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ABSTRACT 

The spread of disease in humans and animals can be modeled by systems of differential 

equations. The total population is subdivided into three categories: Susceptible (S), 

infective (I) and Recovered (R) i.e. N= S(t) + I(t) + R(t). R0 is a parameter that measures 

the initial growth rate. A system with 10 <R  is considered not to result in an epidemic 

whereas when 10 >R , the system will result into an epidemic. We will consider three 

models. The first and simplest ignores vital dynamics like births and deaths; it is 

appropriate for studying “short term” diseases.  The second model takes account of those 

vital dynamics needed for an effective analysis of diseases taking a longer time to sweep 

through the population.  More refined dynamics allowed in the third model take the 

transmission process of a disease into account. 
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CHAPTER 1 

INTRODUCTION 

 From time immemorial, outbreaks of epidemics have been a main source of human 

suffering and misery (Mollison, 1994). The threat of death from epidemics has been 

minimized in developed countries, but not in developing countries. In some cases, 

epidemics have led to population decline. This is not only the case for human populations 

but it is also evidenced in several animal species in the world, such as African carnivores 

that are susceptible to pathogens found in domestic animals (Fiorello, 2004; Van Heerden et 

al., 1989). 

 The earliest epidemic ever recorded in history occurred in Athens between 430 – 426 

B.C. during the Peloponnesian war fought between Sparta and Athens. Athens was a city with a 

strong navy and weak army whereas Sparta had a strong army with a weak navy. The leader of 

Athens, Pericles, decided to bring his people from around Athens to the fortified city to avoid 

any attack by land. Due to overcrowding and limited sanitary facilities this led to the outbreak 

of highly contagious diseases. It is believed that about 30% – 60% of the population succumbed 

to this plague. When the epidemic ended, Pericles ordered his mighty navy to capture Sparta but 

the navy was struck by the plague while en-route and Pericles called off the attack to return to 

Athens. Athens was again attacked by the plague in 428 and 426 A.D. Pericles was among those 

who succumbed to this outbreak. The war lasted for many years and since the epidemic in 

Athens weakened their navy and army, Sparta was finally able to defeat Athens (Smith, 1996).    
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Another reported case of epidemic was in the fourteenth century when bubonic 

plague killed about 25% of the population in Europe. “Bubonic plague, the most common 

form, is characterized by very high fever, chills, prostration, delirium, hemorrhaging of 

the small capillaries under the skin, and enlarged, painful lymph nodes (buboes), which 

suppurate and may discharge” ("Plague", 2005). In 1520 a smallpox epidemic caused half 

of the population of the Aztec to perish. In 1919 there was a widespread outbreak of 

influenza worldwide that claimed around 20 million people (Collins & Lehman, 1953). 

Epidemics have been reported in various parts of the world in recent time. The main 

cases that are currently being reported are due to outbreaks of Malaria and HIV AIDS.       

      In the seventeenth century, a number of people started investigating the 

incidence of epidemics.  John Graunt (1620-1674) gathered data of incidences and 

locations of epidemics (Champion, 1993). In 1760, Daniel Bernoulli came up with a 

mathematical model that was to be used to study the population dynamics of infectious 

diseases (Daley & Gani, 1999). In his model, Bernoulli developed differential equations 

which he solved with the aim of analyzing the risks that come with preventive 

inoculation. The modern theory of epidemics came into being by the work of William 

Hammer and Sir Ronald Ross early in the twentieth century (Haggett, 1994). 

Epidemic models play a very crucial role in life today. With high occurrences of 

epidemics in recent times, epidemic models are highly in demand. One of the 

reasons for formulating epidemic models that adequately describe communicable 

disease data is that the model provides a convenient summary of the data. Another 

more important reason is that such models can help to provide insight into the 
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biological and sociological mechanisms underlying the process of disease spread 

(Becker, 1979, p. 298). 

Epidemics such as AIDS pose a serious challenge to develop an appropriate model. “The 

problem in modeling this epidemic is that it is nonlinear and no simple mathematical 

formula predicts how the number of cases will increase”(Kolata, 1987, p. 1464).  

Epidemics in A Closed Population 

 In reality, demographic dynamics model old individuals that die out and are 

replaced with newborn. The time required for this demographic process to occur is much 

longer than the time it takes for an infectious disease to sweep through the entire 

population. For short term diseases this factor can be safely ignored. In such a situation, 

we consider the population to be closed and assume that it is free from the disease we are 

concerned about (a “virgin” population). Assume that for some reason or another, the 

disease is introduced to at least one host. In such a scenario, the following questions may 

be asked: 

• Does this cause an epidemic? 

• If so, with what rate does the number of infective hosts increase during the rise of 

the epidemic? 

• What proportion of the population will ultimately have experienced infection? 

(Diekmann, 2000, p.3).  

At the initial stages of the introduction of the disease-causing organisms that may lead to 

epidemics, there are only few infective in a large susceptible population. But it should be 

noted that there exists a period after which the newly infective becomes infectious 

(latency period). Denoting the length of this latency period by T1, and the length 
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infectious period by T2 –T1, we are faced with the question: What happens at the end of 

T1 and at the end of T2? As Diekmann, (2000, p.4) states: 

In order to distinguish between an avalanche-like growth and an almost-

immediate extinction, we introduce the basic reproduction ratio: 

R0 : =  expected number of secondary cases per primary case in a ‘virgin’ 

population. 

In other words, R0 is the initial growth rate (more accurately: multiplication 

factor; note that R0  is dimensionless) when we consider the population on a 

generation basis (with ‘infecting another host’ likened to ‘begetting a child’). 

