

i-Tree, i-Tree Canopy Cover and The changing trends for tree species

Dr Kieron J. Doick Urban Forest Research Group Forest Research

- 1. The 'Urban Forest'
- 2. i-Tree Canopy urban tree cover and changing trends
- 3. i-Tree Eco, and tree species trends

What is the Urban Forest

Green Infrastructure Linear Street Shrubs Grass forests trees The **Urban Forest** Trees in Trees in parks and gardens and public private Soil greenspaces 1 greenspaces² Trees along Agricultural Woodland crops Water waterways 2. Examples of private Nongreenspaces: 1. Examples of public agricultural Agricultural land greenspaces: crops Derelict lands Civic and amenity spaces Green roofs Green corridors Outdoor sports facilities Institutional grounds Residential gardens Parks and gardens Urban orchards Water management spaces

Defined as... **All** the trees in the urban realm – in public and private spaces, along linear routes and waterways and in amenity areas. It contributes to green infra-structure and the wider urban ecosystem.

Green infrastructure typology*

Green Infrastructure & the Urban Forest

Line of trees

Urban forest components

Tree cluster

Woodland

The relationship between GI and the Urban Forest

Single tree

Street trees and verges						
Green roofs and walls						
Amenity spaces						
Derelict lands						
Water management spaces						
Parks and gardens						
Land used for urban agriculture						
Civic spaces						
Institutional grounds						
Outdoor sports facilities						
Green corridors						
Natural and semi-natural spaces						
Agricultural land						
Commonly related Sometimes related Rarely related *Source: Burgess (2015)						

Figure from 'Delivery of Ecosystem Services by Urban Forests' (Davies et al., 2017) (Search: bit.ly fcrp026)

the Urban Forest delivers

Table 2 Matrix of the relationship between ecosystem services and urban forest components.

Ecosystem service			Urban forest components					
	Ecosystem service	Single tree	Line of trees	Tree cluster	Woodland			
ii Bu	Food provision							
Provisioning	Fuel provision (woodfuel)							
Prov	Wood provision							
	Carbon sequestration							
ng	Temperature regulation							
Regulating	Stormwater regulation							
Reg	Air purification							
	Noise mitigation							
	Health							
	Nature and landscape connections							
ural	Social development and connections							
Cultural	Education and learning							
	Economy							
	Cultural significance							

Crown copyright

the Urban Forest delivers

Table 2 Matrix of the relationship between ecosystem services and urban forest components.

lab	le 2 Matrix of the relationship between ecosystem se							
	Ecosystem service	Urban forest components						
	,	Single tree	Line of trees	Tree cluster	Woodland			
	Fruit and leaf fall							
	Animal excrement							
	Blocking of light, heat or views							
	Decrease in air quality			CA Forestry Commission				
Disservice	Allergenicity			Contact Name and	Alexandra Ma			
Disse	Spread of pests and diseases							
	Spread of invasive species							
	Damage to infrastructure							
	Creation of fear				Research Report			
	Tree and branch fall (especially during storms)			Delivery of e	cosystem urban forests			
	Commonly delivered Sometimes delivered	Rarely delive	red	Services by	orbuit loresis			
Fror	m `Delivery of Ecosystem Services by Urb	an Forests'						
(Dav	vies et al., 2017) (Search: bit.ly fcrp026)				Commission			

