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Abstract

Finite graphs and algorithms on finite graphs are an important tool for

the verification of finite-state systems. To transfer the methods for finite

systems, at least partially, to infinite systems a theory of infinite graphs

with finite representations is needed. In this thesis the class of the transi-

tion graphs of ground tree rewriting systems is studied. To investigate the

structure of ground tree rewriting graphs they are analyzed under the aspect

of tree-width of graphs and are compared to already well-studied classes of

graphs, as the class of pushdown graphs and the class of automatic graphs.

Furthermore, the trace languages that are definable by ground tree rewriting

graphs are investigated.

The algorithmic properties of ground tree rewriting graphs are studied

by means of reachability problems that correspond to the semantics of basic

temporal operators. The decidability results from this analysis are used to

build up a temporal logic such that the model-checking problem for this

logic and ground tree rewriting graphs is decidable.

Zusammenfassung

Endliche Graphen und Graphalgorithmen haben vielfältige Anwendun-

gen in der Informatik, unter anderem in der Verifikation endlicher, zustands-

basierter Systeme. Um die Methoden und Ergebnisse für endliche Systeme

zumindest teilweise auf unendliche Systeme zu übertragen, wird eine Theo-

rie unendlicher Graphen mit endlicher Darstellung benötigt. In dieser Arbeit

wird die Klasse der Transitionsgraphen von Grundtermersetzungssystemen

behandelt. Um die Struktur von Grundtermersetzungsgraphen zu analysie-

ren, werden diese unter dem Aspekt der Baumweite von Graphen untersucht

und mit bereits intensiv studierten Graphklassen wie der Klasse der Push-

downgraphen und der Klasse der automatischen Graphen verglichen. Wei-

terhin werden die durch Grundtermersetzungsgraphen definierbaren Pfad-

sprachen studiert.

Die algorithmischen Eigenschaften von Grundtermersetzungsgraphen wer-

den anhand von Erreichbarkeitsproblemen, die der Semantik grundlegender

temporaler Operatoren entsprechen, untersucht. Die Entscheidbarkeitser-

gebnisse aus dieser Analyse werden benutzt, um eine temporale Logik aufzu-

bauen, für die das Model-Checking-Problem mit Grundtermersetzungsgra-

phen entscheidbar ist.
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Chapter 1

Introduction

Finite graphs constitute one of the most basic data structures used in com-

puter science. In the 1960s and 1970s many efficient algorithms for the

analysis of finite graphs were developed. Later, finite graphs advanced from

a pure data structure to an important tool for modeling and verifying finite

state-based systems. In the approach of model-checking [Eme81, CE81] al-

gorithms for the automatic verification of systems modeled by finite graphs

with properties written in certain specification logics are developed. In this

framework temporal logics like LTL, CTL, and CTL∗ (cf. [Eme90]) are

among the most popular specification logics. In the last 20 years many

contributions have been made to this area, and by now the theory of model-

checking finite systems with temporal specifications is well understood (cf.

[BVW94, Var96, Eme96]).

With the motivation to transfer these methods, at least partially, to

infinite systems the development of a new theory of infinite graphs started.

Infinite systems arise from the use of potentially unbounded data structures

like stacks, counters, or queues. Parametrized systems, which correspond

to infinite families of systems consisting of several components, the number

of which is determined by the parameter, are another example for infinite

systems. To represent systems of this kind infinite graphs are necessary.

For an algorithmic theory of infinite graphs, classes of infinite graphs

with finite representations are needed. Given a formalism for finite repre-

sentations of graphs from a class K, two natural questions arise:

(i) Which decision problems can be solved for the class K of graphs gen-

erated by this formalism?

(ii) How expressive is the given formalism, i.e., what kind of graphs are in

K, and how is K related to other classes of infinite graphs?

An example for a problem of type (i) is the reachability problem:

1



2 CHAPTER 1. INTRODUCTION

Given a finite representation of a graph G from K and two vertices u, v of

G, is there a path from u to v?

In automatic verification this problem has to be solved to check whether

a system can reach an undesirable state. In contrast to finite graphs, it

is not clear a priori whether this problem is decidable for a given class of

infinite graphs. It is easy to define classes of infinite graphs allowing to

use reachability problems to encode undecidable problems like the halting

problem for Turing machines. One task in the development of a theory

of infinite graphs is to identify classes of infinite graphs, where elementary

problems like reachability are decidable.

The aim of this thesis is to give a comprehensive analysis of a specific

class of infinite graphs, namely the transition graphs of ground tree rewrit-

ing systems1. The vertices of these graphs are represented by ranked trees

(or terms), and the edges are generated by replacements at the front of the

trees according to a fixed set of rules. We study the structure of ground tree

rewriting graphs (GTR graphs) and their relation to other graph classes,

in particular to pushdown graphs. Furthermore, we analyze several vari-

ants of the above mentioned reachability problem. As some these problems

turn out to be decidable in polynomial time, this analysis shows that GTR

graphs constitute, from an algorithmic point of view, a usable class of infinite

graphs.

Before we give a more detailed explanation of the topics covered in this

thesis we review several classes of graphs that have been considered in the

literature.

Classes of Infinite Graphs

Pushdown Graphs. In their seminal paper [MS85] Muller and Schupp

analyzed the transition graphs of pushdown automata. The main compo-

nents of a pushdown automaton are a finite set Q of control states, a finite

stack alphabet Γ, and a set ∆ of transition rules. The transition rules of the

pushdown automaton specify, depending on the current control state and

top of the stack, which control state the automaton is in after the next step

and how the top of the stack is manipulated in this step. So, a configuration

of a pushdown automaton can be described by a word of the form qγ1 · · · γn,

where q is a control state and γ1, . . . , γn are letters from the stack alphabet.

Words of that kind are the vertices of a pushdown graph. The set of edges

1Usually these systems are called ground term rewriting systems.
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is described by the transition rules from ∆. If a rule exists that says “from

control state q with γ1 on top of the stack move to control state p and replace

γ1 by γ”, then there is an edge from qγ1 · · · γn to pγγ2 · · · γn.

Muller and Schupp [MS85] proved that the monadic second-order (MSO)

theory of pushdown graphs is decidable. Since MSO logic subsumes tempo-

ral logic their result implies that model-checking for pushdown graphs and

temporal logics is decidable. Previous results of Büchi [Büc64] on regular

canonical systems already imply that the reachability problem for pushdown

graphs is decidable. In [EHRS00] more efficient algorithms for solving reach-

ability problems on pushdown graphs and for model-checking pushdown

graphs with temporal logics have been developed. In [Wal96, KV00, Cac02a]

algorithms for solving games on pushdown graphs with various winning con-

ditions have been presented. The theory of non-terminating games on graphs

is an important aspect for the verification of reactive systems and has been

widely studied for finite graphs (cf. [Tho95, Zie98]).

Besides the proof of the decidability of the MSO theory Muller and

Schupp provide in the same paper [MS85] an analysis of the structure of

pushdown graphs. They give a characterization of pushdown graphs that is

independent of the representation by pushdown automata. The result states

that a rooted graph of finite degree is a pushdown graph if, and only if, it

has only finitely many types of ends. Ends are connected components of

the graph obtained by deleting all vertices within a fixed diameter around

the designated root vertex. This characterization allows to decide whether a

graph is a pushdown graph without working with the explicit representations

by pushdown automata.

As noticed in [Cau92b] the operations of a pushdown automaton can be

seen as prefix rewriting on words. So, instead of using pushdown automata

to generate the graphs one can equivalently use prefix rewriting systems on

words. It is shown in [Cau92b] that these prefix rewriting graphs can also

be characterized by deterministic graph grammars.

Recapitulating, one can say that pushdown graphs are a well investigated

class of infinite graphs with good algorithmic properties. But the various

different characterizations of pushdown graphs also show the limited expres-

siveness of this formalism for the definition of infinite graphs.

Prefix Recognizable Graphs. The equivalence of pushdown graphs to

the graphs generated by prefix rewriting systems on words leads to a natural

extension of pushdown graphs. Instead of using prefix rewriting rules of the

form “a prefix u can be replaced by a prefix v” one can use regular languages

in these rules. This defines the class of prefix recognizable graphs [Cau96].
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The edge relation of a prefix recognizable graph is of the form (L1×L2) ·K,

where L1, L2, and K are regular word languages.

The algorithmic properties of prefix recognizable graphs are the same

as for pushdown graphs: the MSO theory of prefix recognizable graphs is

decidable [Cau96], and the methods for solving games on pushdown graphs

also work for prefix recognizable graphs [KV00, Cac02b].

From the definition of prefix recognizable graphs it is obvious that they

extend the class of pushdown graphs. A class of graphs strictly in between

pushdown graphs and prefix recognizable graphs is the class of equational

graphs [Cou89]. These graphs are generated by graph grammars with hy-

peredge replacement. The relation of prefix recognizable graphs and equa-

tional graphs was characterized by Barthelmann in [Bar98] using the notion

tree-width (cf. [Die00]), and in [CK01] yielding a construction method of

hyperedge replacement grammars for prefix recognizable graphs that are

equational. A nice overview including several characterizations of prefix

recognizable graphs is given in [Blu01].

Automatic and Rational Graphs. A powerful mechanism for defining

infinite graphs uses finite two-head automata for the specification of edge

relations of graphs. These automata read pairs of words with two heads mov-

ing either synchronously or asynchronously over the two words. There is an

edge between the two words if the pair of these two words is accepted by the

automaton. Graphs whose edge relation can be defined with synchronous

automata are called automatic (cf. [BG00]) or synchronized rational (cf.

[FS93]). Rational graphs [Mor99] are those whose edge relation can be de-

fined by asynchronous automata. Thus, the class of rational graphs contains

the class of automatic graphs.

It is rather easy to see that transition graphs of Turing machines are

automatic and therefore the reachability problem cannot be decidable for

automatic (and rational) graphs. But the first-order (FO) theory of auto-

matic graphs is decidable (cf. [BG00]), even for FO logic extended by a

quantifier “there exist infinitely many”. In contrast, the FO theory of ra-

tional graphs is undecidable ([Mor99]). There even exists a single rational

graph with an undecidable FO theory ([Tho02]), proving that the class of

rational graphs strictly contains the class of automatic graphs.

From an algorithmic point of view these two classes of graphs are too

strong because they do not admit algorithms for solving basic problems.

Process Rewriting Graphs. The graph classes we presented so far have

in common that their vertices are coded by words. In process rewriting

graphs [May98, May00, May01, BCMS01] the vertices are represented by
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abstract processes, where such an abstract process is a term built up from

process constants and operations for sequential and parallel composition.

The edges are described by a finite set of rewriting rules. Depending on

which operations are allowed on each side of the rewriting rules, one gets

different classes of graphs forming the hierarchy of process rewriting graphs.

For example, if we allow sequential composition on both sides of the rewrit-

ing rules but disallow parallel composition, then we have an ordinary prefix

rewriting system over words. Without sequential, but with parallel compo-

sition, one obtains the transition graphs of Petri nets. Two other widely

studied classes from this hierarchy are basic parallel processes (BPP) and

the process algebra PA.

In [May00] it is shown that the hierarchy of process rewriting graphs

is strict w.r.t. bisimulation and that reachability is decidable for all graph

classes within the process rewriting hierarchy. The model-checking prob-

lem for process rewriting graphs and several temporal logics is analyzed

in [May01]. There are a lot of articles on the classes BPP and PA. Model-

checking for BPP with branching time logics is analyzed in [EK95], the reach-

ability problem for BPP is shown to be solvable in linear time in [EP00],

and model-checking for PA with various transition logics is considered in

[LS00], just to mention a few.

Ground Tree Rewriting Graphs. We now give more details about

ground tree rewriting systems and the graphs generated by these systems,

followed by an overview of the results of this thesis.

The vertices in ground tree rewriting graphs are represented by finite

ranked trees. A ranked tree is a finite ordered tree, i.e., the successors of

a location2 are ordered, and its locations are labeled with symbols from a

finite alphabet A. Each of these symbols comes with an arity determining

the number of successors of the vertices labeled with this symbol. A ground

tree rewriting system (GTRS) consists of such an alphabet A, an alphabet

Σ for the edge labels of the graph, a finite set of rules of the form s
σ
↪→ s′ for

ranked trees s, s′, σ ∈ Σ, and an initial tree tin. To apply a rule to a tree

t one has to find the tree from the left hand side of the rule as a subtree

in t and then replace it by the tree from the right hand side of the rule. In

this way, the rewriting rules define the Σ-labeled edges of the graph. This

kind of rewriting is called suffix rewriting in [Cau92a]. The vertices of the

graph are all the trees that are reachable from the initial tree by repeated

application of the rewriting rules. Thus, a ground tree rewriting system can

2We use the notion location instead of vertex to make a clear distinction to the vertices

of graphs.
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be seen as a finite representation of an infinite graph.

Ground tree rewriting systems have been studied intensively in the past.

In [Bra69] the focus is on the set of trees generated by a GTRS, and it

is shown that this set is regular. Many problems for GTRS are decidable,

among them reachability [Bra69, CG90], fair termination [Tis89], and con-

fluence [DHLT90]. In [DT90] it is shown that the first-order theory of ground

tree rewriting systems is decidable.

Overview of this Thesis

In Chapter 2, following the present Introduction, we introduce the basic ter-

minology on graphs, ranked trees, ground tree rewriting, and tree automata.

We also introduce an extension of ground tree rewriting, namely regular

ground tree rewriting (RGTR), as already studied in [Eng99]. The relation

of GTR graphs and RGTR graphs is similar to the relation of pushdown

graphs and prefix recognizable graphs. In regular ground tree rewriting the

rewriting rules are of the form T1
σ
↪→ T2 for regular tree languages T1 and

T2 (cf. [GS84, CDG+97]). In this way graphs of infinite degree can be

generated.

The main part of this thesis consists of a structural analysis of GTR

graphs and of an algorithmic analysis of RGTR and GTR graphs.

Structural Analysis of GTR graphs. In Chapter 3 we analyze the

structure of GTR graphs and relate them to other classes of graphs. In the

first part we study GTR graphs under the aspect of tree-width (cf. [Die00]).

The tree-width of a graph, usually defined via tree-decompositions, indicates

how much a graph resembles a tree. A tree-decomposition structures a graph

in a tree-like manner by grouping sets of vertices together and arranging

them as a tree according to certain rules that respect the original structure

of the graph. The size of these sets of vertices define the width of the

tree-decomposition. The tree-width of a graph is the minimal width of all

tree-decompositions of the graph. There are examples of infinite graphs that

do not admit a tree-decomposition of finite width. Hence, the tree-width of

an infinite graph can be finite or infinite. As already mentioned, the notion

of tree-width was successfully applied to characterize the relation between

prefix recognizable and equational graphs [Bar98]. Our main result from

this part of the thesis is of the same nature (see page 62):

Theorem. A GTR graph is a pushdown graph if, and only if, it has finite

tree-width.
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Apart from precisely characterizing the relation between GTR graphs

and pushdown graphs, this result allows to relate GTR graphs to prefix

recognizable and equational graphs. To complete the comparison with other

graph classes we discuss the relation of GTR graphs and automatic graphs.

The second part of the structural analysis deals with traces of GTR

graphs. If a graph with edge labels is equipped with initial and final vertices,

then it can be interpreted as an infinite automaton. The traces of the graph

are the finite words formed by the labels of the paths leading from an initial

to a final vertex. The traces of finite graphs define the class of regular

languages (cf. [HU79]), and the traces of pushdown graphs correspond to

the class of context free languages. This is not surprising since the class of

context free languages is exactly the class of languages that can be accepted

by pushdown automata (cf. [HU79]). From the characterization of prefix

recognizable graphs by prefix rewriting on words using regular languages

[Cau96] it follows that, from the perspective of traces, prefix recognizable

graphs have the same expressive power as pushdown graphs.

The approach of defining classes of word languages via infinite graphs

also yields new characterizations of the context sensitive languages using

rational graphs [MS01] or automatic graphs [Ris02]. A nice introduction to

the theory of infinite automata is given in [Tho02].

Here we analyze the class of languages defined via traces of GTR graphs.

Besides some results on closure properties of this class of languages we de-

termine its relation to classical classes of languages resulting in the following

theorem (see page 82):

Theorem. The class of languages defined as traces of GTR graphs is located

strictly between the context free and the context sensitive languages.

Algorithmic Analysis of RGTR graphs. Our algorithmic analysis, pre-

sented in Chapter 4, is carried out for RGTR graphs. We focus on the model-

checking problem for RGTR graphs with temporal logics (cf. [Eme90]). In

general, model-checking is the task of testing whether a given structure sat-

isfies a given property written in some specification logic. In temporal logics,

like CTL, LTL, or CTL∗, one can specify reachability properties that talk

about paths through the structure. Therefore, temporal formulas are inter-

preted w.r.t. a given initial vertex. The model-checking problem for RGTR

graphs and temporal logics is the following: Given an RGTR graph G, an

initial vertex tin of G, and a temporal formula ϕ, is ϕ valid in G with tin as

initial vertex?
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It has been shown for other classes of graphs, e.g. for BPP [EK95], that

model-checking these graphs with certain temporal operators is decidable

whereas it is undecidable for other temporal operators. Our aim is to build

up a logic from predicates for regular sets of trees (cf. [GS84, CDG+97]) as

atomic formulas, Boolean combinations of formulas, and temporal operators,

such that the model-checking problem for RGTR graphs and this logic is

decidable. To identify those temporal operators that can be included in our

logic we separately study different reachability problems corresponding to

the semantics of basic temporal operators. These reachability problems are

listed in the following, where the paths are supposed to start in a given

initial vertex tin of the given graph, and T , T ′ denote regular sets of trees:

One step reachability: Does there exist a successor of tin that is in T?

Reachability: Does there exist a path to a vertex in T?

Constrained reachability: Does there exist a path that remains in T ′

until it eventually reaches a vertex in T?

Recurrence: Does there exist a path that infinitely often visits T?

Universal reachability: Do all paths eventually reach a vertex in T?

Universal recurrence: Do all infinite paths infinitely often visit T?

One step reachability is easily seen to be decidable. Reachability is known

to be decidable for GTR graphs ([Bra69, CG90]) and for RGTR graphs

([Eng99]). Here we adapt an algorithm for the use with RGTR graphs that

was presented in [CDGV94] to solve the reachability problem for another

generalization of ground tree rewriting. Our main result is that the recur-

rence problem is decidable and we provide a polynomial time algorithm solv-

ing this problem (a version of this algorithm for GTR graphs was published

in [Löd02b]). The other problems from the list are shown to be undecidable.

The decidability results are summarized in the main theorem of Chapter 4

(see page 123):

Theorem. The model-checking problem for RGTR graphs and the temporal

logic built up from predicates for regular sets of trees, Boolean combinations,

and temporal operators for one step reachability, reachability, and recurrence

is decidable.

The undecidability results show that one cannot add other basic temporal

operators to the logic without making the model-checking problem undecid-

able.
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Related Work

The theory of infinite graphs and verification of infinite state systems is

an active field of research. We would like to mention some recent work of

other researchers that emerged during the writing of this thesis and which

is related to this work in the sense that ranked trees are used to represent

the vertices or states of infinite graphs or systems.

Infinite graphs can be defined using infinite terms over basic graph op-

erations. In [Cou00] operators for adding vertices, inserting edges, and dis-

joint union of graphs are used to define infinite graphs. Terms built from

these operators can also be used to characterize prefix recognizable graphs

(cf. [Blu01]). A graph is prefix recognizable if, and only if, it is definable

by a regular term over these operations, where an infinite term is regular

if it contains only finitely many different subterms. In [Col02] Colcombet

uses the same mechanism to define infinite graphs but with an additional

operation for the asynchronous product of graphs. It turns out that this

operation exactly captures the amount of expressiveness gained when pass-

ing from prefix rewriting on words to ground tree rewriting.3 The article of

Colcombet contains three main results:

• In analogy to the result for prefix recognizable graphs it is shown that

a graph is an RGTR graph if, and only if, it is definable by a regular

term over this extended signature.

• Extending our result on GTR graphs of bounded tree-width that ap-

peared in [Löd02a], Colcombet shows that RGTR graphs of bounded

tree-width are equational graphs.

• On the algorithmic side it is shown that a graph defined by an infi-

nite term over the extended signature has a decidable FO theory with

reachability predicate if the term defining the graph has a decidable

MSO theory.

The article of Colcombet mainly contributes to a structural theory of infinite

graphs by providing different characterizations for classes of infinite graphs

and analyzing their structure. But the tree rewriting approach is also used

more directly for the aspect of modeling and verification.

For the verification of parametrized systems the approach of “regular

model-checking” is used in [BJNT00]. In this approach states of the system

are represented by finite words. Each position in the word corresponds to a

3The approach of typed trees, as used in [Col02], is not directly comparable to the

untyped approach used in this thesis.
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finite state component in the system. The infiniteness of the system stems

from the arbitrary number of components. The transitions of such a system

are modeled by regular relations over words. The use of words for the

representation of the system makes this approach suitable for systems with

a topology that corresponds to the structure of a word, e.g. ring topologies

(if we assume that the last letter of a word is connected to the first one).

In [BT02] and [AJNO02] this concept was generalized to trees with the

transitions of the system modeled by regular tree transformations. In this

way, parametrized systems with more general topologies can be represented.

The authors develop techniques to obtain partial algorithms (that do not

necessarily terminate) to solve the reachability problem, which is undecid-

able for these systems in general.



Chapter 2

Tree Rewriting Graphs

In this chapter we formalize the concept of ground tree rewriting that was

explained informally in the introduction. In the following sections we give

basic notations and definitions for graphs, ranked trees, ground tree rewrit-

ing, and tree automata.

2.1 Graphs

A directed edge labeled graph G is a tuple G = (V, E, Σ), where V is the

set of vertices, Σ is the finite set of edge labels, and E ⊆ V × Σ × V is the

set of edges. We only consider countable graphs, i.e., the set V is countable.

Whenever we use the notion of graph without specifying the type of the

graph in more detail, then we mean a countable directed edge labeled graph.

If we are not interested in the edge labels or if we consider graphs without

edge labels, we omit Σ and assume that E ⊆ V × V .

In Section 3.2 we also consider undirected graphs, i.e., graphs with undi-

rected edges. In directed graphs there are two possible edges between two

different vertices u and v, namely (u, v) and (v, u). In undirected graphs

there is only one possible edge between u and v, namely {u, v}. So, in undi-

rected graphs edges are sets of size two instead of ordered pairs. Note that

this definition does not allow “self loops”, i.e., in undirected graphs there

are no edges from a vertex to itself.

The notions tree-width and clique-width used in Section 3.2 do not de-

pend on the direction of edges or on the edge labels. So, for later use we

define the undirected unlabeled version Gund of a graph G = (V, E, Σ) as

Gund = (V, Eund) with

Eund = {{u, v} | u 6= v and ∃σ ∈ Σ : (u, σ, v) ∈ E or (v, σ, u) ∈ E}.

11
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G : 1
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3

Figure 2.1: A directed labeled graph and its undirected unlabeled version

Example 2.1 Figure 2.1 shows the graph

G = ({1, 2, 3}
︸ ︷︷ ︸

V

, {σ1, σ2}
︸ ︷︷ ︸

Σ

, {(1, σ1, 1), (1, σ1, 3), (2, σ1, 3), (3, σ2, 2)}
︸ ︷︷ ︸

E

)

and its undirected unlabeled version

Gund = ({1, 2, 3}
︸ ︷︷ ︸

V

, {{1, 3}, {2, 3}}
︸ ︷︷ ︸

Eund

).

2

A graph G′ = (V ′, E′, Σ) is a subgraph of G = (V, E, Σ) iff V ′ ⊆ V and

E′ ⊆ E. We call G′ the subgraph induced by V ′ iff E′ = E ∩ (V ′×Σ×V ′).

A path π in G is a nonempty sequence of vertices π = v0 · · · vn such

that (vi, vi+1) ∈ E for all i ∈ {0, . . . , n − 1}. An undirected path in G

is a nonempty sequence of vertices π = v0 · · · vn such that (vi, vi+1) ∈ E

or (vi+1, vi) ∈ E for all i ∈ {0, . . . , n − 1}. The length of a (undirected)

path π = v0 · · · vn is n. For two vertices u, v ∈ V we say that there is

a path (undirected path) from u to v if there is a path (undirected path)

π = v0 · · · vn in G with v0 = u, and vn = v. Infinite paths are defined in the

same way as finite paths but with an infinite sequence of vertices.

The out degree of a vertex v is the number of outgoing edges of v and

the in degree is the number of incoming edges of v. The degree of v is the

sum of outgoing and incoming edges. A graph G is of finite (in/out) degree

if all its vertices have finite (in/out) degree, otherwise G has infinite degree.

We say that G has bounded (in/out) degree if there is a number d ∈ N such

that each vertex has (in/out) degree less than d.

Given a vertex v ∈ V , the connected component of v in G is the subgraph

of G induced by the set {u ∈ V | there is an undirected path from u to v}.

Two graphs G1 = (V1, E1, Σ) and G2 = (V2, E2, Σ) are isomorphic iff

there is a bijective mapping ϕ : V1 → V2 such that (u, σ, v) ∈ E1 iff
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(ϕ(u), σ, ϕ(v)) ∈ E2 for all u, v ∈ V1 and all σ ∈ Σ. Usually we do not

distinguish graphs up to isomorphism. So, two graphs are the same iff they

are isomorphic.

Special graphs that reappear throughout this thesis are listed in the

following. In different contexts we use labeled, unlabeled, directed, and

undirected versions of these graphs.

• For m ≥ 2 the (m × m)-grid has m2 vertices connected in a grid-like

manner as indicated in the picture below for the (3 × 3)-grid:

• //

²²
• //

²²
•
²²

• //

²²
• //

²²
•
²²

• // • // •

• The infinite grid is defined similar to the (m × m)-grids but with in-

finitely many vertices. An example how to obtain the infinite grid

as transition graph of a ground tree rewriting system is given in Sec-

tion 2.3.

• The complete bipartite graph Km,m has 2m vertices such that the edge

relation is the set V1 ×V2 for a partition of the vertex set into two sets

V1 and V2 of size m. The following picture shows the undirected K3,3.

•
@@

@

00
00

00 •

•
@@

@
~~~ •

•
~~~

±±±±±± •

• As usual, trees are graphs such that for each two vertices u, v there is

exactly one undirected path from u to v.

In the next section we introduce ranked trees which are different from the

above mentioned graph theoretic trees. Throughout this thesis we mainly

use ranked trees. So, usually, when we speak of trees we mean ranked trees.

If we mean graph theoretic trees, then it should either be clear from the

context or we refer to them as unranked or graph theoretic trees.

2.2 Ranked Trees

For a set X we denote by X∗ the set of all finite sequences over X and by

X+ all finite nonempty sequences over X. For w ∈ X∗ the length of w is

denoted by |w| and the empty word is denoted by ε. By N we denote the set

of natural numbers, i.e., the set of non-negative integers. By v we denote
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a
¦¦ 99

a
§§ 99 b

c a a

a(a(c, a), b(a))

graphical notation term notation

Figure 2.2: The tree from Example 2.2

the prefix ordering on N∗ and by @ the strict prefix ordering. That is, x v y

for x, y ∈ N∗ iff there is z ∈ N∗ such that y = xz and x @ y if z ∈ N+.

A ranked alphabet A is a finite family of finite sets (Ai)i∈[k], where

[k] = {0, . . . , k}. In the following, k always denotes the maximum rank in

A. For simplicity we identify A with the set
⋃k

i=0 Ai. To specify a ranked

alphabet one can list all the sets Ai or simply specify the set of all symbols

together with their ranks.

A ranked tree t over A is a mapping t : Dt → A with Dt ⊆ [k]∗ such

that

• Dt is prefix closed,

• Dt 6= ∅,

• for each x ∈ N∗ and i ∈ N: if xi ∈ Dt, then xj ∈ Dt for all j ≤ i, and

• if x0, . . . , x(i − 1) ∈ Dt and xi /∈ Dt, then t(x) ∈ Ai.

Dt is called the domain of t and the elements of Dt are called the locations

of t (we do not call them vertices to clearly separate them from vertices of

a graph). For x, y ∈ Dt we call x the predecessor of y and y a successor of x

iff there is i ∈ N such that y = xi. The set of all finite (with finite domain)

ranked trees over A is denoted by TA.

We use the term notation and a graphical notation for trees as shown in

the following example.

Example 2.2 Let A be the ranked alphabet given by A0 = {a, c}, A1 = {b},

A2 = {a}. Then t : {ε, 0, 1, 00, 01, 10} → A with t(ε) = t(0) = t(01) =

t(10) = a, t(1) = b and t(00) = c is a ranked tree over A. The graphical and

the term notation are shown in Figure 2.2. 2

The height of a tree t ∈ TA is height(t) = max{|x| | x ∈ Dt}, i.e., the

length of a longest path through t.
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Given a tree t and a location x of t, the subtree of t at the location

x is the tree obtained by taking all locations of t that have x as prefix,

removing the prefix x from all these locations, and keeping the labels. This

is formalized as follows. For x ∈ N∗ we define xDt = {xy ∈ N∗ | y ∈ Dt}

and x−1Dt = {y ∈ N∗ | xy ∈ Dt}. For x ∈ Dt the subtree t↓x of t at x is the

tree with domain Dt↓x = x−1Dt and t↓x(y) = t(xy).

To formalize the concept of replacing a subtree of a given tree by another

tree we introduce the notion of substitution. A substitution is a pair of a

location x ∈ N∗ and a tree s ∈ TA, written as [x/s]. A substitution [x/s] can

be applied to a tree t if x ∈ Dt. The result t[x/s] of a substitution applied

to t is the tree t′ with domain Dt′ = xDs ∪ (Dt \ xDt↓x) and

t′(y) =

{

s(z) if y = xz with z ∈ Ds,

t(y) if y ∈ Dt \ xDt↓x .

This means we replace the subtree t↓x in t by s.

Example 2.3 Let t = a(a(c, a), b(a)) be the tree from Example 2.2 shown

in Figure 2.2. Then t↓0 = a(c, a) and t[0/b(c)] = a(b(c), b(a)). 2

Substitution is the operation that is used in ground tree rewriting sys-

tems to transform trees. In the next section these systems are introduced

and it is explained how they can be used to generate infinite graphs.

2.3 Ground Tree Rewriting

A ground tree rewriting system (GTRS) is a tuple R = (A, Σ, R, tin), where

A = (Ai)i∈[k] is a ranked alphabet, Σ is an alphabet, R is a finite set of rules

of the form s
σ
↪→ s′ with s, s′ ∈ TA, σ ∈ Σ, and tin ∈ TA is the initial tree.

The set of rules defines what kind of substitutions are compatible with R as

follows. A substitution [x/s′] is (R, σ)-applicable to a tree t ∈ TA if x ∈ Dt

and if there is a rule s
σ
↪→ s′ ∈ R with s = t↓x. It is R-applicable to t if it is

(R, σ)-applicable to t for some σ ∈ Σ. We write

• t
σ
−→
R

t′ if there is an (R, σ)-applicable substitution [x/s′] such that

t[x/s′] = t′,

• t −→
R

t′ iff there is σ ∈ Σ with t
σ
−→
R

t′, and

•
∗
−→
R

for the transitive and reflexive closure of −→
R

.
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The tree language that is generated by R is T (R) = {t ∈ TA | tin
∗
−→
R

t}.

Rewriting systems of this kind have already been considered in [Bra69]

as an extension of regular canonical systems introduced by Büchi [Büc64].

In [Bra69] the set T (R) is the main object under consideration. We are

interested in the graph structure that is naturally induced on T (R) by the

rewriting relation. The edge labeled graph GR = (VR, ER, Σ) generated by

R is defined by VR = T (R) and (t, σ, t′) ∈ ER iff t
σ
−→
R

t′.

Graphs that are isomorphic to GR for some GTRS R are called ground

tree rewriting graphs or GTR graphs for short. Note that we define the

vertex set of GR to be the set of all trees reachable from the initial tree by

repeated application of the rewriting rules. At the end of this chapter we

comment on other possibilities for defining the vertex set.

Since every tree in TA has only finitely many subtrees it is obvious that

each vertex of GR has only finitely many outgoing edges. In the same way

one can see that every vertex of GR can have only finitely many incoming

edges. This leads to the first simple remark on GTR graphs.

Remark 2.4 GTR graphs are of finite degree.

In the following we give some examples of GTR graphs.

Example 2.5 Consider the GTRS R = (A, Σ, R, tin) given by the following

components.

• Σ = {0, 1},

• A = (Ai)i∈[2] with A0 = {a, b}, A1 = {c}, and A2 = {d},

• R = {b
0

↪→ c(b), a
1

↪→ c(a)}, and

• tin = d(a, b).

The two rewriting rules can be applied independently to the left and right

branch of the tree. This generates the infinite grid as shown in Figure 2.3.

2

Example 2.6 The GTRS R = (A, Σ, R, tin) given by the following compo-

nents shows that it is also possible to generate graphs of unbounded (though

finite) out degree.

• Σ = {0},

• A = (Ai)i∈[2] with A0 = {a}, A1 = ∅, and A2 = {b},
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Figure 2.3: The infinite grid generated by the GTRS from Example 2.5.
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b(b(b(a, a), a), a) · · ·

b(b(a, a), a)

77nnnnnnnnnnnn
//

''PPPPPPPPPPPP b(b(a, b(a, a)), a) · · ·

a // b(a, a)

99ssssssssss

%%LLLLLLLLLL b(b(a, a), b(a, a)) · · ·

b(a, b(a, a))

77nnnnnnnnnnnn
//

''PPPPPPPPPPPP b(a, b(b(a, a), a)) · · ·

b(a, b(a, b(a, a))) · · ·

Figure 2.4: The graph of unbounded out degree from Example 2.6.

• R = {a
0

↪→ b(a, a)}, and

• tin = a.

Each application of the rewriting rule produces one more a. So, the more

rewriting steps are needed to obtain t from tin, the more locations can be

used for substitutions in t. The initial part of the graph GR is shown in

Figure 2.4. The edge labels are omitted because 0 is the only edge label. 2

As a last example we give a rewriting system generating a graph of

unbounded in degree. Note that it is not possible to just reverse the rules of

the GTRS from the previous example and choosing a different initial tree.

This would give a GTRS reducing the size of a tree with each rewriting step.

Since the vertices are all the trees that are reachable from the initial tree,

such a system would generate a finite graph.

Example 2.7 The GTRS R = (A, Σ, R, tin) given by the following compo-

nents generates a graph of unbounded in degree.

• Σ = {0, 1, 2, 3},

• A = (Ai)i∈[2] with A0 = {b, c, d, e}, A1 = ∅, and A2 = {a},

• R = {c
0

↪→ a(b, c), a(b, c)
1

↪→ a(d, e), e
2

↪→ a(b, e), d
3

↪→ b}, and

• tin = a(b, c).
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2
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0
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EE

EE
EE

E

a(b, a(b, a(b, e))) · · · · · · · · · · · ·

Figure 2.5: The graph of unbounded in degree from Example 2.7.

The graph is shown in Figure 2.5 with the trees displayed in term notation.

2

In Section 2.1 we defined the notion of path through a graph. A GTR

graph only consists of the trees reachable from the initial tree, but substitu-

tions can also be applied to trees outside of T (R). This leads to the notion

of R-path, as defined below. Furthermore, we have to introduce some ter-

minology to refer to the substitutions generating the edges of paths through

GTR graphs.

An R-path (or just path if R is clear from the context) is a finite or

infinite sequence t0, t1, t2, . . . of trees such that ti −→
R

ti+1 for all ti, ti+1

in this sequence. For each such path there is a sequence of substitutions

[x0/s0], [x1/s1], [x2/s2], . . . such that xi ∈ Dti , t↓xi
i

σ
↪→ si is a rewriting rule

of R, and ti+1 = ti[xi/si]. Such a sequence of substitutions is called an R-

derivation of the path t0, t1, t2, . . . or just derivation if the rewriting system

R is clear from the context. It might happen that there are two different

substitutions [xi/si] and [x′
i/s′i] such that ti+1 = ti[xi/si] and ti+1 = ti[x

′
i/s′i].

Therefore, there may be more than one derivation for a sequence of trees.

Sometimes, it is desirable to speak of the derivation of a sequence of trees.

In this case we take the unique derivation [x0/s0], [x1/s1], [x2/s2], . . . with

maximal xi, i.e., if ti+1 = ti[x/s], then either x v xi or there is no rule

t↓xi

σ
↪→ s. Note that this is just a convention to make things precise in some

proofs. It would also be possible to take the minimal xi but the idea behind

this convention is that as few locations of the tree as possible should be

involved in the rewritings.
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If π is a finite R-path, then π : t
∗
−→
R

t′ means that π is an R-path

from t to t′. For trees t, t′ with t
∗
−→
R

t′, a derivation of t
∗
−→
R

t′ is a deriva-

tion of a sequence of trees leading from t to t′ via rewriting rules from R.

This derivation is not unique since there may be different sequences of trees

leading from t to t′.

