enable coverage tracing at will.

2) IJON-INC and IJON-SET: Both annotations enable di-
rect interaction with the bitmap, hence the implementa-
tion is straightforward. Upon a call to ijon_inc(n), the
nth entry in the bitmap is incremented. Similarly, calling
ijon_set(n) sets the least significant bit of the nth entry
to 1.

If these functions are used in multiple locations within the
program code, one has to be very careful not to reuse the same
bitmap indices. To help avoid such cases, we introduce helper
macros IJON_INC(m) and IJON_SET(m). Both macros
call the corresponding function but calculate the bitmap index
n based on a hash of m as well as the filename and line number
of the macro invocation. Thus, avoiding trivial collisions on
commonly used arguments such as 0 or 1.

3) IJON-STATE: When there is a call to
IJON_STATE(n), we change the way basic block edges
are mapped to bit map entries. To this end, we change the
definition of the edge tuple to include the state in addition to
the source ID and target ID: (state, ids, idt). Here, “state”
is a thread local variable that stores information related
to the current state. Calling IJON_STATE(n) updates
state := state ⊕ n. That way, two successive calls cancel
each other out.

We also modified the compiler pass such that the bitmap
index is calculated as follows: state⊕(ids∗2)⊕idt. This way,
every time the state variable changes, every edge gets a new
index in the bitmap. These techniques allow the same code
to produce different coverage if it is executed in a different
context.

4) IJON-MAX: We extended the fuzzer to maintain an
additional, second queue of inputs for maximization purpose.
We support to maximize up to 512 different variables. Each
of these variables is called a slot. The fuzzer only ever stores
the input that produces the best value for each slot and
discards old inputs that resulted in smaller values. To store
the largest observed value, we introduce an additional shared
memory max-map consisting of 64-bit unsigned integers.
Calling the maximization primitive IJON_MAX(slot,val)
updates maxmap[slot]=max(maxmap[slot], val).

After executing a test input, the fuzzer checks both the
shared bitmap and the max-map for new coverage. Similar to
the design of a shared coverage bitmap and the global bitmap
(as explained in Section II-A), we also implemented a global
max-map that persists during the whole fuzzing campaign and
complements the shared max-map. In contrast to the bitmap,
no bucketing is applied to the shared max-map. An entry in
the shared max-map is considered novel if it is larger than the
corresponding entry in the global max-map.

Since we now have two queues of inputs, we must
also update our scheduling strategy. IJON asks the user to

provide a probability for using the original queue (gener-
ated from code coverage) or the maximization queue (gen-
erated from maximizing slots). This functionality lets the
user decide which queue has more weight on picking in-
puts to fuzz. The user can supply the environment variable
IJON_SCHEDULE_MAXMAP, with a value from zero to 100.
Each time a new input is scheduled, the fuzzer draws a random
number between one and hundred. If the random number is
smaller than the value of IJON_SCHEDULE_MAXMAP, the
usual AFL based scheduling takes place. Otherwise, we pick
a random non-zero slot in the max-map and fuzz the input
corresponding to that slot. If the same slot is updated while
fuzzing its input, the old input is immediately discarded, and
the fuzzing stage is continued based on the newly updated
input.

5) Helper Functions: The runtime library of IJON con-
tains a set of helper functions which can simplify common
annotations. For example, the runtime library contains helper
functions to hash different kinds of data such as strings, mem-
ory buffers, the stack of active functions, or the current line
number and file name. Additionally, there are helper functions
which can be used to calculate the difference between two
values. We implemented different helper functions to simplify
the annotation process, as described below:

• IJON_CMP(x,y): computes the number of bits that
differ between x and y. This helper function directly
uses it to touch a single byte in the bitmap. It is worth
mentioning that for practical purposes, it is not directly
using the number of different bits as an index to the
bitmap. Consider Listing 5, if the same annotation was
reused in multiple locations, the indices would collide
(both share the range 0 to 64). Instead, IJON_CMP
combines the argument with a hash of the current file
name and line. Thus, we drastically reduce the chance of
a collision.

• IJON_HASH_INT(u32 old, u32 val): returns a
hash of both old and val. As described in Section III-D,
we use hash functions to create more diverse set of
indices and to reduce the probability of a collision.

• IJON_HASH_STR(u32 old, char* str): returns
a hash of both arguments. For example, we use this helper
function to create a hash of the file name.