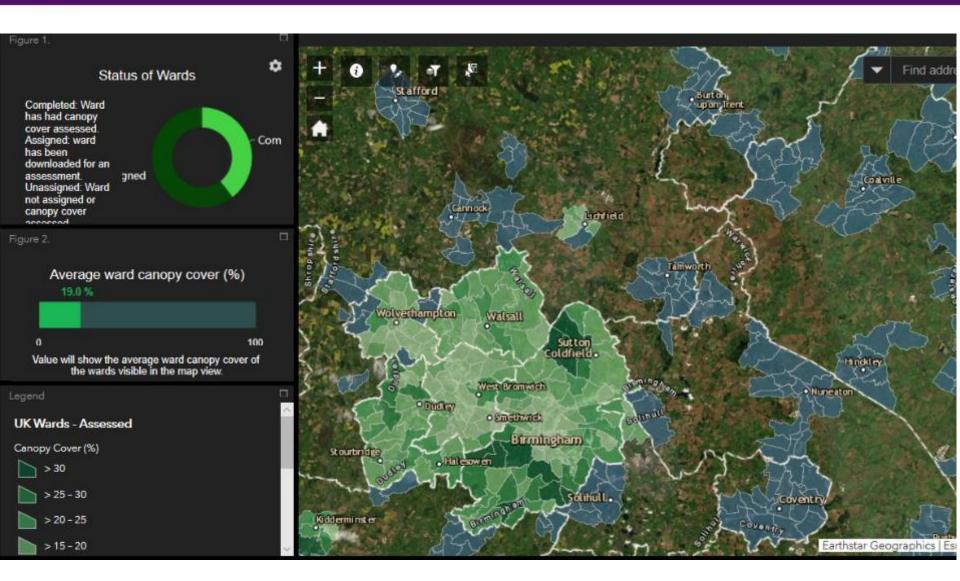
Crown copyright

- 1. The 'Urban Forest'
- 2. i-Tree Canopy urban tree cover and changing trends
- 3. i-Tree Eco, and tree species trends

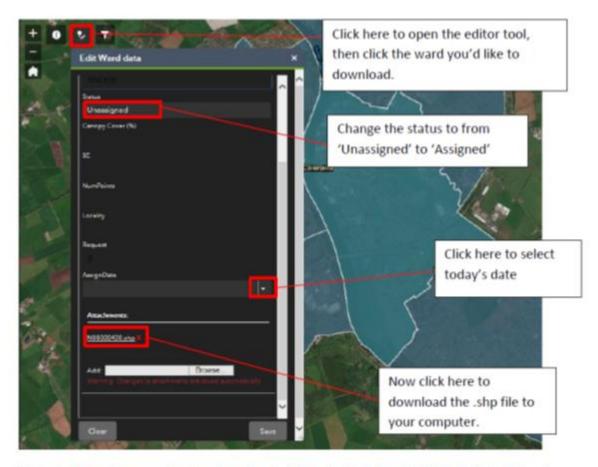
i-Tree Canopy – Citizen Science project to map Urban Canopy Cover for **every** urban ward

Visit https://www.forestresearch.gov.uk/research/i-tree-eco/urbancanopycover/

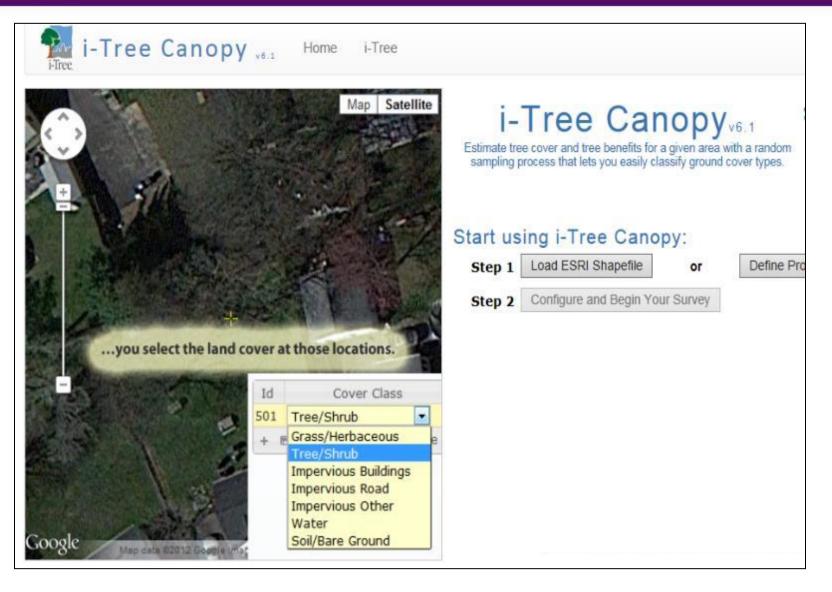
for our step-by-step guide and to learn about the project objectives