2.4 Tree Automata

Finite automata over finite words are a formalism to represent certain kinds

of infinite sets of words, the so called regular sets or regular languages. The

theory of finite automata and regular word languages can be transferred to

finite ranked trees by means of tree automata. Tree automata are devices

with finite memory that read input trees and accept or reject them. We use

these automata in the next section to define more general rewriting rules

and in Chapter 4 to specify infinite sets of vertices of GTR graphs.

In the following we introduce the models of nondeterministic bottom-

up automata with and without ε-transitions. For a more comprehensive

introduction to tree automata see e.g. [GS84] or [CDG+97].

A nondeterministic tree automaton (NTA) is a tuple A = (Q, A, ∆, F ),

where Q is a finite set of states, A = (Ai)i∈[k] is a ranked alphabet, F ⊆ Q

is a set of final states and ∆ ⊆ (
⋃k

i=0 Qi ×Ai)×Q is the transition relation.

Tree automata can be viewed as special ground rewriting systems over

the alphabet A with A0 augmented by the elements of Q. The elements

of the transition relation are interpreted as rewriting rules as follows. Let

q1, . . . , qi, q ∈ Q and a ∈ Ai. The transition (q1, . . . , qi, a, q) corresponds to

the (unlabeled) rewriting rule

a

§§
§§ 77

77
↪→ q.

q1 · · · qi

This allows us to use the terminology of ground rewriting systems from the

previous section to define the set T (A) of trees accepted by the NTA A:

T (A) = {t ∈ TA | ∃q ∈ F : t
∗
−→
A

q}.

So T (A) is the set of all trees that can be transformed into a final state

using the transitions as rewriting rules. A set of trees that can be accepted

by an NTA is called regular.
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t:
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f
ªª

77
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c d c

A run on t: q3
ÄÄ ??

q1 q2
ÄÄ ??

q1
ÄÄ ??

q1 q1

q1 q0 q1

Figure 2.6: A run of the NTA A1 from Example 2.8

Example 2.8 We construct an NTA A1 over the ranked alphabet A con-

sisting of A0 = {c, d}, A1 = {g}, and A2 = {f} that accepts all trees

with exactly three occurrences of c. The automaton has states q0, . . . , q3

counting the number of c’s seen so far. If it reaches a location where the

sum of the c’s in the subtrees is larger than 3, it cannot make a transi-

tion. It accepts if it can reduce the given tree to state q3. Formally, let

A1 = ({q0, q1, q2, q3}, A, ∆1, {q3}) with

∆1 = {(c, q1), (d, q0)}

∪ {(qi, g, qi) | i ∈ {0, 1, 2, 3}}

∪ {(qi, qj , f, qi+j) | i, j ∈ {0, 1, 2, 3} and i + j ≤ 3}.

2

Another way of defining acceptance of an NTA is to use the notion of run. A

run ρ of A on a tree t is a mapping ρ : Dt → Q such that for each x ∈ Dt, if

t(x) ∈ Ai, then (ρ(x0), . . . , ρ(x(i− 1)), t(x), ρ(x)) ∈ ∆. A run ρ is accepting

if ρ(ε) ∈ F . One can easily verify that t
∗
−→
A

q iff there is a run of A on t

with ρ(ε) = q. Figure 2.6 shows an accepting run of A1 from Example 2.8.

An NTA as defined above reduces a tree t over A to a single state by

removing from t one occurrence of a symbol from A in each rewriting step.

To simplify constructions of automata we introduce an extension of this

model by allowing the automaton to change a state without removing one

of the input symbols. This leads to the model ε-NTA.

An ε-NTA is a tuple A = (Q, A, ∆, F ), where Q, A, F are as for NTA

and ∆ ⊆ ((
⋃k

i=0 Qi × Ai) × Q) ∪ (Q × Q) is the transition function. The

only difference to NTA is that transitions of the form (p, q) for p, q ∈ Q are

allowed. Transitions of this kind are called ε-transitions. An ε-transition

(p, q) for p, q ∈ Q corresponds to a rewriting rule p ↪→ q.

Example 2.9 We change the NTA from Example 2.8 such that it accepts all
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trees where the number of occurrences of c is divisible by three instead of be-

ing equal to three. For this purpose, we add the transition (q2, q2, f, q1) and

the ε-transition (q3, q0) to A1: we define A2 = ({q0, q1, q2, q3}, A, ∆2, {q3})

with ∆2 = ∆1 ∪ {(q3, q0)}.

If A2 reaches a location labeled f such that the two subtrees contain two

c’s each, then it can use the new transition (q2, q2, f, q1) to count modulo

3. If A2 reaches q3 after processing a subtree of the input t, it can guess

whether there are more c’s in the remaining part of t and then reset the

counter to 0, or it can guess that it already has seen all c’s and stay in state

q3. 2

There is a direct connection between the sets T (R) of trees generated

by GTRS and regular sets of trees. This connection was already studied in

[Bra69] with the following result.

Proposition 2.10 ([Bra69]) For each GTRS R the set T (R) is regular.

This result can also be seen as a special case of the algorithm from

Chapter 4 for solving the reachability problem.

In many proofs, if a tree t can be reduced to a state p of an automaton A,

i.e., t
∗
−→
A

p, we are interested in the state that is used at a specific location

x ∈ Dt in this reduction. If this state is q, then we write

t
∗
−→
A

t[x/q]
∗
−→
A

p.

This means that the automaton reduces the subtree of t at location x to

the state q and then reduces the remaining part of t to p. In the following

remark we give two simple arguments that are used repeatedly in connection

with this notation (especially in Section 4.2).

Remark 2.11 Let A = (Q, A, ∆, F ) be an ε-NTA, p, q ∈ Q, t, s ∈ TA, and

x ∈ Dt.

(i) t
∗
−→
A

t[x/q] iff t↓x
∗
−→
A

q.

(ii) If t[x/q]
∗
−→
A

p and s
∗
−→
A

q, then t[x/s]
∗
−→
A

p.

The proof of this remark is trivial and therefore omitted, but we think that

isolating these two facts might ease the reading of several proofs.
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Basic Constructions and Algorithms

An important property of the class of regular tree languages is the clo-

sure under Boolean operations. Here, we give constructions for union and

intersection. For other closure properties and correctness proofs for the

subsequent constructions we refer the reader to [CDG+97].

For the complexity analysis of automaton constructions we need the size

|A| of a tree automaton. Similar to [CDG+97] we define the size |α| of a

transition α = (q1, . . . , qi, a, q) ∈ ∆ as |α| = i+2. The size of an ε-transition

α is 2. The size of A is the number of states plus the sum of the size of all

transitions in ∆, i.e.,

|A| = |Q| +
∑

α∈∆

|α|.

To refer to the language of an automaton with a certain state as final state we

define for q ∈ Q the automaton A(q) = (Q, A, ∆, {q}). With this definition

we get t ∈ T (A(q)) iff t
∗
−→
A

q.

Let A1 = (Q1, A, ∆1, F1), A2 = (Q2, A, ∆2, F2) be two ε-NTAs. The

automaton A1 ∪A2 recognizing the union of T (A1) and T (A2) is defined as

A1 ∪ A2 = (Q1∪̇Q2, A, ∆1 ∪ ∆2, F1 ∪ F2).

The automaton A1 ×A2 for the intersection of T (A1) and T (A2) is defined

as

A1 ×A2 = (Q1 × Q2, A, ∆×, F1 × F2),

where ∆× contains the transitions of the form ((p1, q1), . . . , (pi, qi), a, (p, q))

for (p1, . . . , pi, a, p) ∈ ∆1 and (q1, . . . , qi, a, q) ∈ ∆2.

Proposition 2.12 Let A1,A2 be ε-NTA. Then

(i) T (A1 ∪ A2) = T (A1) ∪ T (A2) with |A1 ∪ A2| ∈ O(|A1| + |A2|), and

(ii) T (A1 ×A2) = T (A1) ∩ T (A2) with |A1 ×A2| ∈ O(|A1| · |A2|).

As for automata on finite words, complementation of nondeterministic

tree automata uses the subset construction for determinization.

Proposition 2.13 For each ε-NTA A there is an ε-NTA A with T (A) =

TA \ T (A) and |A| ∈ O(2|A|).

An important operation on tree automata is to compute the set of all

reachable states, where a state q is reachable in A iff there is a tree t such

that t
∗
−→
A

q. This can be done efficiently (see e.g. [CDG+97]).
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Proposition 2.14 The set of all reachable states of an ε-NTA A can be

computed in time O(|A|).

A linear time algorithm can be found in Appendix A.1.

2.5 Regular Ground Tree Rewriting

Regular ground tree rewriting systems are defined in the same way as GTRS

but with regular sets instead of single trees in the rewriting rules (similar

to the relation between pushdown graphs and prefix recognizable graphs,

see Subsections 3.1.1 and 3.3.1). A regular ground tree rewriting system

(RGTRS) is a tuple R = (A, Σ, R, tin), where A, Σ, and tin are the same

as for GTRS and R is a finite set of rewriting rules of the form T
σ
↪→ T ′

for regular sets T, T ′ ⊆ TA of trees. For algorithmic applications we assume

that these regular sets are given by nondeterministic tree automata.

A substitution [x/s′] is (R, σ)-applicable to a tree t if x ∈ Dt and if

there is a rule T
σ
↪→ T ′ ∈ R with t↓x ∈ T and s′ ∈ T ′. With this adapted

definition of (R, σ)-applicable substitution the definitions of R-applicable,
σ
−→
R

, −→
R

,
∗
−→
R

, T (R), and GR are the same as for GTRS. We also carry over

the definition of R-path and derivation in the obvious way.

In the same way as before, graphs that are isomorphic to GR for some

RGTRS R are called regular ground tree rewriting graphs or RGTR graphs

for short.

Example 2.15 The RGTRS R = (A, Σ, R, tin) we define resembles the

GTRS from Example 2.5. The ranked alphabet is A = (Ai)i∈[2] with

A0 = {a, b}, A1 = {c}, and A2 = {d}, the alphabet for the edge labels

is Σ = {0, 1}, and the initial tree is tin = d(a, b). One rule contains an infi-

nite set of trees on the right hand side. For this purpose we define the NTA

A = ({q0, q1}, A, ∆, {q1}) with ∆ = {(b, q0), (q0, c, q1), (q1, c, q1)}. The set

T (A) accepted by A contains all the unary trees of the form c(· · · c(b) · · · ).

The set R of rewriting rules is defined as R = {{a}
1

↪→ {c(a)}, {b}
0

↪→ T (A)}.

The graph GR is shown in Figure 2.7 without edge labels. Basically, it

is the infinite grid, but in each row each vertex has infinitely many edges to

the right. 2

In Chapter 4 on model-checking for RGTR graphs we need the following

relations and notations.

• For trees t, t′ we write t
+
−−→
R

t′ if t′ is reachable from t with at least

one substitution, i.e., if there is a tree t′′ such that t −→
R

t′′
∗
−→
R

t′.
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d(a, c(b)) d(a, c(c(b)))d(a, b) d(a, c(c(c(b)))) · · ·

· · ·d(c(c(a)), c(c(b))) d(c(c(a)), c(c(c(b))))

· · ·d(c(a), c(b)) d(c(a), c(c(b))) d(c(a), c(c(c(b))))d(c(a), b)

...
...

...
...

d(c(c(a)), c(b))d(c(c(a)), b)

Figure 2.7: The graph of the RGTRS from Example 2.15

• For sets T1, . . . , Tn of trees we write

T1
∗
−→
R

T2
∗
−→
R

· · ·
∗
−→
R

Tn

if there are ti ∈ Ti for each i ∈ {1, . . . , n} such that t1
∗
−→
R

t2
∗
−→
R

· · ·
∗
−→
R

tn. We also use this notation for
+
−−→
R

and combinations of
∗
−→
R

and
+
−−→
R

.

• For a tree t and a set T of trees we write t
ω
−→
R

T if there is an infinite

sequence t0 −→
R

t1 −→
R

t2 −→
R

· · · with t = t0 such that infinitely many

of the ti are in T . Furthermore, for sets T1, T2 of trees, we write

T1
ω
−→
R

T2 if there exists t ∈ T1 with t
ω
−→
R

T2.

• If π is an infinite R-path starting in a tree t and visiting a set T of

trees infinitely often, then we denote this by π : t
ω
−→
R

T .

We also use these notations for single trees instead of sets of vertices and

write, e.g., t
ω
−→
R

t′ instead of t
ω
−→
R

{t′}. Please note that in the above

definitions we always ask for the existence of a tree. So T1
∗
−→
R

T2 is true

if there exists a tree in T1 from where we can reach T2. We do not require
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that from all trees in T1 we can reach T2 as the notation might suggest at

first glance.

Another relation derived from the rewriting relation is the inverse of

the rewriting relation. This relation is used in Chapter 4 where we analyze

forward and backward reachability problems. The inverse R−1 of an RGTRS

R = (A, Σ, R, tin) is obtained from R by reversing the rules in R, i.e., R−1 =

(A, Σ, R−1, tin) with T ′ σ
↪→ T ∈ R−1 iff T

σ
↪→ T ′ ∈ R.

As for automata, we need to define the size |R| of an RGTRS R for the

complexity analysis of the algorithms in Chapter 4. Let R = (A, Σ, R, tin)

be an RGTRS with R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m} such that Ti = T (Ai)

and T ′
i = T (A′

i) for NTAs Ai and A′
i. For the algorithms that we are going

to analyze the initial tree does not play any role. For this reason we define

the size |R| of R simply as

|R| =
m∑

i=1

(|Ai| + |A′
i|).

As the definition of RGTR graphs is similar to the definition of GTR

graphs, the first step is to compare these two classes with each other. Propo-

sition 2.10 can be extended to RGTRS. This follows from the results in

Chapter 4. Another proof can be found in [Eng99].

Proposition 2.16 For each RGTRS R the set T (R) is regular.

Since finite sets of trees, and singleton sets in particular, are regular,

it is obvious that every GTR graph is an RGTR graph. As Example 2.6

shows, it is possible to generate GTR graphs with unbounded but still finite

out degree. By using infinite regular sets of trees in the rewriting rules of

RGTRS the graphs generated by these systems may have infinite degree, as

in Example 2.15.

This rises the question whether the difference of GTR graphs and RGTR

graphs only consists of graphs of infinite degree. The following theorem gives

an affirmative answer to this question.

Theorem 2.17 If G is an RGTR graph of finite degree, then G is a GTR

graph.

Proof. Let G be an RGTR graph of finite degree and let R be an RGTRS

such that GR is isomorphic to G. Let T
σ
↪→ T ′ be a rewriting rule of R. We

show that we can replace this rule by a finite set of GTR rules.

If T or T ′ is empty, then we can safely omit the rule. If T and T ′ are finite,

then we replace T
σ
↪→ T ′ by the set of rules {t

σ
↪→ t′ | t ∈ T and t′ ∈ T ′}.
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If T ′ is infinite, then there is no t ∈ T (R) such that t↓x ∈ T for some

x ∈ Dt. Otherwise, there would be an edge from t to all t[x/t′] with t′ ∈ T ′,

contradicting the assumption that G has finite degree. Thus, the rule T
σ
↪→

T ′ is not used for generating GR and can be omitted.

If T is infinite, then we show that there is h ∈ N such that for all t ∈ T (R)

and x ∈ Dt with t↓x ∈ T we have height(t↓x) ≤ h. Then we can replace

T
σ
↪→ T ′ by the set of rules {t

σ
↪→ t′ | t ∈ T with height(t) ≤ h, and t′ ∈ T ′}.

This set is finite, since T ′ is finite and there are only finitely many trees of

height less than or equal to h.

To define h we use a consequence of the pumping lemma for regular tree

languages (see e.g. in [CDG+97]):

Let A = (Q, A, ∆, F ) be an NTA. If there is a tree t ∈ T (A) with height(t) >

|Q| and t
∗
−→
A

q for some q ∈ Q, then there are infinitely many s ∈ T (A)

with s
∗
−→
A

q.

We use this fact as follows. The set T is regular and therefore there exists an

NTA A = (QA, A, ∆A, FA) accepting T . By Proposition 2.16 there exists an

automaton B = (QB, A, ∆B, FB) accepting the set T (R). Let h = |QA| · |QB|

and assume that there exist t ∈ T (R) and x ∈ Dt with height(t↓x) > h

and t↓x ∈ T . Then there is p ∈ FA with t↓x
∗
−→
A

p. Furthermore, since

t ∈ T (R) = T (B), there are q ∈ QB and q′ ∈ FB with t
∗
−→
B

t[x/q]
∗
−→
B

q′.

In particular we get t↓x
∗
−→
B

q. Let C = A × B. From the definition of

the product automaton we get t↓x
∗
−→
C

(p, q). Using the consequence of

the pumping lemma stated above we obtain infinitely many trees s with

s
∗
−→
C

(p, q) because height(t↓x) > h = |QA| · |QB|. Again by the definition

of the product automaton we get for all s with s
∗
−→
C

(p, q):

• s
∗
−→
A

p,

• s
∗
−→
B

q, and therefore

• t[x/s]
∗
−→
B

t[x/q]
∗
−→
B

q′.

Thus, there are infinitely many trees of the form t[x/s] with s ∈ T (by

the first item) and t[x/s] ∈ T (R) (by the third item). From all these trees

there is an edge to t[x/t′] for t′ ∈ T ′. Hence, t[x/t′] has infinite in degree, a

contradiction. 2

The preceding theorem characterizes the class of GTR graphs as those

graphs that have finite degree and are RGTR graphs. In Chapter 3 we
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present results of the same kind, relating GTR graphs and pushdown graphs

using the structural properties of bounded tree-width and bounded clique-

width (instead of finite degree).

As already mentioned in Section 2.3 we finish this chapter with a brief

discussion on other possiblities of defining the vertex set of graphs generated

by (regular) ground tree rewriting.

• One option is to consider the whole set TA of trees over A, i.e., to

define the graph generated by a rewriting system R as (TA,−→
R

). For

the results on model-checking from Chapter 4 this does not make any

difference. But if A includes a symbol of rank at least two, then the

graph (TA,−→
R

) has unbounded tree-width for every R that contains

at least one rewriting rule s
σ
−→
R

s′ with s 6= s′. Therefore, we have

chosen the definition with the vertex set generated from the initial

tree to make the graphs rooted, i.e., having a designated root vertex.

This allows a precise comparison to the class of pushdown graphs from

[MS85] that have the initial configuration of the pushdown automaton

as root vertex (see Section 3.2) using the notion of tree-width.

• It is possible to subsume our definition with the initial tree and the

definition from the previous item by allowing to restrict the set of

vertices to an arbitrary regular set of trees. In this case, the unde-

cidability proofs from Section 4.3 can easily be adapted to show the

undecidablity of reachability for this class of graphs. Hence, this way of

defining the graphs is too strong if one is interested in model-checking.

• In [Col02] Colcombet uses a stronger typing policy by not only defining

the rank of a symbol but also fixing the type of its successors. The set

of vertices is then defined as all trees of a certain type. This way of

restricting the vertex set is more flexible as it allows to define graphs

that are not connected but it also makes the underlying objects more

complex.



Chapter 3

The Structure of GTR

Graphs

Ground tree rewriting graphs are defined via a formalism that allows to

generate these graphs. This definition gives no direct information on the

kind of graphs that belong to the class of GTR graphs because the defi-

nition depends on the names of the vertices (i.e., the trees that represent

the vertices). Given a graph, there is no direct way to see whether it is a

GTR graph. For example, consider the graph shown in Figure 3.1. A formal

definition of G is G = (V, E, Σ) with Σ = {0, 1, 2}, V = {X}∗ × {Y }∗, and

E = {((X i, ε), 0, (X i+1, ε)) | i ≥ 0}

∪ {((X i, Y j), 1, (X i−1, Y j+1)) | i > 0, j ≥ 0}

∪ {((ε, Y j), 2, (ε, Y j−1)) | j > 0}.

If this graph is a GTR graph, then after some time we will probably find

an appropriate GTRS generating this graph. Otherwise, we have to prove

that no GTRS generates this graph. For this purpose, it is desirable to have

general theorems saying that graphs with certain properties cannot be GTR

graphs. A simple example of such a property is given by Remark 2.4, stating

that GTR graphs are of finite degree. So, given a graph of infinite degree,

it is clear that it is no GTR graph.

The most desirable result is a characterization of GTR graphs that does

not depend on their representation. An example for such a result is the char-

acterization of pushdown graphs by Muller and Schupp [MS85] (see Subsec-

tion 3.1.1). We do not have a complete result of that kind, but building

on the result of Muller and Schupp we obtain such a characterization for a

subclass of the class of GTR graphs. More precisely, we show in Section 3.2

that GTR graphs of bounded tree-width or of bounded clique-width are

29
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Figure 3.1: Is this graph a GTR graph?

pushdown graphs. Together with the result of Muller and Schupp this gives

a characterization of these subclasses of GTR graphs that is independent of

their representation. Furthermore, these results yield a precise description

of the relation between pushdown graphs and GTR graphs.

In Section 3.3 we continue our analysis with a comparison of GTR graphs

to other classes of graphs, namely prefix recognizable graphs [Cau96], equa-

tional graphs [Cou89], and automatic graphs [BG00]. These investigations

allow us to place the class of GTR graphs into the known hierarchy of these

graph classes as shown in Figure 3.12 on page 64.

The last section in this chapter deals with traces of GTR graphs. From

this perspective one interprets infinite graphs as automata with an infinite

set of states. In this way, one can use infinite graphs to define languages

of finite words (see [Tho02] for an overview). Since pushdown automata

characterize the class of context free languages it is not astonishing that this

is exactly the class of languages that can be defined as traces of pushdown

graphs. A recent result by Morvan and Stirling states that the context

sensitive languages can be characterized as the traces of rational graphs

[MS01]. This result is sharpened in [Ris02], where it is shown that even

the synchronized rational or automatic graphs suffice to trace all context

sensitive languages.

Our results show that the traces of GTR graphs define a class of lan-

guages strictly in between the context free and the context sensitive lan-

guages. Furthermore, we analyze the closure properties of this class of lan-

guages. Besides the interest in traces of infinite graphs from the perspective

of formal language theory, these investigations also give more insight into

the structure of GTR graphs and provide methods for showing that certain

graphs cannot be represented by ground tree rewriting systems. An example
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is the graph from Figure 3.1. This graph can be used to trace a context sen-

sitive language that cannot be traced by GTR graphs (see Subsection 3.4.1).

3.1 Preliminaries

In this section we give definitions and results that are needed throughout this

chapter. In particular, we introduce pushdown graphs and state a seminal

result of Muller and Schupp on the structure of these graphs [MS85].

3.1.1 Pushdown Automata

In formal language theory pushdown automata are used as an automaton

model for the class of context free languages (see e.g. [HU79]). This aspect of

pushdown automata is used in Section 3.4, but first of all, we are interested

in the configuration graphs of pushdown automata.

A pushdown automaton (PDA) M is a tuple M = (Q, Σ, Γ, ∆, qin, γin),

where

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the stack alphabet (disjoint from Q),

• ∆ ⊆ Q × (Γ ∪ {ε}) × Σ × Q × Γ∗ is the transition relation,

• qin ∈ Q is the initial state, and

• γin ∈ Γ is the initial stack symbol.

Sometimes, we write the transitions of a pushdown automaton in a similar

way as the rewriting rules of a GTRS. Then a transition (p, γ, σ, q, w) with

p, q ∈ Q, σ ∈ Σ, γ ∈ Γ, and w ∈ Γ∗ is written as pγ
σ
↪→ qw and (p, ε, σ, q, w)

is written as p
σ
↪→ qw.

A configuration of M is a word qw with a state q ∈ Q and a stack content

w ∈ Γ∗. Given configurations q1w1, q2w2 and an input σ ∈ Σ we write

q1w1 `σ
M q2w2 if there is a transition (q1, γ, σ, q2, v) ∈ ∆ (with γ ∈ Γ ∪ {ε})

such that w1 = γw and w2 = vw. We write q1w1 `M q2w2 if there is an

input σ ∈ Σ with q1w1 `σ
M q2w2, and by `∗

M we denote the transitive and

reflexive closure of `M . The set of configurations C(M) generated by M is

the set of configurations that are reachable from the initial configuration of

M :

C(M) = {qw | q0γ0 `∗
M qw}.

The directed edge labeled graph GM = (VM , EM , Σ) generated by M

has the set of vertices VM = C(M), and for two words q1w1, q2w2 ∈ VM

there is an edge labeled with σ from q1w1 to q2w2 iff q1w1 `σ
M q2w2.
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Figure 3.2: The pushdown graph from Example 3.1

Example 3.1 Consider the pushdown automaton

M = ({p, q}, {0, 1, 2}, {Y, Z}, ∆, q, Z) with ∆ = {q
0

↪→ qY, q
1

↪→ p, pY
2

↪→ p}.

The graph GM is depicted in Figure 3.2. 2

As usual, a graph G is a pushdown graph iff G is isomorphic to the graph

GM for some PDA M .

A first simple observation is that a pushdown automaton can be simu-

lated by a GTRS with unary trees. The stack symbols are used as symbols of

rank one, and the control states as symbols of rank zero. The rewriting rules

correspond to the transitions of the pushdown automaton, and the initial

tree is the tree corresponding to the initial configuration of the pushdown

automaton.

Remark 3.2 Every pushdown graph is a GTR graph.

The examples from Section 2.3 show that the class of GTR graphs strictly

contains the class of pushdown graphs.

As for GTR graphs the above definition of pushdown graphs has the

disadvantage that it depends on the names of the vertices and does not tell

anything about the structure of the graphs. In [MS85] Muller and Schupp

gave a structural characterization of pushdown graphs that does not depend

on the defining formalism. In the following we informally describe their

result.

The initial configuration of a pushdown automaton can be viewed as

the root of the corresponding pushdown graph. All vertices of the graph

are reachable from this root. Graphs with such a designated vertex are

called rooted. The distance of a vertex to the root is the minimal number

of edges that have to be traversed to reach the vertex from the root. In

this definition the direction of the edges does not play any role, so we are

allowed to traverse edges in both directions.
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Figure 3.3: The ends of the graph from Figure 3.1

If we choose a number n ∈ N and delete all vertices within diameter

n around the root, then the remaining graph consists of several connected

components. These components are called ends of the graph. Such an end

has a front, namely the vertices with distance exactly n + 1 to the root if

the end was obtained by deleting the vertices within diameter n around the

root. Two ends are isomorphic if there is a graph isomorphism between

these two ends with the additional property that it maps front vertices to

front vertices.

The result of Muller and Schupp states that a rooted graph of bounded

degree is a pushdown graph iff it does not have infinitely many pairwise

non-isomorphic ends.

Proposition 3.3 ([MS85]) Let G be a rooted graph of finite degree. Then

G is a pushdown graph iff G has only finitely many isomorphism classes of

ends.

Example 3.4 The ends of the graph from Figure 3.1 are shown in Fig-

ure 3.3. All these ends are pairwise non-isomorphic because the size of the

fronts increases and therefore no isomorphism between two different ends

can map all front vertices of one end to the front vertices of the other end.

3.1.2 Factorizations of Trees

In Sections 3.2 and 3.4 we transform certain classes of GTRS into pushdown

automata. For this purpose we need the operations of concatenation and

factorization on trees to be able to represent a restricted class of trees as

words.
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Given a ranked alphabet A, we introduce a new symbol ◦ of rank 0, the

concatenation symbol, and define A◦ = A∪{◦}. The set SA◦ of special trees

over A◦ consists of all trees s ∈ TA◦ with exactly one concatenation symbol,

i.e., s(x) = ◦ for exactly one x ∈ Ds. For trees s ∈ SA◦ and t ∈ TA ∪SA◦ we

define the concatenation s · t of s and t in the obvious way:

s · t = s[x/t] for the x ∈ Ds with s(x) = ◦.

We define the operation of factorization of a tree with an integer parameter

h determining in some sense the size of the factors. An h-factorization of a

tree t ∈ TA and h ∈ N is a list (t′, s1, . . . , sn) with t′ ∈ TA, si ∈ SA◦ , and the

following properties:

• If height(t) < 2 · h, then t′ = t and n = 0.

• If height(t) ≥ 2 · h, then n ≥ 1 and there is a location x ∈ Dt with

|x| = h, height(t↓x) ≥ h, sn = t[x/◦], and (t′, s1, . . . , sn−1) is an h-

factorization of t↓x.

Figure 3.4 shows an example of an h-factorization for h = 2. In general,

there may be different h-factorizations of a tree t if there are several locations

x ∈ Dt with |x| = h and height(t↓x) ≥ h.

When we transform GTRS into pushdown automata the stack contents

together with the control states represent h-factorizations of trees. To realize

this we are interested in trees with a unique h-factorization for a given h.

Furthermore, since the stack alphabet of a pushdown automaton is finite, the

number of possible special trees used in the factorizations should be finite.

To identify a class of trees with these properties we introduce the notion



3.1. PRELIMINARIES 35

of independence degree. Let x, y ∈ N∗ be two locations and z ∈ N∗ the

maximal common prefix of x and y. The independence degree indep(x, y) is

defined as

indep(x, y) = min(|x| − |z|, |y| − |z|).

Note that the independence degree of two locations is zero iff they are com-

parable with respect to v. The independence degree of a tree t is

indep(t) = max{indep(x, y) | x, y ∈ Dt}.

If the independence degree of a tree is smaller than h, then there are no

independent subtrees both of height larger than h, where two subtrees are

independent if they are rooted at locations incomparable w.r.t. v. There-

fore, an independence degree smaller than h implies a unique h-factorization:

Lemma 3.5 Let h ∈ N and t ∈ TA with indep(t) < h. Then t has a unique

h-factorization (t′, s1, . . . , sn) with height(si) < 2 · h for each i ∈ {1, . . . , n}.

Proof. We prove this lemma by induction on h′ = height(t). If h′ < 2 · h,

then the unique h-factorization of t is t itself and therefore the claim holds.

If h′ ≥ 2 · h, then there is only one location x with |x| = h and

height(t↓x) ≥ h because the existence of two such locations would con-

tradict indep(t) < h. Hence, we get height(t[x/◦]) < 2 · h, and for each h-

factorization (t′, s1, . . . , sn) of t we have sn = t[x/◦]. Then (t′, s1, . . . , sn−1)

is an h-factorization of t↓x, and by induction it is the only h-factorization of

t↓x and height(si) < 2 · h for each i ∈ {1, . . . , n − 1}. 2

According to the previous lemma all the special trees in h-factorizations of

trees with independence degree less than h come from the finite set

Sh
A◦

= {s ∈ SA◦ | height(s) < 2h and |x| = h for the x ∈ Ds with s(x) = ◦}.

Still motivated by the intention of transforming certain classes of GTRS

into pushdown automata, we want to ensure that all the trees generated by

these GTRS have height at least h for a given integer h. This is just to

avoid technical complications in the transformations.

Lemma 3.6 For every GTRS R = (A, Σ, R, tin) and every h ∈ N with h >

height(tin) there is a GTRS R′ = (A′, Σ, R, t′in) such that GR and GR′ are

isomorphic, height(t) ≥ h for all t ∈ T (R′), and height(t′in) < 2 · h.
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Proof. Let A′ = A ∪ {⊥} where ⊥ is a new symbol of rank 1 that does not

appear in A. The new initial tree t′in is obtained by adding a ⊥-sequence of

length h to tin above the root. Formally, t′in is defined as follows. Let x be

the location 0h. Then

Dt′in
= {y ∈ N∗ | y @ x} ∪ xDtin and

t′in(y) =

{

⊥ if y @ x,

tin(z) if y = xz with z ∈ Dtin .

Since ⊥ did not appear in the old rewriting system, this ⊥-sequence of length

h will never be changed and therefore height(t) ≥ h for all t ∈ T (R′). From

the assumption h > height(tin) we get height(t′in) < 2 · h. The mapping

ϕ : T (R′) → T (R) with ϕ(t) = t↓x (for x = 0h) is an isomorphism between

GR′ and GR. 2

Finally, we define the constant hR for a GTRS R = (A, Σ, R, tin) as the

maximal height of the initial tree of R and the trees occurring in the rules

of R:

hR = max{height(t) | t = tin or ∃t′ ∈ TA, σ ∈ Σ : t
σ
↪→ t′ ∈ R or t′

σ
↪→ t ∈ R}.

From the definition follows that |height(t′) − height(t)| < hR if t −→
R

t′.

We will use hR to obtain lower bounds for the number of steps needed to

rewrite a tree t into a tree t′ if we know the height difference between these

two trees.

Remark 3.7 Let R = (A, Σ, R, tin) be a GTRS and let t, t′ ∈ TA with

|height(t) − height(t′)| > hR · d for some d > 1. If π is an R-path with

π : t
∗
−→
R

t′, then the length of π is greater than d.

3.2 GTR Graphs of Bounded Width

In graph theory the class of (unranked) trees constitutes one of the most

basic classes of graphs. Their simple structure allows efficient algorithms and

many nontrivial theorems in graph theory are much simpler when restricted

to the class of trees. For example, the famous graph minor theorem of

Robertsen and Seymour was first proved in the special case of trees by

Kruskal in 1960 (for details see e.g. [Die00] and references therein).

The tree-width of a graph G is a measure of how much G resembles a

tree. A lot of good properties of trees carry over to classes of graphs with

bounded tree-width. In this section we study GTR graphs of bounded tree-

width with the result that this class equals the class of pushdown graphs.
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Another measure for the complexity of infinite graphs is clique-width

introduced in [CO00]. It is studied in connection with monadic second-order

logic on graphs. We prove that GTR graphs of bounded clique-width are also

of bounded tree-width and therefore are pushdown graphs. In combination

with the result of Muller and Schupp [MS85] that pushdown graphs have a

decidable monadic second-order theory, this also yields that GTR graphs of

bounded clique-width have a decidable monadic second-order theory.

A short version of the results from this section was published in [Löd02a].

3.2.1 Tree-Width

There are different equivalent ways on how to define tree-width of graphs.

The most widely used definition goes via tree-decompositions. A tree-

decomposition of a graph G = (V, E) is a pair (T, (Wx)x∈VT
) where T =

(VT , ET ) is a tree (unranked), Wx ⊆ V for all x ∈ VT , and

• V =
⋃

x∈VT

Wx and ∀(u, v) ∈ E ∃x ∈ VT : u, v ∈ Wx,

• ∀v ∈ V the subgraph of T induced by {x ∈ VT | v ∈ Wx} is connected.

The width of a tree-decomposition (T, (Wx)x∈VT
) is

width(T, (Wx)x∈VT
) =

{

max{|Wx| | x ∈ VT } − 1 if {|Wx| | x ∈ VT } is finite

∞ otherwise.

The “-1” is used in the definition because trees should have tree-width 1.

The tree-width tw(G) of G is

tw(G) = min{width(T, (Wx)x∈VT
) | (T, (Wx)x∈VT

) tree-decomposition of G}.

Note that these definitions do not depend on edge labels or direction of

edges. Hence, the tree-width of a graph and the tree-width of its undirected

version are the same.

Example 3.8 We take the graph G from Figure 3.1 as example. In Fig-

ure 3.5 the same graph is drawn in a different way. The boxes and curves

around the vertices indicate the tree-decomposition. A formal definition of

the tree-decomposition (T, (Wx)x∈VT
) with T = (VT , ET ) is given by

• VT = {(i, j) ∈ N × N | j ∈ {0, . . . , i div 2}}, where div denotes integer

division.

• An edge ((i1, j1), (i2, j2)) is in ET iff

– i2 = i1 + 1 and j1 = j2 = 0, or
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Figure 3.5: A tree-decomposition of the graph from Figure 3.1

– i1 = i2 and j2 = j1 + 1.

• W(i,0) = {(X i, ε), (ε, Y i), (X i+1, ε), (ε, Y i+1)}.

• W(i,j) = {(Xk, Y l) | k + l = i and k ∈ {j − 1, j} or l ∈ {j − 1, j}} for

j ≥ 1.

The width of this tree-decomposition is 3, implying that the tree-width of

G is at most 3. In fact it is possible to find a tree-decomposition of width

2 by refining the given one. Since only trees (and forests) have tree-width

one we can conclude that the tree-width of G is 2. 2

A tree-decomposition of a graph G can easily be transformed into a tree-de-

composition for a subgraph H of G by deleting all vertices in the sets Wx

that are in G but not in H. Obviously, this operation does not increase the
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width of the decomposition. Hence, the tree-width of a subgraph H of G is

at most the tree-width of G.

Conversely, the tree-width of an infinite graph is already determined by

the tree-width of its finite subgraphs.

This leads to the following proposition.

Proposition 3.9 ([Tho88, Tho89]) Let G be a graph and k ∈ N. Then

tw(G) ≤ k iff tw(H) ≤ k for each finite subgraph of G.

Tree-decompositions are useful for showing upper bounds on the tree-width

of a graph G. If we find a tree-decomposition of G of width m, then the tree-

width of G is at most m. In our proofs, we mainly need to show lower bounds

on the tree-width of graphs. For this purpose we introduce “brambles”. A

bramble of G is a finite family of finite sets of vertices B = (Bi)i∈I such that

(1) each Bi induces a connected subgraph in G, and

(2) for each i, j ∈ I: Bi∩Bj 6= ∅ or there are u ∈ Bi, v ∈ Bj with (u, v) ∈ E.