• IJON_HASH_MEM(u32 old, u8* mem, size_t
len): returns a hash of old and the first len bytes of
mem

• IJON_HASH_STACK (u32 old): returns a hash of
the return addresses of active functions (which we call
execution context). All addresses are hashed individually.
The resulting values are XORed together to produce the
final result. That way, recursive calls are not creating too
many different values. This helper function can be used to
create virtual copies of the feedback based on the hashed
execution context.

• IJON_STRDIST(char* a, char* b): evaluates
and returns the length of the common prefix of a and b.
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B. Communication Channel

To communicate the intermediate coverage results, AFL-
based fuzzers use a shared memory region containing the
shared bitmap. We extend this region by replacing it with a
shared struct. This struct has two different fields. The first
one is the original AFL shared bitmap. The second one is the
shared max-map used for our maximization primitive.

V. EVALUATION

As noted earlier, we implemented IJON on top of five state-
of-the-art fuzzing tools. This way, we show how the same
annotation helps to outperform all of the baseline fuzzers
according to various metrics. We picked multiple different
targets to show how we can overcome a variety of hard
problems using only a small number of annotations.

A. Setup

For each experiment, we compare the unmodified fuzzer
against the fuzzer with annotations. All experiments are per-
formed on a Debian 4.9.65-3 machine with an Intel Xeon
E5-2667 processor with 12 cores and the clock speed of
2.9 GHz, plus 94 GB of RAM. Unless noted otherwise, a
single uninformative seed containing only the character “a”
was chosen. The use-case for IJON is to have whatever fuzzer
available to run until (mostly) saturated, inspect the coverage,
and improve it using manual annotations. As a consequence,
in some experiments, we pick small examples and assume
that we only care about solving this individual hard aspect.
This simulates that we use IJON_ENABLE to limit fuzzing
to the interesting area. The baseline fuzzers would typically be
unable to focus on a single area and perform far worse at that
specific task, since they also explore other parts of the target
application. Since we compare against the baseline fuzzers on
the isolated example, we conservatively strengthen the position
of the unaided fuzzers.

B. The Maze – Small, Known State Values

The maze is a famous example that is often used to
demonstrate the power of symbolic execution based test case
generation. It consists of a simple game similar where a
player has to walk through an ASCII art maze. The publicly
available version is straightforward due to two factors: The
maze contains no dead ends, and every move but the correct
one immediately terminates the game. Out-of-the-box AFL
and similar fuzzers are not able to solve this maze in a
reasonable amount of time, while KLEE can find a solution in a
few seconds. The effective state space of this game is linear in
the number of steps taken, and no state explosion takes place.
To make this problem more interesting, we created a harder
version of the game. In the hard version, the player can walk
backward and stay at the same place (by walking into a wall)
without dying. As a result, the state space grows exponentially
in the number of steps taken. It turns into a complete tree
of size 4n. Now KLEE is unable to solve the maze as well.
Additionally, we created a larger labyrinth including dead
ends. Note that while the ideas implemented in IJON are also

applicable to the search heuristics used by KLEE, we did
not implement IJON on top of KLEE. We still included an
unmodified version of it in our evaluation. The results of our
experiments are shown in Table I and Table II.

a) Initial Run: We performed experiments on both the
small and the large maze. Each experiment was executed
three times using two configurations. In the first configuration,
we use the original, easy rules, where any wrong move
immediately terminates the game. In the second configuration,
a harder rule set is used. As a consequence of the harder rules,
the game has an exponentially larger state space. Each fuzzer
was tested both in the unmodified version and in combination
with IJON. Each experiment was conducted for one hour.
Since different tools spawn sub-processes and threads, all tools
were locked to one core; it should be noted that AFL can
occasionally guess the solution for the smallest maze within
one hour. However, no coordinated progress is made after the
first few minutes, and therefore, we reduced the experiment
duration to one hour.

b) IJON: We added a simple one-line annotation (List-
ing 10) that uses the combination of both x and y coordinates
as feedback. Any newly visited position in the game is treated
like new coverage.

while(true) {

ox=x; oy=y;

IJON_SET(hash_int(x,y));

switch (input[i]) {

case 'w': y--; break;
//....

Listing 10: Annotated version of the maze game.

As Table I shows, none of the tools is able to solve the
more complex variants of the maze. Yet, with a single, one-
line annotation and the support of IJON, all fuzzers can solve
all maze variants. Table II shows the time it took for different
fuzzers to solve the maze variant. The fuzzers which could
not solve the maze are excluded from the table.