- 5,091 urban wards
- GB and Northern Ireland

https://bit.ly/2PT8Mlo


The 'Map' and 'Results' page

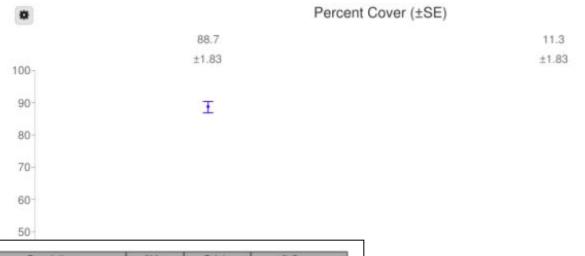
9



Step-by-step, the guide

- iii) Go to https://canopy.itreetools.org/ and click the button 'load ESRI Shapefile'. Upload the .shp file you have just downloaded.
- iv) Once uploaded the page will refresh and you should now see your boundary outlined in red on a Google map, to the left-hand side of the screen. Proceed to Step 2.
- B. Contact us to get the official ward boundaries. We'll email you a file (an ESRI GIS shape-file)

12



i-Tree Canopyv6.1

Cover Assessment and Tree Benefits Report

Estimated using random sampling statistics on 10/10/18

Cover Class	Description	Abbr.	Points	% Cover
Non-Tree	All other surfaces	NT	266	88.7 ±1.83
Tree		T	34	11.3 ±1.83

Tree Benefit Estimates

Abbr.	Benefit Description	Value (GBP)	±SE	Amount	±SE
CO	Carbon Monoxide removed annually	£1.96	±0.32	60.99 lb	±9.85
NO2	Nitrogen Dioxide removed annually	£3.38	±0.55	332.58 lb	±53.71
03	Ozone removed annually	£176.10	±28.44	1.65 T	±0.27
PM2.5	Particulate Matter less than 2.5 microns removed annually	£364.04	±58.79	160.95 lb	±25.99
902	Sulfur Dioxide removed annually	£0.59	±0.10	209.58 lb	±33.85
PM10°	Particulate Matter greater than 2.5 microns and less than 10 microns removed annually	€127.85	±20.65	1,109.51 lb	±179.17
CO2seq	Carbon Dioxide sequestered annually in trees	£9,031.81	±1,458.53	337.22 T	±54.46
CO2stor	Carbon Dioxide stored in trees (Note: this benefit is not an annual rate)	£227,720.08	±36,774.10	8,502.45 T	±1,373.05

3

+

i-Tree Canopy - Citizen Science project to map at 'ward' level across GB and Northern Ireland

Results so far:

- 5,091 urban wards
- 914 completed (17.95%)
- Average canopy cover: 16.8%
- Range 2-52%

step-by-step guide:

https://www.forestresearch.gov.uk/research/i-tree-

eco/urbancanopycover/

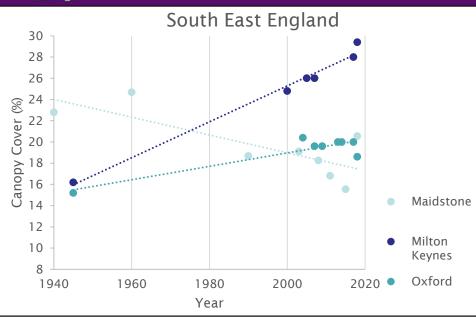
Interactive web map: https://bit.ly/2PT8Mlo

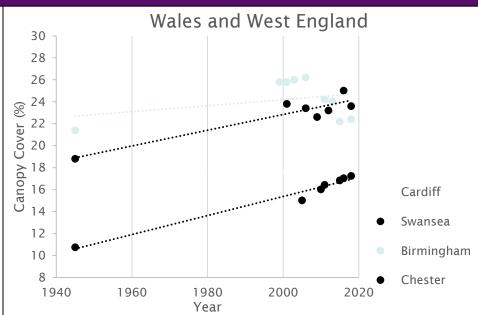
What do we know about changes (trends) in Urban Tree Cover?

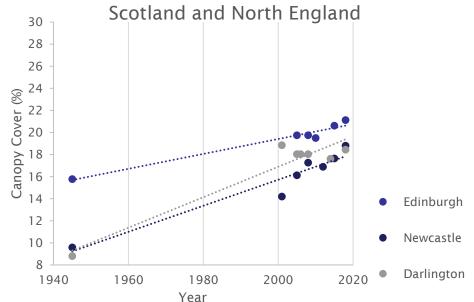
- Mini project

(2 Scottish, 2 Welsh, 6 English cities)