Consequently, R0 has threshold value 1, in the sense that an epidemic will result 

from the introduction of the infective agent when R0> 1, while the number of 

infectives is expected to decline (on a generation basis) right after the introduction 

when R0 < 1. The advantage of measuring growth on a generation basis is that for 

many models one has an explicit expression for R0  in terms of the parameters. 

This thesis is presented in five parts. The first introduces the SIR model, which is 

simplest and in particular ignores vital dynamics. It provides a foundation for subsequent 

study in more specific situations. The second part is devoted to the SIR model with vital 

dynamics, which more effectively represents longer-term diseases.  The third part focuses 

on a model, which allows for a more complicated transmission dynamics. Due to its 

complexity, we will not analyze the third model completely. Instead we will focus on 

certain illuminating examples. In my analysis of the three models, I will make extensive 

use of the MAPLE© software package for solving the systems of differential equations 

and also plotting their solutions. The fourth part lists references. I use the APA format to 
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organize my reference lists. Finally, in the appendix, I provide the reader with all the 

MAPLE codes used in the body of the paper. 

 Epidemiology has been extensively studied for a long time as is documented in the 

literature today. My contribution to this important topic is as follows. While most of the 

literature is written for experts, my aim is to digest it for more general readers and hope 

to present a relatively self-contained account. Secondly, I will provide MAPLE codes at 

the end of the document and illustrate their uses; these are not normally presented in 

other publications.  Finally we will discuss and derive the results for a model that has 

been newly developed for application to animal diseases in South America; we will 

discuss a unique kind of birfurcation, Hopf birfurcation. The Hopf bifurcation (or 

Poincare-Andronov-Hopf) occurs when a pair of complex eigenvalues crosses the 

imaginary axis as a parameter is moved (and, in dimensions, bigger than two, the 

remaining eigenvalues have negative real part), provided that some additional technical 

conditions hold. This process usually causes the formation of a limit cycle. Using the 

third model, I will provide evidence of the existence of a Hopf burfurcation and also 

provide a proof of it. So in general, I will provide the readers with a cohesive and 

comprehensive document as a gift to this important area of study.  
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CHAPTER 2 

MODEL I: THE SIR MODEL WITHOUT VITAL DYNAMICS 

In the simplest epidemic model a constant population size, N, is assumed. That is 

to say, there are no deaths or movement of population to affect the population size. Since 

many epidemics take a relatively short time as compared to the life span of the 

individuals in the population, the assumption of constant population size is reasonable. 

That is to say, “Since an epidemic occurs relatively quickly, the model does not include 

births and deaths (vital dynamics). Epidemics are common for diseases such as influenza, 

measles, rubella and chickenpox” (Levin et al., 1989, p. 128). The next assumption in this 

simple model is that the population is subdivided into three mutually exclusive sets: 

1. The susceptibles are those individuals of the population that do not have the 

disease at a certain time, t ,but may have it at a later date. 

2. The infectives are those individuals of the population that have already been 

infective by the disease at a given time, t ,and have the potential of 

transmitting it to others  

3. The recovered are those individuals in the population that have recovered 

from the disease and are no longer infectious at time t. 

I will denote susceptible, infective and Recovereds at time t by S(t), I(t) and R(t) 

in that order. Using the above assumption we can note that: 

S(t) + I(t) + R(t) = N                                                     (1.1) 

for all time t.   
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Next, we assume that the rate of decrease of S(t) is proportional to the product of the 

number of susceptibles and the number of infectives which means that the number of 

susceptibles and infective are homogeneously mixed.  Therefore: 

dS
dt

= −βS(t)I(t)                               (1.2) 

for all time. (Note that this assumption holds for animals populations but different 

interaction terms are often used for human population, e.g. in descriptions of HIV AIDS 

propagation) 

Where: 

•  β  is the constant of proportionality which is referred to as infection rate.  

• The product S(t)I(t) represents the rate of contact between the susceptibles and 

infectives. 

• β S(t)I(t) represents the proportion of contacts which results in the infection of 

susceptibles . 

We can again assume that the rate of change of the recovered is proportional to the 

number of infectives. Therefore: 

dR
dt

= rI ( t)                          (1.3) 

for all t. 

Here r is called the removal rate. 

 

By solving equation (1.1) for I, i.e. I = N – S – R and taking the derivatives on (1.1), we 

get  
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dI
dt

= −
dS
dt

−
dR
dt

 

Using equation (1.2) and (1.3), we get 

dI
dt

= βS(t)I(t) − rI(t) = (βS(t) − r)I(t)    (1.4) 

Therefore the system that models the epidemics discussed above is 

 dS
dt

= −βSI                                                                                             (1.5a) 

dI
dt

= (βS − r)I                                                                                        (1.5b)       

 dR
dt

= rI                                                                                                  (1.5c) 

Where β  and r are positive constants. The initial conditions for this model are the 

initial number of susceptibles S(0)  > 0, the initial number of infectives I(0)  > 0, and the 

initial number of recovered R(0) = 0. The expected number, 0R , of secondary cases per 

primary case in a ‘virgin’ population (introduced above) of this model, will play a key 

role in the following discussion. To determine R0 in this situation, first note that the 

infective individuals are contagious for a period of approximately 1
r

 since, if we consider 

I  to be nearly constant initially, then (1.5c) gives R(t) ≈ rI(0)t  so when t = 1
r

 the original 

number of infective, I(0), will have recovered. Next, we rewrite equation (1.5b) to give  

dI
dt

= r Sβ
r

−1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ I  

and so at t = 0, when S(t) is approximately N, we have  

 dI
dt t= 0

≈ r βN
r

−1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ I  



  9 

Again, if we think of I(t)  as being nearly constant during the first generation of the 

disease, we find that the number of infectives at t = 1
r

 is approximately  

I 1
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≈

βN
r

I(0) − I(0), 

Thus βN
r

 gives the expected number of secondary case per primary case in the “virgin” 

population, i.e. R0 =
βN
r

. 