Using IJON annotations, AFL performs quite comparable
to KLEE on the easy maze. On the hard version, AFL with
IJON is even faster than KLEE on the easy version. Note that
KLEE is unable to solve the hard maze. Additionally, while
AFL without IJON is sometimes able to solve the small maze
in the easy mode, AFL in combination with IJON is more
than 20 times faster than AFL without IJON. Lastly, most
extensions of AFL such as LAF-INTEL, QSYM and ANGORA
are actually decreasing the performance compared to baseline
AFL. This is due to the additional mechanisms provided by
these fuzzers, which incur an extra cost while not providing
any value in this scenario.

C. Super Mario Bros. – Large Known State Values

Another instance of a similar problem is the game Super
Mario Bros. We modified the game in such a way that all
keyboard commands are read from stdin. Additionally, we
modified the game such that the game character Mario always
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TABLE I: Different approaches are solving the small / large maze. Three runs
were performed each. We show the number of solves for the small / large
mazes. An 7 denotes no solution was found in any runs, a

√
indicates that

all runs solved the maze. Lastly, we could not extend KLEE and hence there
are no results for KLEE with IJON.

Plain IJON
Tool Easy Hard Easy Hard

Small / Large Small / Large Small / Large Small / Large

AFL 2
3 / 7 7 / 7 / /

AFLFAST 7 / 7 7 / 7 / /
LAF-INTEL 7 / 7 7 / 7 / /

QSYM 1
3 / 7 7 / 7 / /

ANGORA 7 / 7 7 / 7 1
3 / 2

3
2
3 /

KLEE / 7 / 7

TABLE II: Different approaches are solving the small/large maze. The table
shows the average time-to-solve in minutes ± the standard deviation.

Tool Easy Hard

AFL-plain 42.7 ± 11.9 / - - / -
QSYM-plain 50.7 ± 0.0 / - - / -
KLEE-plain 0.7 ± 0.5 / 2.0 ± 0.0 - / -

AFL-ijon 1.8 ± 1.0 / 7.6 ± 3.3 0.5 ± 0.2 / 2.3 ± 1.2
AFLFAST-ijon 1.6 ± 0.5 / 8.4 ± 1.5 0.5 ± 0.1 / 5.7 ± 2.4

LAF-INTEL-ijon 2.3 ± 0.9 / 7.6 ± 1.5 0.7 ± 0.3 / 3.4 ± 2.3
QSYM-ijon 5.4 ± 1.6 / 11.4 ± 1.4 5.3 ± 0.1 / 11.3 ± 0.6

ANGORA-ijon 42.4 ± 0.0 / 36.5 ± 0.3 7.5 ± 0.2 / 15.9 ± 3.8

runs to the right, and Mario is killed when he stops moving.
This decision was made to produce speed run like results,
with short execution times. We use both AFL and AFL in
combination with IJON annotations to play the game and
observe the progress made in the game.

We ran AFL without annotations for 12 hours and observed
how far into the different levels Mario was able to reach. We
added a simple annotation that uses the ijon_max primitive.
We create one slot for each possible height (measured in tiles).
In each slot, we maximize the x coordinate of the player. The
changed code was shown earlier in Listing 9. The results can
be seen in Table III, an example was shown earlier in Figure 1.
With this simple one line annotation, the fuzzer solved nearly
all levels in a matter of minutes. In fact, using IJON, AFL
is able to solve all but 3 levels. It should be noted that only
one of these levels (level 6-2) can be solved. The fact that
it remained unsolved is due to the inherent randomness in
fuzzing. In another offline experiment, IJON was sometimes
able to solve the level in less than 6 hours. Level 4-4 is
unsolvable due to a bug in the emulation. The last level seems
impossible/extremely hard to solve due to the modifications
we made in the game.

Plain AFL, on the other hand, struggles: It takes signifi-
cantly longer to solve far fewer levels and makes less progress
in the levels it did not solve. Note that AFL is in fact
surprisingly good. On the first look, it might seem that AFL
should have nearly no feedback to uncover as it advances
throughout the levels. Yet, it appears that the edge counts for
events such as “spawn a pipe, cloud, enemy, or bush” is already
good enough to solve about one-third of the levels.

a) Glitches: Super Mario Bros. contains various well-
known glitches and secret passages, commonly exploited by

TABLE III: AFL and IJON playing Super Mario Bros. (3 experiments each).
We show how often the level was successfully solved, the median time until
the best input was found (hh:mm) and the median percentage of distance
traveled. Videos from the best runs are available at https://github.com/RUB-
SysSec/ijon. Note that in level 4-2, IJON is able to uncover the secret room.