A set S ⊆ V covers B iff S ∩ Bi 6= ∅ for each i ∈ I. The width of a bramble

is width(B) = min{|S| | S covers B}.

Example 3.10 Figure 3.6 shows a graph with vertices {1, . . . , 8}. The

curves around the vertices on the right hand side of the figure indicate the

following sets of a bramble:

{5}, {7}, {8}, {2, 3, 4}, {2, 3, 6}, {1, 4, 6}.

All these sets are connected in the graph and are pairwise neighbored. A

cover S for this bramble must contain at least the vertices 5,7, and 8. Fur-

thermore, since {2, 3, 4}∩{2, 3, 6}∩{1, 4, 6} = ∅, S must contain at least two

more vertices to cover all the sets of the bramble. A possible cover would

be S = {2, 4, 5, 7, 8}. Thus, the width of the bramble is 5. 2

The following result relates brambles and tree-width. A proof for finite

graphs can be found in [Die00]. For infinite graphs this result can easily be

deduced from the finite case in combination with Proposition 3.9.

Proposition 3.11 A graph G contains a bramble of width at least m iff

tw(G) ≥ m − 1.

As an application one can use this proposition to determine the tree-width

of grids. A proof of the following proposition can be found in [Die00].
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Figure 3.6: A bramble of width 5

Proposition 3.12 The (m × m)-grid has tree-width m.

As we have seen in Example 2.5 the infinite grid is a GTR graph. Since

the infinite grid contains all (m × m)-grids as subgraphs it follows from

Proposition 3.9 that the infinite grid has unbounded tree-width. In contrast

to that, all pushdown graphs have bounded tree-width.

Proposition 3.13 For each pushdown automaton M = (Q, Σ, Γ, ∆, qin, γin)

the graph GM has bounded tree-width.

Proof. Let k = (max{|w| | ∃(p, γ, σ, q, w) ∈ ∆}) + 1. We define the tree-

decomposition (T, (Wx)x∈VT
) with T = (VT , ET ) by

• VT = Γ∗,

• ET = {(v, w) | w = γv with γ ∈ Γ},

• Wx = {qw ∈ VM | w = vx with v ∈ Γ∗, |v| ≤ k} for x ∈ Γ∗.

Note that possibly Wx = ∅ for some x ∈ Γ∗ but this is not in conflict to the

definition of tree-decomposition.

We have to check if the two conditions from the definition of tree-

decomposition are satisfied. For the first condition, let (p1v1, p2v2) ∈ EM .

Then there exists a transition (q1, γ, σ, q2, v) ∈ ∆ (with γ ∈ Γ ∪ {ε}) such

that v1 = γx and v2 = vx. Since |γ| ≤ 1 ≤ k and |v| ≤ k by definition of k,

we know that p1v1, p2v2 ∈ Wx.

Now let qw ∈ VM . We have to show that the subgraph of T that is

induced by {x ∈ VT | qw ∈ Wx} is connected. If w = γ1 · · · γn with γi ∈ Γ



3.2. GTR GRAPHS OF BOUNDED WIDTH 41

for all i ∈ {1, . . . , n}, then qw ∈ Wx iff x = γi · · · γn for some i ∈ {1, . . . , k}.

By the definition of ET we have (γi · · · γn, γi+1 · · · γn) ∈ ET for all i ∈

{1, . . . , n−1}. Therefore, the subgraph of T induced by {x ∈ VT | qw ∈ Wx}

is connected.

This proves that we indeed defined a tree-decomposition. It remains to

show that the size of the set Wx is bounded. Each element in Wx is of the

form qw with q ∈ Q and w = vx with |v| ≤ k. There are at most |Γ|k+1

such v’s. Thus, the size of Wx is bounded by |Q| · |Γ|k+1. 2

In the following we will show that GTR graphs of bounded tree-width are

pushdown graphs. For this purpose we introduce in the next subsection an

extended model of pushdown automata, namely infix pushdown automata.

Then the proof is divided into two main parts. First we show that GTR

graphs of bounded tree-width are infix pushdown graphs (Subsection 3.2.3).

After this step we are already in the domain of infinite graphs with vertices

coded by words. In a second step we show that infix pushdown graphs of

bounded tree-width are pushdown graphs. The rough structure of the proof

looks as follows:

GTR graph

of

bounded tree-width

;

infix pushdown graph

of

bounded tree-width

; pushdown graph

3.2.2 Infix Pushdown Automata

We introduce an extended type of pushdown automata, where in addition

to the transition rules manipulating the top of the stack a restricted type of

infix rewriting in the stack is allowed.

An infix PDA is a tuple M = (Q, Σ, Γ, ∆, qin, γin), where Q, Σ, Γ, qin, γin

are as in usual pushdown automata and in ∆ there are transitions of the

usual form but also transitions from Γ×Σ×Γ. These transitions are called

infix rules whereas the other rules are called prefix rules.

For configurations q1w1 and q2w2 we write

• q1w1 `σ
Mpre

q2w2 if there is a transition (q1, γ, σ, q2, v) ∈ ∆ such that

w1 = γw and w2 = vw for some w ∈ Γ∗,

• q1w1 `σ
Min

q2w2 if q1 = q2 and if there is an infix rule (γ1, σ, γ2) ∈ ∆

such that w1 = wγ1w
′ and w2 = wγ2w

′ with w, w′ ∈ Γ∗, and

• q1w1 `σ
M q2w2 if q1w1 `σ

Mpre
q2w2 or q1w1 `σ

Min
q2w2.
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Figure 3.7: The graph generated by M1 from Example 3.14.

So the infix rules change single letters inside the stack.

We adopt the notations `M , `Mpre
, `Min

, `∗
M , `∗

Mpre
, `∗

Min
, C(M), and

GM for infix pushdown automata in the obvious way.

Example 3.14 Let M1 = ({q0, q1}, {σ}, {X, Y, Z}, ∆, q0, Z) be an infix PDA

with

∆ = {q0
σ
↪→ q0Z, q0

σ
↪→ q1X, q0

σ
↪→ q1Y, q0

σ
↪→ q1Z, q1

σ
↪→ q1X, Y

σ
↪→ X, Y

σ
↪→ Z}.

The only stack symbol appearing on the left hand side of an infix rule is Y .

The generated graph GM1 is shown in Figure 3.7 (without the edge label

σ). Note that all the configurations from C(M1) contain at most one Y .

Nevertheless, the graph GM1 is not of bounded tree-width. 2

Example 3.15 Let M2 = ({q0, q1}, {σ}, {X, Y }, ∆, q0, X) be an infix PDA

with

∆ = {q0
0

↪→ q0X, q0
1

↪→ q1Y, q1
2

↪→ q1X, Y
3

↪→ X}.

The generated graph is shown in Figure 3.8. It is isomorphic to the GTR

graph from Example 2.7. Note that there is only one infix rule, and as in

the previous example all the configurations from C(M2) contain at most one

symbol Y , to which this infix rule can be applied. 2

In the next subsection we transform ground tree rewriting systems gener-

ating graphs of bounded tree-width into infix pushdown automata. The

obtained automata will have certain properties described in the following

normal form.
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Figure 3.8: The graph generated by M2 from Example 3.15.

Definition 3.16 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA. Then M

is in normal form iff

1. all elements in ∆ are of the form

(q, ε, σ, q′, ε), (q, γ, σ, q′, ε), (q, ε, σ, q′, γ′), or (γ, σ, γ ′)

with q, q′ ∈ Q, γ, γ′ ∈ Γ \ {γin}, and σ ∈ Σ, and

2. whenever qw `Mpre
q′γw `Min

q′γ′w, then there is a q′′ ∈ Q such that

qw `Mpre
q′′w `Mpre

q′γ′w. 2

The essential property of infix pushdown automata in normal form is that

every reachable configuration can also be reached only by applying prefix

rules. For later use, we formulate the more general claim that, given a

reachable configuration quw, there is a reachable configuration q′w such

that one can reach quw from q′w only by applying prefix rules and without

“touching” the w.

Lemma 3.17 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form,

q ∈ Q, and u, w ∈ Γ∗. If quw ∈ C(M), then there exists q′ ∈ Q such that

q′ `∗
Mpre

qu, and q′w ∈ C(M).

Proof. Since quw ∈ C(M), there is a directed path from qinγin to quw. We

choose this path such that every infix rule is applied when the corresponding

symbol is on top of the stack (this is possible because by point 1 of Defini-

tion 3.16 the prefix rules increasing the stack length do not depend on the

stack content). Then, by point 2 of Definition 3.16, we can replace all the

infix rules on this path and get qinγin `∗
Mpre

quw. On this path π from qinγin
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to quw, there must be a vertex q′w such that every successor of q′w on π

contains the suffix w. But this means q′ `∗
Mpre

qu. 2

3.2.3 From GTRS to Infix Pushdown Automata

A GTR graph of bounded tree-width cannot contain large grids as sub-

graphs. We will use this fact to show that if a GTRS R generates a graph

of that kind, then the trees in T (R) are of bounded independence degree

(see Subsection 3.1.2). This enables us to code these trees by words using h-

factorizations and to simulate the rewriting rules of R by an infix pushdown

automaton.

Let R = (A, Σ, R, tin) be a GTRS. We extend the notion of R-applicable

substitution defined in Section 2.3 to sequences of substitutions in the obvi-

ous way. A sequence [x1/s1], . . . , [xm/sm] of substitutions is R-applicable to

t ∈ TA if [x1/s1] is R-applicable to t and [x2/s2], . . . , [xm/sm] is R-applicable

to t[x1/s1].

Two sequences [x1/s1], . . . , [xm/sm] and [y1/t1], . . . , [yn/tn] of substitu-

tions are called independent iff xi and yj are not comparable w.r.t. v for

all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.

A sequence [x1/s1], . . . , [xm/sm] of substitutions that is R-applicable to

t ∈ TA is called repetition free if all the trees that it produces are different,

i.e., if t[x1/s1] · · · [xi/si] 6= t[x1/s1] · · · [xj/sj ] for all i, j ∈ {1, . . . , m} with

i 6= j. Note that this property does not depend on t.

Since independent sequences of substitutions can be interleaved arbitrar-

ily, it is not difficult to see that they generate a grid with size corresponding

to the length of the sequences as subgraph1 if they are repetition free.

Lemma 3.18 Let R = (A, Σ, R, tin) be a GTRS. If there are two indepen-

dent and repetition free sequences of substitutions of length m that are R-

applicable to t ∈ T (R), then GR has a (m + 1) × (m + 1)-grid as subgraph.

Proof. Let [x1/s1], . . . , [xm/sm] and [y1/t1], . . . , [ym/tm] be two such se-

quences and for i, j ∈ {0, . . . , m} let tji = t[x1/s1] · · · [xi/si][y1/t1] · · · [yj/tj ].

1In general, this subgraph is not an induced subgraph.
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Then GR contains the following subgraph.

t00
[x1/s1] //

[y1/t1]

²²

t01
[x2/s2] //

[y1/t1]

²²

· · ·
[xm/sm]// t0m

[y1/t1]

²²
t10

[x1/s1] //

[y2/t2]
²²

t11
[x2/s2] //

[y2/t2]
²²

· · ·
[xm/sm]// t1m

[y2/t2]
²²

...

[ym/tm]

²²

...

[ym/tm]

²²

...

[ym/tm]

²²
tm0

[x1/s1] // tm1
[x2/s2] // · · ·

[xm/sm]// tmm

2

A consequence of this lemma for the trees generated by a GTRS R where

GR has bounded tree-width is that these trees are of bounded independence

degree.

Lemma 3.19 Let R = (A, Σ, R, tin) be a GTRS such that GR has bounded

tree-width. Then there is an h such that indep(t) < h for each t ∈ T (R).

Proof. Let m = tw(GR), and define h = hR·m+1. Suppose there is t ∈ T (R)

with indep(t) ≥ h. Then there are locations x1, x2 ∈ Dt with maximal

common prefix x such that |x1| − |x| ≥ h and |x2| − |x| ≥ h or equivalently

two successors y, z of x with height(t↓y) ≥ h − 1 and height(t↓z) ≥ h − 1.

Since t ∈ T (R) there must be a sequence [x1/s1], . . . , [xn/sn] of substitutions

leading from tin to t. Let

π : t0 −→
R

t1 −→
R

· · · −→
R

tn−1 −→
R

tn

with t0 = tin and tn = t be the path corresponding to this sequence of

substitutions. Since height(t↓xn ) ≥ h we know that xn 6v x. Otherwise,

height(t↓xn ) ≤ hR, by the definition of hR, and therefore height(t↓xn ) < h be-

cause hR < h. Hence, we can choose i ∈ {1, . . . , n} minimal such that xj 6v x

for all j ∈ {i, . . . , n}. By the choice of i we get y, z ∈ Dti−1 , height(t↓yi−1) <

hR, and height(t↓zi−1) < hR. Thus, if we extract from [xi/si], . . . , [xn/sn] all

the substitutions with y as prefix and all the substitutions with z as prefix,

then we get two independent sequences that are R-applicable to ti−1. These

two sequences can easily be made repetition free by leaving out parts that

produce repetitions. Still, they must be of length at least m because they

transform the subtrees t↓yi−1 and t↓zi−1, which are of height less than hR, into
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t↓y and t↓z, which are of height greater than or equal to h − 1 = hR · m.

Now Lemma 3.18 can be applied, i.e., GR has the (m + 1)× (m + 1)-grid as

subgraph and therefore by Propositions 3.12 and 3.9 tree-width ≥ m + 1, a

contradiction. 2

Now we can use h-factorizations to construct an infix PDA generating a

graph isomorphic to the graph generated by the GTRS.

Theorem 3.20 Let R = (A, Σ, R, tin) be a GTRS such that GR has bounded

tree-width. Then we can construct an infix PDA M in normal form such

that GR is isomorphic to GM .

Proof. Choose h according to Lemma 3.19. By Lemma 3.6 we can assume

that height(t) ≥ h for all t ∈ T (R), and height(tin) < 2 · h. We define the

infix PDA M = (Q, Σ, Γ, ∆, qin, γin) as follows.

• Q = {qt | t ∈ TA with h ≤ height(t) < 2 · h}.

• Γ = {γin}∪̇{γs | s ∈ Sh
A◦

} (see Page 35 for the definition of Sh
A◦

).

• qin = qtin .

• ∆ contains the transitions

(qt, ε, σ, qt′ , ε) if t
σ
−→
R

t′,

(qt, γs, σ, qt′ , ε) if s · t
σ
−→
R

t′,

(qt, ε, σ, qt′ , γs′) if t
σ
−→
R

s′ · t′,

(γs, σ, γs′) if s
σ
−→
R

s′.

According to Lemma 3.19, all trees from T (R) have independence degree

less than h and therefore a unique h-factorization by Lemma 3.5. The

mapping ϕ : T (R) → C(M) with ϕ(t) = qt′γs1 · · · γsmγin for the unique

h-factorization (t′, s1, . . . , sm) of t is an isomorphism between GR and GM .

The transitions of M obviously satisfy the required format for the normal

form of infix PDA. The second requirement of Definition 3.16 is satisfied

because a sequence

qt′1
γs1 · · · γsmγin `Mpre

qt′2
γsγs1 · · · γsm `Min

qt′2
γs′γs1 · · · γsm

in M corresponds to an R-path t1 −→
R

t2 −→
R

t with derivation [x1/r1], [x2/r2],

where the above configurations of M correspond to the h-factorizations of

t1, t2, and t. The locations x1 and x2 are not comparable w.r.t v because

x2 must be located in the s-part of the h-factorization of t2. The situation
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(a):

t′1 :
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::
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­

44
44
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||| BBB
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22
22

22
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¶¶

++
++

++
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[x2/r2]
−−−−−→

s′ :

ªª
ªª

ªª
ªª

ªª
ªª

ªª

77
77

77
77

77
77
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<
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(b):

t′1 :
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¨̈
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55
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/
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7
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Figure 3.9: The infix PDA defined in Theorem 3.20 is in normal form.
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looks as depicted in the Figure 3.9 (a). By exchanging the substitutions, we

get a sequence as indicated in Figure 3.9 (b). In M this corresponds to a

sequence as required in the definition of normal form:

qt′1
γs1 · · · γsmγin `Mpre

qt′′2
γs1 · · · γsm `Mpre

qt′2
γs′γs1 · · · γsm .

2

The graph of the infix PDA M constructed in the previous theorem has

bounded tree-width since it is isomorphic to the graph of the given GTRS,

which is assumed to be of bounded tree-width. From this property one can

also deduce that M will never reach a configuration with more than 2m

infix symbols on the stack, where m is the tree-width of the graph and infix

symbols are the symbols of the stack alphabet that occur on the left hand

side of an infix rule. If there are more than 2m infix symbols on the stack,

then the corresponding infix rules can be applied in any order, generating

an (m × m)-grid as subgraph.

At first glance, one might think that infix pushdown automata with

this additional property cannot generate more graphs than usual pushdown

automata. The first approach would be to remove the infix rules by adding a

component to the control states remembering the infix symbols that are on

the stack. Then one could simulate the infix rules by changing this additional

component in the control states. Since the possible number of infix symbols

on the stack is bounded all this can be done with finite memory.

As the Examples 3.14 and 3.15 show, this approach must fail. The infix

pushdown automata in these examples never reach a configuration with more

than one infix symbol on the stack. Nevertheless, they generate graphs of

unbounded tree-width and of unbounded degree, in particular, graphs that

are not pushdown graphs. This implies that we still have to use that the

generated graph is of bounded tree-width.

3.2.4 From Infix Pushdown Graphs to Pushdown Graphs

With Theorem 3.20 it remains to show that every infix pushdown graph of

bounded tree-width is a pushdown graph. The idea is to find a structural

characterization of infix pushdown graphs of bounded tree-width similar to

the characterization of pushdown graphs stated in Proposition 3.3. For each

vertex qw in the infix pushdown graph we define the connected component

of qw in the graph restricted to vertices of length greater than or equal to the

length of qw. The goal is to show that if the graph has bounded tree-width,

then there are only finitely many isomorphism classes of these connected
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components. The difference to the property of pushdown graphs given by

Muller and Schupp is that we refer to the length of the vertices and not to

the distance from a designated root vertex.

Once we have this structural characterization, this finite number of iso-

morphism classes can be used to obtain a usual PDA for generating the

graph.

Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form. For

w, v ∈ Γ∗ we define

w ¹M v iff ∀q ∈ Q : (qw ∈ C(M) ⇒ qv ∈ C(M)),

w ≈M v iff w ¹M v and v ¹M w.

The following lemma is immediate from the definition of ≈M .

Lemma 3.21 The relation ≈M is an equivalence relation of finite index.

For n ∈ N we define the graph GM |n as the subgraph of GM induced by the

vertices {qw ∈ C(M) | |qw| ≥ n}. For qw ∈ C(M) the graph GM (qw) is the

connected component of qw in GM ||qw|. The front Ω(qw) of GM (qw) is the

set of all vertices in GM (qw) with the same length as qw, i.e.,

Ω(qw) = {pv ∈ QΓ∗ | pv is a vertex of GM (qw) and |pv| = |qw|}.

Let pv ∈ C(M), qw be a vertex in GM (pv), and π = (p1x1u1, . . . , pnxnun)

be an undirected path in GM (pv) from pv to qw (i.e., pv = p1x1u1 and

qw = pnxnun) with |ui| = |v| for all i ∈ {1, . . . , n}. The depth of π is

d(π) = max{|xi| | i ∈ {1, . . . , n}} and the number of suffix changes on π is

sc(π) = |{i ∈ {1, . . . , n − 1} | ui 6= ui+1}|.

Let Π(pv, qw) be the set of undirected paths in GM (pv) from pv to qw.

For each such pair pv, qw we fix an arbitrary path π(pv, qw) ∈ Π(pv, qw)

with the following properties:

1. ∀π ∈ Π(pv, qw) : sc(π(pv, qw)) ≤ sc(π) and

2. ∀π ∈ Π(pv, qw) : sc(π(pv, qw)) = sc(π) ⇒ d(π(pv, qw)) ≤ d(π).

In Lemma 3.23 we show that vertices that belong to the same front have

a connection of small depth. As a preparation we need the following lemma.

Lemma 3.22 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form,

and let w, v, x ∈ Γ∗ with w ¹M v. If pw, qxw ∈ C(M) such that there is an

undirected path π without suffix changes in GM (pw) from pw to qxw, then

pv, qxv ∈ C(M), and there is a path π′ without suffix changes in GM (pv)

from pv to qxv that has the same depth as π.
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Proof. We show by induction on the length of π that for each vertex p′yw

in π the vertex p′yv is in C(M). Then we obtain the path π′ by replacing

the suffix w in the π vertices by v.

Let k be the length of π. If k = 0, then pw is the only vertex on π. From

pw ∈ C(M), w ¹M v, and the definition of ¹M we get pv ∈ C(M).

So assume k ≥ 1. It is sufficient to show that qxv ∈ C(M). For the other

vertices on π the claim holds by induction. From Lemma 3.17 we know that

there exists a q′ ∈ Q such that q′w ∈ C(M) and q′ `∗
Mpre

qx. Then w ¹M v

implies q′v ∈ C(M), and from q′ `∗
Mpre

qx we can conclude qxv ∈ C(M). 2

Lemma 3.23 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form.

There exists dM ∈ N such that d(π(pv, qw)) < dM for each pv ∈ C(M) and

qw ∈ Ω(pv).

Proof. Let

D = {d(π(pv, qv)) | pv ∈ C(M), qv ∈ Ω(pv), and sc(π(pv, qv)) = 0}.

Because sc(π(pv, pv)) = 0 for each pv ∈ C(M), the set D is not empty.

We show that D is finite. If v ≈M w for v, w ∈ Γ∗, then, by Lemma 3.22,

d(π(pv, qv)) = d(π(pw, qw)) for all p, q ∈ Q. Since Q is finite and ≈M has

finite index, the set D is finite. Thus, we can define dM = (max D) + 1.

Now let pv ∈ C(M), qw ∈ Ω(pv), and k = sc(π(pv, qw)). We show the

claim by induction on k.

If k = 0, then v = w, and therefore d(π(pv, qw)) ∈ D. But then clearly

d(π(pv, qw)) < dM by definition of dM .

So consider the case k ≥ 1. Let p′xv′ (with |v′| = |v|) be the first vertex

on the path π(pv, qw) without the suffix v. Then v′ is of the form yγ′z with

yγz = v and (γ, σ, γ ′) ∈ ∆ or (γ′, σ, γ) ∈ ∆ for some σ ∈ Σ (remember that

v can only be changed by infix rules since M is in normal form).

Case 1: (γ, σ, γ ′) ∈ ∆. Then v ¹M v′ because from each configuration with

v as suffix the corresponding configuration with v′ as suffix can directly

be reached using the infix transition. Hence, pv′ ∈ C(M). The direct

predecessor of p′xv′ on π(pv, qw) is p′xv and there is a path from pv

to p′xv without suffix changes. This implies that there is a path from

pv′ to p′xv′ without suffix changes (by Lemma 3.22). This means that

sc(π(pv′, qw)) < sc(π(pv, qw)) and therefore d(π(pv′, qw)) < dM by

induction. Combining the path π(pv′, qw) and the transition pv `Min

pv′ we get a path from pv to qw with the same number of suffix changes

as in π(pv, qw). Furthermore, the depth of this path is less than dM



3.2. GTR GRAPHS OF BOUNDED WIDTH 51

and therefore d(π(pv, qw)) < dM . This construction is illustrated in

the picture below. The solid lines indicate the path π(pv, qw) and the

dashed lines the constructed part.

pv
γ→γ′

//____ pv′

Â
Â
Â

qw

p′xv
γ→γ′

// p′xv′

ppppppppppppp

Case 2: (γ′, σ, γ) ∈ ∆. Then v′ ¹M v similar to case 1. Since p′xv′ ∈

C(M), there is p′′ ∈ Q such that p′′v′ ∈ C(M) and there is a path

without suffix changes from p′′v′ to p′xv′ (by Lemma 3.17). This means

sc(π(p′′v′, qw)) < sc(π(pv, qw)) and therefore d(π(p′′v′, qw)) < dM by

induction. From v′ ¹M v and p′′v′ ∈ C(M) we get p′′v ∈ C(M) and

a path without suffix changes from p′′v to p′xv (Lemma 3.22). This

implies sc(π(pv, p′′v)) = 0 and therefore d(π(pv, p′′v)) < dM . Now

we combine the path π(pv, p′′v), the transition p′′v′ `Min
p′′v, and

the path π(p′′v′, qw) and obtain a path from pv to qw with the same

number of suffix changes as π(pv, qw) and depth less than dM . Hence,

d(π(pv, qw)) < dM . This construction is illustrated in the picture

below, where again the solid lines indicate the path π(pv, qw) and the

dashed lines the constructed part.

pv

CC
CC

CC
CC

p′′v

Â
Â
Â p′′v′

Â
Â
Â

γ←γ′

oo_ _ _ qw

p′xv p′xv′
γ←γ′

oo

zzzzzzzzz

2

After this general observation on the structure of infix pushdown graphs

we turn to infix pushdown graphs of bounded tree-width. Using Lem-

mas 3.17 and 3.23 one can construct large brambles from large fronts Ω(qw).

Therefore, these fronts have to be small in graphs of bounded tree-width.

Lemma 3.24 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form

such that GM is of bounded tree-width. Then there exists c ∈ N such that

|Ω(qw)| ≤ c for each qw ∈ C(M).

Proof. Let m be the tree-width of GM and let l ∈ N. Assume that there is

qw ∈ C(M) such that |Ω(qw)| > |Q| · |Γ|l·dM · l (with dM from Lemma 3.23).
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Under this assumption we construct a bramble of width l. This is suffi-

cient because for l ≥ m + 2 we get a contradiction by Proposition 3.11

and therefore we know that the size of the fronts Ω(qw) is bounded by

|Q| · |Γ|(m+2)·dM · (m + 2).

Since Ω(qw) contains at least |Q| · |Γ|l·dM · l elements it is clear that

|w| > l · dM . Let n be the size of the set

{v ∈ Γ|w|−l·dM | ∃y ∈ Γl·dM , p ∈ Q : pyv ∈ Ω(qw)}.

By a simple combinatorial argument Ω(qw) can contain at most |Q|·|Γ|l·dM ·n

elements and therefore n ≥ l because |Q|·|Γ|l·dM ·n ≥ |Ω(qw)| > |Q|·|Γ|l·dM ·l.

Thus, we can find q1x1w1, . . . , qlxlwl ∈ Ω(qw) with |xi| = l ·dM and wi 6= wj

for i, j ∈ {1, . . . , l} with i 6= j. From Lemma 3.17 follows that there are

q1
1, . . . q

1
l ∈ Q with q1

i wi ∈ C(M) and q1
i `∗

Mpre
qixi. Let πi be the path from

q1
i wi to qixiwi that we obtain from q1

i `∗
Mpre

qixi.

For all i ∈ {2, . . . , l−1} and j ∈ {1, . . . , l} we pick qi
j ∈ Q and xi

j ∈ Γi·dM

such that qi
jx

i
jwj is on the path πj and after qi

jx
i
jwj there is no vertex of

smaller length on πj . Furthermore, we define ql
j = qj , xl

j = xj , and x1
j = ε.

We get the following picture:

q1
1x

1
1w1

²²

· · · q1
l x

1
l wl

²²
q2
1x

2
1w1 · · · q2

l x
2
l wl

...
...

ql−1
1 xl−1

1 w1

²²

· · · ql−1
l xl−1

l wl

²²
ql
1x

l
1w1 · · · ql

lx
l
lwl

Note that for each i, j, k ∈ {1, . . . , l} the vertices qi
jx

i
jwj and qi

kx
i
kwk be-

long to the same front because they are of the same length, qi
jx

i
jwj is con-

nected to ql
jx

l
jwj without visiting vertices of length smaller than |qi

jx
i
jwj |,

qi
kx

i
kwk is connected to ql

kx
l
kwk without visiting vertices of length smaller

than |qi
kx

i
kwk|, and ql

jx
l
jwj and ql

kx
l
kwk belong to the same front. Thus, the

path π(qi
jx

i
jwj , q

i
kx

i
kwk) exists and has depth less than dM (Lemma 3.23).

In this grid-like structure we define the ith row Ri and the ith column

Ci as

Ri = {pv | pv ∈ π(qi
jx

i
jwj , q

i
kx

i
kwk) for some j, k ∈ {1, . . . , l}},

Ci = {pv | pv ∈ πi}.
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Note that Ci ∩ Cj = ∅ and Ri ∩ Rj = ∅ for i 6= j. For the columns this

follows because all the vertices in Ci have the suffix wi, all the vertices in

Cj have the suffix wj , |wi| = |wj |, and wi 6= wj . For the rows this follows

because the length of a vertex in Ri is ≥ |wi| + i · dM + 1 (by definition of

Ri) and < |wi| + (i + 1) · dM + 1 (by Lemma 3.23).

Now we define the family B = (Bi,j)i,j∈{1,...,l} of sets as

Bi,j = Ri ∪ Cj .

From the definition of Ri and Cj it is clear that the sets Bi,j are connected in

GM . Furthermore, Bi1,j1∩Bi2,j2 6= ∅, for i1, j1, i2, j2 ∈ {1, . . . , l} because the

vertex qi1
j2

xi1
j2

wj2 is in Ri1 and in Cj2 and therefore in Bi1,j1 ∩ Bi2,j2 . Hence,

B is a bramble. Suppose the set S of vertices covers B. If |S| < l, then there

is at least one i with Ri ∩ S = ∅, and at least one j with Cj ∩ S = ∅. But

then also Bi,j ∩ S = ∅. Thus, B has width at least l. 2

This enables us to prove the desired structural characterization. We want

to show that there cannot be infinitely many pairwise non-isomorphic con-

nected components GM (qw) if the size of the fronts Ω(qw) is globally bounded.

Two components GM (pv) and GM (qw) are isomorphic if there is an isomor-

phism mapping front vertices to front vertices. By abuse of notation we call

this end-isomorphic.

Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form and let

pv, qw ∈ C(M). The graphs GM (pv) and GM (qw) are end-isomorphic iff

there is a graph isomorphism between GM (pv) and GM (qw) such that ver-

tices from Ω(pv) are mapped to vertices from Ω(qw). If GM (pv) and GM (qw)

are end-isomorphic, then we write GM (pv) ∼M GM (qw).

Lemma 3.25 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal form.

If GM is of bounded tree-width, then ∼M has finite index.

Proof. We show that GM (pv) ∼M GM (qw) if there is a bijection ϕ between

Ω(pv) and Ω(qw) such that

(1) p1v1 `σ
M p2v2 iff ϕ(p1v1) `

σ
M ϕ(p2v2) for each p1v1, p2v2 ∈ Ω(pv), σ ∈ Σ,

(2) ϕ(p1v1) ∈ p1Γ
∗ for each p1v1 ∈ Ω(pv), and

(3) if ϕ(p1v1) = p1w1 and ϕ(p2v1) = p2w2, then w1 = w2.

We extend this bijection to a graph isomorphism between GM (pv) and

GM (qw). Let p1xv1 be a vertex of GM (pv) with |v1| = |v|. Then there
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is p′ ∈ Q such that p′v1 ∈ C(M) and p′ `∗
M p1x (by Lemma 3.17). Fur-

thermore, p′v1 ∈ Ω(pv) because p′v1 and pv are both connected to p1xv1 in

GM (pv).

Let p′w1 = ϕ(p′v1) and define ϕ(p1xv1) = p1xw1. It is easy to verify

that ϕ is a graph isomorphism. Since the size of the sets Ω(qw) is bounded

(Lemma 3.24) we can conclude that ∼M has finite index. 2

Using the previous lemma, the proof of the following theorem is similar

to the proof of Muller and Schupp [MS85] that finitely generated context

free graphs are pushdown graphs.

Theorem 3.26 Let M = (Q, Σ, Γ, ∆, qin, γin) be an infix PDA in normal

form. If GM is of bounded tree-width, then GM is a pushdown graph.

Proof. By Lemma 3.25 we know that ∼M has finite index. Let G =

{G0, . . . , Gn} be a (minimal) set of representatives of the ∼M -classes with

Gi = (Vi, Ei, Σ). For each i ∈ {1, . . . , n} there is a configuration qiwi ∈

C(M) such that Gi = GM (qiwi). Let Ωi be the front of Gi, i.e., Ωi =

Ω(qiwi).

The rough idea of the transformation is the following: The PDA stores

on the stack through which of the graphs Gi it went to reach a certain node.

So, if the infix PDA is in a vertex pv, then the top stack symbol indicates to

which end-isomorphism class the graph GM (pv) belongs, i.e., in which of the

Gi the PDA currently is. The state of the new PDA represents the vertex

on the front that pv corresponds to (under some fixed end-isomorphism).

There is one problem when we just use the Gi as stack symbols. In some

Gi there might be a vertex on the front that has two successors u1, u2. These

successors themselves are on the front of graphs that are end-isomorphic to

Gi1 and Gi2 . Now, if i1 = i2 = j, then the PDA would only remember that

it went to some graph that is end-isomorphic to Gj but it cannot distinguish

the two different graphs. For this reason we have to work with a larger set

of stack symbols that arises from the “second level subgraphs” (see [MS85]).

For i ∈ {0, . . . , n} let G′
i be the subgraph of Gi that is induced by the

set Vi \ Ωi. The graph G′
i has several connected components (or at least

one). Let mi denote the number of the connected components of G′
i and call

them Hi,0, . . . , Hi,mi . In [MS85] these Hi,j are called second level subgraphs.

Since we deleted the front of Gi to obtain the graphs Hi,j each of the Hi,j

is end-isomorphic to one of the Gk. To avoid the problem sketched above,

we introduce for each i ∈ {0, . . . , n}, j ∈ {0, . . . , mi} a stack symbol zk
i,j if

Hi,j ∼M Gk. Furthermore, we fix an end-isomorphism φk
i,j : Hi,j → Gk. The
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initial configuration is not on the front of a second level subgraph. Therefore,

we also introduce an extra initial stack symbol z0.

As mentioned above, the states of the PDA represent the position on the

front. Thus, for each i ∈ {0, . . . , n} we fix a bijection ψi : {x0, . . . , x|Ωi|−1} →

Ωi and we let l = (max{|Ωi| | i ∈ {0, . . . , n}}) − 1.

To define the initial state, we assume that GM (qinγin) ∼M G0 under an

end-isomorphism φ and that ψ0(x0) = φ(qinγin), i.e., the initial vertex is

mapped to the vertex of G0 that corresponds to x0.

Now we are ready to define a PDA M ′ = (Q′, Σ, Γ′, ∆′, x0, z0) such that

GM and GM ′ are isomorphic.

• Q′ = {x0, . . . , xl}.

• Γ′ = {zk
i,j | i ∈ {0, . . . , n}, j ∈ {0, . . . , mi}, Hi,j ∼M Gk} ∪ {z0}.

• ∆′ is defined as follows. The first two items treat the cases when the

top stack symbol is z0. For the general case there are three items

because the stack length can remain the same, increase, or decrease.

– (xr, σ, z0, xs, z0) ∈ ∆′ iff (ψ0(xr), σ, ψ0(xs)) ∈ E0.

– (xr, σ, z0, xs, z
k
0,jz0) ∈ ∆′ iff ((ψ0(xr), σ, u) ∈ E0 such that u is a

vertex of H0,j ∼M Gk and ψk(xs) = φk
0,j(u).

– (xr, σ, zk
i,j , xs, z

k
i,j) ∈ ∆′ iff (ψk(xr), σ, ψk(xs)) ∈ Ek.

– (xr, σ, zk
i,j , xs, z

k′

i′,j′z
k
i,j) ∈ ∆′ iff i′ = k, (ψk(xr), σ, u) ∈ Ek such

that u is a vertex of Hi′,j′ ∼M Gk′ and ψqk
′(xs) = φk′

i′,j′(u).

– (xr, σ, zk
i,j , xs, ε) ∈ ∆′ iff (u, σ, ψi(xs)) ∈ Ei such that u is a vertex

of Hi,j ∼M Gk and ψk(xr) = φk
i,j(u). 2

3.2.5 Clique-Width

The notion clique-width of graphs was introduced in [CO00] for finite graphs

and in [Cou00] for infinite graphs. Although GTR graphs are directed, we

consider undirected clique-width. This means that we refer to the undirected

graph obtained from a directed graph by replacing every directed edge with

an undirected one and removing the self loops.

To define clique-width of graphs one considers (infinite) graph expres-

sions over colored graphs. In a colored graph each vertex is assigned a color,

where the colors are natural numbers. These expressions are built up from

the constant graph with one vertex, colored 1, and operators for disjoint

union of graphs, recoloring vertices, and inserting edges between vertices of
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different colors. The clique-width of a graph G is the minimal number of

colors that is needed in such an expression defining G. Thus, the clique-

width of a graph gives information on how many classes of vertices we have

to distinguish at most in the process of building up the graph with the above

mentioned operations.