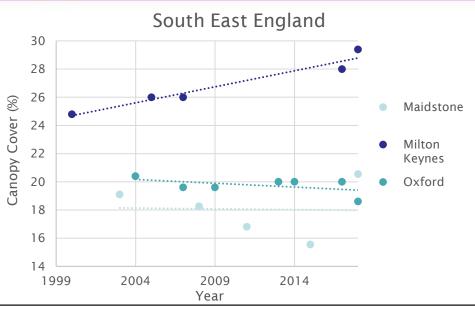
- Decadal trend analysis, from the 1940's

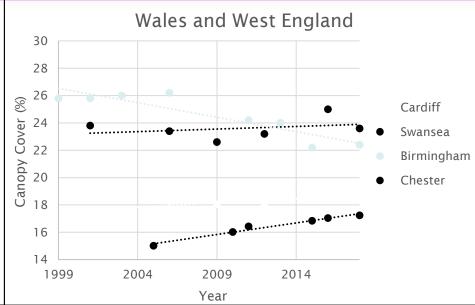


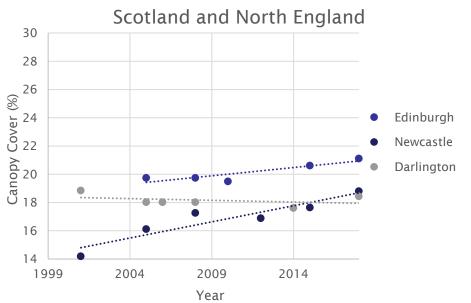

Birmingham, 1945


www.britain from above.org.uk

1940-2018






- 7 urban areas show increase, 4 statistically significant (p>0.05, 95%CI)
- 2 urban areas (Cardiff and Birmingham) little to no change
- 1 urban area (Maidstone) shows statistical decline

1999-2018

- 5 urban areas show increase
- 3 urban areas show little to no change
- 2 urban areas show decline

- 1. The 'Urban Forest'
- 2. i-Tree Canopy urban tree cover and changing trends
- 3. i-Tree Eco, and tree species trends

i-Tree: a suite of tools

Eco, Canopy, [Hydro]

www.itreetools.org

Urban Trees

'Public good'

Quantification and valuation

= Decision making

i-Tree

21

By the USDA Forest Service and Davey

Ecosystem services (aka Public good)

Provisioning	Regulating	Supporting	Cultural
	Climate regulation		[CAVAT]
	Flood regulation		
	Air pollution removal		

i-Tree: for urban forest management

i-Tree: tools for urban forest management

Who is using i-Tree?

- ✓ Local authorities
- ✓ Community groups, charities, tree wardens
- ✓ Developers
- ✓ Government bodies
- ✓ Highways
- ✓ Univeristies

~ 30 GB studies now

FIELD DATA STRUCTURE — FUNCTIONS — VALUES — REPORT

Sample plot inventory

- Land use
- Tree cover
- Impervious cover
- Plantable space
- Etc. etc

- Number of trees
- Species comp.
- Age/Size structure
- Leaf area
- Leaf and tree biomass

Carbon storage & sequestration

Air pollution removal

Stormwater attenuation

Visual amenity

Habitat provision

Building energy use 🤳

= policy

understanding

as annual benefit as amenity value

as a total

= Budgets

= Funding

= Return on Investment

Findings: state of Tawe Catchment's trees (in 2014)

Number of trees: 530,000	Equal to an average of 76 trees per hectare, above existing estimates for other areas in the UK.
Tree cover: 16%	Higher than most other studied areas. Most trees were found in most often in parks, residential land, and on vacant land.
Low proportion of large trees	Lower than the recommended 10% value, and lower than other areas studied in the UK.
Number of species: 88	Includes both tree and shrub species. The most common species were Common alder, goat willow and downy birch.