AFL IJON
Level Solved Time % Distance Solved Time % Distance

1-1 1
3

07:11 91% 00:25 100%
1-2 7 07:12 61% 00:59 100%
1-3 1

3
08:39 71% 00:20 100%

1-4 2
3

08:37 100% 00:23 100%
2-1 7 09:55 42% 7 06:44 94%
2-2 7 07:31 57% 00:16 100%
2-3 7 09:25 88% 00:18 100%
2-4 7 00:31 65% 00:06 100%
3-1 7 08:16 33% 02:42 100%
3-2 7 07:15 80% 00:28 100%
3-3 2

3
08:36 100% 00:03 100%

3-4 1
3

09:35 77% 00:40 100%
4-1 7 05:41 83% 00:11 100%
4-2 7 02:07 95% 02:06 118%
4-3 11:24 100% 00:16 100%
4-4 7 02:22 82% 7 00:06 82%
5-1 7 11:11 60% 00:45 100%
5-2 7 11:27 73% 00:23 100%
5-3 2

3
09:19 100% 00:26 100%

5-4 04:32 100% 00:12 100%
6-1 1

3
08:56 93% 00:36 100%

6-2 7 09:57 36% 7 06:32 82%
6-3 2

3
06:01 100% 00:08 100%

6-4 2
3

06:01 100% 00:07 100%
7-1 7 04:44 63% 00:25 100%
7-2 7 06:37 58% 00:13 100%
7-3 7 10:08 92% 00:24 100%
7-4 08:07 100% 00:06 100%
8-1 7 01:36 21% 2

3
06:02 100%

8-2 7 07:17 60% 2
3

03:12 100%
8-3 2

3
07:18 100% 00:18 100%

speed-runners. Our fuzzer was able to find and exploit at least
two of those. First, we were able to exit the top of the level in
stage 4-2, leading to the famous warp zone. Second, at various
times Mario used a “wall-jump” and escape certain deaths. To
perform a wall-jump, Mario has to jump into a wall, landing
exactly at the corner of a tile. For one frame, Mario’s foot
enters the wall, before the physics engine pushes Mario out of
the wall again. In this frame, Mario is able to jump again. This
trick requires both perfect timing, as well as very precisely
hitting the corner of a wall tile (Mario’s position is tracked
with sub-pixel accuracy).

D. Structured Input Formats – State Change Logging

To demonstrate the ability to explore structured input for-
mats using state change logging, we evaluate AFL with IJON
on three examples. The first two are taken from evaluation of
AFLSMART [44]. In their paper, Pham et al. present multiple
case studies; in particular, the paper discusses two examples
(libpng and WavPack) in more detail. We picked both ex-
amples and added a simple state_change_log annotation
as described in Section III-A2. We ran both annotated versions
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for 24 hours on an Intel Core i7-6700 CPU clocked at 3.40
GHz with 16 GB of RAM. We also provided the first 1024
bytes of a random wav/png file as seed and used a dictionary
of strings from the source code. With this simple annotation,
we were able to uncover bugs in both targets, while AFL did
not find any of the bugs. Additionally, we found another out-
of-bounds read in libpng that is still present (but reported)
in the most up-to-date version of libpng. This demonstrates
that for these structured input formats, a grammar is not
actually needed to discover these security issues. Adding a
small annotation in the parser code can sometimes provide
the exact same benefit at much smaller cost to the analyst.

To further substantiate this observation, we picked an-
other example to demonstrate how AFL with the same
state_change_log annotation explores a much larger
combination of features than plain AFL would. LIBTPMS
is a software emulator for Trusted Platform Module (TPM)
security co-processors. It is commonly used in virtualization
solutions to create virtualized modules. TPM specifies a
protocol that can be used to interact with the co-processor.
The protocol consists of a wide variety of possible messages,
each of which has a specific parser. This situation reassembles
Listing 2. We demonstrate that AFL only explores a small
subset of all possible message sequences. Then we introduce
a single IJON annotation (two lines). In AFL, we now observe
a massive increase in the number of combinations of messages
explored. Note that we used AFL’s persistent mode to improve
performance of the fuzzing and obtain more sound results
within the allocated times. However, other tools such as
ANGORA and QSYM are incompatible with this approach.
This is less problematic, since in this experiment we do not
care about solving individual constraints. Instead, we care
about the number of distinct message sequences explored
which neither ANGORA nor QSYM provides a better feedback
for this kind of scenario. As a consequence, we chose to only
evaluate AFL and AFL with IJON.

a) Initial Run: We ran AFL for 24h and plotted the
subset of the paths found. The results can be seen in Table IV
in the columns labeled “plain”. To visualize, we also included
the graph of all messages found for one run. Each node is
a message that was successfully parsed and handled. If we
successfully handled message A and message B after each
other, we add an edge between node A and B.

b) IJON: We added a change log based annotation that
stores the last 4 successfully parsed and handled message IDs.
Then we use these IDs to create additional feedback. The
annotated code is displayed in Listing 7. Using this annotation,
we performed another 24-hour run. The number of paths found
can be seen in Table IV in the columns labeled “IJON”.
We observe, that IJON leads to significantly more complex
interactions.