For the definition of clique-width we proceed as [Cou00] and use infinite

terms over the ranked alphabet consisting of the operators mentioned above,

including ⊥ denoting the empty graph. These terms are ranked trees as

defined in Chapter 2, but since these trees are used for a different purpose

we call them terms to clearly distinguish them from the trees we are using

in ground tree rewriting systems.

For m ≥ 1 we define the ranked alphabet

Fm = {⊕, ρi→j , ηi,j , 1,⊥ | 1 ≤ i, j ≤ m and i 6= j},

where ⊕ is of rank 2, ρi→j and ηi,j are of rank 1, and 1 and ⊥ are of rank

0. By T∞
Fm

we denote the set of finite and infinite terms (ranked trees) over

Fm.

For a term τ ∈ T∞
Fm

we are interested in the graph Gτ defined by τ .

For this purpose, we first define Gτ for finite terms τ ∈ TFm . We use an

inductive definition that produces on each stage a graph, and a coloring

function mapping vertices of the graph to natural numbers. The colored

graph defined by τ is called val(τ).

So, for τ ∈ TFm we define val(τ) inductively as follows:

• val(⊥) = (∅, ∅, c) is the empty graph with c : ∅ → N.

• val(1) = ({1}, ∅, c) with c : {1} → N and c(1) = 1.

• If τ = τ1 ⊕ τ2, then val(τ) is the disjoint union of val(τ1) and val(τ2).

That is, if val(τ1) = (V1, E1, c1) and val(τ1) = (V2, E2, c2), then val(τ) =

(V, E, c) with

– V = (V1 × {1}) ∪ (V2 × {2}),

– E = {((u, i), (v, i)) | i ∈ {1, 2} and (u, v) ∈ Ei}, and

– c(v, i) = ci(v) for i ∈ {1, 2} and v ∈ Vi.

• If τ = ρi→j(τ1) and val(τ1) = (V, E, c), then val(τ) = (V, E, c′) with

c′(v) = c(v) if c(v) 6= i and c′(v) = j if c(v) = i. So, val(τ) is obtained

from val(τ1) by changing the color i into the color j for each vertex

colored i.
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• If τ = ηi,j(τ1) and val(τ1) = (V, E, c), then val(τ) = (V, E ′, c) with

E′ = E ∪ {{u, v} | c(u) = i and c(v) = j}. This operation inserts

edges between the vertices of color i and the vertices of color j.

The graph Gτ is defined from val(τ) by omitting the coloring function, i.e.,

Gτ = (V, E) if val(τ) = (V, E, c) for some coloring function c.

To define Gτ for an infinite term τ we approximate τ by an increasing

sequence of finite terms. For τ1, τ2 ∈ T∞
Fm

the relation τ1 ≺ τ2 holds iff

• Dτ1 ⊆ Dτ2 and

• for all x ∈ Dτ1 either τ1(x) = τ2(x) or τ1(x) = ⊥.

There is a direct connection between this partial order on the set of finite

terms over Fm and the subgraph relation.

Remark 3.27 If τ1, τ2 ∈ TFm with t1 ≺ t2, then Gτ1 is a subgraph of Gτ2 .

For n ∈ N the n-truncation τ (n) of τ ∈ T∞
Fm

is the unique finite term from

TFm with domain Dτ (n) = {x ∈ Dτ | |x| ≤ n} such that for all x ∈ Dτ (n)

τ (n)(x) =

{

τ(x) if |x| < n,

⊥ if |x| = n.

With this definition an infinite term τ ∈ T∞
Fm

is the unique upper bound

w.r.t. ≺ of the increasing sequence

τ (0) ≺ τ (1) ≺ τ (2) ≺ · · ·

Now we can define Gτ for an infinite term τ ∈ T∞
Fm

by

Gτ =
⋃

n∈N
Gτ (n) .

Here the union does not mean disjoint union but true union of the ver-

tex and edge sets. This graph is the least upper bound of the sequence

Gτ (0) , Gτ (1) , Gτ (2) , . . . w.r.t. the subgraph relation.

The clique-width of a graph G is the minimal m such that Gund is iso-

morphic to Gτ for some τ ∈ T∞
Fm

. If no such m exists, then the clique-width

of G is ∞.

Example 3.28 We define an infinite term τ ∈ T∞
F5

such that Gτ is isomor-

phic to the undirected version of the “triangle graph” from Figure 3.1. For
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this purpose we first define finite terms τn for n ≥ 0 such that val(τn) is the

colored graph

1 − 3 − · · · − 3
︸ ︷︷ ︸

n times

−2

where the numbers correspond to the colors of the vertices in val(τn). These

terms are used to add the horizontal layers to the graph. The terms τn and

τ are shown in Figure 3.10.

For formal reasons the graph Gτ is defined in a top-down manner by

approximating it with growing n-truncations. To understand how the graph

is built up from τ one should read the term bottom-up. To illustrate this

idea Figure 3.10 also shows the graph defined by the subterm τ ↓xn where

xn is the location where the finite term τn is merged into τ . This graph

is shown without the names of the vertices but with the intended colors

although, formally, this is not correct because we defined the graph of an

infinite term without coloring function. 2

Similar to Proposition 3.9 there is a relation between the clique-width of

an infinite graph and the clique-width of its finite subgraphs, where in this

case only induced subgraphs are considered.

Proposition 3.29 ([Cou00]) A graph G has bounded clique-width iff there

exists m ∈ N such that cw(H) ≤ m for each induced finite subgraph of G.

The relation of tree-width and clique-width is well studied for finite

graphs. Using Propositions 3.9 and 3.29 it is rather easy to transfer these

results to infinite graphs.

Proposition 3.30 ([CO00]) Let G be a graph. If G has bounded tree-width,

then G has bounded clique-width.

Proposition 3.31 ([GW00]) Let G be a graph. If G is of bounded clique-

width and there is an n ∈ N such that Kn,n is not a subgraph of G, then G

is of bounded tree-width.

These propositions guarantee that in the absence of large bipartite sub-

graphs Kn,n the notions of bounded tree-width and of bounded clique-width

are the same. The following lemma shows that GTR graphs do not con-

tain large bipartite subgraphs. Note that this is not clear in the first place

because the examples from Section 2.3 show that GTR graphs may have

unbounded degree.

Lemma 3.32 Let R = (A, Σ, R, tin) be a GTRS. Then Km,m is not a sub-

graph of GR for all m > 2 · |R| + 1.
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Figure 3.10: An infinite term τ ∈ T∞
Fm

to define the graph from Figure 3.1
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Figure 3.11: Illustration for the proof of Lemma 3.32

Proof. Let m > 2 · |R|+1 and suppose that Km,m is a subgraph of GR. Then

there are different trees t1, . . . tm, t′1, . . . , t
′
m ∈ VR such that (ti, t

′
j) ∈ E or

(t′j , ti) ∈ E for all i, j ∈ {1, . . . , m}. For all i, j ∈ {1, . . . , m} let ti,j , t
′
i,j ∈ TA

and xi,j ∈ Dti such that

• (ti)
↓xi,j = ti,j ,

• t′j = [xi,j/t′i,j ],

• ti,j
σ
↪→ t′i,j ∈ R or t′i,j

σ
↪→ ti,j ∈ R.

There are only |R| possible pairs of ti,j and t′i,j because these pairs must

form a rewriting rule from R. Hence, by the choice of m, for each i ∈

{1, . . . , m} there must be j1, j2, j3 ∈ {1, . . . , m} such that xi,j1 , xi,j2 , and

xi,j3 are pairwise incomparable. W.l.o.g. we assume that i = 1, j1 = 1,

j2 = 2, and j3 = 3. Let x, y, z ∈ N∗ be such that x is the maximal common

prefix of x1,1 and x1,2, y is the maximal common prefix of x1,2 and x1,3,

and z is the maximal common prefix of x1,1 and x1,3. Again w.l.o.g. we

can assume that y = z and y v x. This can be obtained by reordering

t′1, t
′
2 and t′3. Then the situation is as indicated in Figure 3.11, where the

double-sided arrows mean that there is an edge in GR between the trees in

either direction.

Now we want to show that it is not possible to connect another 2|R|

trees to t′1, t′2, and t′3. This is done by an analysis of which of the subtrees
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at x1,1, x1,2, and x1,3 are affected by the rewritings that generate the edges

between tl and t′1, t′2, and t′3 for l ∈ {2, . . . , m}.

First suppose that for each l ∈ {2, . . . , m} there is a j ∈ {1, 2, 3} such

that the rewriting that connects tl and t′j affects all the subtrees at x1,1, x1,2,

and x1,3, i.e., the substitution takes place at a prefix of y. Since m > 2|R|+1

there must be at least two of these rewritings that use the same rule. This

is a contradiction because the trees t′1, t′2, and t′3 only differ in the subtrees

at x1,1, x1,2, and x1,3 (so if the same rule is used for say tl1 , tl2 at a prefix of

y, then tl1 = tl2).

Therefore, there is an l ∈ {2, . . . , m} such that for each j ∈ {1, 2, 3}

one of the subtrees at x1,1, x1,2, or x1,3 is not affected by the rewriting

generating an edge between tl and t′j . This means that for all j ∈ {1, 2, 3}

either y @ xl,j or y and xl,j are incomparable.

Consider the case that y and xl,1 are incomparable. Then, since tl is

rewritten to t′1 using a substitution at a location incomparable to y, we have

t
↓x1,1

l = t′1,1 and t
↓x1,3

l = t1,3. Hence, the substitution transforming tl into t′3
must take place at a prefix of y, contradicting the choice of l. Analogously,

we get a contradiction if y and xl,2 or y and xl,3 are incomparable.

Up to now we know that y @ xl,j for all j ∈ {1, 2, 3}, i.e., the substi-

tutions transforming tl into t′1, t′2, and t′3, respectively, take place strictly

below y. We show that this also leads to a contradiction.

Case 1: xl,1 is not comparable to x. In the picture, this corresponds to

the case that xl,1 is located somewhere below y but not in the sub-

tree containing x. Then t↓xl = t′↓x1 and hence xl,2 and xl,3 must be

comparable to x because the subtree of tl at x has to be changed to

obtain t′2 and t′3. This, in turn, implies that t
↓x1,3

l = t
′↓x1,3

2 = t1,3 and

t
↓x1,3

l = t
′↓x1,3

3 = t′1,3, which is a contradiction.

Case 2: xl,1 is comparable to x. In the picture, this corresponds to the

case that xl,1 is located somewhere below y in the subtree containing

x. Then t
↓x1,3

l = t
′↓x1,3

2 = t1,3 and therefore the substitution at xl,3

rewriting tl into t′3 must change t
↓x1,3

l . Thus, xl,3 cannot be comparable

to x. We can conclude that t↓xl = t′↓x3 = t↓x1 . In combination with

t
↓x1,3

l = t1,3 this yields t↓yl = t↓y1 . But this is the only subtree where

tl and t1 could be different and therefore tl = t1, contradicting the

assumption that l ∈ {2, . . . , m}. 2

Now, using Propositions 3.30 and 3.31, we can conclude the following.
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Theorem 3.33 Let R = (A, Σ, R, tin) be a GTRS. Then GR has bounded

clique-width iff GR has bounded tree-width.

Proof. Proposition 3.30 states that bounded tree-width implies bounded

clique width. According to Lemma 3.32 GTR graphs do not have the com-

plete bipartite graph Kn,n as subgraph if n is large enough. Therefore, if

GR has bounded clique-width, then GR has bounded tree-width by Propo-

sition 3.31. 2

3.2.6 Characterization of GTR Graphs of Bounded Width

The following theorem summarizes the main results we have obtained in this

section.

Theorem 3.34 Let R = (A, Σ, R, tin) be a GTRS. Then the following state-

ments are equivalent.

(i) GR is of bounded clique-width.

(ii) GR is of bounded tree-width.

(iii) GR is a pushdown graph.

Proof. The equivalence of (i) and (ii) is stated in Theorem 3.33. From

Proposition 3.13 we know that (iii) implies (ii) and, by Theorems 3.20 and

3.26, (ii) implies (iii). 2

With this theorem it is easy to show that the graph from Figure 3.1 is not a

GTR graph. In the subsection on pushdown automata we have seen that this

graph has infinitely many non-isomorphic ends and therefore is no pushdown

graph (Example 3.4 and Proposition 3.3). In the subsection on tree-width

we have seen that the graph has bounded tree-width (Example 3.8). Hence,

it cannot be a GTR graph according to the above theorem.

A result similar to Theorem 3.34 was obtained for RGTR graphs in

[Col02]. This result is stated in Subsection 3.3.1 on the comparison of GTR

graphs to prefix recognizable and equational graphs.

3.3 Comparison to Other Classes of Graphs

The results from the previous section allow a precise comparison of the

classes of GTR graphs and pushdown graphs. The aim of this section is to

classify the position of the class of GTR graphs in the known hierarchy of

other natural classes of infinite graphs.
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Figure 3.12 shows a synopsis of the results from this and the previous

section. The edge annotations in italic face describe structural properties to

pass from the graph class at the upper end of the edge to the graph class

at the lower end of the edge. For example, the edge between GTR graphs

and pushdown graphs is annotated with bounded tree-width, meaning that

restricting the class of GTR graphs to GTR graphs of bounded tree-width

yields the class of pushdown graphs.

As can be seen from the diagram we compare the class of GTR graphs

with the classes of pushdown graphs, equational graphs, prefix recognizable

graphs, and automatic graphs. In this picture we completely leave out the

hierarchy of process rewriting graphs [May00], which has attracted attention

for the formal description of parallel processes. The structure of the graphs

from this hierarchy has mainly been analyzed w.r.t. bisimulation whereas

our comparison is up to isomorphism. Therefore, a comparison with these

graphs would lead too far away from the central topic of this thesis.

3.3.1 Prefix Recognizable and Equational Graphs

Prefix recognizable graphs (PR graphs) [Cau96] extend pushdown graphs

in a similar way as RGTR graphs extend GTR graphs. The vertices of a

prefix recognizable graph are words over some finite alphabet Γ and the edge

relation is generated by rewriting rules of the form

L · K
σ
↪→ L′ · K with regular languages L, L′, K ⊆ Γ∗.

There is a σ-labeled edge between u, v ∈ Γ∗ if there is a rewriting rule

L · K
σ
↪→ L′ · K and u, v are of the form u = u1w, v = v1w with u1 ∈ L,

v1 ∈ L′, and w ∈ K.

There are a lot of different characterizations of the class of PR graphs

(see [Blu01]). From the definition it is obvious that the class of PR graphs is

a proper extension of the class of pushdown graphs. So we have two different

extensions of pushdown graphs, namely GTR graphs and PR graphs. The

question is how these two extensions are related to each other. There are

several results on PR graphs that allow to answer this question. We use the

following proposition.

Proposition 3.35 ([Blu01]) If a PR graph G is of finite degree, then it has

bounded tree-width.

With this proposition it is easy to see that the intersection of the classes of

GTR graphs and PR graphs is exactly the class of pushdown graphs.
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Figure 3.12: Hierarchy of graph classes



3.3. COMPARISON TO OTHER CLASSES OF GRAPHS 65

Theorem 3.36 A graph G is a pushdown graph iff it is a GTR graph and

a PR graph.

Proof. The direction from the left to the right is obvious. So, assume that

G is a GTR graph and a PR graph. Since G is a GTR graph it is of finite

degree. Then, by Proposition 3.35 G has bounded tree-width. This implies

that G is a pushdown graph (Theorem 3.34). 2

Equational graphs [Cou89] are graphs defined by equations of hyperedge-

replacement grammars. The following characterization of equational graphs

was given by Barthelmann.

Proposition 3.37 ([Bar98]) A graph G is equational iff it is a PR graph

of bounded tree-width.

In particular equational graphs are PR graphs and therefore we can conclude

the following.

Corollary 3.38 A graph G is a pushdown graph iff it is a GTR graph and

an equational graph.

In [Col02] a result for RGTR graphs similar to Theorem 3.34 is obtained.

Theorem 3.39 ([Col02]) If G is an RGTR graph of bounded tree-width,

then G is an equational graph.

On the other hand, the class of RGTR graphs obviously contains the class

of PR graphs. An open question is how PR graphs may be characterized

inside the class of RGTR graphs similar to the above characterization for

equational graphs by bounded tree-width.

We think that bounded clique-width should give such a characterization,

i.e., every RGTR graph of bounded clique width is a PR graph. But there

is no evidence for this claim to be true, except that it would “fit into the

picture”.

3.3.2 Automatic Graphs

A graph is called automatic ([BG00]) or synchronized rational ([FS93]) if

its edge relation can be recognized by a finite automaton. In the sequel we

formalize this concept.
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Let Γ be a finite alphabet and let ¦ be a symbol that is not in Γ. For

two words u, v ∈ Γ∗ with u = a1 · · · am, v = b1 · · · bn with ai, bj ∈ Γ let

u ∧ v =







[

a1

b1

]

· · ·

[

am

bm

] [

¦

bm+1

]

· · ·

[

¦

bn

]

if m < n,

[

a1

b1

]

· · ·

[

an

bn

] [

an+1

¦

]

· · ·

[

am

¦

]

if m ≥ n.

Note that u∧v is a word over the alphabet (Γ∪{¦})2. A relation R ⊆ Γ∗×Γ∗

is called automatic if the language LR ⊆ ((Γ ∪ {¦})2)∗ defined as

LR = {u ∧ v | (u, v) ∈ R}

is regular. For an alphabet Σ, a family (Eσ)σ∈Σ of automatic relations

Eσ ⊆ Γ∗ × Γ∗ defines a graph G = (V, E, Σ) with

• V = {v ∈ Γ∗ | ∃u ∈ Γ∗, σ ∈ Σ : (u, v) ∈ Eσ or (v, u) ∈ Eσ}

• E = {(u, σ, v) | σ ∈ Σ and (u, v) ∈ Eσ}.

A graph is automatic if it is isomorphic to such a graph with automatic edge

relations.

Example 3.40 The “triangle graph” from Figure 3.1 is an automatic graph.

In Figure 3.1 the vertices are coded by pairs of words. Note that there is no

connection between these pairs and the automatic relations we are looking

for. We merge such a pair into one word by concatenating the two words,

i.e., the pair (X i, Y j) becomes the single word X iY j . Now we define the

edge relations for the different edge labels as follows:

• E0 = {(X i, X i+1) | i ≥ 0},

• E1 = {(X iY j , X i−1Y j+1) | i ≥ 1, j ≥ 0},

• E2 = {(Y j , Y j−1) | j ≥ 1}.

It is not difficult to verify that these three relations are automatic. 2

This example shows that there are automatic graphs that are no GTR

graphs. In the following we deal with the other inclusion, i.e., with the ques-

tion whether the class of GTR graphs is contained in the class of automatic

graphs. As indicated by the dashed lines in the diagram from Figure 3.12

we do not know the answer to this question. But we do have a partial re-

sult, namely that GTR graphs of bounded out degree are automatic graphs.
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In the sequel we present this result and end with a brief discussion on the

difficulties connected with the general question.

In Subsection 3.1.2 we have seen how to code trees with a small inde-

pendence degree by words. This coding enabled us to construct an infix

pushdown automaton for simulating the tree rewriting on these codings (see

Subsection 3.2.3). The edge relations defined by infix pushdown automata

are quite simple automatic relations. To use the power of automatic rela-

tions we extend the idea of h-factorizations and obtain a larger class of trees

that can be coded as words with these generalized h-factorizations such that

the tree rewriting relation is an automatic relation on these codings. The ex-

tension of h-factorizations is obtained by allowing more than one connection

point labeled with ◦ in the factors of the tree.

Recall that, given a ranked alphabet A, we defined A◦ to be the al-

phabet A augmented by the symbol ◦ of rank 0. To formalize generalized

h-factorizations we define for h ∈ N the sets

T h
A◦

= {t ∈ TA◦ | height(t) < 2h and |x| = h for each x ∈ Dt with t(x) = ◦}

and

Γh
A = T h

A◦
∪ {t ∈ TA | height(t) < 2h}.

The generalized h-factorization gfh(t) of t ∈ TA is a word over Γh
A defined

as follows.

• If height(t) < 2h, then gfh(t) = t.

• If height(t) ≥ 2h, then let x1, . . . , xn ∈ Dt be those locations with

|xi| = h, height(t↓xi) ≥ h, and x1 <lex · · · <lex xn, where <lex denotes

the usual lexicographical order on N∗. Define

gfh(t) = t[x1/◦, . . . , xn/◦] · gfh(t↓x1) · · · gfh(t↓xn).

To pass from generalized h-factorizations back to trees we define a mapping

assigning a tree from TA◦ to each prefix of a generalized h-factorization. Let

w = gfh(t) be a generalized h-factorization and let v be a nonempty prefix

of w. Then tree(v) = v if |v| = 1. If |v| > 1 with v = v1 · s, then let

s1 = tree(v1) and define tree(v) = s1[x/s], where x ∈ Ds1 is the smallest

location in the lexicographical ordering with s1(x) = ◦. With this definition

we get tree(gfh(t)) = t.

The width of generalized h-factorizations, defined below, is a measure for

the amount of memory needed by a finite automaton that checks whether

the tree corresponding to a factorization is accepted by a tree automaton.
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Intuitively, the width of a generalized h-factorization gfh(t) is the maximal

number of “pending ◦-symbols” when reconstructing t from gfh(t) step by

step. Formally, this looks as follows. For t ∈ TA◦ let |t|◦ be the number of

occurrences of ◦ in t:

|t|◦ = |{x ∈ Dt | t(x) = ◦}|.

The width of a generalized h-factorization w is

width(w) = max{|tree(v)|◦ | v prefix of w}.

If v is a prefix of a generalized h-factorization gfh(t), then tree(v) agrees

with t on all locations x ∈ Dtree(v) with tree(v)(x) 6= ◦ and at each location

x with tree(v)(x) = ◦ there is a subtree t↓x of height at least h in t. Thus, if

width(gfh(t)) = c, then there exist locations x1, . . . , xc ∈ Dt that are pair-

wise incomparable w.r.t. v such that height(t↓xi) ≥ h for all i ∈ {1, . . . , c}.

This observation leads to the following lemma.

Lemma 3.41 Let R be a GTRS. If the out degree of GR is less than c, then

width(gfh(t)) < c for each h > hR and t ∈ T (R).

Proof. As explained above, t contains at least c independent subtrees of

height at least h if width(gfh(t)) ≥ c. If h > hR, then these independent

subtrees have to be generated by independent applications of rewriting rules.

So, there must be a tree in T (R) to which rewriting rules can be applied at

c different locations. This tree has out degree at least c, contradicting the

assumption on GR. 2

Assume that we are given a regular set T ⊆ TA of trees such that for all the

trees t ∈ T the generalized h-factorization of t has width less than c. We

show that in this situation the coding of T by generalized h-factorizations

is a regular set of words, i.e., we show that the language

LT = {w ∈ (Γh
A)∗ | w is a generalized h-factorization of t ∈ T}

is a regular language of words. This is a necessary property if we want to use

generalized h-factorizations to transform GTR graphs to automatic graphs

since the definition of automatic relations via finite automata implies that

the vertex set of an automatic graph is a regular language.

Lemma 3.42 Let R be a GTRS. If there are c ∈ N and h > hR such that

for each t ∈ T (R) the generalized h-factorization of t has width less than c,

then LT (R) is a regular language.
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Proof. Let A = (Q, A, ∆, F ) be an NTA with T (A) = T (R). We extend A

by adding the transitions (◦, q) for q ∈ Q to ∆. Now, for t ∈ Γh
A, we can

speak of a run of A on t.

The automaton for LT (A) guesses a run of A and, at each prefix v of the

input, maintains a list of states of A for the locations x with tree(v)(x) = ◦.

Since the width of the generalized h-factorizations of trees from T (A) =

T (R) is bounded by c the length of this list is also bounded by c. To guess

a correct run the automaton for LT (A) guesses a run on each input symbol

from Γh
A with state q at the root if q is the state at the end of the list. Then

it removes q from the end of the list and adds the states from the guessed

run that are at the locations labeled with ◦. So, the automaton guesses a

generalized h-factorization of an accepting run of A on the input word.

Formally, we define an automaton B = (P, Γh
A, P0, ∆B, PF ) over finite

words with state set P , input alphabet Γh
A, initial states P0 ⊆ P , transition

relation ∆B ⊆ P × Γh
A × P , and final states PF ⊆ P . The components of B

are defined by

• P = {(q1, . . . , qm) | qi ∈ Q and 1 ≤ m ≤ c}∪̇{pf},

• P0 = {(q) ∈ P | q ∈ F}, and

• PF = {pf}.

• ∆B contains the following transitions. Let (q1, . . . , qm) ∈ P , t ∈ Γh
A

and let ρ be a run of A on t with ρ(ε) = qm. Let x1, . . . , xn ∈ Dt be

the locations in lexicographical order with t(xi) = ◦.

– If n > 0, then ((q1, . . . , qm), t, (q1, . . . , qm−1, ρ(x1), . . . , ρ(xn))) ∈

∆B.

– If n = 0 and m > 1, then ((q1, . . . , qm), t, (q1, . . . , qm−1)) ∈ ∆B.

– If n = 0 and m = 1, then ((q1), t, pf ) ∈ ∆B.

2

The idea from the preceding proof can be extended to show that the relation

on generalized h-factorizations induced by a ground tree rewriting relation

is automatic.

Lemma 3.43 Let R = (A, Σ, R, tin) be a GTRS. If there are c ∈ N and

h > hR such that for each t ∈ T (R) the generalized h-factorization of t has

width less than c, then GR is an automatic graph.
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Proof. For σ ∈ Σ let Eσ ⊆ (Γh
A)∗ × (Γh

A)∗ be the relation on generalized

h-factorizations induced by
σ
−→
R

, i.e., (u, v) ∈ Eσ iff u and v are generalized

h-factorizations of trees from T (R) with tree(u)
σ
−→
R

tree(v). Let (u, v) ∈ Eσ

and u1, u2, v2 ∈ (Γh
A)∗, t, t′ ∈ Γh

A with

u = u1 · t · u2 and v = u1 · t
′ · v2.

So t and t′ are the first letters that differ in u and v. Let x1, . . . , xn be

the locations from Dt in lexicographical order with t(xi) = ◦ and let wi =

gfh(t↓xi). Then u2 = w1 · · ·wnw for some w ∈ (Γh
A)∗. Since Eσ is derived

from the rewriting relation
σ
−→
R

there are three possibilities on how t′ and v2

relate to t and u2.

1. The locations in t′ labeled with ◦ are the same as in t. Then v2 = u2

and t
σ
−→
R

t′.

2. The locations in t′ labeled with ◦ are x1, . . . , xj , x, xj+1, . . . , xn. Then

v2 = w1 · · ·wj · s · wj+1 · · ·wnw and t↓x
σ
−→
R

s.

3. The locations in t′ labeled with ◦ are x1, . . . , xj−1, xj+1, . . . , xn. Then

v2 = w1 · · ·wj−1 · wj+1 · · ·wnw and tree(wj)
σ
−→
R

(t′)↓xj . Note that

|wj | = 1 in this situation because h > hR.

The automaton from Lemma 3.42 can easily be modified to recognize this

relation. We describe the idea for this modification. The technical details

are straightforward.

Let A be an NTA accepting T (R). The automaton for Eσ, instead of

maintaining a list of states from A, maintains a list of pairs of states from

A to check whether both input words are accepted by A. So, as long as the

input words do not differ, in each step it adds pairs (p1, p
′
1), . . . , (pm, p′m) of

A-states to the list if y1, . . . , ym are the locations labeled with ◦, in the same

way as the automaton for LT (A) from Lemma 3.42.

The first time a difference in the two input words occurs, the automaton

has to verify if one of the above cases holds.

In the first case it can directly check whether t
σ
−→
R

t′ and then proceed

as before, remembering that it has seen a difference in the two input words.

In the second case the location x has to be treated in a different way

since it is labeled with ◦ only in t′. In this situation the automaton adds

(q1, q
′
1), . . . , (qj , q

′
j), (t

↓x, q), (qj+1, q
′
j+1), . . . , (qn, q′n) to the list. Then the au-

tomaton reads w1 · · ·wj as usual. If it reaches the letter s in the second

word v, then the pair (t↓x, q) is at the end of the list and it can be checked if
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t↓x
σ
−→
R

s. Now the automaton can continue to check the wj+1 · · ·wnw part

with a delay of one letter between the two input words.

The third case can be treated in a similar way as the second one. The

automaton adds (q1, q
′
1), . . . , (qj−1, q

′
j−1), (qj , (t

′)↓x), (qj+1, q
′
j+1), . . . , (qn, q′n)

to the list. The wj part of the input is reached when (qj , (t
′)↓x) is at the

end of the list. The automaton can check if tree(wj)
σ
−→
R

(t′)↓x (recall that

|wj | = 1) and then continue with the wj+1 · · ·wnw part of the input with

one letter delay between the two input words.

In this way we can build an automaton for the relation Eσ. Thus, the

relations Eσ for all σ ∈ Σ are automatic and therefore GR is automatic. 2

Combining Lemma 3.41 and Lemma 3.43 yields the following theorem.

Theorem 3.44 Let R = (A, Σ, R, tin) be a GTRS. If GR is of bounded out

degree, then GR is an automatic graph.

This theorem justifies the solid line from the automatic graphs to the GTR

graphs of bounded degree in Figure 3.12.

We end this section with a brief discussion on the difficulties one encoun-

ters when trying to show that a GTR graph is not automatic. One possibility

to show that a graph is not automatic is to use decidability results. Since the

logics that are decidable for automatic graphs are also decidable for GTR

graphs this method cannot be used here.

The other method that is known for showing that graphs are not auto-

matic uses the following lemma (cf. [BG00]).

Lemma 3.45 Let G be an automatic graph of finite degree. Then there is

c ∈ N such that for each vertex v of G and each n ∈ N the number of vertices

at distance n from v is at most 2c·n.

This method also fails for GTR graphs as can be seen from the following

explanation.

There is a generic method of coding trees from TA as words by inter-

preting the term notation of trees as words over the alphabet A augmented

by symbols for the parentheses and the comma. Ground tree rewriting just

causes local changes in these codings. These changes can be checked by an

automaton. So, given a GTRS R = (A, Σ, R, tin), the automaton for the

edge relations simply accepts all inputs u ∧ v if u = w1tw2 and v = w1t
′w2

with t ↪→ t′ ∈ R. The reason why we cannot use this coding for automatic

representations of GTR graphs is that a finite automaton cannot check if a

given word is a correct coding of a tree. But this straightforward approach



72 CHAPTER 3. THE STRUCTURE OF GTR GRAPHS

yields an automatic graph that contains the given GTR graph as induced

subgraph.

Remark 3.46 For each GTR graph GR there is an automatic graph G of

finite degree such that GR is isomorphic to an induced subgraph of G.

This remark implies that Lemma 3.45 can also be formulated for GTR

graphs instead of automatic graphs. Therefore, we cannot use this lemma

to show that a GTR graph is not automatic. Anyhow, we think that there

are GTR graphs that are not automatic, e.g., we were not able to find an

automatic representation for the graph from Example 2.6 and Figure 2.4.

The vertices of this graph are all trees over A consisting of the symbols b

and a, where b has rank 2 and a has rank 0. The edges are generated by

the only rewriting rule a ↪→ b(a).

For this graph to be automatic one needs a coding ϕ : TA → Γ∗ for

some alphabet Γ such that the relation induced by the rewriting relation

is automatic. In particular, this means that the image of ϕ is a regular

language. It seems to be quite unlikely that such a regular coding exists,

which still allows to recognize the rewriting relation by a finite automaton.

For this reason, we end this section with the following conjecture.

Conjecture. The GTR graph from Example 2.6 is not automatic.

3.4 Traces of GTR Graphs

The trace of a path through an edge-labeled transition graph is the finite

word corresponding to the sequence of the edge labels of this path. If an

edge-labeled transition graph is equipped with an initial state and a set of

final states, then the traces of this graph are all the traces of paths starting

in the initial state and ending in a final state. The traces of finite graphs,

for example, form the class of regular languages.

GTR graphs are infinite edge-labeled transition graphs with an initial

state tin. So, if we add a set of final states to a GTRS, then we can view it

as an infinite automaton accepting languages of finite words. In this section

we analyze the class of languages of finite words that can be defined in this

way.

For a GTRS R = (A, Σ, R, tin), w ∈ Σ∗, and t, t′ ∈ TA we define

t
w
−−→
R

t′ iff

{

w = ε and t = t′ or

w = σv with σ ∈ Σ, v ∈ Σ∗ and t
σ
−→
R

t′′
v
−→
R

t′ for some t′′ ∈ TA
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and for a set T ⊆ TA

t
w
−−→
R

T iff ∃t′ ∈ T : t
w
−−→
R

t′.

The language accepted by (R, T ) is

L(R, T ) = {w ∈ Σ∗ | tin
w
−−→
R

T}.

The set T is called the set of final states or final vertices. The class LGTR

consists of all languages that can be accepted by a GTRS with a regular set

of final states. So, if L ⊆ Σ∗ for some alphabet Σ, then L is in LGTR iff there

is a GTRS R = (A, Σ, R, tin) and an NTA A such that L = L(R, T (A)).

Example 3.47 We want to find a rewriting system R and an NTA A such

that

L(R, T (A)) = {w ∈ {0, 1, 2}∗ | |w|0 = |w|1 = |w|2},

where |w|i denotes the number of occurrences of i in w for each i ∈ {0, 1, 2}.

The GTRS R = (A, Σ, R, tin) is defined by A0 = {c, d}, A1 = {0, 1, 2},

A2 = {f}, Σ = {0, 1, 2}, tin = d, and

R = {d
i

↪→ f(i(c), d) | i ∈ Σ} ∪ {c
i

↪→ i(c) | i ∈ Σ}.

The NTA A = (Q, A, ∆, F ) has the state set Q = {qΛ | Λ ⊆ Σ}, the final

states F = {q∅}, and ∆ contains the transitions

• (c, q{0,1,2}), (d, q∅),

• (qΛ, i, qΛ\{i}) for all i ∈ {0, 1, 2} and Λ ⊆ Σ with i ∈ Λ, and

• (q∅, q∅, f, q∅).

A accepts the trees of the following form, where for each i ∈ {1, . . . , n}

the subtree ti equals d or has c as only leaf and contains each σ ∈ {0, 1, 2}

exactly once: f
yy DD

t1 f
yy

t2
f

xx CC
tn d

Hence, if a tree is accepted by A, then it contains the same number of 0, 1,

and 2. Each rewriting rule of R labeled with i ∈ Σ inserts exactly one i into

the tree. It follows that L(R, T (A)) ⊆ {w ∈ Σ∗ | |w|0 = |w|1 = |w|2}.

How a word w with |w|0 = |w|1 = |w|2 can be accepted is illustrated in

Figure 3.13 for w = 011202. 2
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Figure 3.13: The word 011202 is accepted by (R, T (A)) from Example 3.47

In the same way we can use pushdown graphs to define languages of finite

words. For a pushdown automaton M = (Q, Σ, Γ, ∆, qin, γin) and a set

C ⊆ C(M) of configurations we define L(M, C) to be the set of all words

w ∈ Σ∗ such that a path from q0Z0 to a configuration from C is labeled

with w. The class LPDA consists of all languages of the form L(M, C) for a

regular set C of configurations.

3.4.1 Classification in the Chomsky Hierarchy

The Chomsky Hierarchy (see e.g. [HU79]) has four levels: the regular lan-

guages LREG, the context free languages LCF, the context sensitive lan-

guages LCS and the recursively enumerable languages LRE with the following

strict inclusions between these classes:

LREG ( LCF ( LCS ( LRE.

Since pushdown graphs are defined by pushdown automata the following

result is not surprising.

Proposition 3.48 The classes LCF and LPDA coincide.

Here we show that the class LGTR is strictly between the classes LCF

and LCS. The main part is the separation of the classes LGTR and LCS by

showing that the language

L012 = {w ∈ {0, 1, 2}∗ | w = 0i1i2i for some i ∈ N}

is not in LGTR. The intuition is that, although the rewriting system can keep

track of the number of occurrences of the different letters as in Example 3.47,

it cannot control the order of the letters. To store the occurrences of the



3.4. TRACES OF GTR GRAPHS 75

letters it may be necessary to use rewritings at locations “far from each

other” and then the order of these rewritings can be exchanged. To formalize

this we proceed as follows.

(1) By the notion location distance of a path π we formalize what it means

that on π rewritings at locations far from each other are used.

(2) We show that if there is a uniform bound on the location distance of

accepting paths, then the accepted language is context free.

(3) Finally, we prove that a GTRS accepting L012 must have the property

from (2). This would imply that L012 is context free, which is a contra-

diction (see [HU79]).

Let x, y, z ∈ N∗ be such that z is the maximal common prefix of x and y.

The distance dist(x, y) of x and y is

dist(x, y) = (|x| − |z|) + (|y| − |z|).