WARNING: This multiplication factor R0  has nothing to do with R(0), the initial 

condition for the recovered. For this reason, we carefully distinguish between the 

parameter R0  and the initial condition R(0);  

To analyze the model in equation (1.5), let us investigate the general behavior of this 

model. Given β  > 0, S(t) ≥  0 and I(t) ≥  0, dS
dt

= −βSI ≤ 0 for all t. As a matter of fact, 

dS
dt

< 0 unless S = 0 or I = 0. When dS
dt

< 0, the susceptibles S(t), is a strictly decreasing 

function. Furthermore  since r >0 and I(t) ≥  0, dR
dt

= rI ≥0, then dR
dt

 >0 unless I = 0, 

which means that the number of Recovered is astrictly increasing function of time, t. 

Since I(t) ≥  0,  and dI
dt

= (βS − r)I ,  the change in the number of infective depends on the 

nature of (β S – r) when I ≠  0. For ( β S – r) > 0 i.e. S > r
β

, dI
dt

> 0, which means the 

number of infective increases. Whereas when (β S – r) < 0, i.e. S < r
β

, dI
dt

< 0, the 

number of infective decreases. The ratio r
β

 is the relative removal rate. Since S(t) is a 
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strictly decreasing function, 0 ≤S(t) ≤S(0)where S(0) is the initial number of susceptibles. 

If S(0) is less than r
β

, no epidemic occurs since dI
dt

= (βS − r)I  ≤  (β S(0)– r)I < 0 which 

means that I(t) is a strictly decreasing function. That is, if S(0) < r
β

, the number of 

infectives decreases monotonically to zero from the initial value of I(0). On the other 

hand if S(0)> r
β

 (condition for an epidemic), the number of infectives increases from the 

initial value of I(0) to a maximum value which occurs when the number of susceptibles 

has decreased to the value r
β

 at some value t* when t > t*, S (t) < r
β

 and the number of 

infectives decreases. This result is what epidemiologist calls the threshold phenomenon. 

That is, there is a critical value which the number of initial susceptibles must exceed 

before an epidemic can occur (Brauer & Castillo-Châavez, 2001; Daley & Gani, 1999).  

The threshold theorem which was proved by W. O. Kermack and A. G. McKendrick in 

1927 for equation (1.5) states that: 

• If S(0) < r
β

, then I(t) decreases monotonically to zero.  

• If S(0) > r
β

, I(t) increases monotonically to a maximum value and then decreases 

monotonically to zero. The lim
t →∞

S(t), exists and is the unique solution, x, of  

S(0)e— β(N − x) /r   = x  
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We can determine these limiting values by manipulating equation (1.5).  

 Using the chain rule and equation (1.5)  dS
dR

=

dS
dt

dR
dt

=
−βSI

rI
=

−β
r

S . Integrating,  

dS
S∫ =

−β
r∫ dR  yields loge S =

−β
r

R + loge S(0), since R(0) = 0. Therefore 

S = e
(−βR

r
+ loge S(0))

= S(0)e
(−βR

r
)
≥ S(0)e

(−βN
r

)
> 0 

“Thus S(∞) > 0, or there will always be susceptibles remaining in the population. Thus 

some individuals will escape the disease altogether, and, in particular, the spread of the 

disease does not stop for lack of a susceptible population” (Waltman, 1974, p. 4).  On the 

other hand, the system can further be examined by using the S-I plane. Also using the 

chain rule,  

dI
dS

=

dI
dt

dS
dt

=
βS − r
−βS

=
βS − r
−βS

= −1+
r
β

1
S

                       (1.6) 

Thus dξ = (−1+
r
β

S(t )∫I ( t )∫ 1
ϑ

)dϑ , which implies  

I(t) = −S(t) +
r
β

loge S(t) + I(0) + S(0) −
r
β

loge (S(0)) , where I(0) + S(0) −
r
β

loge (S(0)) = 

C0 is a constant. We can write this as  

I(t) = −S(t) +
r
β

loge S(t) + C0                                                                        (1.7) 

The phase portrait representing equation (1.5)  above is illustrated in Fig 1.1 
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below. The value of S in which the epidemic reaches it’s peak is when I is maximal. 

Since dI
dt

= (βS − r)I = 0 for I maximal, and I ≠ 0, then S =
β
r

. Also note that lim
t →∞

I(t) = 0 

since each solution curve eventually hits the S axis. Taking the limit in (1.7), and letting x 

denote lim
t →∞

S(t), we see that 0 = −x +
r
β

loge x + C0  or e
β (x−C0 )

r = x . Noting that 

C0 = I(0) + S(0) r
β

loge S(0) = N −
r
β

loge S(0) we see that x = S(0)e
−β (N−x )

r  as promised.   

 

See appendix 1.1 for the maple file that created Fig 1.1 
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The epidemic curve I(t) shown in figure 1.2 below is a bell shaped. 

 

 

Fig 1.2 An epidemic curve starting at l0 = 0.06 with β = 10 and r = 3 so that β/r = 10/3 

Equilibrium and stability 

The equilibrium found algebraically then stability shown by perturbing about equilibrium 

points (eq. 1.5). From the maple output (appendix 1.2a), the Jacobian matrix of the 

equation is  

 

Here we use In to denote the infective population, since maple has reserved the symbol I 

for −1.  