From both the experiments on the AFLSMART examples
and on TPM, it can be seen that using state change log
annotation drastically increases the ability to explore different
chains of messages (and therefore state) that would not be cov-
ered using current techniques. In particular, our experiments

TABLE IV: The number of distinct message sequences found by AFL and
AFL + IJON fuzzing TPM

Seq. Length AFL Plain AFL +IJON Improvement

1 14 14 1x
2 53 156 2x
3 85 1636 18x
4 79 2532 32x

on libpng and WavPack demonstrate that this previously
unexplored space contains critical bugs that would be much
harder to find otherwise.

// callback used to iterate the hash map

void ijon_hash_feedback(bfd_hash_entry* ent, char* data){

IJON_SET(IJON_STRDIST(ent->string, data));

}

//shortened version of a hashmap lookup from binutils

entry* bfd_get_section_by_name(table *tbl, char *str) {

//perform a string feedback for each entry in the hashmap.

bfd_hash_traverse(tab, ijon_hash_feedback, str);

//.... rest of the function as shown earlier.

}

Listing 11: Annotated version of the hash map example.

E. Binutils Hash map - Missing Intermediate States

In this final experiment, we extracted the relevant code
from the hash map example introduced earlier (Listing 3).
To provide an IJON annotation, we use an available iteration
function on the hash map. For each entry in the hash map, we
perform an IJON string compare. The resulting modification
can be seen in Listing 11. In this case, the annotation is
somewhat more tricky than the previous annotations. We
encode the domain knowledge that the hash map lookup is
an efficient version of a one-to-many string comparison. We
create an explicit loop of string compare operations in the
lookup function. Then we try to maximize the maximum
number of matching bytes amongst all compares.

Similar to the maze example, we performed experiments
with various fuzzers with and without IJON custom annota-
tions. Since we extracted the hard code from the application,
we observed that no new inputs were found after as few as
10 to 20 minutes. As a result, we choose to evaluate each
configuration with three experiments of one hour each. The
results are displayed in Table V and Table VI. Note that
ANGORA is excluded from this experiment as we were unable
to compile libbfd with ANGORA’s taint tracking.

a) Initial Run: During the initial runs, none of the
fuzzers in the experiment were able to solve the constraints in
the unmodified form.

b) IJON: We extended the target with a small annotation
(three lines, as explained above). After applying this annota-
tion, all fuzzers are able to solve the constraint in a matter of
a few minutes, only AFLFAST failed in two out of three runs.
However, in its only successful run it managed to solve the
constraint in 6 minutes.
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TABLE V: Different approaches ex-
ploring the hash example. Using
IJON, all fuzzers were able to solve
the hash at least once. Without IJON,
none of the fuzzers could solve this
example.

Tool Plain IJON

AFL 7

AFLFAST 7 1
3

LAF-INTEL 7
QSYM 7

TABLE VI: Different approaches
solving the hash example (average
time in minutes ± standard devia-
tion). Note that we only report the
numbers for IJON, since the base
fuzzers never found a solution.

Tool IJON

AFL 8.1± 6.4
AFLFAST 6.2± 0.0

LAF-INTEL 26.1± 14.8
QSYM 15.5± 2.4

F. Cyber Grand Challenge

To further substantiate that a manual interaction with the
fuzzing target is helpful in uncovering security issues, we
performed an experiment on the well-known Linux port [2]
of the DARPA CGC [3] data set. This also allowed us to
differentiate our approach from HACRS [52], another human-
in-the-loop approach. We ignored all challenges that could
already be solved by AFL, LAF-INTEL [1], REDQUEEN [7],
QSYM [60], T-FUZZ [43], or VUZZER [45], as there would be
no need for manual analysis when an existing fully automated
tool is able to produce a crash. In total, 62 challenges remained
undefeated. We picked a random subset of 30 CGC targets. For
eight of these targets, even the provided Proof of Vulnerability
(PoV) did not cause a crash. This is most likely due to
the fact that we used the TRAIL OF BITS x86 Linux port
of the challenges [2]. We use this port since our tooling
does not support DECREE targets. We inspected each of
the 22 remaining challenge manually and performed fuzzing
experiments using AFL and IJON. We managed to produce
crashes in 10 targets, the results are shown in Table VII. More
technical details are available in the appendix.