Findings: ecosystem services provided by Tawe Catchment trees

Stormwater mitigation	252 million litres of water intercepted annually	Worth £333,900 annually in avoided sewerage charges
Air pollution removal	136 tonnes of airborne pollutants removed annually	£715,500 annually in avoided damage to health, buildings & crops
Carbon sequestration	3,000 tonnes of atmospheric carbon removed annually	£671,000 annually for climate change mitigation
Carbon stored	102,000 tonnes of carbon stored in current stock of trees	£23.1 million for climate change mitigation

i-Tree Eco: what we can do with the data

Rese

management on ecosystem services

Kathryn L. Hand and Kleron J. Boick

Chartered Foresters

.00000

Urban lowers provide ecopytem services that contribute to have a health, leveably, and extainability. The management of treat influences the defining of these ecopytem services and thus helps determine the total benefit provided by an arban losset. The Benerath Note currentates the Discourch Tapport that asserted the did very of regulating ecopytem services by 38 tree species common to the arban environment in the UK. The importance of characteristics such as tree day externed and condition on ecopytem services delivery are essentimed, and how these vary across of different

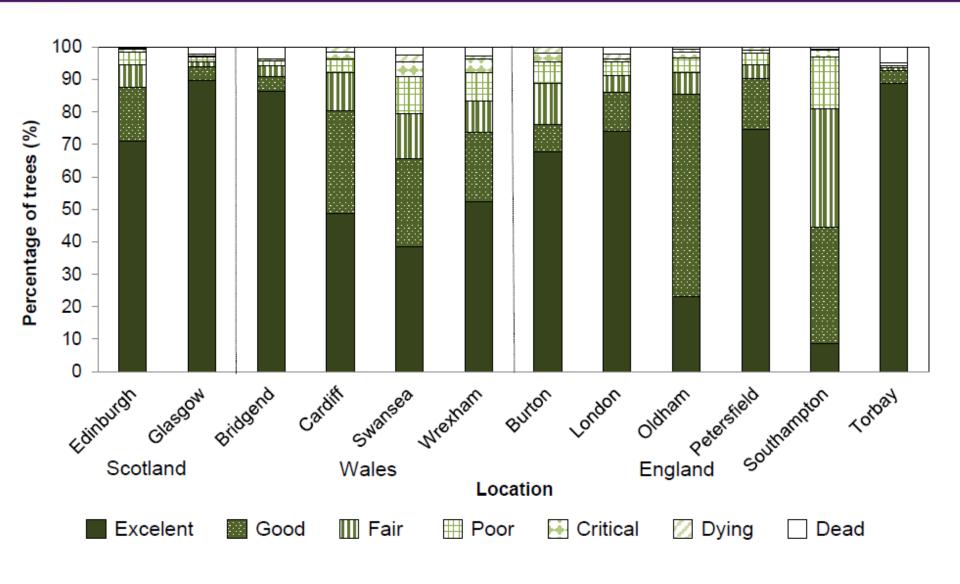
all trees are discussed, as well as the outsuistive impact of the whole urban drivers and viral practices in the fear key stage of urban tree measurement, lightween, assistmance, and enveron. The fishings it invasire than management keys by whan forests though selection of the trees placed, how trees as ear trees are encounter. Healthy legal were sered own to provide the greatest traphasizing the importance of orban forest management that value and and chellengts can inhibit the proactive management of urban trees.

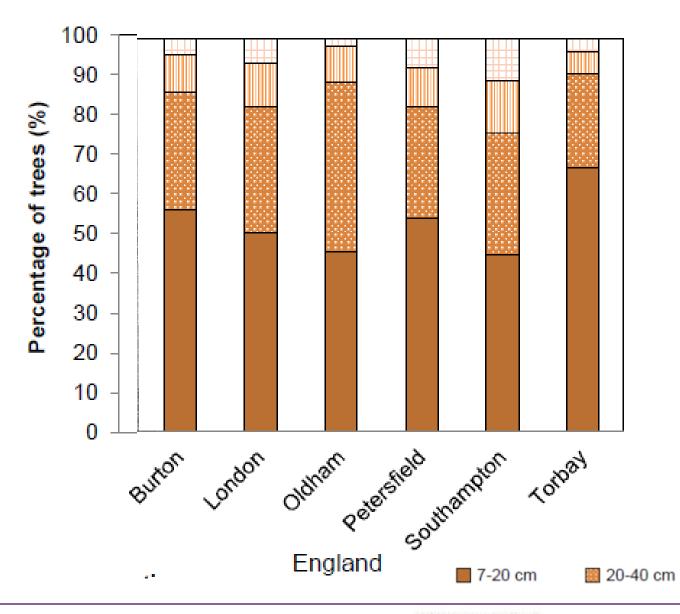
- 2

Forestry An International Journal of Forest Research

An insight to the current state and sustainability of urban forests across Great Britain based on i-Tree Eco surveys

Madalena Vaz Monteiro*, Phillip Handley and Kieron J. Doick


+										
Region	City/Town	Number of	Number of trees and equivalent percentages of the total trees considered in each location							
			Conifers ¹		Native ²		Street trees		Public ³	
England	Burton									
			14%		61%		6%		46%	
	London									
			11%		36%		7%		30%	
	Oldham									
			18%		63%		6%		41%	
	Petersfield									
			18%		42%		8%		31%	
	Southampton									
			9%		63%		3%		60%	
	Torbay									
			21%		47%		0%		21%	
Total										


¹Palm trees are not presented.