The equilibrium states in this model are at the points where I = 0, and S = S* where S* = 

N is any positive constant (hence the equilibrium points are non-isolated). From the 

Maple output  

(see appendix 1.2a), there are two eigenvalues, 0 and βS* − r .  
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“If the condition for an epidemic is satisfied, this second eigenvalue is positive 

and the equilibrium is unstable. If the second eigenvalue is negative, there is no 

conclusion about the stability for the linearization because of the zero eigenvalue. 

However, it is obvious that the equation is not strictly stable even in that case, 

because any perturbation with non-zero I will lead to a situation in which S 

decreases and therefore does not return to 

 S*” (Clark, 2002a). 

 Since S* = N, the second eigenvalue is positive precisely when R0 =
βN
r

>1. Thus 

an epidemic occurs when, and only when, each of the initially infective individuals 

infects more than one other individual.  

As a final example for this model, we use Maple to integrate the following hypothetical 

epidemic model below (see appendix 1.2b).  

dS
dt

= −.0067SI                                                                         (1.7a)  

dI
dt

= .0067SI − .9I                                                                    (1.7b) 

dR
dt

= .9I                                                                                  (1.7c) 

 

on the interval [0, 10] and initial conditions: S(0) = 400, I(0) =7, R(0) = 0. 

Since  R0 =
βN
r

=
0.0067 * 407

0.9
= 3.0298, there will be an epidemic. 
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Fig 1.3 A Graph of S(t), R(t), I(t)  

The epidemic model (1.10) is represented in the graph (Fig 1.3) above where 0 ≤ t ≤10 

and 0 ≤  S,I,R ≤400. In this model, S decreases monotonically from 400 to around 14 

whereas R increases monotonically from 0 to around 400. I(t) has a very different shape 

as compared with the other two. I(t) increases monotonically from 4 and attains its 

maximum value of about 125 at approximately t = 2.25 and then starts decreasing 

monotonically to zero. The graph for I(t) is the most significant. In this model, an 

epidemic occurs in the period when I(t) increases and then decreases. 
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CHAPTER 3 

MODEL II: THE SIR MODEL WITH VITAL DYNAMICS 

The model with vital dynamics is very similar to (1.5) except that the inflow and 

outflow of deaths and births are added in such a way that deaths and births balance to 

maintain the population size at a constant size N (Hethcote, 2000). This model allows us 

to investigate events at a longer duration. “A disease is called endemic if it is present in a 

population for more than 10 or 20 years. Because of the longer time period involved, a 

model for an endemic disease must include birth as a source of new susceptibles and 

natural deaths in each class” (Levin et al., 1989, p. 132). As in the case of S-I-R model 

discussed above, this model is also divided into three groups: the susceptibles S, the 

infective I, and the recovered, R. The total population is S(t) + I(t) + R(t) = N which still 

remains a constant. Just as Clark (2002b, p. 1) explains that: 

The susceptibles are those who are not infective and not immune, the infectives 

are those who are infective and can transmit the disease, and the recovered are 

those who have been infective, have recovereds and are permanently immune. We 

will include in the model the natural birth and death rates, although with 

simplifying assumptions. We assume that all births are into the susceptibles. We 

assume that the death rate is equal for members of all three classes, and we 

assume that the births and death rates are equal so that the total population is 

stationary. Finally we assume that this is a non-lethal disease so that the recovered 

are truly recovered and not dead”. 
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The differential equations for the SIR model with vital dynamics is  

dS
dt

= −βSI + µN − µS                                                                (2.1a)  

dI
dt

= βSI − µI − rI                                                                      (2.1b) 

dR
dt

= −µR + rI                                                                           (2.1c) 

 

where µ is the birth and death rate. 

Note that (2.1a) with (2.1b) forms a closed system, i.e. R does not appear in (2.1a) and 

(2.1b), thus (2.1c) can be disregarded in the analysis of the system. To analyze the 

system, let us consider what happens before the infection (infection-free state) i.e. (S(0), 

I(0)) = (N, 0). After that, we will look at what happens when the system is at an endemic 

steady state. In this case, R0 , the expected number of secondary cases per primary case 

becomes βN
r + µ

 since the main difference between this model and the previous one is that 

the initial infectious period is 1
r + µ

, see discussion on page 11. 

Case 1- infection-free state 

Let us find the steady state. To find the steady we set the right hand side of (2.1a) and 

(2.1b) equal to 0. i.e.  

−βSI + µN − µS = 0                                                                           (2.2a)                  

(βS − µ − r)I = 0                                                                                (2.2b)              
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Equation 2.2b implies either I = 0 or βS − µ − r = 0 . If I = 0, 2.2a implies S = N. This 

steady state (S ,I ) = (N, 0) is called the infection free steady state. To analyze this state 

further we linearise 2.1a and 2.1b around the state steady state (S ,I ) = (N, 0); we have  

∂
∂S

(−βSI + µN − µS) = −βI − µ  

∂
∂I

(−βSI + µN − µS) = −βS  

∂
∂S

(βSI − µI − rI) = βI  

∂
∂I

(βSI − µI − rI) = βS − µ − r  

yielding the jacobian matrix 

−µ −βN
0 βN − µ − r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                                                              (2.2) 

when S = N and I = 0. 

