

I2C Communication with an Arduino

Alex Lange

ECE 480 – Design Team 3

November 13, 2015

Executive Summary:
Arduino is an open-source microcontroller perfect for prototyping or
hobbyists. They are easy to use, have a multitude of optional Arduino-
compatible boards such as GPS and Ethernet, and have a vast user base
that can help support any project. For these reasons, as well as the
ability to use I2C, Arduino microcontrollers are a quality option for any
project.

Keywords:
 Arduino, IIC, I2C

Objective:

 This application note will serve as a basis for using I2C to communicate with many

different devices, including but not limited to LCDs, sensors, digital-to-analog converters. This

application note will focus on using I2C to display information on multiple LCDs. This application

note also assumes a basic understanding of programming as well some familiarity with Arduino.

Introduction:

 When using an Arduino for any project, one of the main areas of concern is the limited

inputs and outputs (I/O). For the Arduino used in this application note, there are 13 digital I/O

and 6 analog I/O. When connecting one LCD using normal communication methods, the LCD

requires 6 digital pins, leaving only 7 for other desired functions. Using I2C, it is possible to use

multiple LCDs, digital-to-analog converters, and a multitude of sensors with only two total

digital pins.

Basics of I2C Communication:

 I2C is a multi-master, multi-slave, serial bus invented by Philips Semiconductor. The

benefits of I2C are that it only requires two lines per bus; one clock and one data for all the

connected devices. The downside of I2C compared to other communication methods is that it

has a slower communication speed. In terms of LCDs, this slower communication speed will

have no effect. Figure 1 illustrates the layout of I2C with a master microcontroller that can send

signals to the three slave nodes. The Arduino has its own internal pull-up resistors, so Rp in

Figure 1 is not needed when using an Arduino. SDA is serial data line, while SCL is the serial

clock line.

Figure 1: Example I2C Schematic

Interfacing with External Hardware:

 The most common form of LCD used for Arduinos is a 1602 LCD, which is a 16 character

by 2 line display. There are a variety of text and background colors that can be selected. The

typical setup for connecting one of these LCDs to an Arduino without I2C can be seen in Figure

2. This demonstrates the complexity associated with standard communication systems.

Figure 2: Standard LCD Connection

 In order to make the LCD I2C compatible, an I2C hardware module is simply soldered to

the 16 pins on the LCD. The module selected is very important as there are a vast number of I2C

modules for 1602 LCDs. It is important to get modules with different addresses. If the LCDs

have the same address, there is no way for the Arduino to distinguish the two of them. The I2C

module in Figure 3 has the option to change the address. The pads A0, A1, and A2 act as a

binary counter. For example, shorting the pads of A0 gives it a value of ‘1’, while leaving it open

gives it a ‘0’. Using this logic, there are 23, or 8, possible addresses. Ultimately this means that

only 8 LCDs can be displayed if only this model is utilized.

Figure 3: I2C Module for 1602 LCD

 After the I2C modules are soldered to the LCDs, the pins from the modules can be

connected to those on the Arduino. There are corresponding GND, VCC, SDA, and SCL pins on

the Arduino.

Software:

 I2C communication can be illustrated by the following analogy. The microcontroller acts

as a professor in a classroom talking to students. The classroom is the data bus, where any

information on it can be heard by any of the devices, or students. The students act as the

devices, only responding when the professor addresses them by their name. The first step to

using the I2C devices is to identify the addressable values of each device. These addresses are

how the Arduino can communicate with each device individually. This can be done simply by

running the following I2C scanner, Figure 4, where the address of each device will be displayed

in the Arduino integrated development environment (IDE) serial monitor.

Figure 4: I2C Scanner

 After the addresses are returned, the devices can now be addressed individually. In

order to use I2C with the LCDs, the correct library must be included:

 After including the library, the final step is to initialize the LCDs. Although there are now

only two wires going to each LCD, the I2C module still needs to know which pins on the LCD

require what data. The first part names each LCD so they can be more easily addressed later.

After this, the address of each LCD is entered as well as the pins the I2C module needs to send

information to. The final part is telling the I2C module to turn the LCD backlight on.

 The LCDs can now easily be written to using the following command, where ‘lcd2’ can

be changed to any of the assigned LCD names:

Conclusion:

 I2C can be extremely useful when there is a desire to use a lot of different devices. It

allows for future expansion as it saves on the number of I/O that are used. An example of its

usefulness is using I2C to address 4 different LCDs, Figure 5, to display 3-phase power

information, the remaining I/O are then used for sampling buttons as well as exterior controls,

like turning on a capacitor bank if the power factor drops too low.

References:

https://www.arduino.cc/en/Tutorial/HelloWorld

https://en.wikipedia.org/wiki/I%C2%B2C

http://www.egr.msu.edu/classes/ece480/capstone/fall15/group03/index.html

https://www.arduino.cc/en/Tutorial/HelloWorld
https://en.wikipedia.org/wiki/I%C2%B2C
http://www.egr.msu.edu/classes/ece480/capstone/fall15/group03/index.html