²Trees only named to Genus are not presented.

³Trees growing in areas classified as "other" are not presented.

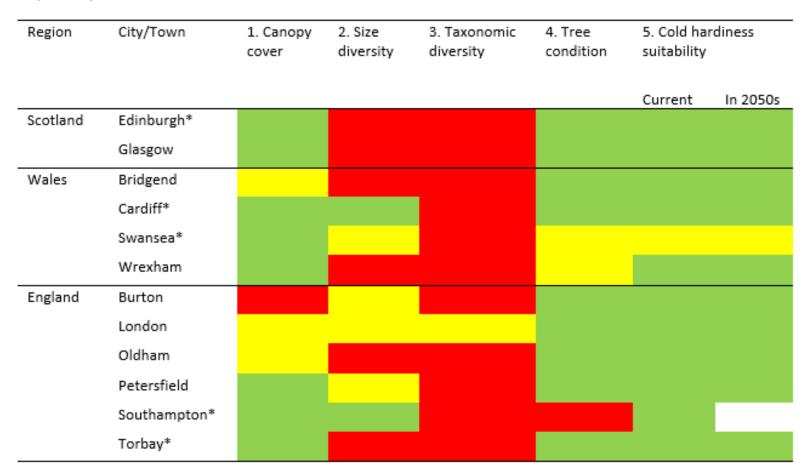
Are we looking after our trees?

How our cities 'size-up'

40-60 cm

Which trees deliver us the 'most' benefit?

- Large stature
- Mature
- Healthy
- Well placed
- 'configuration' (urban forest component)


Table 1 Tree species ranked by their ecosystem services delivery as mature trees, in descending order.

Rank	Carbon storage per tree	Gross carbon sequestration per tree	Avoided run-off per tree	Pollution removal per tree
1	Oak spp.	Oak spp.	London plane	London plane
2	London plane	English elm	English elm	English elm
3	English yew	English yow	Oak spp.	Oak spp.
4	Beech	London plane	English yew	Wych elm
5	Sycamore	Beach	Wych elm	Beech
6	Ash	Sycamore	Beech	English yow
7	English elm	Holm oak	Lime spp.	Lime spp.
8	Holm oak	Ash	Sycamore	Sycamore
9	Wych elm	Wych elm	Norway maple	Norway maple
10	Norway maple	Silver birch	Ash	Ash
11	Lime spp.	Sweet cherry	Holm oak	Holm oak
12	Hornbeam	Lime spp.	Sweet cherry	Sweet cherry
13	Silver birch	Norway maple	Hornbeam	Hornbeam
14	Scots pine	Hornbeam	Silver birch	Scots pine
15	Sweet cherry	Scots pine	Scots pine	Silver birch
16	Lawson's cypress	Alder	Lawson's cypress	Lawson's cypress
17	Alder	Rowan	Field maple	Field maple
18	Downy birch	Field maple	Holly	Leyland cypress
19	Field maple	Lawson's cypress	Leyland cypress	Holly
20	Leyland cypress	Hawthorn	Bird cherry	Goatwillow
21	Hawthorn	Downy birch	Goat willow	Bird cherry
22	Goat willow	Apple spp.	Rowan	Rowan
23	Apple spp.	Løyland cypress	Alder	Alder
24	Holly	Goatwillow	Hawthorn	Hawthorn
25	Rowan	Holly	Hazel	Hazel
26	Hazel	Callery pear	Apple spp.	Apple spp.
27	Callery pear	Hazel	Downy birch	Downy birch
28	Bird cherry	Bird cherry	Callery pear	Callery pear
29	Elder	Plum spp.	Plum spp.	Plum spp.
30	Plum spp.	Elder	Elder	Elder