 Since this is upper triangular, the eigenvalues are λ1 = −µ  and λ2 = βN − µ − r . The 

infection free equilibrium is asymptotically stable when both eigenvalues have negative 

real parts (Conrad, 2003). Since λ1 = −µ  is always negative then the condition for 

stability is that λ2 = βN − µ − r < 0. If λ2 > 0  then the linearized system is a saddle point 

and so the equilibrium is unstable. Therefore, the infection-free equilibrium is stable if 

and only if  

βN − µ − r < 0 (equivalently: R0 <1)                                                 (2.3) 

and unstable if  

βN − µ − r > 0 (equivalently: R0 >1)                                                 (2.4)                      
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It is worth noting that although we can have a disease-free state with S and R both 

positive and I = 0, it is not strictly speaking an equilibrium, because the 

recovereds gradually die out and are not replaced. Only when all of the recovereds 

are gone can the population distribution be stationary (Clark, 2002b) 

 

Case 2 – endemic steady state (I ≠0) 

The endemic steady state is a state in the system “in which the inflow of new susceptibles 

is balanced by the incidence (and by death)”(Diekmann & Heesterbeek, 2000, p. 42). 

That is to say that endemic steady state (S,I) has I
_

 > 0. If I ≠ 0, there can be another 

steady state (S ,I ), 2.2b implies that βS − µ − r = 0 i.e. S = µ + r
β

 and 2.2a then gives 

I = µN − µS 
βS 

=
µ
β

N
S 

−1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .  I  is positive only when N

S 
=

NB
µ + r

= R0 >1. In this case we 

have a physically realistic steady state called the endemic steady state.  

Note that if R0 <1, then the endemic state does not exist in the first quadrant and the 

infection free state is an attractor. Thus there will be no epidemic in this case and the 

infective population diminishes to zero.  

To analyze the state further we will linearize (2.1a) and (2.1b) around the steady 

state (S ,I ) with I > 0, we have  
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∂
∂S

(−βSI + µN − µS) = −βI − µ = −βI − µ, 

∂
∂I

(−βSI + µN − µS) = −βS = −βS , 

∂
∂S

(βSI − µI − rI) = βI = βI  

∂
∂I

(βSI − µI − rI) = βS − µ − r = 0  

yielding the jacobian matrix 

 

−β I
_
− µ −β S

_

β I
_

0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
                                                                                                (2.5) 

Therefore (2.5) has trace T = −β I
_
− µ < 0 and determinant D = β 2 S

_
I
_

> 0. Using Fig 2.1 

below depicting the trace-determinant plane, we can conclude that since T = −β I
_
− µ < 0 

and D = β 2 S
_

I
_

> 0, the endemic state is (locally asymptotically) stable because the point 

(T,D)  lies in the second quandrant of the trace-determinant plane (Blanchard et al., 

2002). In other words, if we consider (2.5), the characteristic equation  

λ2 − Tλ + D = 0                                                                                              (2.6) 

λ2 + (βI + µ)λ + (β 2S I ) = 0                                                                            (2.7) 

yields 

λ =
−(βI + µ) ± (βI + µ)2 − 4β 2S I 

2
                                                             (2.8) 
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Fig 2.1 The trace-determinant plane (Blanchard, 2002, p. 337)  

 

the eigenvalues of (2.5) have negative real part as shown in (2.8) . This means that the 

endemic steady state is stable. Note that the endemic state is present if the values of S  

and I  are positive and also (2.4) is satisfied. This means the endemic state can only exist 

when the infection-free state is unstable (Clark, 2002b).  

      Note from (2.8), the radical ± (βI + µ)2 − 4β 2SI   may be real or imaginary, thus the 

phase plane may have either a spiral sink or a sink depending on the value of the 

parameters. But research done in this area only focuses on the spiral sink, in that the term 

inside the radical is negative. This is so because it makes sense from a practical point of 

view, when the recovery rate is much larger than the death rate. In this case, after an 

epidemic runs its course (forcing the number of susceptible below the epidemic 

threshold) new susceptibles are born so that eventually a new epidemic cycle can begin. 

Diekmann, (2000)  explained  this point as follows: 
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Consider the characteristic equation (2.7) 

λ2 + (βI + µ)λ + (β 2S I ) = 0, where 

 

(a) S = µ + r
β

.  

(b)  I = µ
β

R0 −1( ) 

In the characteristic equation λ2 + (βI + µ)λ + (β 2S I ) = 0, dividing by µ2 and using (a) 

and (b), we can rewrite this as  

λ
µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ R0 −1+1( )λ
µ

+ (R0 −1) β
µ

N
R0

= 0,

i.e.

λ
µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ R0
λ
µ

+
r + µ

µ
R0 −1( )= 0.

 

  When 1
µ

>>
1
r

, we have r
µ

>> 1, and consequently we approximate the last term by  

r
µ

(R0 −1). The equation  

                                     y 2 + R0y +
r
µ

(R0 −1) = 0 

has roots  

                                      y =
R0 ± R0

2 − 4 r
µ

R0 −1( )

2
                                                                                     

Using once more that r
µ

>> 1, we see that the expression under the square root is negative 
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(we are considering the endemic steady state, so implicitly we have assumed that R0 >1) 

and that the roots are, to first approximation, 

λ
µ

= y = −
R0

2
± i r

µ
(R0 −1).                                                                                                                             

So the relaxation time 1
| Re λ |

 equals 2
µR0

, while the frequency equals r
µ

(R0 −1),  both 

to first approximation with respect to the small parameter µ
r

. For µ << r , the relaxation 

time is of the order of 1
µ

 but the period is of the order of 1
µ

 so the ratio between the 

two goes to infinity for µ↓0. This means that we shall see many oscillations while the 

deviation from steady state is damping out (p. 205 – 206).                                                                            

 The model that we have discussed (S-I-R), brings forth two possibilities i.e. 