Let R = (A, Σ, R, tin) be a GTRS, t, s ∈ TA, and let π be an R-path

with π : t
∗
−→
R

s and derivation [x0/s0], . . . , [xn/sn]. The location distance

locdist(π) of π is the maximal distance of two “unsynchronized” locations xi

and xj in the derivation, where xi and xj are called synchronized if there is

a location xk between xi and xj that is a prefix of both, xi and xj . Formally,

we have

locdist(π) = max

{

dist(xi, xj)

∣
∣
∣
∣
∣

i, j ∈ {0, . . . , n} with i < j and

∀k ∈ {i, . . . , j} : xk 6v xi or xk 6v xj)

}

.

We want to simulate a GTRS with the property from item (2) from above by

a pushdown automaton to show that the accepted language is context free.

As in the conversion from GTRS to infix PDA (see Subsection 3.2.3) the

stack content together with the control state of the pushdown automaton

represent factorizations of the trees. For this purpose, we need to show that

the trees on accepting paths are of bounded independence degree to get

unique h-factorizations of these trees representable with a finite number of

symbols (see Lemma 3.5).

Lemma 3.49 Let R be a GTRS, d ∈ N, h = hR +d, and let π be an R-path

starting in tin. If locdist(π) < d, then indep(t) < h for each tree t on π.

Proof. Let π be the path t0 −→
R

t1 −→
R

· · · −→
R

tn with t0 = tin and deriva-

tion [x1/s1], . . . , [xn/sn]. Assume that there exists m ∈ {1, . . . , n} with

indep(tm) ≥ h. Then there are two locations x, y ∈ Dtm with maximal
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common prefix z such that |x| − |z| ≥ h and |y| − |z| ≥ h. Since h > hR

and hR > height(tin) the locations x and y are not in Dtin . Let i < m be

maximal with x /∈ Dti and let j < m be maximal with y /∈ Dtj . W.l.o.g. we

can assume that i ≤ j (otherwise exchange x and y). The choice of i and j

implies that xi v x and xj v y with |x| − |xi| ≤ hR and |y| − |xj | ≤ hR. In

particular z is the maximal common prefix of xi and xj . This situation is

illustrated in the following picture:

z

~>
~>

~>
~>

Ã`
Ã`

Ã`
Ã`

OO

≥h

²²

xi

hR≥
²O
²O
²O

xj

≤hR²O
²O
²O

x y

We can conclude that

|xi| − |z| = (|x| − |z|) − (|x| − |xi|) ≥ (hR + d) − hR = d and

|xj | − |z| = (|x| − |z|) − (|x| − |xj |) ≥ (hR + d) − hR = d,

and therefore dist(xi, xj) ≥ d. It remains to show that xk 6v z for all

i < k < j. By the choice of i and j we know that x ∈ Dtk for all k

with i < k < j, implying height(t↓zk ) ≥ |x| − |z| ≥ h > hR. Therefore,

by definition of hR, no rule can be applied to t↓zk . Thus, we have shown

locdist(π) ≥ d, contradicting the assumption. 2

The construction in the next lemma is similar to the conversion from GTRS

to infix PDA from Subsection 3.2.3, except that we just simulate accepting

paths because we are interested in the accepted language. Furthermore,

since only paths with bounded location distance are simulated, we do not

need any infix rules and thus obtain a “pure” PDA.

Lemma 3.50 Let R = (A, Σ, R, tin) be a GTRS, T ⊆ TA be a regular set of

trees, and L = L(R, T ). If there is d ∈ N such that locdist(π) < d for each

path π : tin
∗
−→
R

T , then L is context free.

Proof. We show the claim by constructing a pushdown automaton that can

simulate the accepting paths of R. If we choose h = hR + d according

to Lemma 3.49, then the independence degree of the trees on accepting

paths is less than h. Since the transformation from Lemma 3.6 preserves

regular sets of trees and the independence degree of trees, we can assume

that height(tin) < 2 · h and height(t) ≥ h for all t ∈ T (R).

We define the pushdown automaton M = (Q, Σ, Γ, ∆, qin, γin) as follows.
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• Q = {qt | t ∈ TA with h ≤ height(t) < 2 · h}.

• Γ = {γin}∪̇{γs | s ∈ Sh
A◦

} (see Page 35 for the definition of Sh
A◦

).

• qin = qtin .

• ∆ contains the transitions

(qt, γin, σ, qt′ , γin) if t
σ
−→
R

t′,

(qt, γs, σ, qt′ , ε) if s · t
σ
−→
R

t′,

(qt, ε, σ, qt′ , γs′) if t
σ
−→
R

s′ · t′,

(qt, γs, σ, qt′ , γs′) if s · t
σ
−→
R

s′ · t′.

The set of accepting configurations is defined as

CT = {qtγs1 · · · γsnγin | sn · · · s1 · t ∈ T}.

We claim that L(M, CT ) = L(R, T ). For the inclusion L(M, CT ) ⊆ L(R, T )

it suffices to note that qtγs1 · · · γsnγin `σ
M qt′γs′1

· · · γs′mγin implies sn · · · s1 ·

t
σ
−→
R

s′m · · · s′1 · t′. Then an easy induction shows that every word w that

leads from qinγin to a configuration from CT also leads from tin to a tree

from T .

For the inclusion L(R, T ) ⊆ L(M, CT ) we have to show that every ac-

cepting path in R can be simulated in M . Since all the trees on accepting

paths have independence degree less than h it is clear that they can be re-

presented as configurations of M (Lemma 3.5). But the PDA M can only

simulate substitutions in the (s1 · t)-part of an h-factorization (t, s1, . . . , sn).

We have to show that this is no restriction for accepting paths.

For t0 = tin and tn ∈ T consider an accepting path t0 −→
R

t1 −→
R

· · · −→
R

tn

with derivation [x0/r0], . . . , [xn−1/rn−1]. Pick i ∈ {0, . . . , n − 1} and let

(t′i, s1, . . . , sm) be the unique h-factorization of ti. Let x◦
m = ε and for

j ∈ {0, . . . , m − 1} define

x◦
j = x◦

j+1 · x

for the x ∈ Dsj+1 with sj+1(x) = ◦. So x◦
j is the location in Dti that

corresponds to the root of sj for j ∈ {1, . . . , m} and to the root of t′i for

j = 0. To verify that the substitution leading from ti to ti+1 takes place in

the (s1 · t′i)-part of ti we have to show that x◦
1 v xi. For this purpose we

prove the following claim by induction on i.

Claim: There exists j ≤ i such that x◦
0 v xj and xk 6v xj for all k with

j < k < i.
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If the claim is true and x◦
1 6v xi, then the maximal common prefix of

xj and xi is a proper prefix of x◦
1. Therefore, dist(xi, xj) ≥ |xj | − |x◦

1| ≥

|x◦
0| − |x◦

1| = h > d. Furthermore, xi cannot be a prefix of xj because

otherwise height(t↓xi
i ) > hR and by definition of hR there is no rule with a

tree of that height on the left hand side. Thus, xj and xi are witnesses for

locdist(π) ≥ d.

It remains to show the claim. If i = 0, then the h-factorization of ti is ti
itself and the claim holds with xj = xi = x0.

For i ≥ 1 let (t′i−1, ŝ1, . . . , ŝm′) be the h-factorization of ti−1 and define

the locations x̂◦
j for ti−1 according to x◦

j for ti. We distinguish three cases

for the possible values of m′.

If m′ = m − 1, then the h-factorization of ti−1 contains one component

more than the h-factorization of ti. So, the substitution [xi−1/ri−1] must

increase the height of t′i−1 such that it exceeds 2 ·h. Therefore, we have ŝl =

sl+1 for l ∈ {1, . . . , m′} and (t′i, s1) is an h-factorization of t′i−1[xi−1/ri−1].

Since height(t′i) ≥ h > hR, the substitution [xi−1/ri−1] was in the t′i part.

Therefore, x◦
0 v xi−1 and the claim holds for j = i − 1.

If m′ = m, then x̂◦
0 = x◦

0. By induction we know that there is j ′ ≤ i − 1

with x◦
0 v xj′ and xk 6v xj′ for all k with j′ < k < i − 1. If xi−1 6v xj′ ,

then we choose j = j ′. If xi−1 v xj′ , then x◦
0 v xi−1 because otherwise

xi−1 v x◦
0 and then height(t

↓xi−1

i−1 ) would exceed hR and no rewriting rule

can be applied. Thus, we can choose j = i − 1.

If m′ = m + 1, then x̂◦
1 = x◦

0 and since the h-factorization of ti contains

one component less than the h-factorization of ti−1, the height of t′i−1 must

decrease. This is only possible if x̂◦
0 v xi−1 and we get x◦

0 = x̂◦
1 v x̂◦

0 v xi−1

and the claim holds with j = i − 1. 2

As mentioned before we show in the proof of Lemma 3.52 that a GTRS

accepting L012 must have a uniform bound on the location distance of ac-

cepting paths, leading to a contradiction to the previous lemma. For this

proof we need the following technical lemma providing us with a pumping

argument for paths with certain properties.

Lemma 3.51 For each NTA A = (Q, A, ∆, F ) and GTRS R = (A, Σ, R, tin)

there is h ∈ N such that for all σ ∈ Σ the following holds.

Let t0
σ
−→
R

t1
σ
−→
R

· · ·
σ
−→
R

tn and let x ∈ N∗ be such that height(t↓x0 ) ≤ hR

and height(t↓xi ) > h for some i ∈ {1, . . . , n − 1}.

(i) If height(t↓xn ) ≤ hR or x /∈ Dtn, then there is m < n with t0
σm

−−−→
R

tn.
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(ii) If tn ∈ T (A), then there exists m < n with t0
σm

−−−→
R

T (A).

Proof. The intuition for (i) is that the subtree t↓x0 of small height is trans-

formed into a tree of large height and back to a tree t↓xn of small height.

This goal of transforming t↓x0 into t↓xn can also be achieved with a shorter

derivation not leading through the tree of large height. This is captured by

the number h1 below.

For (ii) we use that there must be an upper bound on the minimal

length of paths leading from trees of height bounded by hR to a regular

set of trees. This is captured by h2. Then h1 and h2 are merged into one

number h satisfying (i) and (ii).

For σ ∈ Σ, s ∈ TA and T ⊆ TA we define

dσ(s, T ) =

{

min{n ∈ N | s
σn

−−→
R

T} if such an n exists,

0 otherwise,

h1 = max{dσ(s, {t}) | σ ∈ Σ, height(s) ≤ hR, and height(t) ≤ hR},

h2 = max{dσ(s, T (A(q))) | height(s) ≤ hR, q ∈ Q, and σ ∈ Σ}, and

h = (h1 + h2) · hR.

(i): Let tj be the last tree before ti with height(t↓xj ) ≤ hR and let tk be

the first tree after ti with height(t↓xk ) ≤ hR. One portion of the derivation

must transform t↓xj into t↓xi and back to t↓xk . By the choice of h and the

definition of hR this takes more than h1 steps and therefore this portion can

be replaced by a shorter path from t↓xj to t↓xk .

(ii): As in (i) let tj be the last tree before ti with height(t↓xj ) ≤ hR. If

x /∈ Dtk or height(t↓xk ) ≤ hR for some k ∈ {i, . . . , n}, then we are in case (i).

Otherwise, there is a portion of the derivation that transforms t↓xj into t↓xn .

By the choice of h this takes more than h2 steps because first t↓xj has to be

transformed into t↓xi and height(t↓xi ) > h.

Since tn ∈ T (A) there is q ∈ Q with tn
∗
−→
A

tn[x/q]
∗
−→
A

F . Then

the part of the derivation transforming t↓xj into t↓xn can be replaced by a

shorter transformation, of length less than or equal to h2, rewriting t↓xj into

a tree t′ ∈ T (A(q)). In total we get t0
σm

−−−→
R

tn[x/t′] with m < n and

tn[x/t′]
∗
−→
A

tn[x/q]
∗
−→
A

F . 2

Now we have the tools for separating LGTR and LCS.

Lemma 3.52 The language L012 is not in LGTR.
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Proof. Assume that L012 = L(R, T (A)) for a GTRS R = (A, Σ, R, tin) and

an NTA A. We want to apply Lemma 3.50 with d = 2 · h + 1 where h is

chosen according to Lemma 3.51. Let π be an accepting path of the form

t0
0
−→
R

t1
0
−→
R

· · ·
0
−→
R

tn
1
−→
R

tn+1
1
−→
R

· · ·
1
−→
R

t2n
2
−→
R

t2n+1
2
−→
R

· · ·
2
−→
R

t3n

with t0 = tin, t3n ∈ T (A), and derivation [x0/s0], [x1/s1], . . . , [x3n−1/s3n−1].

If we can show that locdist(π) < d, then L012 is context free by Lemma 3.50.

Since L012 is not context free we get a contradiction.

Let i, j ∈ {0, . . . , 3n − 1} with i < j and let x be the maximal common

prefix of xi and xj . Assume that dist(xi, xj) ≥ d and xk 6v x for all k ∈

{i, . . . , j}.

We first show (in case 1) that i, j must be from the same interval, i.e.,

both are from the 0-, the 1-, or the 2-part of π. Otherwise we can ex-

change substitutions from different intervals and obtain an accepting path

not obeying the strict order on the letters 0,1, and 2.

Then we show (cases 2,3,4) that i, j cannot be from the same interval

because otherwise we could apply Lemma 3.51 and shorten one of the inter-

vals obtaining an accepting path where the numbers of occurrences of 0,1,

and 2 are not the same.

Case 1. Assume that i < n and j ≥ n or i < 2n and j ≥ 2n. We only

consider the case i ∈ {0, . . . , n−1} and j ∈ {n, . . . , 2n−1}. The other

cases are similar.

Let y be the minimal prefix of xi with x @ y. So we have the following

situation.

x
¤¤

»X
»X

»X
»X

y

§F
§F

xi xj

Now we collect the substitutions between the positions i and j that

are below y and all the other substitutions and exchange their or-

der. Let i1 < . . . < il ∈ {i, . . . , j} be the indices with y v xik for

all k ∈ {1, . . . , l} and let j1 < . . . < jm ∈ {i, . . . , j} be the indices

with y 6v xik for all k ∈ {1, . . . , m}. Since xi and xj are unsyn-

chronized the locations from {xi1 , . . . , xil} and from {xj1 , . . . , xjm} are

pairwise not comparable w.r.t v. Therefore, we can replace the part

[xi/si], . . . , [xj/sj ] of the derivation by

[xj1/sj1 ], . . . , [xjm/sjm ], [xi1/si1 ], . . . , [xil/sil ],
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obtaining the derivation of another accepting path from t0 to t3n. But

since i1 = i and jm = j there is a 1 before a 0 on this accepting path.

Note that we obtained this contradiction solely from xi and xj not

being synchronized by an intermediate location xk, without any as-

sumption on the distance of xi and xj .

Case 2 Assume that i, j ∈ {0, . . . , n−1}. We want to apply Lemma 3.51 (i).

From the definition of hR and from t0 = tin we know that height(t↓x0 ) ≤

hR. From dist(xi, xj) ≥ d = 2 ·h+1 we know that either height(t↓xi ) >

h or height(t↓xj ) > h. It remains to show that there is l ∈ {j+1, . . . , n−

1} such that height(t↓xl ) ≤ hR. For this purpose let z1 and z2 be the

maximal prefixes of xn, xi and xn, xj , respectively. Then either z1 v x

or z2 v x. Since in case 1 the distance between the locations did not

play any role, xi and xn, and xj and xn must be synchronized. That

is, there must be l1 ∈ {i, . . . , n} with xl1 v z1 and l2 ∈ {j, . . . , n} with

xl2 v z2. Since z1 v x or z2 v x, we can find l ∈ {i, . . . , n} with

xl v x. Thus, height(t↓xl ) ≤ hR. Since xi and xj are not synchronized

by the assumption, this l cannot be between i and j and therefore

l ∈ {j + 1, . . . , n}. Now we can apply Lemma 3.51 (i) and shorten the

path segment between t0 and tl. This yields an accepting path with

fewer occurrences of 0 than occurrences of 1 and 2.

Case 3 Assume that i, j ∈ {n, . . . , 2n − 1}. As in case 2 height(t↓xi ) > h

or height(t↓xj ) > h. In the same way as in case 2 we can find l ∈

{j+1, . . . , 2n−1} such that height(t↓xl ) ≤ hR. To apply Lemma 3.51 (i)

it remains to show that there is m ∈ {n, . . . , i} such that height(t↓xm ) ≤

hR. This m is found in a similar way as the l was found in case

1. Let z1 and z2 be the maximal prefixes of xn−1, xi and xn−1, xj ,

respectively. Then either z1 v x or z2 v x. By case 1 there must be

m1 ∈ {n, . . . , i + 1} with xm1−1 v z1 and m2 ∈ {n, . . . , j + 1} with

xm2−1 v z2. Since z1 v x or z2 v x there is m ∈ {n, . . . , j + 1}

with xm−1 v x. Thus, height(t↓xm ) ≤ hR. Again, xi and xj are not

synchronized by assumption. Hence, m− 1 cannot be between i and j

and therefore m ∈ {n, . . . , i}. We can use Lemma 3.51 (i) and shorten

the path segment between tm and tl. This yields an accepting path

with fewer occurrences of 1 than occurrences of 0 and 2.

Case 4 Assume that i, j ∈ {2n, . . . , 3n − 1}. As in case 2 height(t↓xi ) > h

or height(t↓xj ) > h. In the same way as in case 3 we can find m ∈

{2n, . . . , i} such that height(t↓xm ) ≤ hR. Since t3n ∈ T (A) we can
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apply Lemma 3.51 (ii) to the path segment between tm and t3n. This

yields an accepting path with fewer occurrences of 2 than occurrences

of 0 and 1.

We have shown that for each i, j ∈ {0, . . . , 3n − 1} with i < j either

dist(xi, xj) < d or there is k ∈ {i, . . . , j} with xk v xi and xk v xj . Hence,

locdist(π) < d. 2

Besides separating the classes LGTR and LCS this lemma provides a method

for showing that the triangle graph from Figure 3.1 is not a GTR graph.

This graph with the root vertex as the only accepting vertex recognizes the

language L∗
012. The proof of the above lemma can be easily adapted to show

that this language is not in LGTR.

Theorem 3.53 LCF ( LGTR ( LCS.

Proof. The class of GTR graphs contains the class of pushdown graphs. The

traces of pushdown graphs are exactly the context free languages [MS85].

Therefore, LCF ⊆ LGTR.

The language {w ∈ {0, 1, 2}∗ | |w|0 = |w|1 = |w|2} is not in LCF but in

LGTR as shown in Example 3.47.

If a language L is in LGTR, then it can be accepted by a nondeterministic

linear space bounded Turing machine that simulates the rewriting system

and then checks if the resulting tree is accepting. Since the context sensi-

tive languages are exactly the languages accepted by nondeterministic linear

space bounded Turing machines, we get LGTR ⊆ LCS.

The language L012 is context sensitive but not in LGTR (Lemma 3.52).

2

3.4.2 Closure Properties

We can use the results from the previous section to show that LGTR is not

closed under all of the Boolean operations. In fact, this class of languages

is only closed under union.

Theorem 3.54 The class LGTR of languages is closed under union.

Proof. Let R = (A, Σ, R, tin) and R′ = (A′, Σ, R′, t′in) be ground tree rewrit-

ing systems and T ⊆ TA, T ′ ⊂ TA′ . We construct a GTRS R̂ = (Â, Σ, R̂, t̂in)

and a set T̂ ⊆ TÂ such that L(R̂, T̂ ) = L(R, T ) ∪ L(R′, T ′). By renaming

the symbols from A′ and adapting R′ we can assume that A and A′ are
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disjoint. Let ⊥ be a symbol of rank 0 that is neither in A nor in A′. The

components of R̂ are Â = A ∪ A′ ∪ {⊥}, t̂in = ⊥, and

R̂ = R ∪ R′ ∪ {⊥
σ
↪→ t | t ∈ TA, tin

σ
−→
R

t} ∪ {⊥
σ
↪→ t′ | t′ ∈ TA′ , t′in

σ
−→
R′

t′}.

The set T̂ is defined as

T̂ =

{

T ∪ T ′ ∪ {⊥} if tin ∈ T or t′in ∈ T ′

T ∪ T ′ otherwise.

This construction corresponds to the usual construction for the union of two

nondeterministic finite automata and it is easy to verify that

t̂in
w
−−→
R̂

T̂ iff tin
w
−−→
R

T or t′in
w
−−→
R′

T ′

for each w ∈ Σ∗. 2

In Example 3.47 we have seen a language belonging to LGTR, and from

Lemma 3.52 we know a language not belonging to LGTR. We can use this to

show that LGTR is not closed under intersection. In fact, we can show the

stronger result that LGTR is not even closed under intersection with regular

languages.

Theorem 3.55 The class LGTR of languages is

(i) not closed under intersection with regular languages and

(ii) not closed under complement.

Proof. For (i) note that

L012 = {w ∈ {0, 1, 2}∗ | |w|0 = |w|1 = |w|2} ∩ 0∗1∗2∗.

So L012 is not in LGTR (Lemma 3.52) but can be written as an intersection

of a language from LGTR (see Example 3.47) and a regular language.

Since LGTR is closed under union and not under intersection it cannot

be closed under complement because

L1 ∩ L2 = Σ∗ \ ((Σ∗ \ L1) ∪ (Σ∗ \ L2))

for languages L1, L2 ⊆ Σ∗. 2
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Chapter 4

Model-Checking for RGTR

Graphs

In general, model-checking is the task of testing whether a given structure

satisfies a given property (cf. [Eme96]). The structure is taken from a fixed

class K of structures and the property is usually written in a specification

logic L. For a structure K from K and a formula ϕ from L we say that K

is a model of ϕ, written as K |= ϕ, if ϕ is true in K. The model-checking

problem for a class K of structures and a logic L is: “Given a structure K

from K and a formula ϕ from L, is K a model of ϕ?”

In temporal logics, like CTL, LTL, or CTL∗, (cf. [Eme90]) one can

specify reachability properties that talk about paths through the structure.

In this case an initial state sin of the structure is marked as the starting

point of these paths and the question is, does K with initial state sin satisfy

the property specified by ϕ, written as (K, sin) |= ϕ.

The goal of this chapter is to analyze the model-checking problem for

RGTR graphs and temporal logics, i.e., we fix the class of structures as the

class of RGTR graphs. The question is, what kind of temporal specification

logic L can we use such that the problem

(GR, tin) |= ϕ?

can be solved by an algorithm for each RGTRS R = (A, Σ, R, tin) and for

each formula ϕ from L.

To answer this question the basic reachability problems that can be ex-

pressed in temporal logic are introduced in Section 4.1 and are studied in

more detail in Sections 4.2 and 4.3: the decidable ones are discussed in Sec-

tion 4.2 whereas the other ones are shown to be undecidable in Section 4.3.

In Section 4.4 a logic with decidable model-checking problem is derived

85
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from the decidability results. This logic is a fragment of the computation

tree logic CTL∗ (cf. [Eme90]) and the undecidability results imply that this

fragment is in some sense a maximal fragment of CTL∗ with a decidable

model-checking problem for RGTR graphs.

In the verification of reactive systems two player games on graphs play

an important role to formally model the behavior and the interaction of the

system and the environment (cf. [Tho95]). In Section 4.5 we study this

aspect for GTR graphs by analyzing reachability games on GTR graphs.

We propose two different reachability games. The first one cover one of the

undecidable reachability problems from Section 4.3 as a special case. The

second one also turns out to be undecidable, a result that does not follow

from the results in Section 4.3 but the method of proof is similar.

The proofs in this chapter also show that for the problems under con-

sideration there is no difference between RGTR graphs and GTR graphs

because the decidability results are given for RGTR graphs and the unde-

cidability results are obtained for GTR graphs. So, from an algorithmic

point of view the two classes of GTR graphs and RGTR graphs have a rela-

tion similar to the one of pushdown graphs and prefix recognizable graphs.

4.1 Basic Reachability Problems

The elementary properties we analyze in this chapter and that can be ex-

pressed in a temporal logic like CTL∗ are the following:

One step reachability: Given an RGTRS R, a vertex t, and a set T of

vertices of GR, does there exist a successor of t that is in T?

Reachability: Given an RGTRS R, a vertex t, and a set T of vertices of

GR, does there exist a path from t to a vertex in T?

Constrained reachability: Given an RGTRS R, a vertex t, and sets

T1, T2 of vertices of GR, does there exist a path from t that remains

in T2 until it eventually reaches a vertex in T1?

Recurrence: Given an RGTRS R, a vertex t, and a set T of vertices of

GR, does there exist a path from t that infinitely often visits T?

All of these questions can also be posed in their “universal versions”. These

versions do not ask for the existence of a path but whether all paths have

the respective property:

Universal one step reachability: Given an RGTRS R, a vertex t, and

a set T of vertices of GR, are all successors of t in T?
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Problem Temporal Operator

one step reachability EX decidable

reachability EF decidable

constrained reachability EU undecidable

recurrence EGF decidable

universal one step reachability AX decidable

universal reachability AF undecidable

universal constrained reachability AU undecidable

universal recurrence AGF undecidable

Table 4.1: Overview of decidability results.

Universal reachability: Given an RGTRS R, a vertex t, and a set T of

vertices of GR, do all paths from t eventually reach a vertex in T?

Universal constrained reachability: Given an RGTRS R, a vertex t,

and sets T1, T2 of vertices of GR, do all paths from t remain in T2 until

they eventually reach a vertex from T1?

Universal recurrence: Given an RGTRS R, a vertex t, and a set T of

vertices of GR, do all infinite path from t infinitely often visit T?

For the sets of vertices used in the specification of the problems we use

regular sets of trees. This allows us to use finitely represented infinite sets,

which can serve as input for an algorithm.

One should note that the universal one step reachability can be expressed

as the negation of the one step reachability: all successors of t are in T if no

successor of t is in the complement of T . This relation is not valid for the

other problems.

Furthermore, it should be mentioned that (universal) reachability is a

special case of (universal) constrained reachability by setting the set T2 to

the set of all trees. The problem of universal reachability is shown to be un-

decidable in Section 4.3. Therefore, it is clear that the universal constrained

reachability is also undecidable.

Table 4.1 gives an overview of the results from the next two sections and

also lists for each problem the corresponding temporal operator in CTL∗

notation.
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4.2 Decidable Properties

This section discusses the decidable problems that are listed in Table 4.1.

The decidability results for one step reachability and reachability are not

new, and proofs similar to the ones here can be found in [CDG+97], Sec-

tion 3.2.5, in the context of closure properties of ground tree transducers.

One step reachability is a special case of concatenation of ground tree trans-

ducers and reachability corresponds to iteration of ground tree transducers.

The algorithm for solving the reachability problem is akin to the one

from [CDGV94] for solving the reachability problem of semi-monadic linear

rewrite systems.

The decidability proof of the recurrence problem appeared in [Löd02b]

for GTR graphs and is adapted here for RGTR graphs.

Before we go into details we explain the basic idea underlying the con-

structions for one step reachability and reachability. The crucial point in

both constructions is that an NTA can “simulate” rewriting rules by ε-

transitions as illustrated in Figure 4.1. Suppose we are given an RGTRS R

and an NTA A for the goal set, i.e., the set of vertices we want to reach.

The basic task in the reachability problems is to enable the automaton to

simulate the rewriting rules. For one step reachability exactly one rewriting

step and for reachability arbitrarily many. Consider the following situation:

• There is a rewriting rule Ti ↪→ T ′
i in R.

• There is a state q of the automaton that is reachable only via trees

from Ti.

• There are t ∈ TA and t′ ∈ T (A) with the following properties.

– t↓x
∗
−→
A

q, in particular t↓x ∈ Ti,

– (t′)↓x ∈ T ′
i , and (t′)↓x

∗
−→
A

p for some state p of A.

Since t↓x ∈ Ti and (t′)↓x ∈ T ′
i , we know that t −→

R
t′. This situation is

depicted in Figure 4.1. If we want A to also accept t, we can add an ε-

transition from q to p. Then the automaton can reduce t↓x to q as before,

use the ε-transition to jump to p, and thus “pretend” that he read (t′)↓x

instead of t↓x. This insertion of ε-transitions for simulating rewriting rules

is the basic operation that is used in two different variations to construct,

given an NTA A, automata for the sets {t ∈ TA | t −→
R

T (A)} and {t ∈ TA |

t
∗
−→
R

T (A)}.
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Figure 4.1: The basic idea for the reachability constructions. The ε-

transition is added to A to simulate the rewriting rule Ti ↪→ T ′
i .

4.2.1 One Step Reachability (EX)

In this subsection we prove that the one step rewriting relation of RGTRS

preserves regularity. Given an RGTRS R and an ε-NTA A we show how to

construct an ε-NTA ApreR accepting the set

preR(T (A)) := {t ∈ TA | t −→
R

T (A)}.

Informally, the construction works as follows. The ε-NTA ApreR guesses a

rule Ti
σ
↪→ T ′

i and a subtree t↓x ∈ Ti of the input tree such that t↓x can

be replaced by a tree from T ′
i yielding a tree from T (A). For this purpose,

ApreR contains for each left hand side Ti of a rule a copy of an automaton

accepting Ti. To simulate the rewriting step there are ε-transitions from the

final states of the Ai into a copy of A to the states that can be reached via

the trees from T ′
i . Once such an ε-transitions is used, ApreR proceeds in the

same way as A.

To ensure that ApreR really simulates one rewriting step but not more

than one, we introduce two copies of A. The 1-copy signals the simulation

of a rewriting step in the subtree, and the 0-copy signals that there was no

simulation.

Theorem 4.1 Let R = (A, Σ, R, tin) be an RGTRS and A = (Q, A, ∆, F ) be

an ε-NTA. One can construct an ε-NTA ApreR of size O(|R|+|A|) accepting

the set preR(T (A)).

Proof. Let A = (Ai)i∈[k] and R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m}, where

the sets Ti and T ′
i are accepted by NTAs Ai = (Qi, A, ∆i, Fi) and A′

i =
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(Q′
i, A, ∆′

i, F
′
i ) respectively. Let I = {1, . . . , m} and for each i ∈ I define

P ′
i = {q ∈ Q | ∃s ∈ T ′

i : s
∗
−→
A

q} the set of all states of A that are reachable

via a tree from T ′
i . Then ApreR = (Q′, A, ∆′, F ′) is defined as follows:

• Q′ = (Q × {0, 1}) ∪ ( ˙⋃
i∈IQi).

• F ′ = F × {1}.

• ∆′ =
(

˙⋃
i∈I∆i

)

∪ {(p, (q, 1)) | p ∈ Fi, q ∈ P ′
i} ∪ ∆′′ where ∆′′ con-

tains all the transitions of the form ((q1, l1), . . . , (qn, ln), a, (q, l)) with

(q1, . . . , qn, a, q) ∈ ∆ and l1, . . . , ln, l ∈ {0, 1} such that
∑n

j=1 lj ≤ 1

and l =
∑n

j=1 lj .

For the correctness first note that by the construction of ApreR we have

t[x/q]
∗
−→
A

q′ ⇔ t[x/(q, 1)]
∗

−−−−→
ApreR

(q′, 1) (?)

for all t ∈ TA, x ∈ Dt, and q, q′ ∈ Q.

preR(T (A)) ⊆ T (ApreR): Assume that t
σi−−→
R

T (A). Then there is x ∈ Dt

and s ∈ T ′
i such that t↓x ∈ Ti and t[x/s] ∈ T (A). Since s ∈ T ′

i

and t[x/s] ∈ T (A) there are q ∈ P ′
i and q′ ∈ F with s

∗
−→
A

q and

t[x/q]
∗
−→
A

q′. Since t↓x ∈ Ti there exists p ∈ Fi with t↓x
∗
−→
Ai

p. Then we

get t
∗

−−−−→
ApreR

t[x/p] −−−−→
ApreR

t[x/(q, 1)] by the definition of ∆′. With (?)

we obtain t[x/(q, 1)]
∗

−−−−→
ApreR

(q′, 1) and therefore t
∗

−−−−→
ApreR

(q′, 1) ∈ F ′.

T (ApreR) ⊆ preR(T (A)): Let t ∈ T (ApreR) and q′ ∈ F with t
∗

−−−−→
ApreR

(q′, 1).

By the construction of ApreR the states from Q × {1} can only be

reached via an ε-transition of the form (p, (q, 1)) with p ∈ Fi and

q ∈ P ′
i . So there are x ∈ Dt, i ∈ I, p ∈ Fi, and q ∈ P ′

i such that

t
∗

−−−−→
ApreR

t[x/p] −−−−→
ApreR

t[x/(q, 1)]
∗

−−−−→
ApreR

(q′, 1). By the definition of P ′
i

there exists s ∈ T ′
i with s

∗
−→
A

q. From (?) and t[x/(q, 1)]
∗

−−−−→
ApreR

(q′, 1)

we can conclude that t[x/q]
∗
−→
A

q′. Hence, we get t[x/s] ∈ T (A)

because of t[x/s]
∗
−→
A

t[x/q]
∗
−→
A

q′ ∈ F . From t
∗

−−−−→
ApreR

t[x/p], p ∈ Fi,

and the definition of ApreR we can conclude that t
∗
−→
Ai

t[x/p]. Thus,

t↓x ∈ Ti because Ai accepts t↓x. Therefore, t
σi−−→
R

t[x/s] ∈ T (A), i.e.,

t ∈ preR(T (A)). 2
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It is easy to see that the set

postR(T (A)) := {t ∈ TA | T (A) −→
R

t}

is regular, too. This directly follows from Theorem 4.1 and the equality

postR(T (A)) = preR−1(T (A)).

Corollary 4.2 Let R = (A, Σ, R, tin) be an RGTRS and A = (Q, A, ∆, F )

be an ε-NTA. One can construct an ε-NTA ApostR of size O(|R| + |A|)

accepting the set postR(T (A)).

4.2.2 Reachability (EF)

In this subsection we prove that the transitive closure of the rewriting rela-

tion of RGTRS preserves regularity. Given an RGTRS R and an ε-NTA A,

we show how to construct an ε-NTA Apre∗R
accepting the set

pre∗R(T (A)) := {t ∈ TA | t
∗
−→
R

T (A)}.

The algorithm for computing Apre∗R
is shown in Figure 4.2. The idea is

similar to the one from the previous section. The automaton Apre∗R
contains

a copy of the automata Ai, which are accepting the sets from the left hand

side of the rewriting rules, and a copy of the automaton A. In this case we

do not need two copies of A, as in the case of one step reachability, because

we do not have to control the number of rewriting steps that are simulated.

If q is a final state of one of the Ai accepting the left hand side of the rule

Ti
σ
↪→ T ′

i and p is a state of Apre∗R
that can be reached via a tree from T ′

i ,

then an ε-transition is added between q and p to enable Apre∗R
to simulate

this rewriting rule.

Since the state set of the automaton stays fixed during the construction

only finitely many transitions can be added. Therefore, the algorithm al-

ways terminates. The correctness of the construction follows from the next

lemmas.

Lemma 4.3 For each automaton Bj computed in the algorithm from Fig-

ure 4.2, each t ∈ TA, and each q ∈ Fi for i ∈ {1, . . . , m} the following holds:

If t
∗
−→
Bj

q, then there exists s ∈ Ti with t
∗
−→
R

s.

Proof. The proof goes by induction on j. The NTA B0 is the union of A

and all the Ai, where the state sets are assumed to be pairwise disjoint.

Therefore, if t
∗
−→
B0

q for some q ∈ Fi, then t
∗
−→
Ai

q. Hence, t ∈ T (Ai) = Ti
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Algorithm: REACH

INPUT: RGTRS R = (A, Σ, R, tin) with R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m},

NTAs Ai = (Qi, A, ∆i, Fi) with T (Ai) = Ti for i = 1, . . . , m

NTAs A′
i with T (A′

i) = T ′
i for i = 1, . . . , m

ε-NTA A = (Q, A, ∆, F )

1. B0 = (P, A, ∆B
0 , F ) with P := Q∪̇( ˙⋃m

i=1Qi) and ∆B
0 := ∆∪̇( ˙⋃m

i=1∆i)

2. j := 0

3. while ∃Ti ↪→ T ′
i ∈ R, p ∈ P with T ′

i
∗
−→
Bj

p and (Fi × {p}) 6⊆ ∆B
j do

4. ∆B
j+1 := ∆B

j ∪ (Fi × {p})

5. Bj+1 := (P, A, ∆B
j+1, F )

6. j := j + 1

7. end

OUTPUT: ε-NTA Apre∗R
:= Bj

Figure 4.2: An algorithm to compute an automaton for pre∗R(T (A))

and the claim holds for j = 0 with s = t. In the induction step we use a

second induction on the number l of transitions from ∆B
j \ ∆B

j−1 used in a

shortest derivation of t
∗
−→
Bj

q. If l = 0, then t
∗

−−−→
Bj−1

q and we are done by

induction on j. Otherwise let (qn, p) ∈ ∆B
j \ ∆B

j−1 with qn ∈ Fn and x ∈ Dt

such that

t
∗

−−−→
Bj−1

t[x/qn] −→
Bj

t[x/p]
∗
−→
Bj

q. (?)