We were unable to crash the remaining 12 targets due to a
variety of reasons: Three targets contained only information
leak vulnerabilities that do not cause a crash. Consequently,
they are outside of the scope of this work. Two of the targets
contained crashes that were too complex to uncover (requiring
to trigger a series of different bugs to cause an observable
crash). While it would be possible to design IJON annotations
that trigger these crashes, we doubt that one could do it
without prior knowledge of the bug. Consequently, we count
these two targets as failures. Of the remaining 7 targets, two
misbehaved in our coverage tracer (crashing on nearly all
inputs), three required very large inputs that AFL is not able
to generate efficiently, and two were running very slowly or
causing timeouts on all but very few inputs. Due to the fact
that—unlike HACRS—IJON is aimed at experts, we could
only perform this experiment with a single human analyst.

G. Real-World Software

Beside the memory corruptions we found in the state log
experiment in Section V-D and the novel crashes found in
the CGC dataset, we also performed experiments on other
software to further demonstrate that IJON is useful for finding
security bugs. In particular, we picked dmg2img, a tool that

TABLE VII: Comparing IJON with HACRS, another Human-in-the-loop
approach, on CGC targets. Note that none of the following CGC targets were
solved by state-of-the-art fuzzers. Note that NRFIN 00012 contains a broken
random number generation that made the challenge impossible to solve. After
fixing the random number generator, we were able to solve the challenge.

Coverage (#Lines) Crash found
Target Type AFL IJON HACRS IJON

CROMU 00011 txt 70% 82% 7

NRFIN 00030 bin 84% 84% 7

NRFIN 00004 txt 21% 98% 7

NRFIN 00076 bin 24% 48% 7

NRFIN 00041 txt 21% 27% 7

CROMU 00020 bin 61% 75% 7

NRFIN 00005 txt 18% 73%
NRFIN 00012 bin 87% 73% 7 ( )
NRFIN 00038 txt 5% 81% 7

NRFIN 00049 txt 20% 61% 7

was very recently fuzzed by the authors of WEIZZ [18]. We
applied patches for the vulnerabilities found, and continued
fuzzing using IJON. In total, we uncovered three additional
memory corruption vulnerabilities in dmg2img. Two were
variants of the bugs found by WEIZZ, where additional
constraints needed to be satisfied to reach other unsafe usages
of dangerous string manipulation functions. The third bug is an
integer overflow that causes an allocation of size zero. Later
on, the byte at offset minus one is set to zero, corrupting
malloc metadata as illustrated in Listing 12.

IJON_MAX(kolyblk.XMLLength);

plist = (char *)malloc(kolyblk.XMLLength + 1);

if (!plist)

mem_overflow();

//....

plist[kolyblk.XMLLength] = '\0';

Listing 12: Bug #3 in dmg2img

VI. RELATED WORK

After AFL was published about five years ago, its inner
workings were analyzed in detail and multiple improvements
were proposed. Different scheduling algorithms were proposed
to improve fuzzing in various scenarios [10], [11], [13], [46],
[56]. The second component of AFL is the input muta-
tion strategy. Again, various improvements were proposed to
increase the probability of generating interesting inputs by
means of using more information on the target [6], [7],
[9], [27], [40], [44] or taint tracking to limit the amount of
input data that needs to be mutated [14], [45]. Lastly, AFL
observes the programs behavior for each test case and receives
feedback on its behavior. Different fully automated techniques
were proposed that help improving the performance of this
feedback generation [19], [50] or to extend the feedback [1],
[29], [32]. To overcome various roadblocks, such as magic
bytes, techniques based on concolic execution [20]–[22], [26],
[37], [53], [55], [60], [63] and—less commonly—on symbolic
execution [16], [38] were proposed. Since fuzzing is very
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performance-critical, various aspects of it were optimized by
other projects. For example, Xu et al. improved the perfor-
mance of spawning subprocesses [58]. Various fuzzers used
Intel-PT to increase the performance of coverage tracing on
binary targets [5], [50]. Lastly, to make fuzzing more applica-
ble it was adopted to targets ranging from firmware [16], [64]
over hypervisors [28] and operating systems [4], [50], [54] to
neural networks [42], [57]