R0 <1 and when R0 >1. This is so because “the behavior is almost completely dependent 

on the threshold quantity R0 , which determines not only when the local stability of the 

disease-free equilibrium switches, but also when the endemic equilibrium enters the 

feasible region with a positive infective fraction” (Hethcote, 2000, p. 609). For this 

model, there is a bifurcation at  

R0  = 1. The following examples will illustrate this point in greater depth. 

Case 1 R0  = 0.5 < 1 

dS
dt

= −0.0175SI + 5000 − 5S                                                                 (2.9a)                                                

dI
dt

= 0.0175SI − 5I − 30I                                                                       (2.9b) 

R0 =
βN

(µ + r)
=

17.5
35

= 0.5  
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In this case, the number of infectives will immediately decline after introduction 

of an infective agent when R0 <1, in this case, R0 = 0.5 <1. Using the maple output (see  

appendix 2.2), the jacobian matrix is: 

 

and the equilibrium points; sp = {In = I = 0., S = 1000.} 

Therefore, p1: = eval (jc (S = 1000, I = 0))  

 

The eigenvalues of (p1) = λ1 = −5,λ2 = −17.5  (see appendix 2.2). Since λ1 < λ2 < 0, then 

the equilibrium point is a sink, which lie in the 2nd quadrant of the trace determinant 

plane (see Fig 2.1). The phase plane portrait for this system is shown in fig (2.2) below 
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(see appendix 2.3). 

 

Fig 2.2 The phase plane portrait R0 = 0.5 

 

The S(t) and the I(t) plots are shown in fig 2.3 below was created by maple9.5 (see 

appendix 2.4). 
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Fig 2.3 A graph of S(t), I(t)  R0 = 0.5 

From the phase portrait (fig 2.2) and S(t) and I(t) graphs (fig 2.3), it can be noted that if 

R0 = 0.5 <1, then the infectives decrease to zero (Hethcote, 2000). For this model, the 

infective (I) are 800 whereas the suceptibles (S), are 200. In less then 5 years, all the 

initial infective have recovered from the 800 to zero whereas the initial susceptible have 

rapidly increased from 200 to 1000. Therefore it should be noted that if R0 <1 the 

solution path approaches the disease free equilibrium (I, S) = (I, N) = (0, N). 
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Case 2, R0   > 1 

 This is the situation where an epidemic results when an infective agent is 

introduced into the susceptible population. This is a different scenario than what occurred 

when R0   < 1. As Hethcote, (2000) explains that: 

if R0  = σ  > 1 (see appendix 2.5), I0  is small and, and S0 is large with σ S0 > 1, 

then S(t) decreases and I(t) increases up to a peak and then decreases, just as it 

would for an epidemic. However after the infective has decreased to a low level, 

the slow process of the deaths of recovered people and the births of new 

susceptibles gradually (over 10 or 20 years) increase the susceptibles until σ S(t) 

is large enough that another smaller epidemic σ S0 occurs. .. For this SIR model 

there is a transcritical (stability exchange) bifurcation at σ  = R0 >1  (p. 608).  

The following examples, will illustrate more what happens when R0 >1.      

Example 1 

dS
dt

= −0.003SI + 50 − 0.05S                                                                         (2.10a)                                        

dI
dt

= 0.003SI − I − 0.05I                                                                               (2.10b) 

 R0 =
βN

(µ + r)
=

(.003)(1000)
(0.05 + 1)

=
20
7

= 2.857 > 1 

Using the maple output (see appendix 2.6), the jacobian matrix is: 

 

and the equilibrium points; sp = { S = 350., I = 30.95238095} 

Therefore pI: = eval (jc(S = 350, I = 30.95238095) (see appendix 2.6) 
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Hence the eigenvalues λ = −0.07142857 ± 0.30397I  

Since -0.07142857 < 0, then the equilibrium point is a spiral sink. The phase portrait for 

this system is shown in fig 2.4 below which was created by maple with initial conditions 

S(0) = 990, I(0) = 10 (see appendix 2.7) 

 

Fig 2.4 The phase plane portrait R0 = 2.857 

Fig 2.4 shows a speedy development of the epidemic, which then slows in a spiral 

form to the endemic state. According to maple output (see appendix 2.7) of fig 2.4, the 
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endemic state is (S, I) = (348.098, 31.532). This means that the number that recovered in 

this population is (1000 – 348  – 31) = 621. 

 

 

 Fig 2.5 A Graph of S(t) I(t) R0 = 2.857 (see appendix 2.8) 

On the same note, the time plot, S (t) and I (t)  (fig 2.5) shows a speedy 

development of the epidemic, which is then followed by damped oscillations leading to 

the endemic state (348.098, 31.532). In the endemic state, any perturbations will be 

damped oscillations. Since the eigenvalues of this system 
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are λ = −0.07142857 ± 0.30397I , then the oscillation period is 2π
.30397

= 20.67, with 

frequency of .30397
2π

= 0.0483 

Example 2 (Clark, 2002b). 

dS
dt

= −0.05SI +14.29 − 0.01429S                                                       (2.11a) 

dI
dt

= 0.05SI −10.01429I                                                                     (2.11b) 

R0 =
βN

(µ + r)
=

(0.05)(1000)
(0.01429 + 10)

=
50

10.01429
= 4.992865196 > 1 

 (see appendix 2.8), the jacobian matrix is: 

 

and equilibrium points: sp = {S = 200.2858, I = 1.141161). 