Then t↓x
∗

−−−→
Bj−1

qn and therefore t↓x
∗
−→
R

sn with sn ∈ Tn by induction on

j. Since the transition (qn, p) was added to Bj−1 there is s′n ∈ T ′
n with

s′n
∗

−−−→
Bj−1

p. Together with (?) we obtain

t[x/s′n]
∗

−−−→
Bj−1

t[x/p]
∗
−→
Bj

q.

By induction on l there exists s ∈ Ti with t[x/s′n]
∗
−→
R

s. Combining this

with t↓x
∗
−→
R

sn, sn ∈ Tn, and s′n ∈ T ′
n we get

t
∗
−→
R

t[x/sn] −→
R

t[x/s′n]
∗
−→
R

s. 2
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Lemma 4.4 For each Bj computed in the algorithm from Figure 4.2, the

inclusion T (Bj) ⊆ pre∗R(T (A)) holds.

Proof. The proof goes by induction on j, similar to the one of Lemma 4.3.

For j = 0 the claim follows from T (B0) = T (A) ⊆ pre∗R(T (A)).

For j ≥ 1 let t ∈ TA and q′ ∈ F with t
∗
−→
Bj

q′. As in the previous lemma

we use a second induction on the number l of transitions from ∆B
j \ ∆B

j−1

used in a shortest derivation of t
∗
−→
Bj

q′. If l = 0, then t
∗

−−−→
Bj−1

q′ and we are

done by induction on j. Otherwise, let (q, p) ∈ ∆B
j \ ∆B

j−1 with q ∈ Fi and

x ∈ Dt such that

t
∗

−−−→
Bj−1

t[x/q] −→
Bj

t[x/p]
∗
−→
Bj

q′. (?)

First of all, since q ∈ Fi and t↓x
∗

−−−→
Bj−1

q, we know from Lemma 4.3 that

there is s ∈ Ti such that t↓x
∗
−→
R

s. Furthermore, since the transition (q, p)

was added to Bj−1, there is s′ ∈ T ′
i with s′

∗
−−−→
Bj−1

p. Together with (?) we

obtain

t[x/s′]
∗

−−−→
Bj−1

t[x/p]
∗
−→
Bj

q′

and therefore t[x/s′] ∈ pre∗R(T (A)) by induction on l. From t↓x
∗
−→
R

s, s ∈ Ti,

and s′ ∈ T ′
i we get t

∗
−→
R

t[x/s] −→
R

t[x/s′] and hence t ∈ pre∗R(T (A)). 2

Lemma 4.5 For the ε-NTA Apre∗R
, computed in the algorithm from Fig-

ure 4.2, the inclusion pre∗R(T (A)) ⊆ T (Apre∗R
) holds.

Proof. First note that T (Bj−1) ⊆ T (Bj). Let t ∈ pre∗R(T (A)) and let l be

the number of rewritings used in a shortest derivation of t
∗
−→
R

T (A). If

l = 0, then t ∈ T (A) = T (B0) ⊆ T (Apre∗R
). If l ≥ 1, then there exist x ∈ Dt,

i ∈ {1, . . . , m}, and s ∈ T ′
i such that t↓x ∈ Ti and t[x/s]

∗
−→
R

T (A) with l− 1

steps. By induction t[x/s] ∈ T (Apre∗R
). Let p ∈ P with

t[x/s]
∗

−−−−→
Apre∗

R

t[x/p]
∗

−−−−→
Apre∗

R

F.

Since s ∈ T ′
i and s

∗
−−−−→
Apre∗

R

p we know that Fi × {p} ⊆ ∆′ where ∆′ is the

transition relation of Apre∗R
. Otherwise the algorithm would have made one
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more step to insert Fi×{p} into the transition relation. Since t↓x ∈ Ti there

is q ∈ Fi with t↓x
∗
−→
Ai

q. Then t is accepted by Apre∗R
as follows:

t
∗

−−−−→
Apre∗

R

t[x/q] −−−−→
Apre∗

R

t[x/p]
∗

−−−−→
Apre∗

R

F.

2

The results from the previous lemmas are summarized in the following the-

orem.

Theorem 4.6 Let R = (A, Σ, R, tin) be an RGTRS and A = (Q, A, ∆, F )

be an ε-NTA. Then Apre∗R
is an ε-NTA of size O(|R| · (|A| + |R|)) with

T (Apre∗R
) = pre∗R(T (A)).

Proof. The two inclusions of the claim T (Apre∗R
) = pre∗R(T (A)) follow from

Lemma 4.4 and Lemma 4.5. For the size of the automaton note that |B0| =

|A| +
∑m

i=1 |Ai| ∈ O(|A| + |R|). The algorithm adds ε-transitions of the

form (q, p) with q ∈
⋃m

i=1 Fi and p ∈ P to the automaton. There are

(
∑m

i=1 |Fi|) · |P | transitions of this form. Clearly, (
∑m

i=1 |Fi|) ≤ |R| and

|P | ≤ |A| + |R|. In total, we get |Apre∗R
| ∈ O(|R| · (|A| + |R|)). 2

As for one step reachability one can also apply the algorithm REACH

to the inverse rewriting system to obtain an automaton Apost∗R
for the set

post∗R(T (A)) = {t ∈ TA | T (A)
∗
−→
R

t}.

Corollary 4.7 Let R = (A, Σ, R, tin) be an RGTRS and A = (Q, A, ∆, F )

be an ε-NTA. Then Apost∗R
:= REACH(R−1,A) is an ε-NTA of size O(|R| ·

(|A| + |R|)) with T (Apost∗R
) = post∗R(T (A)).

The main problem for the complexity of REACH is the test in the while-

loop. Before each iteration one has to check whether there exist i and p with

T ′
i

∗
−→
Bj

p. In a naive implementation all such pairs i, p would be computed in

each iteration resulting in a rather bad time complexity. In Appendix A.2

we show how to avoid this problem and propose an implementation with the

following property.

Theorem 4.8 Algorithm REACH(R,A) runs in time O(|R|2 · (|A|+ |R|)).

In the next subsection we study the recurrence problem. For the algorithm

to solve that problem we have to deal with iterated reachability problems

of the form T (A)
∗
−→
R

T (B)
∗
−→
R

T (C). More precisely, we have to compute
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the set of all tuples (p, q, r), where p, q, r are states of A, B, C, such that

T (A(p))
∗
−→
R

T (B(q))
∗
−→
R

T (C(r)). It is possible to compute for each such

tuple the automaton A(p)× (B(q)×C(r)pre∗R
)pre∗R

and test it for emptiness.

As this method is inefficient, we develop a better one in the sequel.

The following lemma can be used to avoid computations for all tuples

(p, q, r) of states by capturing all the tuples with the computation of one

automaton.

Lemma 4.9 t ∈ T (Apre∗R
(q)) iff t

∗
−→
R

T (A(q)).

Proof. Since the algorithm REACH is independent of the set F of final

states of A we get Apre∗R
(q) = (A(q))pre∗R

. 2

Using the observation T (A(p))
∗
−→
R

T (B(q))
∗
−→
R

T (C(r)) iff there is a tree

t ∈ T (B(q)) such that t ∈ post∗R(T (A(p))) and t ∈ pre∗R(T (C(r))), nested

computations of pre∗R can be avoided. This can be combined with the pre-

vious lemma as follows.

Lemma 4.10 Let p, q, r be states of ε-NTAs A, B, C, respectively. Then

(p, q, r) is reachable in Apost∗R
× B × Cpre∗R

iff T (A(p))
∗
−→
R

T (B(q))
∗
−→
R

T (C(r)).

Proof. The state (p, q, r) is reachable in Apost∗R
×B×Cpre∗R

iff there is t2 ∈ TA

such that t2 ∈ T (Apost∗R
(p)), t2 ∈ T (B(q)), and t2 ∈ T (Cpre∗R

(r)). According

to Lemma 4.9, this holds iff there are t1 ∈ T (A(q)) and t3 ∈ T (C(r)) such

that t1
∗
−→
R

t2
∗
−→
R

t3. 2

Lemma 4.11 Given ε-NTAs A, B, C one can compute the set of all (p, q, r)

with T (A(p))
∗
−→
R

T (B(q))
∗
−→
R

T (C(r)) in time O(|R|2|B|(|A| + |R|)(|C| +

|R|)).

Proof. By Lemma 4.10 it is sufficient to compute the set of reachable states

in D = Apost∗R
× B × Cpre∗R

, which can be done in linear time in the size of

D (Proposition 2.14). The size of D is

|D| = |Apost∗R
| · |B| · |Cpre∗R

| ∈ O(|R| · (|A| + |R|) · |B| · |R| · (|C| + |R|)|).

Constructing Apost∗R
takes time O(|R|2(|A| + |R|)) and constructing Cpre∗R

takes time O(|R|2(|C|+|R|)). Therefore, the total time is in O(|R|2|B|(|A|+

|R|)(|C| + |R|)). 2
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4.2.3 Recurrence (EGF)

In this subsection we develop an algorithm to compute for an RGTRS R

and an ε-NTA A the set of all trees t with t
ω
−→
R

T (A). Since RGTR graphs

are infinite, in general, a path that visits a set T (A) of vertices infinitely

often either visits a single vertex from this set infinitely often, or it visits

infinitely many different vertices from T (A). To distinguish these two cases

we make the following definition for an RGTRS R = (A, Σ, R, tin), t ∈ TA,

and an ε-NTA A = (Q, A, ∆, F ):

• t
ω
−→
R

T (A) with loop if there is t′ ∈ T (A) such that t
ω
−→
R

t′.

• t
ω
−→
R

T (A) without loop if t
ω
−→
R

T (A) and not t
ω
−→
R

T (A) with loop.

For the remainder of this section we fix an ε-NTA A = (Q, A, ∆, F ) and an

RGTRS R = (A, Σ, R, tin) with R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m}, where the

sets Ti, T
′
i are accepted by NTAs Ai = (Qi, A, ∆i, Fi) and A′

i = (Q′
i, A, ∆′

i, F
′
i ),

respectively.

To obtain the algorithm we proceed in two steps. In the first step both

cases (recurrence with and without loop) are reduced to instances of the

reachability problem. This works as follows: Assume that for some i ∈

{1, . . . , m} and q ∈ Q we have T ′
i

ω
−→
R

T (A(q)). Let t ∈ TA and assume that

a tree s is reachable from t in R such that there is a location x ∈ Ds with

s↓x ∈ Ti and s[x/q]
∗
−→
A

F . Then we can replace this subtree of s at x by

an appropriate tree t′ ∈ T ′
i with t′

ω
−→
R

T (A(q)). Since s[x/q]
∗
−→
A

F we get

t
ω
−→
R

T (A).

On the other hand, we also show the converse, i.e., if t ∈ TA with t
ω
−→
R

T (A), then there are i ∈ {1, . . . , m} and q ∈ Q with T ′
i

ω
−→
R

T (A(q)), and

from t a tree s with the above properties is reachable.

Hence, we have reduced the problem to a reachability problem. The

difficulty is that we used the condition T ′
i

ω
−→
R

T (A(q)) in the definition

of the set of trees that has to be reached. This problem is shown to be

decidable in the second step.

Step 1: Reduction to Reachability

We start with a technical lemma using that substitutions that are not “syn-

chronized” via a substitution at a common ancestor are independent.
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Lemma 4.12 Let t, t1, t2, . . . , tn+1 ∈ TA such that t
∗
−→
R

t1, and t1 −→
R

t2 −→
R

· · · −→
R

tn+1 with derivation [x1/s1], . . . , [xn/sn]. If j ∈ {1, . . . , n} is such

that xl 6@ xj for all l ∈ {j, . . . , n}, then

(i) t
∗
−→
R

tn+1[xj/t
↓xj

j ] and

(ii) t
↓xj

j −→
R

t
↓xj

j+1 −→
R

· · · −→
R

t
↓xj

n+1.

Proof. The idea for (i) is to omit all substitutions [xl/sl] with xj v xl and

l ≥ j, whereas for (ii) we use exactly these substitutions.

The formal proof is an induction on n. For n = 0 the claim obviously

holds. For n ≥ 1 let j ∈ {1, . . . , n} be such that xl 6@ xj for all l ∈ {j, . . . , n}.

In the case j = n we have tn+1[xn/t↓xn
n ] = tn because only the subtree

t↓xn
n is modified in the substitution leading from tn to tn+1, and therefore

(i) holds. For (ii) in the case j = n note that t↓xn
n+1 = sn and t↓xn

n −→
R

sn.

If j ≤ n − 1, then by induction t
∗
−→
R

tn[xj/t
↓xj

j ]. If xj v xn, then

tn+1[xj/t
↓xj

j ] = tn[xj/t
↓xj

j ]. Otherwise, xj and xn are incomparable, and

therefore tn+1[xj/t
↓xj

j ] = (tn[xj/t
↓xj

j ])[xn/sn]. Thus, t
∗
−→
R

tn[xj/t
↓xj

j ] −→
R

(tn[xj/t
↓xj

j ])[xn/sn].

For (ii) the induction hypothesis is t
↓xj

j
∗
−→
R

t
↓xj
n . If xj v xn, then we can

apply the substitution [x−1
j xn/sn] to t

↓xj
n to reach t

↓xj

n+1. Otherwise, we have

t
↓xj

n+1 = t
↓xj
n . 2

For the reduction to the reachability problem we define the following two

sets:

Rec1(R,A) =

{

t ∈ TA

∣
∣
∣
∣
∣

∃x ∈ Dt, q ∈ Q, i ∈ {1, . . . , m} : t↓x ∈ Ti,

T ′
i

∗
−→
R

T (A(q))
∗
−→
R

Ti, t[x/q]
∗
−→
A

F

}

,

Rec2(R,A) =

{

t ∈ TA

∣
∣
∣
∣
∣

∃x ∈ Dt, q ∈ Q, i ∈ {1, . . . , m} : t↓x ∈ Ti,

T ′
i

ω
−→
R

T (A(q)) without loop , t[x/q]
∗
−→
A

F

}

.

The following lemma shows that it is sufficient to construct an ε-NTA for the

set Rec1(R,A)∪Rec2(R,A) because the reachability algorithm (Figure 4.2)

applied to this ε-NTA yields an automaton for the set {t ∈ TA | t
ω
−→
R

T (A)}.

The conditions for Rec1(R,A) can be checked by an ε-NTA since the

problem T ′
i

∗
−→
R

T (A(q))
∗
−→
R

Ti is decidable for each pair of i ∈ {1, . . . , m}

and q ∈ Q (by Lemma 4.11). Similarly, we can construct an automaton for

Rec2(R,A) if we can decide the problem T ′
i

ω
−→
R

T (A(q)) without loop for

each pair of i ∈ {1, . . . , m} and q ∈ Q.
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Lemma 4.13 Let t ∈ TA.

(i) t
ω
−→
R

T (A) with loop iff t ∈ pre∗R(Rec1(R,A)).

(ii) t
ω
−→
R

T (A) without loop iff t ∈ pre∗R(Rec2(R,A)) \ pre∗R(Rec1(R,A)).

Proof.

(i) “⇒”: If t
ω
−→
R

T (A) with loop, then there are t0, . . . , tn ∈ TA with

n ∈ N such that tk ∈ T (A) for some k ∈ {0, . . . , n}, t
∗
−→
R

t0, and

t0 −→
R

t1 −→
R

· · · −→
R

tn −→
R

t0

with derivation [x0/s0], . . . , [xn/sn]. We choose j ∈ {0, . . . , n} such

that xj is a minimal location from {x0, . . . , xn}. This minimality

implies that xl 6@ xj for all l ∈ {0, . . . , n}, and xj ∈ Dtl for all

l ∈ {0, . . . , n} because xj ∈ Dtj and no substitutions are made above

xj . Let i ∈ {1, . . . , m} be such that t
↓xj

j ∈ Ti and sj ∈ T ′
i , and let

q ∈ Q with tk
∗
−→
A

tk[xj/q]
∗
−→
A

F . Define the tree t′ = tk[xj/t
↓xj

j ]. By

applying Lemma 4.12 (i) to the sequence t0 −→
R

· · · −→
R

tj −→
R

· · · −→
R

tk

we know t
∗
−→
R

t′.

To show that t′ ∈ Rec1(R,A), and hence t in pre∗R(Rec1(R,A)), first

note that, by the definition of t′ and the properties of tk, we have

already established (t′)↓xj ∈ Ti and t′[xj/q]
∗
−→
A

F . Furthermore,

since xl 6@ xj for all l ∈ {0, . . . , n}, we know that t
↓xj

j −→
R

t
↓xj

j+1 −→
R

· · · −→
R

t
↓xj

k −→
R

· · · −→
R

t
↓xj

j by Lemma 4.12 (ii). Hence, we get

T ′
i

∗
−→
R

T (A(q))
∗
−→
R

Ti because t
↓xj

j+1 = sj ∈ T ′
i , t

↓xj

k ∈ T (A(q)), and

t
↓xj

j ∈ Ti. Therefore, all conditions are satisfied and t′ ∈ Rec1(R,A).

“⇐”: Assume that t
∗
−→
R

t′ ∈ Rec1(R,A) and let x ∈ Dt′ , q ∈ Q,

i ∈ {1, . . . , m} be such that (t′)↓x ∈ Ti, T ′
i

∗
−→
R

T (A(q))
∗
−→
R

Ti, and

t′[x/q]
∗
−→
A

F . Furthermore, let s ∈ Ti, s′ ∈ T ′
i , and s′′ ∈ T (A(q)) be

such that s′
∗
−→
R

s′′
∗
−→
R

s. From t′[x/q]
∗
−→
A

F and s′′
∗
−→
A

q we get

t[x/s′′]
∗
−→
A

F . Then t
ω
−→
R

T (A) as follows:

t
∗
−→
R

t′ −→
R

t′[x/s′]
∗
−→
R

t′[x/s′′]
︸ ︷︷ ︸

∈T (A)

∗
−→
R

t′[x/s] −→
R

t′[x/s′].
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(ii) “⇒”: For t0
ω
−→
R

T (A) without loop let t1, t2, . . . be an infinite sequence

of trees such that

t0 −→
R

t1 −→
R

t2 · · ·

with derivation [x0/s0], [x1/s1], . . . and tl ∈ T (A) for infinitely many

l ∈ N. Among the minimal locations from the derivation there must be

one location x such that infinitely many substitutions are made below

x. Therefore, we can choose j ∈ N such that xl 6@ xj for all l > j

and xj v xl for infinitely many l. Note that xl 6@ xj for all l > j

implies that xj ∈ Dtl for all l > j. Since infinitely many trees along

the sequence are accepted by A and since A has finitely many states,

there is q ∈ Q such that tl
∗
−→
A

tl[xj/q]
∗
−→
A

F for infinitely many l.

Let i ∈ {1, . . . , m} with t
↓xj

j ∈ Ti and sj ∈ T ′
i , and let k > j be

such that tk
∗
−→
A

tk[xj/q]
∗
−→
A

F . As in the proof of (i) we define

t′ = tk[xj/t
↓xj

j ] and get t0
∗
−→
R

t′ (Lemma 4.12 (i)). Furthermore, we

have (t′)↓xj = t
↓xj

j ∈ Ti and t′[xj/q] = tk[xj/q]
∗
−→
A

F .

It remains to show that T ′
i

ω
−→
R

T (A(q)) without loop. Since sj ∈ T ′
i ,

xj v xl for infinitely many l, and tl
∗
−→
A

tl[xj/q]
∗
−→
A

F for infinitely

many l, we know that T ′
i

ω
−→
R

T (A(q)) because sj = t
↓xj

j+1
∗
−→
R

t
↓xj

l1

∗
−→
R

t
↓xj

l2

∗
−→
R

· · · by Lemma 4.12 (ii) for tl1 , tl2 , . . . ∈ T (A(q)). Assume that

T ′
i

ω
−→
R

T (A(q)) with loop. Then there is s′ ∈ T ′
i and s′′ ∈ T (A(q))

such that s′
ω
−→
R

s′′. Hence, t′[xj/s′]
ω
−→
R

t′[xj/s′′] with loop. From

s′′ ∈ T (A(q)) and t′[xj/q]
∗
−→
A

F we get t′[xj/s′′] ∈ T (A) and thus

t′[xj/s′]
ω
−→
R

T (A) with loop. From t0
∗
−→
R

t′, (t′)↓xj ∈ Ti, and s′ ∈ T ′
i

we get t0
∗
−→
R

t′[xj/s′] and therefore t0
ω
−→
R

T (A) with loop, contradict-

ing the assumption that t0
ω
−→
R

T (A) without loop.

“⇐”: If t ∈ pre∗R(Rec2(R,A))\pre∗R(Rec1(R,A)), then we know from

(i) that not t
ω
−→
R

T (A) with loop. Let t′ ∈ (Rec2(R,A) \ Rec1(R,A))

with t
∗
−→
R

t′. Let x ∈ Dt′ , q ∈ Q, i ∈ {1, . . . , m}, and s′ ∈ T ′
i be such

that (t′)↓x ∈ Ti, s′
ω
−→
R

T (A(q)) without loop, and t′[x/q]
∗
−→
A

F . Then

obviously t′[x/s′]
ω
−→
R

T (A) and therefore t
ω
−→
R

T (A) without loop.

2
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A simple consequence of the previous lemma is

Lemma 4.14 t
ω
−→
R

T (A) ⇔ t ∈ pre∗R(Rec1(R,A) ∪ Rec2(R,A)).

In the sequel we develop a procedure to decide for i ∈ {1, . . . , m} and

q ∈ Q if T ′
i

ω
−→
R

T (A(q)) without loop. This, in turn, enables us to construct

an ε-NTA for Rec1(R,A) ∪ Rec2(R,A).

Step 2: Recurrence without loop

We start by a general analysis of sequences of trees that infinitely often visit

a regular set of trees. So, in the beginning we detach from the more specific

question “T ′
i

ω
−→
R

T (A(q)) without loop” and study general sequences of

trees starting from some tree t and visiting some regular set T (A) infinitely

often without loop. The goal is to find a normal form for such sequences.

Later, we use this normal form to solve our original problem “T ′
i

ω
−→
R

T (A(q))

without loop”. The normal form is obtained from a given sequence of trees

by removing unnecessary rewritings, where unnecessary means that these

rewritings are not essential for visiting the set T (A) infinitely often. A first

tool is the limit of a sequence of trees. It contains all the locations of the

trees in this sequence that eventually stay fixed.

To simplify notation, a path π always means an R-path π for the RGTRS

fixed at the beginning of this subsection. Let [x0/s0], [x1/s1], . . . be the

derivation of an infinite path π starting in a tree t ∈ TA. A location x ∈ N∗

is called stable on π if it is present in all the trees from π, and if it is never

involved in any of the substitutions. More formally, x ∈ N∗ is stable on π if

x ∈ Dπ(i) and xi 6v x for all i ∈ N. Recall that π(i) denotes the ith vertex

on the path π. Since the vertices of an R-path are trees, π(i) denotes the

ith tree on π.

The limit lim(π) of π is defined as

lim(π) = {x ∈ N∗ | ∃i ∈ N : x stable on π[i,∞)}.

Note that lim(π) is prefix closed since x stable on π[i,∞) for some i ∈ N
implies, by the definition of stable, that each prefix y of x is stable on π[i,∞).

Furthermore, note that x stable on π[i,∞) for some i ∈ N also implies that

x is stable on π[j,∞) for all j > i. We will use this fact implicitly in several

proofs.

For a location x /∈ lim(π) there are two possibilities: either x is involved

in infinitely many substitutions or x only occurs in finitely many trees on π.

We are interested in paths where the latter case holds for all locations that
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are not in the limit of the paths. An infinite path π is called stable if for all

x /∈ lim(π) there exists an i ∈ N such that x /∈ Dπ(j) for all j ≥ i. Informally

speaking, π is stable if there is no location that is involved in infinitely many

substitutions on π. A first observation is that π : t
ω
−→
R

T (A) without loop

implies that π is stable.

Lemma 4.15 If t
ω
−→
R

T (A) without loop and if π is an infinite path with

π : t
ω
−→
R

T (A), then π is stable.

Proof. Let π = t0, t1, t2, . . . be an infinite path with π : t
ω
−→
R

T (A), and

let [x0/s0], [x1/s1], . . . be the derivation of π. Let X be the set of locations

that are minimal among those locations that occur infinitely often in the

sequence x0, x1, . . . of locations from the derivation. If X is empty, then

π is stable because no location is involved in infinitely many substitutions.

In the case that X is not empty we show that t
ω
−→
R

T (A) with loop. By

the assumption that t
ω
−→
R

T (A) without loop this implies that X must be

empty and therefore π is stable.

We start with the case |X| = 1 and then show how reduce the general

case to X being a singleton set. So assume that X = {x}. By the minimality

of x there exists an index k ∈ N such that xj 6@ x for all j ≥ k. Since x

equals infinitely many of the xj there must be i ∈ {1, . . . , m} such that

x = xj , t↓xj ∈ Ti and sj ∈ T ′
i for infinitely many j. Then we can find j, j1, j2

with k ≤ j1 < j < j2 such that x = xj1 = xj2 , t↓xj1
, t↓xj2

∈ Ti, sj1 , sj2 ∈ T ′
i ,

and tj ∈ T (A).

From Lemma 4.12 (i) we know that t = t0
∗
−→
R

tj [x/sj1 ], and from

Lemma 4.12 (ii) we know that sj1
∗
−→
R

t↓xj
∗
−→
R

t↓xj2
. Furthermore, t↓xj2

−→
R

sj1

because t↓xj2
∈ Ti and sj1 ∈ T ′

i . Therefore, we get

t
∗
−→
R

tj [x/sj1 ]
∗
−→
R

tj [x/t↓xj ]
∗
−→
R

tj [x/t↓xj2
] −→

R
tj [x/sj1 ].

Since tj [x/t↓xj ] = tj ∈ T (A) we get t
ω
−→
R

T (A) with loop.

If X contains more than one location, we choose some x ∈ X. Since x

is minimal among the locations occurring infinitely often in the derivation,

there must be a suffix of π such that x is in the domain of all trees on this

suffix of π. Therefore, there exists q ∈ Q such that tj
∗
−→
A

tj [x/q]
∗
−→
A

F

for infinitely many j ∈ N. Again by the minimality of x, there is k ∈ N
such that xj 6@ x for all j ≥ k. We choose k such that tk

∗
−→
A

tk[x/q]
∗
−→
A

F .

Then we remove from the derivation of π all substitutions [xj/sj ] with j ≥ k
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such that x and xj are not comparable w.r.t. v. Since there is no xj with

j ≥ k such that xj v x (by the choice of k) the sequence of substitutions

obtained like this is a derivation of a path π′. This path π′ has the following

properties:

• It is still infinite because there are infinitely many xj with x = xj .

• By the construction of π′, the choice of k, and the choice of q we

have t[x/q]
∗
−→
A

F for each tree t on the suffix π′[k,∞). Since all

substitutions [xj/sj ] with j ≥ k and x v xj remain in the derivation

of π′ we know that (t′)↓x
∗
−→
A

q for infinitely many trees t′ on π′[k,∞).

All these trees t′ are accepted by A and thus π′ : t
ω
−→
R

T (A).

• Since all substitutions [xj/sj ] with j ≥ k are removed if x and xj are

incomparable, the only minimal location that appears infinitely often

in the derivation of π′ is x.

Hence, π′ is an infinite path with π′ : t
ω
−→
R

T (A). The set of minimal

locations that appear infinitely often in the derivation of π′ has cardinality

one. Therefore, t
ω
−→
R

T (A) with loop as we have seen above. 2

If an infinite path π is stable, then there is no location involved in in-

finitely many substitutions. Hence, the domain of the trees on π must grow.

Therefore, from the previous lemma, we can conclude that the trees on paths

π with π : t
ω
−→
R

T (A) without loop grow indefinitely. To develop an algo-

rithm that can check whether such a path exists, we show that if such a path

exists, then there also exists a path π with the following “nice” properties.

• The trees on π only “grow in one direction”, i.e., there is no indefinite

growth in independent parts of the trees.

• For infinitely many trees on π there are accepting runs of A. These

runs do not differ too much, i.e., there are infinitely many trees on π

such that there are accepting runs on these trees that agree on growing

initial segments of the trees.

These properties are formalized with the next definitions and the subsequent

lemma.

A branch β of a prefix closed set X ⊆ N∗ is a maximal subset of X that

is linearly ordered by v. The initial segment β↑x of β up to a location x ∈ β

is the set

β↑x = {y ∈ β | y @ x}.
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For x ∈ β we denote by succβ(x) the successor of x on β. With this definition

we get the equality

β↑succβ(x) = β↑x ∪ {x}.

The following lemma shows that the desired properties of π, which are

described above, can always be guaranteed.

Lemma 4.16 If t
ω
−→
R

T (A) without loop, then there is an infinite path π

with π : t
ω
−→
R

T (A) without loop and the following properties:

(i) lim(π) has exactly one infinite branch β.

(ii) For the infinite branch β from (i) there is a mapping ρβ : β → Q with

the following property. For each x ∈ β there are infinitely many i ∈ N
such that there is an accepting run ρi of A on π(i) that agrees with ρβ

on the initial segment β↑x of β.

Proof. Let π′ be an infinite path with π′ : t
ω
−→
R

T (A) and derivation

[x0/s0], [x1/s1], . . .

From Lemma 4.15 we can conclude that π′ is stable and that lim(π′) is

infinite. Since lim(π′) is finitely branching we can choose an infinite branch

β of lim(π′) by König’s Lemma. We first define the mapping ρβ and then

remove all the rewritings from π′ that might generate other infinite branches.

To define ρβ we again make use of König’s Lemma by defining a graph

with vertices of the form (τ, x) with location x ∈ β and partial mapping τ

defined on β↑x. Formally, (τ, x) is a vertex of this graph if τ : β → Q is

defined on all y ∈ β↑x and undefined on all y ∈ β \ β↑x, and if there are

infinitely many trees on π′ that are accepted by A with an accepting run

that agrees with τ on β↑x. Note that (τ, ε), where τ is the mapping that

is undefined everywhere, is a vertex of the graph because β↑ε is empty and

therefore every accepting run agrees with τ on β↑ε. Furthermore, this graph

has infinitely many vertices because for each x the initial segment β↑x is

finite. Thus, among the infinitely many accepting runs on trees on π′, there

must be infinitely many that agree on β↑x, defining a mapping τ such that

(τ, x) is a vertex of the graph.

We continue by defining the edge relation of the graph. Between two

vertices (τ1, x1) and (τ2, x2) there is an edge if x2 = succβ(x1), and τ1(y) =

τ2(y) for all y ∈ β↑x1 .

This graph is an infinite tree (in the graph theoretic sense) with root

(τ, ε). The degree of this graph is bounded by |Q|. Therefore, by König’s

Lemma, there is an infinite path through this graph. The mappings on this
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path agree on growing initial segments of β. In the limit this path defines

the mapping ρβ .

To obtain π from π′, we stop rewriting subtrees that “leave” β above

a location x ∈ β as soon as x becomes stable and a tree is reached that is

accepted by A with a run that agrees with ρβ on an initial segment of β

including x.

More formally, this looks as follows. For y ∈ N∗ let β(y) be the maximal

prefix of y that is in β. For x ∈ β let jx ∈ N be minimal such that x is stable

on π′[jx,∞) and π′(jx) is accepted by A with a run that agrees with ρβ on

β↑succβ(x). To see that such jx exists first note that there exists j ∈ N such

that x is stable on π[i,∞) for all i ≥ j. Furthermore, by the definition of ρβ ,

there are infinitely many π(j) that are accepted by A with a run that agrees

with ρβ on β↑succβ(x). Hence, we can choose jx with the desired properties.

To obtain the path π we remove from the derivation of π′ all substitutions

[xj/sj ] if there is x ∈ β such that j ≥ jx and β(xj) @ xjx .

We show that the sequence of substitutions obtained in this way is a

derivation of a path π. Assume that a substitution [xj/sj ] is removed. We

have to show that all substitutions [xi/si] with i > j and xi v xj or xj v xi

are also removed because these are the only substitutions depending on

[xj/sj ]. We distinguish three cases for xi indicated by the three occurrences

of xi in the following picture:

xi(1)

β(xj)

ww
ww III

I

xjx xi(2)

.

..
xj

β xi(3)

In case 2, i.e., xi /∈ β and xi v xj , and in case 3, i.e., xj v xi, it is clear

that [xi/si] is removed from π′ because β(xi) = β(xj) and i > j ≥ jx.

Case 1, i.e., xi ∈ β and xi v xj , cannot occur because i > j ≥ jx and

xjx is stable on π′[jx,∞). Therefore, xjx is also stable on π′[i,∞) and xi

cannot be a prefix of xjx by definition of stable. Thus, the new sequence of

substitutions is indeed the derivation of a path π.

We show that π is infinite and that β is the only infinite branch of π:

Since jx was chosen to be minimal with the required properties it is clear
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that jy ≤ jx for y v x. This implies that no substitutions [xj/sj ] with

xj ∈ β are removed because if y ∈ β is a proper prefix of x ∈ β, then y

is stable on π′[jx,∞). There are infinitely many substitutions [xj/sj ] with

xj ∈ β since β is an infinite branch of lim(π′). Hence, the new derivation is

infinite. It also follows that β is an infinite branch of lim(π).

Let β′ be a branch of lim(π) different from β. Let y ∈ β ′ \ β and let

x ∈ β be such that β(y) @ x. Then all substitutions [xi/si] with i ≥ jx and

xi ∈ β′ \ β were removed. Therefore, β ′ must be finite.

It remains to show that ρβ satisfies (ii). For this purpose we define the

mapping ϕ : N → N, relating the trees on π with trees on π′, inductively by

ϕ(0) = 0 and

ϕ(j + 1) =

{

ϕ(j) if the substitution [xj/sj ] was removed,

ϕ(j) + 1 otherwise.

By the definition of π, the tree π(ϕ(jx)) is accepted for each x ∈ β by A

with a run that agrees with ρβ on β↑x. Since there are infinitely many

substitutions that are not removed from π′, the mapping ϕ is not ultimately

constant. Furthermore, the sequence (jx)x∈β is not bounded. Therefore, for

each x ∈ β, there are infinitely many accepting runs that agree with ρβ on

β↑x. 2

Having established this normal form, we are ready to develop the decision

procedure. The idea is to simulate the substitutions on π along β with a

finite amount of information. We define a finite graph GRec(R,A) with edges

labeled from the set {0, . . . , k − 1, /, !}, where k was the maximal rank of

symbols used in the RGTRS R. Passing an edge in GRec(R,A) corresponds

to different actions in the simulation of the substitutions along β. The

symbols 0, . . . , k − 1 mean that we go down the branch β, the symbol /

means that we simulate a sequence of substitutions, and the symbol ! means

that we simulate a sequence of substitutions such that in between a tree

from the set that should be visited infinitely often occurs. An infinite path

with infinitely many !-edges through GRec(R,A) corresponds to an R-path

with infinitely many trees from the set that should be visited infinitely often.

We first define the graph GRec(R,A) and then give a more detailed

description of the idea and the correctness proofs.

For i, j ∈ {1, . . . , m} we define

Ti ¤R T ′
j :⇔ i = j or T ′

i
∗
−→
R

Tj .

We need the following property of this relation.
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Remark 4.17 If Ti ¤R T ′
j , then t

∗
−→
R

t′ for all t ∈ Ti, t′ ∈ T ′
j .

Recall that A′
i denotes an NTA for T ′

i , the right hand side of the ith

rewriting rule of R. Define the automaton B′ =
⋃m

i=1 A
′
i and call its state

set P ′, i.e., P ′ = ˙⋃m

i=1Q
′
i.

Definition 4.18 The finite graph GRec(R,A) has the vertex set P ′×Q×Q.

The edges of GRec(R,A) are labeled from the set {0, . . . , k − 1, /, !} and are

defined as follows.

(1) (p, q, r)
i
−→ (p̂, q̂, r̂) for i ∈ {0, . . . , k−1} iff there is l ∈ {i+1, . . . , k}, a ∈

Al, a transition (p0, . . . , pl−1, a, p) in B′, and transitions (q0, . . . , ql−1, a, q),

(r0, . . . , rl−1, a, r) in A with the following properties.

• p̂ = pi, q̂ = qi, r̂ = ri.

• For each j ∈ {0, . . . , l− 1} \ {i} there is a tree tj with tj
∗
−→
B′

pj and

tj
∗
−→
R

T (A(rj))
∗
−→
R

T (A(qj)).

(2) (p, q, r)
/
−→ (p̂, q, r) iff there are i, j ∈ {1, . . . , m} such that p̂ ∈ F ′

j ,

Ti ¤R T ′
j , and T (B′(p))

∗
−→
R

Ti,

(3) (p, q, r)
!
−→ (p̂, q, q) iff there are i, j ∈ {1, . . . , m} such that p̂ ∈ F ′

j ,

Ti ¤R T ′
j , T (B′(p))

∗
−→
R

Ti, and

• T (B′(p))
∗
−→
R

T (A(r))
∗
−→
R

Ti or

• T ′
i

∗
−→
R

T (A(r))
∗
−→
R

Tj .