A. Human-in-the-Loop Approaches in Fuzzing

Recently, human-in-the-loop fuzzing gained the attention of
the research community. Current approaches commonly pro-
vide an interactive environment where the humans interactions
are used as seeds by the fuzzer. In some scenarios this is
very helpful, while in other common fuzzing scenarios, it is
very hard to apply. For example, Shoshitaishvili et al. [52]
introduced HACRS, a system that allows humans to interact
with the target application via an emulated terminal. To help
the human, HACRS analyzes the target and provides a list of
strings that might be relevant to the application’s behavior. If
the target provides a text-based interface, a human is often
able to figure out how to interact with the target application.
However, HACRS does not work when the target application
does not consume data in a format easily understood by
humans, e.g., binary formats, or the program output does
not contain helpful information on the expected input format.
Consequently, the authors excluded any program containing
binary characters in the provided example scenarios from
their evaluation. Similarly, DYNODROID [36] traces a human’s
interaction with Android applications. In contrast to HACRS,
this includes a more diverse set of input interfaces such as
system events and swipe gestures. However, the fundamental
principle remains the same. In contrast, our approach is based
on annotating the code of the target application and does not
require to understand the input format.

Our approach requires little understanding of software se-
curity or program analysis. Even complex games can typically
be won by untrained users. On the other hand, when fuzzing
binary file formats or network protocols, even an expert user
will have a hard time to come up with novel inputs based on
observing only the program output. IJON allows to guide the
fuzzer’s intrinsic ability to generate inputs to overcome fuzzing
roadblocks and to explore a more diverse part of the state
space. This approach requires no knowledge or understanding
of the input format at all. In fact, we also typically had very
limited understanding of the target application, as our annota-
tions allow to provide guidance without deep understanding of
the program context. For example, consider the bug shown in
Listing 12. The annotation was added without any context or
understanding of how kolyblk.XMLLength is calculated
from the input. Still, IJON was able to trigger the integer
overflow after a few minutes of analysis time.

VII. DISCUSSION AND FUTURE WORK

In this paper we describe an interactive approach to fuzzing.
While this offers new ways to steer the fuzzing process, it

requires manual inspection of the test coverage, acquiring
an understanding of why a constraint is hard to solve, and
manually creating a well-suited annotation. This manual effort
comes with a certain cost to the analyst, but our evaluation
demonstrates that this approach can overcome several obsta-
cles for current fuzzers. For example, it is clear that neither
a grammar nor a dictionary will help a fuzzer to solve Super
Mario levels. Additionally, it is not straightforward to find
good seed inputs. While in such a case, a record and replay
mechanism such as a version of HACRS or DYNODROID
applicable to this target might be helpful, in many other cases
such as binary formats, it would likely not.

The annotations used in IJON are currently added manually.
It would be interesting to design methods that automatically
infer annotations only for difficult individual constraints. Some
existing fuzzing approaches use a subset of the annotations
described by us. For example, LAF-INTEL can be represented
by annotating the number of equal bytes in a comparison. Sim-
ilarly, ANGORA already implements call stack based virtual
state for all coverage. However, all those tools use additional
feedback indiscriminately. Therefore, they are limited to low
information gain feedback mechanisms. Using more precise
feedback in a similar manner would result in a much larger
queue and decreased performance. Automated techniques to
identify IJON annotations could make use of much more
powerful annotations than LAF-INTEL and ANGORA, as they
are applied sparsely. Finally, right now, the annotations require
source access. In principle, there is no reason why similar
annotations cannot be implemented for binary-only targets. In-
tegrating IJON with a binary-only fuzzer would be interesting.

VIII. CONCLUSION

In this paper, we have shown that a large number of hard
problems for fuzzers can be solved by manually inspecting
the code coverage during fuzzing and using only a few
lines of annotations to guide the fuzzing process. Previously,
practitioners in the industry often used to manually pick seed
files that solve the coverage or to design custom mutators that
solve constraints (for example, by providing dictionaries or
grammars). Similarly, it is well documented that practitioners
try to remove hard constraints such as checksum manually.
We extended this toolkit with another manual but very flexible
method: annotations that an analyst can use to guide the fuzzer.
By using less than four lines of code, we demonstrated how a
large set of problems could be solved that no other automated
fuzzing approach is currently able to handle.
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APPENDIX

To elaborate on the results from our experiments on the
CGC dataset presented in Section V-F, we now provide some
explanation of the annotations we used to solve the 10 targets
(see Table VIII for details). Unfortunately, the exact amount
of time spent on solving individual targets is somewhat hard
to measure, as small changes are often followed by min-
utes to hours of fuzzing with no human interaction needed.
Consequently, we can only report very rough estimates for
the time spent on the implementation. In particular, for the
shorter examples (< 1h), many were solved using only a few
minutes of human attention. While most of the examples only
required maximizing a single loop counter, index, or pointer in
combination with some variants of string comparisons, some
of the cases are more interesting. In particular, NRFIN 00004,
NRFIN 00041, and CROMU 00020 required multiple steps
to solve. To showcase these more complex results, we now
discuss the techniques used in three case studies.