Therefore pI: = eval (jc(S = 200.2858, I = 1.141161) (see appendix 2.8) 

 

Hence the eigenvalues  

 

Since -0.0356740..<0, the equilibrium point is a spiral sink. The phase portrait for this 

system  is shown in fig 2.6 below created by maple with initial conditions S(0) = 998, 

I(0) = 2 (see appendix 2.9). 
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Fig 2.6 The phase plane portrait R0 = 4.99 

Interesting! What is going on in figure 2.6? Let’s investigate this system by using 

the graphs S(t) and I(t) for system (2.11) (see appendix 2.10) in figure 2.7 below.  

This rather striking curve can be described as a succession of epidemics, of ever-

diminishing amplitude. Eventually, those oscillations disappear and the system 

settles in to the stable endemic equilibrium. The system requires 200 years to 

settle into the endemic state! The most characteristic feature of this system is the 

existence of two different time scales – the short time scale of a single epidemic, 

and the long generational time scale on which susceptibles are replenished (Clark, 

2002b). 
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Fig 2.7 A Graph of S(t), I(t) R0 = 4.99 

Since the scale for I(t)  needs to be big, figure 2.8 and 2.9 below will illustrate what is 

going  on in figure 2.7 above.  
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Fig 2.8 A Graph of S(t) R0 = 4.99 



  34 

 

Fig 2.9 A Graph of I(t) R0 = 4.99 
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CHAPTER 4 

MODEL III: PARVOVIRUS STRAINS IN DOGS AND WILD CARNIVORES 

The S-I-R model (1.5) discussed above is a simple case of the model: 

dS
dt

= bN(1−
N
K

) − βS(I + F) − dS                                             (3.1a)                                      

dI
dt

= βS(I + F ) − I(r + di + d)                                                  (3.1b) 

dR
dt

= rI − dR                                                                             (3.1c)                            

dF
dt

= δI −αF                                                                                                               (3.1d) 

Where:  

β is the infection rate. 

N = S(t) + I(t) + R(t)  

r is the recovery rate 

b is the birth rate 

d  is the death rate due to natural caurses 

di  is the death rate of the infectives 

K is the carrying capacity 

F, α  and δ  will be discussed below. 

This model was discussed in Fiorello, (2004) in which she discussed canine parvovirus 

(CPV) that affect domestic dogs in Isoso region of the Bolivian Chaco. She was 

particularly interested in the transmission of disease to wild animals. Three conditions 
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(present in Bolivian Chaco) that are vital for the disease to be passed over from domestic 

animals to wild animals are: (1) the domestic animal must have the pathogen that cause 

the disease. (2) The pathogen must be able to cause disease in the wild animals (3) there 

should be a medium that allows the transmission of the disease.  

Condition (3) needs extra attention and careful consideration. There are two ways 

in which disease can spillover from domestic animals to the wild animals. One, pathogen 

can spillover when the infective come into contact with the susceptible. But this condition 

can be tricky especially, when the animals involved avoid each other. Secondly, the 

pathogens can be transmitted through feces. As Fiorello noted:  

…pathogens that survive in the environment for a period of  time may be 

transmitted even if individuals from the two populations never meet. Because 

carnivores often use urine and feces to mark territories and communicate with 

conspecifics, they are motivated to investigate such materials and therefore may 

be exposed to infectious agents shed in excreta (p. 153).  

For that matter, equation (3.1d), has the parameters F, α  and δ  in which F is the 

fecal density per km2, δ  is the fecal accumulation and α  is the fecal decay. Just as 

Fiorello (2004) notes “In the equation describing fecal accumulation and decay, we 

assume that accumulation is linearly proportional to the number of infectious animals 

with fecal production rate δ  and that decay is exponential, with decay constant, α” (p. 

163). In this model, it is considered that nearly all domestic dogs are seropositive and are 

never vaccinated. The locals use of dogs for hunting makes the two conditions present in 

the Bolivian Chaco. 
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Assumptions and parameter values (Fiorello, 2004) 

• Dogs were exposed to CPV 

• Once Dogs recover from the infection, they recover for life 

b =
3

365
 

d =
1

8 * 365
 

β = 0.01 

di = 0.01 

r = 0.09 

α =
1

90
 

δ =1 

In this model, the behavior of solutions was studied as a function of the bifurcation 

parameter, K.  

While investigating model 3.1 above, a typo occurred in (3.1a) by which the first 

N was replaced with S as shown below. This model although it does not represent 

parvovirus, we discovered shows interesting behavior, limit cycles, that were not present 

in the original model. This model may be applicable to some diseases. The assumption 

made in this model is that once dogs recover, they cannot reproduce. 
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dS
dt

= bS(1−
N
K

) − βS(I + F) − dS − v                                                                           

dI
dt

= βS(I + F ) − I(r + di + d)                                                                                                          

dR
dt

= rI − dR                                                                                                         

dF
dt

= δI −αF                                                                                                               

 We now use maple to show the behavior of this system with the above values for the 

parameters, and various choices for K. 