Note that the conditions in (3) extend the conditions from (2) by the last

two items. 2

Assume that there is a path π according to Lemma 4.16 that visits

T (A(q)) infinitely often and starts with a tree t from T ′
i . Let p ∈ F ′

i be such

that t ∈ T (B′(p)).

The idea of the graph GRec(R,A) is to simulate the substitutions that

are made on π along the branch β. During this simulation we go down the

branch β and jump to increasing positions on the path π. So, we are always

at a location y in β and at a position n on π such that y is in Dπ(n).

The first component of the GRec(R,A) vertices holds information about

the trees on π, namely what state of B′ may be reached when reading the

subtree π(n)↓y.
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The second component of the GRec(R,A) vertices keeps track of the

value ρβ(y). We know that there are infinitely many trees on π that are

accepted with runs of A that agree with ρβ on growing initial segments of β.

Nevertheless, these runs may differ from ρβ from a certain location onwards.

The third component of the GRec(R,A) vertices contains this information.

As soon as we pass an accepted tree, the third component is reset to the

value of the second component, and we wait for the next tree that is accepted

with a run that agrees with ρβ on the initial segment of β up to the current

location y.

We start at position n = 0 on π at the location y = ε at β with the vertex

(p, q, q). An edge labeled with i ∈ {0, . . . , k−1} means that we go down one

step along β to succβ(y) = yi, so the new y is the successor of the old y on

β. The edges labeled with / mean that we jump to a new position n on π,

namely to the position just after the last substitution at the current location

y on β. Finally, the edges labeled with ! mean the same as the /-edges with

the difference that between the current position n and the new position n

on π there is a tree that is accepted by A(q) with a run that agrees with ρβ

on the initial segment of β up the location that was the current location the

last time an !-edge was taken. Condition (ii) of Lemma 4.16 ensures that

we can infinitely often use such an !-edge.

Lemma 4.19 Let i ∈ {1, . . . , m} and q ∈ Q. If T ′
i

ω
−→
R

T (A(q)) without

loop, then there is p ∈ F ′
i and an infinite path with infinitely many !-edges

through GRec(R,A) starting from (p, q, q).

Proof. Let π be an infinite path according to Lemma 4.16 and let β be the

unique infinite branch in lim(π). We know that the first tree π(0) on π is

in T ′
i . Let p ∈ F ′

i such that there is an accepting run ρ′ε of A′
i on π(0) with

ρ′ε(ε) = p.

To formalize the idea described above we inductively define a sequence of

tuples (pj , qj , rj , yj , zj , z
′
j , nj) such that the sequence (pj , qj , rj) is an infinite

path with infinitely many !-edges through GRec(R,A) starting from (p, q, q).

The other auxiliary components keep track of the current location yj on β,

the location zj that was the current location the last time an !-edge was

used, the location z′j that was the current location the last time a /-edge

was used, and the current position nj on π. For this inductive definition we

need some notation.

For x ∈ β let stable(x) denote the minimal position on π such that x is

stable on π[stable(x),∞). There are two possibilities for the last substitution

before the position stable(x). Either a subtree rooted at a proper prefix of
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x was rewritten, or the subtree at x was rewritten itself. For those locations

where the latter holds we know that (π(stable(x)))↓x ∈ T ′
l for some l ∈

{1, . . . , m}. Hence, we can fix an accepting run ρ′x of A′
l on (π(stable(x)))↓x.

We will need these runs to update the first component of our tuples, which

are states from B′.

The initial tuple is (p0, q0, r0, y0, z0, z
′
0, n0) = (p, q, q, ε, ε, ε, 0). Assume

that for j ∈ N the tuple (pj , qj , rj , yj , zj , z
′
j , nj) is already defined. By

Lemma 4.16 (ii) we can choose a minimal lj ≥ nj such that π(lj) is ac-

cepted by a run ρj that agrees with ρβ on β↑succβ(zj). To define the next

tuple we have to distinguish three cases (corresponding to the three types

(1),(2),(3) of edges in GRec(R,A)).

(a) If yj is stable on π[nj ,∞), then

yj+1 = succβ(yj), zj+1 = zj z′j+1, = z′j
nj+1 = nj ,

pj+1 = ρ′z′j+1
(yj+1), qj+1 = ρβ(yj+1), rj+1 = ρj(yj+1).

If yj is not stable on π[nj ,∞), then we distinguish two sub cases.

(b) If lj ≥ stable(yj), then

yj+1 = yj , zj+1 = zj z′j+1, = yj

nj+1 = stable(yj),

pj+1 = ρ′yj
(yj), qj+1 = qj , rj+1 = rj .

(c) If lj < stable(yj), then

yj+1 = yj , zj+1 = yj z′j+1, = yj

nj+1 = stable(yj),

pj+1 = ρ′yj
(yj), qj+1 = qj , rj+1 = qj .

This sequence corresponds to an infinite path through GRec(R,A) in the

following sense. If tuple j + 1 was defined from tuple j using rule (a),

(b), or (c), then there is an edge in GRec(R,A) between (pj , qj , rj) and

(pj+1, qj+1, rj+1) of type (1), (2), or (3), respectively.

First note that π(nj)
↓yj

∗
−→
B′

pj for each j. This easily follows by induction

on j with the definition of the runs ρ′z′j+1
and ρ′yj

.

If rule (a) is used, then the conditions for an edge of type (1) are satisfied

because yj is stable on π[nj ,∞) and therefore we can reach from π(nj)
↓yj a

tree in T (A(rj)), namely π(lj), and then a tree that is accepted with a run
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that agrees with ρβ on β↑succβ(yj). Hence, the transitions as required in (1)

must exist.

If rule (b) is used, then yj is the minimal location of β that is not

stable on π[nj ,∞). This can be shown by induction since we only pass to

the next location on β (by using rule (a)) if the current location is stable.

Thus, there must be a first substitution at yj on π[nj ,∞), using Ti1 ↪→ T ′
i1

for some i1. Since π(nj)
↓yj

∗
−→
B′

pj (see above) we get T (B′(p))
∗
−→
R

Ti1 . By

definition of nj+1 the last substitution at yj occurs at position nj+1−1, using

Ti2 ↪→ T ′
i2

for some i2. Therefore, Ti1 ¤R T ′
i2

. Furthermore, recall that ρ′yj
is

an accepting run of A′
i2

on π(stable(yj))
↓yj and hence pj+1 ∈ T ′

i2
. Thus, the

conditions for an edge of type (2) between (pj , qj , rj) and (pj+1, qj+1, rj+1)

are satisfied for i1, i2 ∈ {1, . . . , m}. Similarly, the conditions for an edge of

type (3) between (pj , qj , rj) and (pj+1, qj+1, rj+1) are satisfied if rule (c) is

used because the tree π(lj) is lying between π(nj) and π(nj+1).

It remains to show that (c) is used infinitely often to obtain a path with

infinitely many !-edges. A first observation is that if rule (b) was used,

then rule (a) is used in the next step because in (b) we have the definitions

yj+1 = yj and nj+1 = stable(yj).

As long as (c) is not used, (b) must be used eventually because only

finitely many locations from β can be stable on a fixed suffix of π. But (b)

cannot be used twice in series, therefore (a) and (b) are used in turn (where

there may be more than one application of (a) in series).

If (a) or (b) is used, then lj+1 = lj . But every time (b) is used the nj

value increases. By definition of lj we have lj ≥ nj . Therefore, rule (c) has

to be applied eventually. 2

Lemma 4.20 If there is an infinite path containing infinitely many !-edges

through GRec(R,A) starting from (p, q, q), for some p ∈ F ′
i and q ∈ Q, then

T ′
i

ω
−→
R

T (A(q)).

Proof. We cut the infinite path through GRec(R,A) into segments ending

with an !-edge and show what kind of R-path we can construct from such

a finite path segment in GRec(R,A). The desired result is then obtained by

concatenating these segments, as we will see later.

So let p, p′ ∈ P ′, q, r, q′ ∈ Q, and v1, . . . , vn be vertices of GRec(R,A)

such that

(p, q, r)
λ1−→ v1

λ2−→ v2
λ3−→ · · ·

λn−→ vn
!
−→ (p′, q′, q′)

in GRec(R,A) with λ1, . . . , λn ∈ {0, . . . , k−1, /}. Let x be the location that

is obtained from the sequence λ1 · · ·λn by omitting all /.



110 CHAPTER 4. MODEL-CHECKING FOR RGTR GRAPHS

We prove the following claim by induction on n.

Claim: There is t ∈ T (B′(p)) such that for all t′ ∈ T (B′(p′)) there is t′′ ∈ TA

with

t
∗
−→
R

T (A(r))
+
−−→
R

t′′ with (t′′)↓x = t′ and t′′[x/q′]
∗
−→
A

q. (?)

If n = 0, then (p, q, r)
!
−→ (p′, q′, q′) with q′ = q and x = ε. By definition

of the !-edges there are i, j ∈ {1, . . . , m} such that p′ ∈ F ′
j , Ti ¤R T ′

j , and

there is t ∈ T (B′(p)) with t
∗
−→
R

Ti. Let t′ ∈ T (B′(p′)) and set t′′ = t′. Then

t′′ ∈ T ′
j because t′′ = t′ ∈ T (B′(p′)) and p′ ∈ F ′

j . We have to show (?) for

this t and t′′. By definition of t′′ and because x = ε and q′ = q we obviously

have (t′′)↓x = t′ and t′′[x/q′]
∗
−→
A

q.

From the definition of !-edges it follows that either t
∗
−→
R

T (A(r))
∗
−→
R

Ti

or T ′
i

∗
−→
R

T (A(r))
∗
−→
R

Tj . In both cases we get t
∗
−→
R

T (A(r))
+
−−→
R

t′′ because

t′′ ∈ T ′
j . In the first case we use Ti ¤R T ′

j and Remark 4.17. In the second

case we use that t
∗
−→
R

Ti and t′′ ∈ T ′
j .

If n ≥ 1, then

(p, q, r)
λ1−→ (p̂, q̂, r̂)

λ2−→ v2
λ3−→ · · ·

λn−→ vn
!
−→ (p′, q′, q′).

Let x̂ be the location obtained from λ2 · · ·λn by omitting /. By the induction

hypothesis there is t̂ ∈ T (B′(p̂)) such that for all t′ ∈ T (B′(p′)) there is a t′′

such that (?) is valid for t̂, x̂, q̂, r̂, t′, and t′′.

If λ1 = /, then x = x̂, q = q̂, r = r̂. Furthermore, there are i, j ∈

{1, . . . , m} such that p̂ ∈ F ′
j , Ti ¤R T ′

j , and there is t ∈ T (B′(p)) with

t
∗
−→
R

Ti. But p̂ ∈ F ′
j implies t̂ ∈ T ′

j and then Ti ¤R T ′
j implies t

∗
−→
R

t̂, by

Remark 4.17. Since (?) holds for t̂ it also holds for t because x = x̂, q = q̂,

and r = r̂.

Now consider the case λ1 = i ∈ {0, . . . , k − 1}. Let l ∈ {i + 1, . . . , k},

a ∈ Al, pj , qj , rj for j ∈ {0, . . . , l − 1}, and tj for j ∈ {0, . . . , l − 1} \ {i} be

as required in item (1) from the definition of GRec(R,A), and define ti = t̂.

Let t′ ∈ T (B′(p′)). For t = a(t1, . . . , tl) the part t
∗
−→
R

T (A(r))
+
−−→
R

s′′ of

the claim follows as indicated in the picture below. In this picture sets of

trees as, e.g., T (A(r0)) mean that there is a tree from that set that can be

substituted at this position. The rightmost tree in the picture is defined to

be s′′.

a

²²
²²
²²

33
33

33
a

yy
yy

yy
yy

HHHHHHHH a

££
££

££

@@
@@

@@
@

t =
∗

−−→
R

+
−−→
R

:= s′′

t0 ti tl−1 T (A(r0)) T (A(r̂)) T (A(rl−1)) T (A(q0)) t′′ T (A(ql−1))
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Note that the tree in the middle is in T (A(r)) because r̂ = ri and the

transition (r0, . . . , rl−1, a, r) is in A.

We know that t′′[x/q′]
∗
−→
A

q̂. From q̂ = qi follows s′′[ix/q′]
∗
−→
A

q because

the transition (q0, . . . , ql−1, a, q) is in A. Furthermore, we have (s′′)↓ix =

(t′′)↓x = t′. This ends the proof of the claim. Now we show how to iterate

this result.

On a path with infinitely man !-edges starting in (p1, q1, q1) with p1 ∈ F ′
i

let (p2, q2, q2), (p3, q3, q3), . . . be the vertices reached after the !-edges. For

all j ≥ 1 there is tj ∈ T (B′(pj)) such that (?) holds for location xj (so

xj is obtained from the edge labels of the corresponding path segment by

omitting /) and for all t′ ∈ T (B′(pj+1)). In particular, we can use tj+1 in

place of t′. So, for each j, let t′′j be a tree with

tj
∗
−→
R

T (A(qj))
+
−−→
R

t′′j with (t′′j )
↓xj = tj+1 and t′′j [xj/qj+1]

∗
−→
A

qj .

From the condition (t′′j )
↓xj = tj+1 we get an infinite path of the form

t1
∗
−→
R

t′′1
∗
−→
R

t′′1[x1/t′′2]
∗
−→
R

t′′1[x1/t′′2[x2/t′′3]]
∗
−→
R

· · · ,

and with the condition t′′j [xj/qj+1]
∗
−→
A

qj we can conclude that there are

infinitely many trees from T (A(q1)) on this path. Furthermore, t1 is in T ′
i

because p1 ∈ F ′
i . Thus, T ′

i
ω
−→
R

T (A(q1)). 2

Since we want to use GRec(R,A) in a decision procedure we need the fol-

lowing lemma.

Lemma 4.21 The graph GRec(R,A) can be constructed effectively in time

O(|R|4 · |A|4).

Proof. To construct GRec(R,A) we have to check the conditions for the

edges in (1), (2), and (3) of Definition 4.18. These are mainly instances

of the reachability problem. It is clear that instances of the reachability

problem with three sets involved are more difficult than the ones with only

two sets involved. So we have to estimate the complexity of

(i) T (B′(p))
∗
−→
R

T (A(r))
∗
−→
R

T (A(q)) in (1) and

(ii) T (B′(p))
∗
−→
R

T (A(r))
∗
−→
R

Ti and T ′
i

∗
−→
R

T (A(r))
∗
−→
R

Tj in (3).

According to Lemma 4.11 the set of all (p, q, r) with property (i) can be

computed in time O(|R|3 · |A| · (|A|+ |R|)) because |B′| ≤ |R| by definition

of |R|.
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For (ii) let B denote the automaton
⋃m

i=1 Ai. We can compute the set

of all tuples (q1, q2, q3) of states from B′, A, and B with T (B′(q1))
∗
−→
R

T (A(q2))
∗
−→
R

T (B(q3)) in time O(|R|4 · |A|), again by Lemma 4.11. The

first part of (ii) corresponds to q3 belonging to one of the sets Fi. The sec-

ond part of (ii) corresponds to q1 belonging to one of the sets F ′
i and q3

belonging to one of the Fj .

The time needed to compute the pairs with T (B′(p))
∗
−→
R

Ti and Ti ¤RT ′
j

can be be bounded as for (ii) because these are special instances of the

problems from (ii).

Then we can check for each pair (p, q, r), (p̂, q̂, r̂) of vertices of GRec(R,A)

whether the conditions of (1), (2), or (3) are satisfied. After the previous

computations these tests can be made in constant time and have to be

carried out for O(|R|2 · |A|4) pairs. Therefore, the overall time complexity

can clearly be bounded by O(|R|4 · |A|4). 2

The Algorithm

Now we are ready to summarize the results in an algorithm to solve the

recurrence problem. The algorithm is shown in Figure 4.3. In line 6 by

REACH(R,B) we mean the output of the reachability algorithm (Figure 4.2)

applied to B.

Theorem 4.22 The algorithm RECUR(R,A) from Figure 4.3 computes in

time O(|R|4 ·|A|4) an ε-NTA AR,ω of size O(|R|·(|A+|R|)) with T (AR,ω) =

{t ∈ TA | t
ω
−→
R

T (A)}.

Proof. For the complexity the operations on GRec(R,A) are the dominating

factor. GRec(R,A) itself can be constructed in time O(|R|4 · |A|4) and the

set of all (p, q, q) such that there is an infinite path with infinitely many

!-edges starting in (p, q, q) can be determined by an algorithm computing

the strongly connected components of GRec(R,A). This can be done in

linear time in the size of GRec(R,A), which can clearly be bounded by

O(|R|4 · |A|4).

For the size of AR,ω note that B already contains a copy of each Ai and

still has the property t
∗
−→
B

Fi iff t ∈ Ti. Therefore, the first line of REACH

can be skipped and the size of the automaton AR,ω is the same as the size

of Apre∗R
.

For the correctness it is sufficient to show that B after line 5 recognizes

the set Rec1(R,A) ∪ Rec2(R,A) (by Lemma 4.14). This is ensured by line

2 for Rec1(R,A) and by line 3 for Rec2(R,A). 2
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Algorithm: RECUR

INPUT: RGTRS R = (A, Σ, R, tin) with R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m},

NTAs Ai = (Qi, A, ∆i, Fi) with T (Ai) = Ti for i = 1, . . . , m

NTAs A′
i with T (A′

i) = T ′
i for i = 1, . . . , m

NTA A = (Q, A, ∆, F )

1. Construct GRec(R,A) (Definition 4.18).

2. Mark each pair (i, q) with T ′
i

∗
−→
R

T (A(q))
∗
−→
R

Ti.

3. Mark each pair (i, q) with q ∈ Q, i ∈ {1, . . . , m} such that there

is p ∈ F ′
i and an infinite path with infinitely many !-edges through

GRec(R,A) starting in (p, q, q).

4. Let B = A ∪
⋃m

i=1 Ai.

5. Add ε-transitions (p, q) to B if p ∈ Fi and (i, q) is marked.

6. Let AR,ω = REACH(R,B).

OUTPUT: ε-NTA AR,ω

Figure 4.3: Algorithm to solve the recurrence problem

4.3 Undecidable Properties

In this section we prove that model-checking for GTR graphs with the tem-

poral operators AF , EU , and AGF is undecidable. All the proofs use re-

ductions from undecidable properties of deterministic Turing machines. We

construct, given a Turing machine M , a GTRS R(M) that can simulate com-

putations of M . Of course, since reachability is decidable for GTR graphs,

it is not possible to exactly simulate a Turing machine with a GTRS. There-

fore, in GR(M) there will be paths that correspond to correct computations

of M and there will also be paths that correspond to computations of M with

some errors. But the way R(M) is constructed allows to detect these errors.

Every time an error occurs in the computation, the path in GR(M) contains

a tree from a regular set T M
err. If TM

stop contains all trees coding a halting

configuration of M , then GR(M) is a model of the formula AF (T M
err ∨ TM

stop)

iff every path in GR(M) that starts in the initial tree eventually reaches a

tree modeling an error or a halting configuration. If the initial tree codes the

initial configuration of M on the empty tape, then this means that M stops

on the empty tape and therefore we have encoded the halting problem.

The construction of R(M) is given in the next subsection and in the
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following subsections it is shown how to use the idea sketched above to show

the undecidability results.

The general idea underlying the simulation of Turing machines is similar

to the idea used in [EK95]. In [EK95] it is shown via a reduction from

the halting problem for counter machines that the problem of universal

reachability for basic parallel processes is undecidable.

4.3.1 Simulation of Turing Machines

We only give a brief description of the Turing machine model we use. For

an introduction to Turing machines see e.g. [HU79].

A deterministic Turing machine (DTM) is a tuple M = (Q, Γ, B, qin, qs, δ),

where Q is a finite set of states, Γ is the tape alphabet (disjoint from Q),

B ⊂ Γ is the input alphabet, qin is the initial state, qs is the halting state,

and δ : (Q \ {qs}) × Γ → Q × Γ × {L, R} is the transition function. The

transition function is completely specified and qs is the unique halting state.

Furthermore, we assume that the tape is infinite to the left and to the right.

The tape alphabet Γ contains a blank symbol t that is not an element of

the input alphabet.

A configuration κ of M is a word κ = a1 · · · akqbl · · · b1 with q ∈ Q,

k, l ≥ 0 and ai, bj ∈ Γ for i ∈ {1, . . . , k}, j ∈ {1, . . . , l}. The reduced version

red(κ) is obtained from κ by removing the blank symbols from the left and

right hand side of the configuration:

red(κ) = ai · · · akqbl · · · bj

with i, j minimal such that ai 6= t 6= bj . Two configurations are equivalent

iff their reduced versions are equal. In the following we identify equivalent

configurations.

The successor configuration of κ is

• a1 · · · ak−1pakcbl−1 · · · b1 if δ(q, bl) = (p, c, L) and

• a1 · · · akcpbl−1 · · · b1 if δ(q, bl) = (p, c, R).

In this definition we assume that k, l > 0. If k or l equals 0, then we use a

configuration equivalent to κ by adding a blank symbol to the appropriate

side of κ.

If κ′ is the successor configuration of κ, then this is denoted by κ `M κ′.

As usual `∗
M denotes the transitive and reflexive closure of `M .

To simulate Turing machines by ground rewriting we define for each

configuration κ a corresponding tree t(κ) coding this configuration. If κ =

a1 · · · akqbl · · · b1, then let
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•
xx EE

X X

t(κ) := a1 b1

...
...

ak bl

q

With this coding of configurations it is not possible to exactly simulate

the transitions of M by a GTRS because in a transition a symbol from Γ has

to be moved either from the left branch to the right branch of the tree or the

other way round. To realize this with ground tree rewriting the whole tree

has to be rewritten. Since the length of Turing machine configurations is

not bounded this would require an infinite set of rewriting rules. Therefore,

the symbol that has to be moved from one branch to the other has to be

guessed. To be able to detect wrong guesses, a protocol for the simulation

of Turing machine transitions is introduced.

Figure 4.4 shows the correct simulation of the transition δ(q, a) = (p, b, L)

when M is in the configuration cqa. The initial tree (on the left hand side of

the figure) codes the configuration cqa and the final tree (on the right hand

side of the figure) codes the configuration pcb.

The single steps in the simulation are the following. The symbols a and

q are replaced by b and p. Since M moves the head to the left, the symbol

c, which is at the end of the left branch, has to be guessed. The symbol

ad1 indicates that c, the symbol directly above ad1, was added to the right

branch of the tree. Now, the left branch has to confirm with re1, where re

stands for “remove” because the c has to be removed from the left branch.

Then the two branches alternately increase their adi and rei symbols until

they reach ad3 and re2. Finally, the c can be removed from the left branch

and then it is inserted at the appropriate place in the right branch.

The idea behind this is the following: If the guess is wrong, e.g., if d was

guessed instead of c, then after the second step a tree containing the subtrees

c(re1) and d(ad1) with c 6= d is reached. This enables us to detect on a path

through the graph generated by the rewriting system if an error occurred in

the simulation of M . The process of going through all the symbols ad2, re2,

and ad3 has technical reasons. It ensures that other errors apart from the

wrong guessing, e.g., repeated deletion of symbols without simulation of a

transition, can be detected.

Formally, we define the GTRS R(M) = (AM , Σ, RM , tMin ) for a given
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•
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|
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|
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σ
−−→
R

•

/ \

X X

| |

c b

| |

re1 p

|

c

|

ad1

σ
−−→
R

•

/ \

X X

| |

c b

| |

re1 p

|

c

|

ad2

σ
−−→
R

•

/ \

X X

| |

c b

| |

re2 p

|

c

|

ad2

σ
−−→
R

•

/ \

X X

| |

c b

| |

re2 p

|

c

|

ad3

σ
−−→
R

•

/ \

X X

|

b

|

p

|

c

|

ad3

σ
−−→
R

•

/ \

X X

|

b

|

c

|

p

Figure 4.4: Example for the simulation of a TM-transition by a GTRS.

DTM M = (Q, B, Γ, qin, qs, δ) as follows:

• AM = AM
0 ∪AM

1 ∪AM
2 with AM

2 = {•}, AM
1 = Q∪Γ∪{X}, and AM

0 =

AM
1 ∪ {ad1, ad2, ad3, re1, re2, err}. The use of err will be clarified in

the proof of Lemma 4.23.

• As we do not need the transition labels Σ, we let Σ = {σ}.

• The initial tree is tMin = t(qin) =

•

/ \

X X

|

qin

.

• The set RM contains the following rewriting rules.

(1) For δ(q, a) = (p, b, L), c ∈ Γ:

a
|
q

σ
↪→

b
|
p
|
c
|

ad1

and if a = t, then also
X
|
q

σ
↪→

X
|
b
|
p
|
c
|

ad1

.

(2) For δ(q, a) = (p, b, R):

a
|
q

σ
↪→

p
|
b
|

re1

and if a = t, then also
X
|
q

σ
↪→

X
|
p
|
b
|

re1

.
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(3) For all a ∈ Γ ∪ {X}, b ∈ Γ: a
σ
↪→

a
|
b
|

ad1

, b
σ
↪→

b
|

re1

, X
σ
↪→

X
|
t
|

re1

.

(4) ad1
σ
↪→ ad2, ad2

σ
↪→ ad3, re1

σ
↪→ re2.

(5) For all a ∈ Γ ∪ {X}, b ∈ Γ, q ∈ Q:

q
|
b
|

ad3

σ
↪→

b
|
q

,

a
|
b
|

ad3

σ
↪→

a
|
b

.

(6) For all a ∈ Γ ∪ {X}, b ∈ Γ, q ∈ Q:

a
|
b
|

re2

σ
↪→ a,

q
|
b
|

re2

σ
↪→ q.

(7) For all a ∈ Γ, p, q ∈ Q: q
σ
↪→

a
|
p
|

err

,
q
|

err

σ
↪→ q.

Rule (7) is used to ensure the property from Lemma 4.23 (i), which is

necessary in Subsection 4.3.4.

The goal was to construct R(M) is such a way that we can identify all

the paths in GR(M) that do not correspond to a correct computation of M

by a regular set T M
err. This set is defined as follows. A tree t is in T M

err iff

1. t contains the err symbol,

2. t contains more than one adi or more than one rei symbol,

3. t contains a rei symbol and no adi or adi+1 symbol,

4. t contains an ad2 symbol and no rei symbol, or

5. t contains subtrees of the form
a
|

rei

and
b
|

adj

with a 6= b.

This definition only asks for the presence or absence of certain combina-

tions of symbols. These properties can be tested by a tree automaton and

therefore TM
err is regular.

The following lemma gives a precise statement in what sense the DTM

M can be simulated by R(M).

Lemma 4.23 (i) For each configuration κ of M : tMin
∗

−−−−→
R(M)

t(κ).

(ii) For all configurations κ, κ′ of M there is a path from t(κ) to t(κ′) in

GR(M) not visiting T M
err iff κ `∗

M κ′.
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Proof. (i): Let κ = a1 · · · akqbl · · · b1 be a configuration of M . Remember

that we identify equivalent configurations and therefore can assume that

k, l > 0 (by adding t symbols). The left branch of t(k) can be generated by

using rewriting rules from (3), (4), and (5):

ai
σ
−→
R

ai

|
ai+1

|
ad1

σ
−→
R

ai

|
ai+1

|
ad2

σ
−→
R

ai

|
ai+1

|
ad3

σ
−→
R

ai

|
ai+1

The right branch can be generated by the rewriting rules from (7).

(ii): The correct simulation of M can be carried out by R(M) without

visiting TM
err as sketched in Figure 4.4.

For the other direction let κ, κ′ be configurations of M and let π be a

path from t(κ) to t(κ′) that does not visit T M
err. We prove the claim by

induction on the length of π. Obviously, if π has length 0, then κ = κ′ and

therefore κ `∗
M κ′.

So assume that π has length greater than 0 and let κ = a1 · · · akqbl · · · b1.

We analyze the sequence of rewriting rules that are used on π if δ(q, bl) =

(p, b, L) and show that this sequence has to follow the scheme from Fig-

ure 4.4. For δ(q, bl) = (p, c, R) one can proceed analogously.

The first rewriting on π has to insert an ad1 symbol into the tree. If

a re1 or err symbol would be inserted, then the resulting tree would be in

TM
err. Assume that the ad1 symbol is appended to the left branch. In the

next step this ad1 could be changed into an ad2 leading to a tree containing

an ad2 symbol and no re symbol, or a transition of the form (1) could be

applied to the right branch leading to a tree containing two ad1 symbols. In

both cases the resulting tree would be in T M
err. Therefore, the only possibility

for the first step is to use a rewriting rule of the form (1):

•
vv HH

ak bl

q

σ
−−→
R

•
zz DD

ak b

p

c

ad1

The only possibility for the second rewriting on π is to add a re1 symbol

to the left branch, using rule (3). If the c that was added to the right branch

in the first step does not equal ak, then the tree after the second step contains

the subtrees
ak

|
re1

and
c
|

ad1

with ak 6= c and therefore would be in T M
err. We

have shown that the first to steps on π must be of the following form:
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•
vv HH

ak bl

q

σ
−−→
R

•
uu II

ak b

p

ak

ad1

σ
−−→
R

•
vv HH

ak b

re1 p

ak

ad1

Now it is not difficult to see that the next steps on π must lead to t(κ′′),

where κ′′ is the successor configuration of κ. By the induction hypothesis

we get κ′′ `∗
M κ′ and therefore κ `∗

M κ′. 2

After these technical preparations we discuss the remaining reachability

problems. All the undecidability proofs use the construction of R(M) and

the set TM
err. Another set of trees used besides T M

err in the following subsec-

tions is the set of trees encoding halting configurations of M :

TM
stop = {t(κ) | κ is a halting configuration of M}.

Since we assumed that the transition function of M is completely specified,

a tree codes a halting configuration iff it contains the unique halting state

qs. Therefore, T M
stop is regular.

4.3.2 Universal Reachability (AF)

The problem of universal reachability for GTR graphs is the following.

Given: a GTRS R = (A, Σ, R, tin) and a regular set of trees T ⊆ TA.

Question: Does every maximal path in GR starting in tin visit T?

Theorem 4.24 The problem of universal reachability for GTR graphs is

undecidable.

Proof. Let M be a DTM. Assume that M eventually reaches a halting

configuration when started on the empty tape. By Lemma 4.23 (ii) this

means that a path through GR(M) starting in tMin that never reaches T M
err

must eventually reach T M
stop. Thus, all paths through GR(M) starting in tMin

eventually reach T M
err ∪ TM

stop.

Now assume that M never reaches a halting configuration when started

on the empty tape. Then, again by Lemma 4.23 (ii), there is an infinite

path through GR(M) starting in tMin that never reaches T M
err or TM

stop. Thus,

not all paths through GR(M) starting in tMin eventually reach T M
err ∪ TM

stop.
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Therefore, we can conclude that M stops on the empty tape iff every path

through GR(M) starting in tMin eventually reaches the regular set T M
err ∪TM

stop.

Since the halting problem for deterministic Turing machines is undecidable,

the theorem is proven. 2

4.3.3 Constrained Reachability (EU)

The problem of constrained reachability for GTR graphs is the following.

Given: a GTRS R = (A, Σ, R, tin) and regular sets T1, T2 ⊆ TA.

Question: Does there exist a path π in GR starting in tin such that there

exists i ∈ N with π(i) ∈ T2 and π(j) ∈ T1 for all j ≤ i?

This problem is called constrained reachability because we ask if T2 can be

reached under the constraint that the path remains in T1 until it reaches T2.

The simple reachability question is the special case with T1 = TA.

Theorem 4.25 The problem of constrained reachability for GTR graphs is

undecidable.

Proof. Let M be a DTM. Assume that M eventually reaches a halting

configuration when started on the empty tape. By Lemma 4.23 (ii) this

means that there is path through GR(M) starting in tMin that reaches TM
stop

while staying in the complement of T M
err, which is regular because T M

err is

regular (Proposition 2.13).

If M does not reach a halting configuration when started on the empty

tape, then every path through GR(M) starting in tMin must visit T M
err before

it can reach TM
stop (again by Lemma 4.23 (ii)).

Thus, M stops on the empty tape iff R(M) satisfies the constrained

reachability problem for TAM \ TM
err and TM

stop. 2

4.3.4 Universal Recurrence (AGF)

The problem of universal recurrence for GTR graphs is the following.

Given: a GTRS R = (A, Σ, R, tin) and a regular set T ⊆ TA.

Question: Does every infinite path through GR(M) that starts in tin in-

finitely often visit T?
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To show the undecidability of universal and constrained reachability we used

reductions from the halting problem for deterministic Turing machines since

these two problems allowed us to exactly specify the path that simulates the

correct behavior of the Turing machine.

The problem of universal recurrence does not allow this exact specifica-

tion because we are interested in paths that only finitely often visit a certain

regular set. If we take this set to be the set T M
err, then a finite number of er-

rors in the simulation of the DTM are allowed. This finite number of errors

can be used to generate an arbitrary configuration of the DTM before start-

ing the correct simulation. Therefore, we use a reduction from the following

problem, which we call diverging configuration.

Given: a Turing machine M .

Question: Does there exist a configuration κ of M such that M does not

stop when started in κ?

Note that in the above problem there is no restriction to reachable configu-

rations of M .

Lemma 4.26 The problem diverging configuration for deterministic Turing

machines is undecidable.

The proof of this lemma can be found in Appendix A.3.

Theorem 4.27 The problem of universal recurrence for GTR graphs is un-

decidable.

Proof. Let M be a DTM. If there is a path π in GR(M) that only finitely

often visits T M
err ∪ TM

stop, then there is an i ∈ N such that π(i) = t(κ) for

some configuration κ of M and π[i,∞) is an infinite path that does not visit

TM
err ∪ TM

stop at all. With Lemma 4.23 (ii) we can conclude that M does not

stop when started in configuration κ.

If there exists a configuration κ of M such that M does not stop when

started in κ, then, by Lemma 4.23 (ii), there is an infinite path through

GR(M) starting in t(κ) that does not visit T M
err ∪ TM

stop. By Lemma 4.23 (i)

we know that there is a path from tin to t(κ). The concatenation of these

two paths yields an infinite path through GR(M) starting in tin that visits

TM
err ∪ TM

stop only finitely often.

Therefore, M has no diverging configuration iff R(M) satisfies the prob-

lem of universal recurrence with T M
err ∪ TM

stop. 2
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4.4 A Temporal Logic for Model-Checking

We have considered all the reachability problems from Section 4.1 indepen-

dently, except for universal one step reachability, which is covered by one

step reachability, and universal constrained reachability, which contains uni-

versal reachability as a special case. The goal of this section is to built up a

logic with operators for the decidable reachability problems. For our logic we

use CTL-like syntax. The operators for one step reachability, reachability,

and recurrence are denoted by EX, EF , and EGF . The E in these opera-

tors stands for “there is a path” such that a certain property on this path

holds. Sometimes, it is reasonable to restrict to paths built up from edges

labeled from a proper subset of Σ. Thus, we allow to parametrize this exis-

tential quantifier E with a set Λ ⊆ Σ. For this purpose we define, given an

RGTRS R = (A, Σ, R, tin) and Λ ⊆ Σ, the RGTRS R|Λ = (A, Σ, R|Λ, tin),

where R|Λ is obtained from R by removing all rules T
σ
↪→ T ′ with σ ∈ Σ \Λ.

Furthermore, we also allow the past operators X−1 and F−1 correspond-

ing to X and F .

For a fixed ranked alphabet A and an alphabet Σ for edge labels the

formulas of our logic are defined by the following grammar (in CTL-like

syntax).

φ ::= T (A) | ¬φ | φ ∨ φ |

EΛXφ | EΛX−1φ |

EΛFφ | EΛF−1φ |

EΛGFφ

for ε-NTA A and Λ ⊆ Σ.

The semantics ||φ||R of such a formula φ with respect to an RGTRS

R = (A, Σ, R, tin) is the set of all trees where φ is satisfied with respect to

the relation −→
R

.

• ||T (A)||R = T (A)

• ||¬φ||R = TA \ ||φ||R

• ||φ1 ∨ φ2||R = ||φ1||R ∪ ||φ2||R

• ||EΛXφ||R = {t ∈ TA | t −−→
R|Λ

||φ||R}
[
= preRΛ

(||φ||R)
]

• ||EΛX−1φ||R = {t ∈ TA | t −−−−→
R−1|Λ

||φ||R}
[
= postRΛ

(||φ||R)
]

• ||EΛFφ||R = {t ∈ TA | t
∗

−−→
R|Λ

||φ||R}
[

= pre∗RΛ
(||φ||R)

]

• ||EΛF−1φ||R = {t ∈ TA | t
∗

−−−−→
R−1|Λ

||φ||R}
[

= post∗RΛ
(||φ||R)

]

• ||EΛGFφ||R = {t ∈ TA | t
ω

−−→
R|Λ

||φ||R}
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For an RGTRS R = (A, Σ, R, tin), t ∈ TA, and a formula φ from the above

logic we define

R, t |= φ iff t ∈ ||φ||R

and if t is not given, then

R |= φ iff tin ∈ ||φ||R.