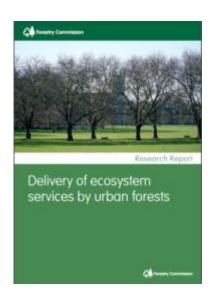
orest Research i-Tree Eco: what we can do with the Data

Table 7. Sustainability rating for the urban forests, based on the trees surveyed (Good; Fair; or, Poor)

- Davey Institute, especially to Scott Maco
- Forestry Commission
- Woodland Trust, for data
- My group at Forest Research
- Open University

The Open University

Forest Research i-Tree Eco: what we can do with the Data



Urban forests and Green Infrastructure

- Ecosystem Services delivered by urban forests
- i-Tree Eco
 - Involvement in 15 surveys
 - Developing new surveys
 - Exploring research impact
- Role of trees and greenspace in cooling urban environments - mapping cooling

RN37 "The role of urban trees & green spaces in mitigating urban heat islands" published in Jan

Greenspace design

- Adequate size (>0.5 ha) and simple boundary shape
- Short distance between sites (e.g. around 100-150 m for greenspaces with 3-5 ha)
- Sparsely distributed trees¹

Plant selection

- High typical transpiration rates in the warm season (e.g. species with broad leaves)²
- Large stature tree species and those with a wide, dense canopy²
- High leaf solar reflectance (e.g. light leaf colour)²
- Suitability and adaptability to the site³

Site conditions

- Use of vegetated surfaces or permeable/ porous pavements⁴
- Adequate water supply⁴
- Un-compacted and appropriately fertile soil*
- Ample rooting space⁴
- Appropriate design of the broader area (leading to sufficient sunlight and non-limiting temperature and vapour pressure deficit conditions)

Maximum cooling benefit

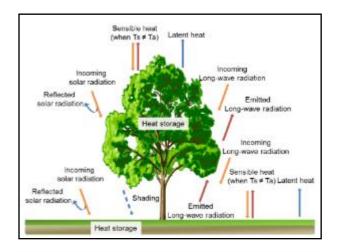


Figure 2. An example of estimated air temperature increase with increasing distance from greenspaces of different sizes (small: 2.5 ha; medium: 12 ha; large: 111 ha) during selected warm and calm nights up to a distance where the air temperature plateaued.

Large greenspace

Medium greenspace

Small greenspace

O.5

Small greenspace

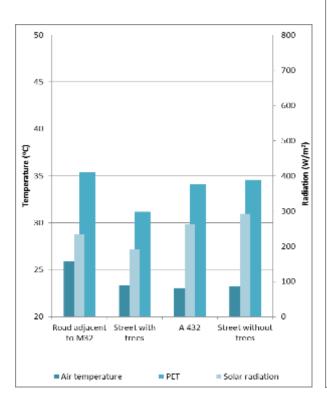
Distance from greenspace (m)

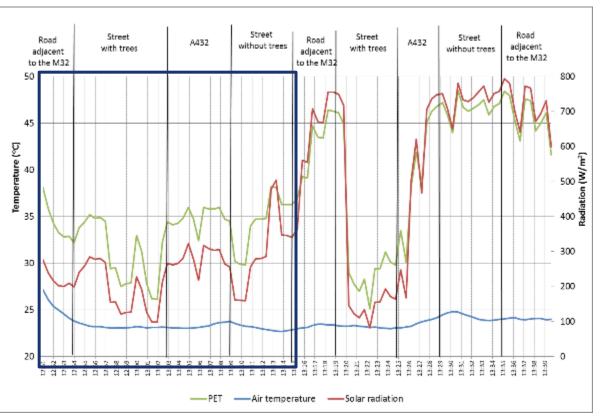
Influence of trees on Energy Cooling demand in cities, Published Sept. 2018

https://doi.org/10.1016/j.ufug.2018.07.023

- Evapotranspiration cooling quantified at a city scale
- Three UK case study urban forests; including Wrexham
- 14 27 kg water/hr/tree, contributing to cooling and humidification of air
- Pre-cooling air reduces A/C unit running costs, indicating service value of trees.
- more in-situ evapotranspiration required (species; locations)
- 1% -13% energy cost savings

On-going research


- Role of street trees in cooling and thermal comfort



- Growth rates of 'novel' street tree species
- ∼20 species
- ∼2 London boroughs

37