TABLE VIII: Solving CGC Challenges. We give both the number of lines
of code (LOC) that were used for IJON annotations, and an estimate for the
human effort that went into producing the solution. Solutions annotated with
* are discussed in more detail. † indicates that the strcmp could be solved
using a properly chosen dictionary.

Target LOC Effort Comment

CROMU 00011 2 < 1h strcmp, maximize index
NRFIN 00030 1 < 1h maximize index
NRFIN 00004 5 < 5h strcmp*, maximize index
NRFIN 00076 1† < 1h strcmp
NRFIN 00041 4 < 1h checksum*
CROMU 00020 3 < 5h challenge response*
NRFIN 00005 1† < 1h strcmp
NRFIN 00012 2 < 5h strcmp
NRFIN 00038 1† < 1h strcmp
NRFIN 00049 1† < 1h strcmp

A. NRFIN 00004 (HeartThrob)

This program uses a fully unrolled prefix tree (trie) to per-
form string comparison. The function that performs the check-
ing has roughly 30k different branches, and a correspondingly
large number of possible paths. The fuzzer explores all inputs
equally, filling the bitmap and producing useless inputs. After
diagnosing the problem, it took us less than 20 minutes to build
a small script that extracts the relevant strings from the trie and
to disable coverage feedback within the function. Using these
strings, we obtained the coverage that was needed. Lastly, we
had to use the maximize primitive IJON-MAX to trigger an
OOB crash.

B. NRFIN 00041 (AIS-Lite)

This program uses an encoded checksum to guard the bug.
After manually removing the checksum check, the bug was

found very quickly. To obtain a valid input without understand-
ing the format or the checksum, we used the following trick:
we used an IJON_CMP and annotation on the checksum check
to produce a valid input (while still using the patched target).
AFL’s crash exploration mode ensured that the fuzzer did not
remove the cause of the crash while fixing the checksum. The
fixed input triggers the crash in the unmodified binary. This
approach closely mirrors the approach used by T-FUZZ [43]
or REDQUEEN [7]. However, instead of leveraging symbolic
execution or colorization, we used the fuzzer itself to provide
the fixed input.

C. CROMU 00020 (Estadio)
Similar to the previous case study, we used a “patch check

and fix the crashing input afterwards” approach to solve this
target. However, instead of a checksum, a series of challenge-
response messages were required to trigger the bug.
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ception: System-wide security testing of real-world embedded systems
software. In usenix-security, 2018.

[17] Jerry Alan Fails and Dan R. Olsen, Jr. Interactive machine learning.
In Proceedings of the 8th International Conference on Intelligent User
Interfaces, 2003.

14



[18] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. Weizz:
Automatic grey-box fuzzing for structured binary formats. arXiv preprint
arXiv:1911.00621, 2019.

[19] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. CollAFL: Path Sensitive Fuzzing. In IEEE
Symposium on Security and Privacy, 2018.

[20] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-
based whitebox fuzzing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2008.

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
Automated Random Testing. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2005.

[22] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In Symposium on Network and Distributed System
Security (NDSS), 2008.

[23] Google. Open sourcing ClusterFuzz. https://
opensource.googleblog.com/2019/02/open-sourcing-
clusterfuzz.html. Accessed: February 24, 2020.

[24] Deepak Gopinath, Siddarth Jain, and Brenna D Argall. Human-in-
the-loop optimization of shared autonomy in assistive robotics. IEEE
Robotics and Automation Letters, 2016.
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Căciulescu, and Abhik Roychoudhury. Smart greybox fuzzing. arXiv
preprint arXiv:1811.09447, 2018.

[45] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In Symposium on Network and Distributed System Security
(NDSS), 2017.

[46] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan M
Foote, David Warren, Gustavo Grieco, and David Brumley. Optimizing
seed selection for fuzzing. In USENIX Security Symposium, 2014.

[47] David Romero, Peter Bernus, Ovidiu Noran, Johan Stahre, and Åsa Fast-
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