Case 1, K = 0.9  

This yields 

dS
dt

=
3

365
S(1−

N
0.9

) − 0.01S(I + F) −
1

8 * 365
S                                        (3.2a) 

dI
dt

= 0.01S(I + F) − I(0.09 + 0.01+
1

8* 365
)                                            (3.2b)           

dR
dt

= 0.09I −
1

8 * 365
R                                                                            (3.2c)                    

dF
dt

= I −
1

90
F            (3.2d) 

Using the maple output, (See appendix 3.1), the jacobian matrix is  

 

and the equilibrium points; sp3 = { I = 0.002069731470, S = 0.1102664459, F = 

0.1862758323, R = 0.5439254303} 
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Therefore, P3 = eval (jc(I = 0.002069731470, S = 0.1102664459, F = 0.1862758323, 

 R = 0.5439254303)) (see appendix 3.1) , therefore,  

 

 

 

The eigenvalues e3 are: 

 

 

Since the real parts of all of the eigenvalues are negative, the equilibrium point is a spiral 

sink. This can be shown by the graph S(t), I(t), F(t) and R(t) of figure 3.3 below which 

was created by maple (see appendix 3.2)  
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Fig 3.1 A Graph of R(t), F(t), S(t), I(t), K = 0.9 

Since we cannot see what is going on with I(t), let us choose a different scale below:  
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Fig 3.2 A Graph of R(t), F(t), S(t), I(t) K = 0.9 

The following diagram (Fig 3.3 & 3.4) shows the damping oscillation of the system at 

late times. 
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Fig 3.3 A Graph of R(t), F(t), S(t), I(t), K = 0.9 

It should be remarked that although these oscillations are damped, many cycles occur 

before the amplitude diminish considerably. Thus, in the short term, the oscillatory nature 

is far more important than the damping. 
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Fig 3.4 A Graph of I(t) K = 0.9 
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Case 2 K = 1.5 

dS
dt

=
3

365
S(1−

N
1.5

) − 0.01S(I + F) −
1

8 * 365
S                                             (3.3a) 

dI
dt

= 0.01S(I + F) − I(0.09 + 0.01+
1

8* 365
)                                                (3.3b)               

dR
dt

= 0.09I −
1

8 * 365
R                                                                                 (3.3c)                 

dF
dt

= I −
1

90
F                                                                                              (3.3d)                 

 

Using the maple output, (see appendix 3.3), the jacobian matrix is  

 

The equilibrium points; sp3 =  

 

Which means that  
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and the eigenvalues e3 are: 

 

As indicated, the real parts of the two complex eigenvlaues are positive which means that 

the equilibrium point is a spiral source in a two dimensional attracting surface. This can 

be shown in fig 3.5 and 3.6 below 

 

Fig 3.5 A Graph of R(t), F(t), S(t), I(t), K = 1.5 
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Since the scale for Fig 3.5 does not show us what happens with I(t), I modified the scale 

as show in Fig 3.6 below. 

 

Fig 3.6 A Graph of I(t), K = 1.5 

Fig 3.7 (See appendix 3.4 for maple file) and 3.8 below shows what happens in the long 

run in this model 
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Fig 3.7 A Graph of R(t), F(t), S(t), I(t), K = 1.5 
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Fig 3.8 A Graph of I(t), K = 1.5 

Figure 3.7 shows the dynamics of equation (3.3) over a period of 30000 days (82 years). 

The oscillation for S(t), I(t) , F(t)  and R(t) will continue over the period and eventually 

its respective amplitude become damped. But the oscillation does not eventually die out 

but oscillated forever (Fiorello, 2004). It is evident that something very interesting occurs 

between K = 0.9 and K = 1.5. For K = 0.9, the eigenvalues  are: 
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Whereas the eigenvalues for K = 1.5 are: 

 

The real part of the complex eignevalues change from negative to positive as shown in e3 

for K = 0.9 and K = 1.5 above. Making small changes in K can nail down the point of 

transition. From my investigation, I found that the point of interest are when K = 1.04 and 

1.05 

For K = 1.04 the eignevalues (See Appendix 3.5) are: 
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Whereas K = 1.05 the eigenvalues (See appendix 3.6) also are: 

 

 

 

What then goes on inbetween when K = 1.04 and 1.05? 

 

Hopf Birfurcation 

Hopf birfurcation is the bifurcation of a fixed point to a limit cycle (Tabor, 1989 P. 197). 

What we have shown so far is that we have two type of equilibrium points. One is the 

spiral source whereas the other is spiral sink. For K = K1, negative real parts result to a 

spiral sink. One the other hand, for K = K2, positive real part results to a spiral source. To 

proof for the existence of hopf birfurcation, we can try to proof that N(t) is bounded.  

 

dS
dt

= bS(1−
N
K

) − βS(I + F) − dS                                                                           

dI
dt

= βS(I + F ) − I(r + di + d)                                                                                                         

dR
dt

= rI − dR                                                                                                              

dS
dt

= bS(1−
N
K

) − dN − diI  

If N get bigger than K, then  
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N< max (N(0), K) 

Hence N is bounded.
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1.2b 

 
2.1 
R0 :=  expected number of secondary cases per primary case in a virgin’ population. In 
other words, R0  is the initial growth rate (more accurately: multiplication factor; note that 
R0  is dimensionless) when we consider the population on a generation basis (with 
‘infecting another host’ likened to ‘begatting a child’). Consequently, R0  has threshold 
value 1, in the sense that an epidemic will result from the introduction of the in the 
infective agents when R0 >1, while the number of inflecteds is expected to decline (on a 
generation basis) right after the introduction when R0 <1. The advantage of measuring 
growth on a generation basis is that for many models one has an explicit expression for 
R0  in terms of the parameters (Diekmann, 2000, p. 4) 
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2.5 
Although R0  is only defined at the time of invasion, σ  and R are defined at all times. For 

most models, the contact number σ  remains constant as the infection spreads, so it is 

always equal to the basic reproduction number R0 . In these models σ  and R0  can be 

used interchangeably (Hethcote, 2000, p. 604) 
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