A consequence of the results from Section 4.2 is the following theorem.

Theorem 4.28 For an RGTRS R and a formula φ from the above logic the

set ||φ||R is a regular set of trees and an automaton Aφ accepting ||φ||R can

be constructed effectively. In particular it is decidable whether R |= φ.

Proof. For the atomic formulas of the form φ = T (A) the set ||φ||R is regular

by definition. For the Boolean operators we use Propositions 2.12 and 2.13.

So we get Aφ1∨φ2 = Aφ1 ∪ Aφ2 and A¬φ = Aφ. Using the results from

Section 4.2 we can define the automata for the temporal operators.

• AEΛXφ = (Aφ)preR , AEΛX−1φ = (Aφ)postR ,

• AEΛFφ = (Aφ)pre∗R
, AEΛF−1φ = (Aφ)post∗R

, and

• AEΛGFφ = (Aφ)R,ω.

For the construction of (Aφ)R,ω we first have to eliminate the ε-transitions

from Aφ because the algorithm RECUR needs an NTA without ε-transitions

as input.

Once we obtained the automaton Aφ we can check if tin is in the language

T (Aφ) to decide whether R |= φ. 2

Although the blow up in the size of the input automaton is polynomial

in the constructions for the temporal operators, the iterated application of

these constructions results in a blow up that is exponential in the number of

nested temporal operators. The construction for the complement automaton

is even worse with an exponential blow up, resulting in an automaton with

size non-elementary in the number of nested negations. So we have the

following complexity.

Theorem 4.29 The size of the automaton Aφ from Theorem 4.28 is non-

elementary in the number of nested negations and exponential in the number

of nested temporal operators.
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We end this section with a brief discussion on first-order (FO) logic over

GTR graphs. In contrast to temporal logic, which can be used to express

global properties of a graph in terms of reachability conditions, FO logic cor-

responds to Boolean combinations of local properties by Gaifman’s locality

theorem [Gai82]. So, in general, these two formalisms are not comparable

with respect to expressive power. A possibility to combine them is to enrich

FO logic with reachability predicates. In [DT90] it is shown that the FO

theory of ground tree rewriting systems with a reachability predicate
∗
−→
R

is

decidable, where a formula x
∗
−→
R

y evaluates to true iff x and y are inter-

preted as trees t1 and t2 such that there exists a path from t1 to t2. To obtain

this decidability result one can make use of tree automata for relations of

trees (cf. [CDG+97]). For an FO-formula ϕ(x1, . . . , xn) one can construct

an automaton recognizing the n-ary relation of all tuples (t1, . . . , tn) of trees

such that ϕ(t1, . . . , tn) evaluates to true. This extended form of FO logic

subsumes the temporal logic suggested in this section if the operator EGF is

omitted. To also capture recurrence properties one would have to use a kind

of recurrence predicate. Our results suggest that the automata theoretic

proof for the decidability of FO logic with reachability still goes through if

one adds a predicate of the form x ∈ EGF (T (A)) with the obvious seman-

tics.

4.5 Reachability Games

In this section we study two different reachability games on GTR graphs.

Usually, when considering two player games on graphs the set of vertices

of the graph is partitioned into two sets, the vertices of Player I and the

vertices of Player II. The two players move a token along the edges of the

graph, where the “owner” of the current vertex chooses the next edge. In

this way, a sequence of vertices is built up and the winner of such a play is

determined by a winning condition partitioning the set of possible plays into

those that are winning for Player I and those that are winning for Player II.

A reachability condition specifies a set of vertices, and the plays that are

winning for Player I are exactly those that contain a vertex from this set.

So, for Player I it is sufficient to force the play to eventually reach this set

specified by the reachability condition.

Throughout this section we omit the alphabet Σ for the edge labels.

The terminology for ground tree rewriting systems is transferred to systems

without edge labels in the obvious way.

A rather general reachability game on GTR graphs can be defined by



4.5. REACHABILITY GAMES 125

equipping a usual GTRS R = (A, Σ, R, tin) with a partition TI and TII of

TA and a winning condition T , where all these three sets are regular. The

players play on the graph GR starting in the initial tree. Whenever the

current tree t in the play is in TI , Player I chooses a successor of t in GR

as the next tree, and if t is in TII , then Player II chooses a successor of t

in GR as the next tree. Player I wins a play if it eventually reaches the set

T . Player I is said to be the winner of the whole game if he can ensure to

eventually reach T , no matter how Player II plays. The crucial question,

given such a game, is to determine if Player I is the winner of the game.

We do not give a formal definition of these concepts because one can

easily express the universal reachability problem from Section 4.3 with these

games. If we choose TI = ∅ and TII = TA, then Player I wins the game

if all paths starting in tin eventually reach T . Therefore, the problem of

determining if Player I can win the game is undecidable.

In the following, we study a slightly different two player game played on

GTR graphs, for which we give a more formal description. In these games

the set of vertices is not partitioned into vertices of Player I and Player II,

but Player I chooses a subset of the outgoing edges of the current vertex,

and Player II chooses one of these edges. Of course, Player I is not allowed

to choose arbitrary sets of edges. The admissible sets of edges Player I can

choose are determined by the rules of the ground tree rewriting system.

A ground tree rewriting game (GTRG) G is a tuple G = (A, R, tin, T ),

where A is a ranked alphabet, tin is the initial tree, T ⊆ TA is a regular set,

called the winning set for Player I, and R is a finite set of rules of the form

s ↪→ S with s ∈ TA and S is a finite subset of TA. The game graph GG of

G is the graph generated by the GTRS (A, R′, tin), where R′ contains the

rules s ↪→ s′ such that there is a rule s ↪→ S in R with s′ ∈ S. As mentioned

before, we omit the edge labels. By T (G) we denote the set of all trees from

the game graph.

A play π of G is a path through GG that starts in tin and that is either

infinite or ends in a vertex without outgoing edges. This path is built up

from moves by the two players as follows. If the play is at a tree t, then

Player I chooses a subtree t↓x of t and a rule t↓x ↪→ {s1, . . . , sn}. Then

Player II chooses si ∈ {s1, . . . , sn}. The next tree in the play is t[x/si].

Since we consider reachability games the winning condition is a set T of

trees. Player I wins if the play eventually reaches a tree from T . Player II

wins if either the play goes on forever without visiting T or if Player I gets

stuck before visiting T , i.e., if the play reaches a tree t such that no subtree

of t appears on the left hand side of a rule.

Usually, a strategy for a player is a function determining the next move
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Player I chooses
x ∈ Dt and
a rule t↓x ↪→ {s1, . . . , sn}

π: · · ·

t: t′:

· · ·

Player II chooses
si ∈ {s1, . . . , sn}x

si

x

Figure 4.5: The moves carried out by Players I and II.

for the player when given the corresponding initial segment of the play. Be-

cause of the simple reachability winning condition we only need to consider

the current vertex and not the complete history of the play. So, a strategy

for Player I is a function

fI : T (G) → N∗ × R

such that for fI(t) = (x, s ↪→ S) the location x is in Dt and s = t↓x. A play

π is played according to fI if for each two successive trees t and t′ on π the

following holds: if fI(t) = (x, s ↪→ S), then t′ = t[x/s′] for some s′ ∈ S. A

strategy fI is a winning strategy for Player I if every play π that is played

according to fI is winning for Player I.

A strategy for Player II is a partial function

fII : T (G) × N∗ × R → TA

that is defined for tuples of the form (t, x, t↓x ↪→ S) with t ∈ T (G), x ∈ Dt,

and t↓x ↪→ S ∈ R such that fII(t, x, t↓x ↪→ S) ∈ S. Informally speaking,

if Player I chooses a location x and a rule that can be applied to t↓x, then

Player II responds with a tree from the right hand side of the rule that

should be substituted for t↓x. Consequently, a play π is played according to

fII if for each two successive trees t and t′ on π there is x ∈ Dt and a rule

t↓x ↪→ S such that t′ = t[x/s′] for s′ = fII(t, x, t↓x ↪→ S). A strategy fII is

a winning strategy for Player II if every play π that is played according to

fII is winning for Player II.

Figure 4.5 illustrates the two types of moves carried out by the two

players.
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Note that a play does not directly encode the moves of the two players,

but a possible sequence of moves, which is not necessarily unique, can be

derived from the trees in the play.

Of course, there is at most one player that can have a winning strategy.

By a standard attractor construction one can also show that for each GTRG

one of the players indeed has a winning strategy. Given a GTRG G we call

the player with the winning strategy the winner of G. The problem of solving

a GTRG is to determine the winner, i.e., we are concerned with the following

decision problem:

Given: A GTRG G = (A, R, tin, T ).

Question: Does Player I have a winning strategy?

In the following, we show that this problem is undecidable using the same

method as in Section 4.3. But before, we take a look at the solitaire versions

of this type of game. By solitaire versions of a two player game we mean

the degenerated cases where one of the players does not have any choice.

In contrast to the game mentioned at the beginning of this section,

which contained the universal reachability problem as the solitaire game for

Player II, the solitaire versions for ground tree rewriting games are solvable.

Solitaire game for Player I: Player II does not have any choice iff all the

right hand sides of the rules are singleton sets. In this case, Player I

chooses a normal GTR rule of the form s ↪→ s′ and the location where it

has to be applied. Determining the winner in such a game corresponds

to solving the reachability problem from Subsection 4.2.2.

Solitaire game for Player II: If Player I does not have any choice in a

GTRG G, this means that for all the trees t in T (G) there is at most

one rule of G that can be applied to t. This situation is even more re-

strictive than the one from Subsection 3.2.3 (Theorem 3.20) allowing

the transformation of GTRS into infix pushdown automata. Hence,

the construction used in Theorem 3.20 can be applied to R even with-

out the use of infix rules, yielding a pushdown automaton M and a

set C of configurations corresponding to the winning set T such that

Player II is the winner of R iff there is a path through GM that does

not visit C. This problem for pushdown automata is decidable (cf.

[EHRS00, Cac02a]) and therefore GTRGs not admitting any choice

for Player I are solvable.

These considerations show that the interaction of the two players is really

needed in the following undecidability proof. The proof follows the same



128 CHAPTER 4. MODEL-CHECKING FOR RGTR GRAPHS

lines as the proofs in Section 4.3 using simulations of Turing machines.

Given a DTM M = (Q, B, Γ, qin, qs, δ) we construct a GTRG G(M) such

that Player I has a winning strategy in G(M) iff M eventually stops when

started on the empty tape.

Informal description of G(M)

We use the same coding of configurations by trees as in Section 4.3, and we

construct G(M) in such a way that there is exactly one path πM through

GG(M) corresponding to the correct simulation of M . If the play goes along

this path πM , then Player I wins if on this path there is a tree coding a

halting configuration. To force the two players to remain on πM the game is

designed in such a way that the player deciding to leave πM establishes the

possibility to win for the other player. This is the key property of G(M). In

the following example we explain the mechanism used for forcing a desired

behavior of the two players. In this example we use trees of the form

f

/ \

g g

..

.
..
.

g g

| |

c d

We want to force the two players to alternately remove a symbol from

the two branches of the tree. It is not sufficient to use the rules

g
|
c

↪→ c and
g
|
d

↪→ d

because Player I can use these rules in any order. So, Player I could remove

all the symbols from the left branch and then proceed with the right branch.

Instead, we use auxiliary symbols and start with the rules

(1)
g
|
c

↪→ {c1, c2} and (2)
g
|
d

↪→ {d1, d2}.

To force Player I to first use rule (1) and then rule (2) we define that a tree

is in the winning set T if it contains c2 and d, or if it contains d2 and c1. If

we assume that Player one starts by choosing rule (2), then Player II can

choose d2 as the new subtree. There is no rule to rewrite d2 and therefore

Player I has no choice and must continue with rule (1). Now, Player II can

respond with c2 as the new subtree. The play has reached a tree containing

c2 and d2 and it did not visit T . Since both, c2 and d2, cannot be rewritten,
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Player II wins because Player I cannot make a new move. Thus, Player I has

to start with rule (1). If Player II chooses c2 as the new subtree, then the

next tree in the play is in T and Player II looses the game. Thus, Player II

has to choose c1 as next subtree. Now Player I can only use (2) as next rule

and Player II has to choose d1 as next subtree because otherwise the new

tree in the play would contain d2 and c1 and therefore would be in T .

We continue with the rules

(3) c1 ↪→ {c, c3} and (4) d1 ↪→ {d, d3}.

The definition of T is extended to trees containing c3 and d1 and to trees

containing d3 and c. With the same argument as above one can see that

Player I has to continue with rule (3). Player II has to respond with c as

new subtree. Player I must go on with rule (4) and Player II has to choose

d as new subtree.

In this way one can enforce a desired order in the choices of Player I,

and one can force Player II to choose the desired new subtree. In the formal

definition of G(M) the same scheme is used to ensure the correct simulation

of the transitions of M .

Formal definition of G(M)

The ranked alphabet is defined in a similar way as in Section 4.3 but with

a different set Aux of auxiliary symbols (of rank 0):

Aux = {
←−
L ,

−→
L ,

←−
L 1,

−→
L 1,

←−
L 2,

−→
L 2,

←−
R,

−→
R,

←−
R 1,

−→
R 1,

←−
R 2,

−→
R 2}.

The “L-symbols” are used for the simulation of a TM-transition with the

head moving to the left and the “R-symbols” for the simulation of a TM-

transition with the head moving to the right. The direction of the arrow on

top of the symbols indicates whether the symbol is used on the left hand

side of the trees or on the right hand side of the trees.

Alongside the definition the reader should follow the partial plays de-

picted in Figure 4.6 corresponding to the simulation of the two possible

types of transitions of M (head moving to the left and head moving to the

right). For the trees above the dashed lines, a possible choice for Player I

is shown (in fact the only one that does not lead to an immediate loss for

Player I). For each tree Player II can choose one of the successors. The trees

below the dashed line belong to a set Tcheck, to be defined later, which is

a subset of the winning set for Player I. Hence, Player II has to follow the

path above the dashed line.

The rewriting rules of G(M) are:
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(1) For all b, c ∈ Γ and d ∈ Γ ∪ {X}:

c ↪→ {
c
|
←−
L

,
c
|

←−
L 1

} and c ↪→ {

c
|
b
|
←−
R

,
c
|

←−
R1

}

and

X ↪→ {

X
|
t
|
←−
L

,

X
|
t
|

←−
L 1

} and X ↪→ {

X
|
b
|
←−
R

,
X
|

←−
R1

}

(2) For all M -transitions of the form δ(q, a) = (p, b, L) and for all c ∈ Γ:

a
|
q

↪→ {

b
|
c
|
p
|
−→
L

,

b
|
c
|

−→
L 1

} and if a = t also
X
|
q

↪→ {

X
|
b
|
c
|
p
|
−→
L

,

X
|
b
|
c
|

−→
L 1

}

For all M -transitions of the form δ(q, a) = (p, b, R) and for all c ∈ Γ:

a
|
q

↪→ {
p
|
−→
R

,
b
|

−→
R1

} and if a = t also
X
|
q

↪→ {

X
|
p
|
−→
R

,

X
|
b
|

−→
R1

}

(3) For all b, c ∈ Γ and d ∈ Γ ∪ {X}:

d
|
c
|
←−
L

↪→ {d,
d
|

←−
L 2

} and
b
|
←−
R

↪→ {b,
b
|

←−
R2

}

(4) For all p ∈ Q:

p
|
−→
L

↪→ {p,
p
|

−→
L 2

} and
p
|
−→
R

↪→ {p,
p
|

−→
R2

}

As in Section 4.3 let TM
stop be the set of all trees encoding a halting config-

uration of the Turing machine. The winning set T for Player I in G(M) is

T = TM
stop ∪ Tcheck, where Tcheck consists of all the trees satisfying one of the

following conditions:

1. t contains for some c ∈ Γ the subtrees
c
|
←−
L

and
c
|

−→
L 1

.
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2. t contains for some b ∈ Γ the subtrees
b
|
←−
R

and
b
|

−→
R1

.

3. The set of symbols from Aux occurring in t equals one of the following

sets: {
←−
L 1}, {

−→
L 2}, {

←−
R 1}, {

−→
R 2}, {

←−
L 2,

−→
L }, or {

←−
R 2,

−→
R}.

The initial tree is the one encoding the initial configuration of M on the

empty tape.

Figure 4.6 shows how Player I can force the simulation of the Turing

machine. There are always two possibilities for Player II but one of them

is leading to a tree in T . Since T also contains the trees encoding a halting

configuration Player I has a winning strategy in G(M) if M stops when

started on the empty tape.

An argument similar to the one from the informal description above can

be used to show that Player II has the possibility to win a play as soon as

Player I decides not to correctly simulate M because Player I will get stuck

without reaching a tree from T .

Hence, Player I has a winning strategy in G(M) iff M stops when started

on the empty tape, leading to the following theorem.

Theorem 4.30 The problem of solving ground tree rewriting games is un-

decidable.
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δ(q, a) = (p, b, L):

•

/ \
..
.

..

.

d a

| |

c q

//

¹¹.
..

..
..

..
..

.

•

/ \
.
..

.

..

d a

| |

c q

|
←−
L

//

ºº/
//

//
//

//
//

/

•

/ \
.
.
.

.

.

.

d b

| |

c c

| |
←−
L p

|
−→
L

//

ºº/
//

//
//

//
//

/

•

/ \
.
.
.

.

.

.

d b

|

c

|

p

|
−→
L

//

ºº/
//

//
//

//
//

//

•

/ \
.
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.

..

d b

|

c

|

p

__________________________

∈ Tcheck
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•
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| |
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| |
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L
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L 1

•

/ \
..
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L 2 c

|

p

|
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L
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|

p

|
−→
L 2

δ(q, a) = (p, b, R):

•

/ \
.
.
.

.

.

.

c d

|

a

|

q

//

»»1
11

11
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b b
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Figure 4.6: Simulation of a DTM with a GTRG



Chapter 5

Conclusion

The central topic of this thesis was the investigation of the class of ground

tree rewriting graphs. Ground tree rewriting itself has been studied inten-

sively, but the new aspect in our research was to analyze the transition

graphs of ground tree rewriting systems instead of the trees that are gen-

erated by a ground tree rewriting system. This new perspective led to new

questions, which have not been studied in the classical literature on ground

tree rewriting systems. Our analysis was divided into two main parts.

In Chapter 3 we studied structural properties of GTR graphs. The main

aspect in this chapter was the characterization of GTR graphs of bounded

tree-width as the class of pushdown graphs. This result provided methods for

studying the relation of GTR graphs to other classes of graphs. In particular,

the combination of our result and the result of Muller and Schupp [MS85] on

pushdown graphs allowed to easily separate GTR graphs from other classes

of graphs, e.g., prefix recognizable and automatic graphs, as we showed in

Section 3.3.

The second main part of our investigation of GTR graphs was concerned

with their algorithmic properties. In Chapter 4 we analyzed the decidability

and complexity of various reachability problems for RGTR graphs. One step

reachability and reachability have already been studied in connection with

ground term rewriting. For these problems the contribution of this thesis was

to lift the known algorithms to regular ground tree rewriting. The central

part and the main contribution of the algorithmic analysis was a polyno-

mial time algorithm for solving the problem of recurrence for RGTR graphs.

The decidability results were used to obtain a fragment of temporal logic

with a decidable model-checking problem for RGTR graphs. Furthermore,

we showed the undecidability for the universal and constrained reachability

problems, as well as for reachability games on GTR graphs. This detailed
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analysis of the reachability problems stemming from basic temporal oper-

ators allowed the statement that the presented fragment of temporal logic

is maximal in the sense that adding other temporal operators leads to an

undecidable model-checking problem for RGTR (and GTR) graphs.

5.1 Open Problems and Perspectives

We start with a collection of open problems that are directly connected with

the problems investigated in this thesis. Some of these problems have already

been stated in the text at the appropriate places. Finally, we conclude with

some ideas and perspectives for further research in this area.

In Section 3.2 we gave a characterization of pushdown graphs as those

GTR graphs that have bounded tree-width. The first question is if this

characterization can help to decide for a given GTR graph whether it is a

pushdown graph.

Question 5.1 Is the following problem decidable: Given a GTRS R, is GR

of bounded tree-width?

In [Col02] a result similar to our result from Section 3.2 is shown for

RGTR graphs. It states that a graph is equational iff it is an RGTR graph of

bounded tree-width. An open question is whether there is a similar relation

between RGTR graphs and prefix recognizable graphs:

Question 5.2 Is a graph prefix recognizable if it is an RGTR graph of

bounded clique-width?

In Section 3.3 we compared GTR graphs to other classes of graphs. The

exact relation between GTR graphs and automatic graphs was left open.

Question 5.3 Is the class of GTR graphs contained in the class of auto-

matic graphs or are these two classes incomparable?

In Section 4.4 we presented a logic and an algorithm for model-checking

RGTR graphs with this logic. The complexity of this algorithm is non-

elementary in the number of nested negations in the formula. It is open

whether there is a better algorithm to solve this problem.

Question 5.4 What is the complexity of model-checking RGTR graphs with

the logic presented in Section 4.4?
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These are some of the questions directly related to the topics covered

in this thesis. A broader perspective for future research is to generalize the

rewriting systems that generate the graphs. In ground tree rewriting (and

regular ground tree rewriting) it is not possible to substitute inside the trees

and there are no mechanisms to control the order of parallel applications of

rewriting rules. For this reason, ground tree rewriting and regular ground

tree rewriting are, in more concrete applications, not suitable for modeling

real systems.

If one is interested in automated verification, one has to be careful when

using extended rewriting systems. At least the reachability problem should

remain decidable. An extended form of tree rewriting systems with a decid-

able reachability problem was presented in [CDGV94]. In the rules of these

so called semi-monadic rewrite systems it is allowed to use variables directly

below the root of the tree. For example, if X is a variable, then a rewriting

rule can be of the form

f(X, a) ↪→ g(b, X).

Such a rule can be applied to any subtree of the form f(t, a), where t is

an arbitrary tree. Applying the rule means to replace the subtree f(t, a) by

g(b, t). These rules permit a restricted form of substitution inside the tree. A

possibility to obtain even more power for these rewriting systems is to add

a mechanism to get more control over the applications of these rewriting

rules. As mentioned above, the tree that is substituted for a variable X can

be an arbitrary tree. We can restrict this freedom by adding constraints to

the variables used in the rewriting rules. For constrained variables one can

only substitute trees satisfying these constraints. In this way, we get more

control over the applications of the rewriting rules.

Some investigations in this direction revealed that regular constraints

are too strong. That is, if we are allowed to specify regular sets of trees

for the variables such that the use of the variable is restricted to trees from

this regular set, then the reachability problem becomes undecidable. But

weaker constraints of the kind “the use of variable X is restricted to those

trees that contain a fixed subtree s” might preserve the decidability of the

reachability problem.
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Appendix

A.1 Computing the Reachable States in Tree Au-

tomata

Let A = (Q, A, ∆, F ) be an ε-NTA. The computation of the reachable

states of A is based on the following definition. We say that a transition

(q1, . . . , qi, a, q) is reachable iff all the states q1, . . . , qi are reachable. Then a

state q is reachable iff there is a transition (q1, . . . , qi, a, q) that is reachable.

We distinguish between ε-transitions and normal transitions and therefore

define ∆ε = ∆ ∩ (Q × Q) and ∆¬ε = ∆ \ ∆ε.

To compute the set of reachable states in time linear in the size of A we

use the following data structures:

• For a transition α = (q1, . . . , qi, a, q) ∈ ∆¬ε let

– source(α) = {q1, . . . , qi}

– depend(α) = |source(α)|,

– influence(α) = {q}.

• For a state q ∈ Q let

influence(q) = {α ∈ ∆¬ε | q ∈ source(α)} ∪ {p ∈ Q | (q, p) ∈ ∆ε}.

The algorithm explores the reachable states and transitions in a “bottom-

up manner”. Note that depend(α) = 0 for transitions of the from (a, q),

which are used by the automaton at the leafs of the input trees. Since these

transitions do not depend on any states they are marked as reachable in the

beginning. The algorithm maintains a set X of states and transitions that

are already recognized as reachable and a queue containing those states and

transitions for which the elements they influence still have to be analyzed.

The operations on the queue are

• head(queue) returning the first element of the queue and deleting it,
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Algorithm: REACHABLE STATES

INPUT: ε-NTA A = (Q, A, ∆, F )

1. for each α ∈ ∆¬ε do

2. if depend(α) = 0 then X := X ∪ {α}; append(queue,α) endif

3. endfor

4. while queue 6= ∅ do

5. u = head(queue)

6. for each v ∈ influence(u) do

7. if v /∈ X then

8. if v ∈ Q then X = X ∪ {v}; append(queue,v) endif

9. if v ∈ ∆ then

10. depend(v) = depend(v) − 1

11. if depend(v) = 0 then X = X∪{v}; append(queue,v) endif

12. endif

13. endif

14. endfor

15. endwhile

OUTPUT: X

Figure A.1: An algorithm to compute the set of reachable states of an ε-NTA

• append(queue,v) appending v to the queue.

The algorithm is shown in Figure A.1. For a transition α, every time a

state q that influences α is found to be reachable, the number depend(α)

is decreased. If depend(α) reaches the value 0, then all states in source(α)

are reachable and therefore α is reachable. It is not difficult to show the

correctness of this algorithm. The running time is given in the following

theorem.

Theorem A.5 The algorithm REACHABLE STATES(A) computes the set

of reachable states of A in time O(|A|).

Proof. First note that each element from Q ∪ ∆¬ε will be in the queue at

most once. Hence, the total running time is dominated by the sum of the

sizes of the influence sets. For each α ∈ ∆¬ε we have |influence(α)| = 1.
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To estimate the sum of the sizes of all influence(q) sets note that each

transition α ∈ ∆¬ε occurs in at most |source(α)| different influence-sets.

Furthermore, each ε-transition adds exactly one state to the influence set of

the state it departs from. So we get

∑

v∈Q∪∆¬ε

|influence(v)| =
∑

q∈Q

|influence(q)| +
∑

α∈∆¬ε

1

≤
∑

α∈∆¬ε

|source(α)| +
∑

α∈∆ε

1 +
∑

α∈∆¬ε

1

=

(
∑

α∈∆¬ε

|source(α)| + 1

)

+ |∆ε| ≤ |A|.

2
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A.2 Time Complexity of REACH

In Chapter 4 (Subsection 4.2.2) we defined the automaton Apre∗R
for an ε-

NTA and an RGTRS R as the output of the algorithm REACH (Figure 4.2).

Here we are going to analyze the complexity of this algorithm.

Let A = (Q, A, ∆, F ) be an ε-NTA and let R = (A, Σ, R, tin) be an

RGTRS with R = {T1
σ1
↪→ T ′

1, . . . , Tm
σm
↪→ T ′

m}, where the sets Ti, T
′
i are ac-

cepted by NTAs Ai = (Qi, A, ∆i, Fi) and A′
i = (Q′

i, A, ∆′
i, F

′
i ), respectively.

By B′ we denote the NTA B′ =
⋃m

i=1 A
′
i.

The main problem for the complexity of REACH is that in each iteration

of the while-loop we have to find an index i and a state p such that T ′
i

∗
−→
Bj

p.

This can be done by computing the set of reachable states in the automaton

B′×Bj , if Bj denotes the automaton computed after the jth iteration of the

while-loop in REACH. The size of the automaton Bj is bounded by the size

of Apre∗R
, i.e., |Bj | ∈ O(|Apre∗R

|). Therefore, such a computation takes time

O(|B′|×|Apre∗R
|) which is O(|R|2(|A|+ |R|)). Roughly speaking, the while-

loop in REACH may be executed O(|R|(|A| + |R|)) times. In total, the

order of the time complexity of this naive implementation is O(|A|2|R|3 +

|A||R|4 + |R|5), a polynomial of degree 5.

The implementation we propose uses that transitions are added to Bj ,

but no transitions are removed. Therefore, the set of reachable states in

B′ × Bj only increases. The idea of the implementation is as follows:

(1) Compute the reachable states of B′ × Bj (where initially j = 0).

(2) Whenever a state (q′, p) with q′ ∈ F ′
i is recognized as reachable (that is

T ′
i

∗
−→
Bj

p) add the transitions Fi × {p} to Bj and all the corresponding

transitions to B′ × Bj . Continue with (1).

The main point is that after step (2) we do not completely restart the

computation of reachable states but keep the states that are already marked

as reachable. For this purpose we modify the algorithm from Figure A.1.

We use the following notations:

• B = A ∪
⋃m

i=1 Ai.

• B′ =
⋃m

i=1 A
′
i with B′ = (Q′, A, ∆′, F ′).

• C = B′ × B with components C = (QC , A, ∆C , F C).

The set of reachable states has to be computed for C, therefore the data

structures that refer to the automaton A in Appendix A.1 (like depend
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and influence) do now refer to C. We use an array ‘inserted’ where an

entry inserted[i, p] for i ∈ {1, . . . , m} and state p of B is set to true iff the

transitions Fi × {p} were inserted in B. Initially all these entries are false.

The algorithm is shown in Figure A.2. The main part corresponds to

the algorithm REACHABLE STATES of Appendix A.1. The difference is

in lines 10–12. If a state (q′, p) ∈ C with q′ ∈ F ′
i is marked as reachable,

then the procedure insert(i, p) is called. This procedure adds the transitions

Fi×{p} to B and updates the influence-sets of C. Furthermore, it checks for

q′ ∈ Q′ and q ∈ Fi whether (q′, q) is already marked as reachable. In this

case (q′, p) is added to the queue and is marked as reachable because there

is a new ε-transition from (q′, q) to (q′, p).

With these considerations it is not difficult to see that after termination

the automaton B corresponds to the automaton Apre∗R
. We are interested

in the complexity of this algorithm.

Theorem A.6 The algorithm from Figure A.2 computes the ε-NTA Apre∗R

in time O(|R|2(|A| + |R|)).

Proof. As for the algorithm REACHABLE STATES all the statements in

the while-loop are executed at most O(|B′| · |Apre∗R
|) times.

In the while-loop the procedure insert is called, which itself contains a

loop. But the statements in lines 3–6 of insert are executed in the worst

case for each q′ ∈ Q′, each q ∈ ˙⋃m

i=1Fi, and each p ∈ Q∪̇ ˙⋃m

i=1Qi, i.e.,

O(|R| · |R| · (|A|+ |R|)) times. Since this estimation for the procedure insert

is independent of the number of executions of the statements in the while-

loop and since |Apre∗R
| ∈ O(|R| · (|A| + |R|)), we get a total complexity of

O(|R|2(|A| + |R|)). 2
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INPUT: As for REACH in Subsection 4.2.2

1. for each α ∈ ∆C
¬ε do

2. if depend(α) = 0 then X := X ∪ {α}; append(queue,α) endif

3. endfor

4. while queue 6= ∅ do

5. u = head(queue)

6. for each v ∈ influence(u) do

7. if v /∈ X then

8. if v ∈ QC then

9. X = X ∪ {v}; append(queue,v)

10. if v = (q′, p) with q′ ∈ F ′
i and not inserted[i, p] then

11. insert(i, p)

12. inserted[i, p]:= true

13. endif

14. endif

15. if v ∈ ∆C then

16. depend(v) = depend(v) − 1

17. if depend(v) = 0 then X = X∪{v}; append(queue,v) endif

18. endif

19. endif

20. endfor

21. endwhile

OUTPUT: B

procedure insert(i, p):

1. ∆B := ∆B ∪ (Fi × {p})

2. for each q ∈ Fi, q
′ ∈ Q′ do

3. influence(q′, q) = influence(q′, q) ∪ {(q′, p)}

4. if (q′, q) ∈ X and (q′, p) /∈ X then

5. X := X ∪ {(q′, p)}

6. append(queue,(q′, p))

7. endif

8. endfor

Figure A.2: A possible implementation of REACH (for the notations see

explaining text)
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A.3 Undecidability of “Diverging Configuration”

In Subsection 4.3.4 we used the problem “diverging configuration” for Turing

machines to show the undecidability of the problem “universal recurrence”

for ground tree rewriting systems. The problem “diverging configuration”

for Turing machines is the following:

Given: a Turing machine M .

Question: Does there exist a configuration κ of M such that M does not

stop when started in κ?

Here we show the undecidability of this problem. Note that we cannot apply

Rice’s theorem because a diverging configuration needs not to be reachable

in M . The proof presented below is due to an idea of Jacques Duparc.

Proof of Lemma 4.26. We use a reduction from the halting problem for

deterministic Turing machines, i.e., for a DTM M we construct a DTM M ′

such that M ′ has a diverging configuration iff the initial configuration of M

(on the empty tape) is diverging.

So, no matter in which configuration M ′ is started, it shall check how

M behaves when started on the empty tape. The basic idea is that M ′

starts simulating one step of M on the empty tape. Then M ′ resets its

M -simulation and starts simulating two steps of M on the empty tape and

so on. To keep track of how many steps of M have to be simulated, M ′

maintains a counter. For simplicity, we use a unary counter. The content of

the tape of M ′ during such a simulation of M looks as follows:

¤ 0 · · · 0
︸ ︷︷ ︸

n1

1 · · · 1
︸ ︷︷ ︸

n2

$a1 · · · ak

(

q

b1

)

b2 · · · bl¢

The meaning of the part to the left of $ is that M ′ aims at simulating n1+n2

steps of M and has already simulated n1 of these n1 + n2 steps. The part

to the right of $ encodes the configuration of M . In the representation of

M -configurations we use a new set of symbols that does not interfere with

the symbols used in M ′. Even for the blank symbol of M we introduce a

new symbol to be able to distinguish the blank symbols of M and the empty

parts of the M ′-tape. In the following t denotes the blank symbol of M ′

and u denotes the blank symbol of M used in the encoded configurations.

For the construction of M ′ we have to keep in mind that we need to

consider all possible configurations of M ′. As long as M ′ is in a configuration

of the above form such that the encoded M -configuration is reachable from
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the initial configuration of M , no problems arise. The two possible sources

for a “misbehavior” of M ′ are:

(i) M ′ is started in a configuration that is not of the above form.

(ii) M ′ is started in a configuration of the above form, but the encoded

M -configuration is not reachable from the initial configuration of M .

As we will see from the description below, the “check phase” of M ′ takes

care of (i), and the “reset phase” prevents M ′ from diverging unintentionally

in a situation of type (ii).

Now we describe the behavior of M ′. In general, we say that M ′ stops

as soon as something “unexpected” happens. For example, if we write “M ′

returns to the ¤-symbol”, then it might happen that M ′ was started in

a configuration without ¤-symbol. In this case, M ′ will eventually find a

t-symbol instead of the ¤-symbol and stop. Similarly, in all the situations

that are not explicitly covered by our description, M ′ stops. This is to

ensure that M ′ does not diverge from malformed configurations.

Assume that the reading head of M ′ is at the left border on the ¤-symbol.

Then M ′ proceeds in several phases.

Check phase: M ′ checks whether the content of the tape is of the form

described above. If it is not, then M ′ stops. Otherwise, M ′ returns to

the ¤-symbol and proceeds with the simulation phase.

Simulation phase: M ′ finds the first 1 on the tape and flips it into a 0. If

M ′ meets $ without finding a 1 before, then it returns to the ¤-symbol

and continues with the reset phase. Otherwise, M ′ moves on to $ and

then to the field coding the state of M and the position of the reading

head of M . At that point M ′ simulates one step of the M computation.

If M reaches a halting configuration in this simulation step, then M ′

stops. Otherwise, M ′ returns to the ¤-symbol and reenters the check

phase.

Reset phase: M ′ increases the number of 0-symbols on the tape by first

moving to $, replacing $ by 0, moving one position to the right, and

writing $ onto this field. Then M ′ moves to the ¢-symbol, starts

deleting everything to the left until it meets $, writes

(

q0

u

)

¢ to the

right of $, moves back to $, and then back to ¤ while flipping all 0

between $ and ¤ into 1.
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The intention in this phase is to pass from a configuration

¤ 0 · · · 0
︸ ︷︷ ︸

n

$a1 · · · ak

(

q

b1

)

b2 · · · bl¢,

meaning that n steps of M have been simulated, to the configuration

¤ 1 · · · 1
︸ ︷︷ ︸

n+1

$

(

q0

u

)

¢,

meaning that now n+1 steps of M on the empty tape will be simulated.

Assume that M does not stop when started on the empty tape. It is clear

that M ′ diverges from the configuration

¤1$

(

q0

u

)

¢

because M ′ simulates a continuously increasing number of steps of M . All

the intermediate configurations have the intended form. So, M ′ does not

stop because nothing unexpected happens and M never reaches a halting

configuration.

On the other hand, if M terminates when started on the empty tape,

then M ′ has no diverging configuration. Either M ′ is started in a malformed

configuration, then this will be detected and M ′ stops. Or M ′ is started in

a configuration of the desired form, then the counter will eventually be reset

and henceforth M ′ simulates the behavior of M on the empty tape. When

M finally reaches a halting configuration in this simulation, then M ′ stops.

2
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