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Introduction

In this tutorial, you will learn all about the I2C communication protocol, why you would want to use it, and how it's implemented.

The Inter-Integrated Circuit (I2C) Protocol is a protocol intended to allow multiple "peripheral" digital integrated circuits ("chips") to communicate with one or more
"controller" chips. Like the Serial Peripheral Interface (SPI), it is only intended for short distance communications within a single device. Like Asynchronous Serial
Interfaces (such as RS-232 or UARTs), it only requires two signal wires to exchange information.

Suggested Reading

Stuff that would be helpful to know before reading this tutorial:

Serial Communication

Asynchronous serial communication concepts: packets, signal levels, baud rates, UARTs and more!
Favorited Favorite 98

Serial Peripheral Interface (SPI)

SPI is commonly used to connect microcontrollers to peripherals such as sensors, shift registers, and SD cards.
Favorited Favorite 88

Binary

Binary is the numeral system of electronics and programming...so it must be important to learn. But, what is binary? How does it translate to other numeral
systems like decimal?
Favorited Favorite 48

Shift Registers

An introduction to shift registers and potential uses.
Favorited Favorite 44

Logic Levels

Learn the difference between 3.3V and 5V devices and logic levels.
Favorited Favorite 79

Why Use I2C?
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To figure out why one might want to communicate over I2C, you must first compare it to the other available options to see how it differs.

What's Wrong with Serial UART Ports?

Because serial ports are asynchronous (no clock data is transmitted), devices using them must agree ahead of time on a data rate. The two devices must also
have clocks that are close to the same rate, and will remain so--excessive differences between clock rates on either end will cause garbled data.

Asynchronous serial ports require hardware overhead--the UART at either end is relatively complex and difficult to accurately implement in software if necessary.
At least one start and stop bit is a part of each frame of data, meaning that 10 bits of transmission time are required for each 8 bits of data sent, which eats into
the data rate.

Another core fault in asynchronous serial ports is that they are inherently suited to communications between two, and only two, devices. While it is possible to
connect multiple devices to a single serial port, bus contention (where two devices attempt to drive the same line at the same time) is always an issue and must
be dealt with carefully to prevent damage to the devices in question, usually through external hardware.

Finally, data rate is an issue. While there is no theoretical limit to asynchronous serial communications, most UART devices only support a certain set of fixed
baud rates, and the highest of these is usually around 230400 bits per second.

What's Wrong with SPI?

The most obvious drawback of SPI is the number of pins required. Connecting a single controller [1] to a single peripheral [1] with an SPI bus requires four lines;
each additional peripheral device requires one additional chip select I/O pin on the controller. The rapid proliferation of pin connections makes it undesirable in
situations where lots of devices must be connected to one controller. Also, the large number of connections for each device can make routing signals more
difficult in tight PCB layout situations.

SPI only allows one controller on the bus, but it does support an arbitrary number of peripherals (subject only to the drive capability of the devices connected to
the bus and the number of chip select pins available).

SPI is good for high data rate full-duplex (simultaneous sending and receiving of data) connections, supporting clock rates upwards of 10MHz (and thus, 10
million bits per second) for some devices, and the speed scales nicely. The hardware at either end is usually a very simple shift register, allowing easy
implementation in software.

Enter I2C - The Best of Both Worlds!
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I2C requires a mere two wires, like asynchronous serial, but those two wires can support up to 1008 peripheral devices. Also, unlike SPI, I2C can support a multi-
controller system, allowing more than one controller [1] to communicate with all peripheral [1] devices on the bus (although the controller devices can't talk to each
other over the bus and must take turns using the bus lines).

Data rates fall between asynchronous serial and SPI; most I2C devices can communicate at 100kHz or 400kHz. There is some overhead with I2C; for every 8
bits of data to be sent, one extra bit of meta data (the "ACK/NACK" bit, which we'll discuss later) must be transmitted.

The hardware required to implement I2C is more complex than SPI, but less than asynchronous serial. It can be fairly trivially implemented in software.

[1] Note: You may be familiar with the terms "master" and "slave" to represent the relationship between devices on an I2C bus. The terms are considered
obsolete and are now replaced with the terms "controller" and "peripheral," respectively. 

Obsolete Name Replacement Name
Master Controller

Slave Peripheral
The naming convention may vary depending on manufacturer, programming language, companies, or organizations (e.g. main/secondary, initiator-responder,
source/replica, etc.). For more information, check out the following links. 

Wikipedia: Terminology Concerns
OSHWA: A Resolution to Redefine SPI Signal Names

A Brief History of I2C

I2C was originally developed in 1982 by Philips for various Philips chips. The original spec allowed for only 100kHz communications, and provided only for 7-bit
addresses, limiting the number of devices on the bus to 112 (there are several reserved addresses, which will never be used for valid I2C addresses). In 1992,
the first public specification was published, adding a 400kHz fast-mode as well as an expanded 10-bit address space. Much of the time (for instance, in the
ATMega328 device on many Arduino-compatible boards), device support for I2C ends at this point. There are three additional modes specified:

fast-mode plus, at 1MHz
high-speed mode, at 3.4MHz
ultra-fast mode, at 5MHz

In addition to "vanilla" I2C, Intel introduced a variant in 1995 call "System Management Bus" (SMBus). SMBus is a more tightly controlled format, intended to
maximize predictability of communications between support ICs on PC motherboards. The most significant difference between SMBus is that it limits speeds
from 10kHz to 100kHz, while I2C can support devices from 0kHz to 5MHz. SMBus includes a clock timeout mode which makes low-speed operations illegal,
although many SMBus devices will support it anyway to maximize interoperability with embedded I2C systems.

I2C at the Hardware Level

Signals

Each I2C bus consists of two signals: SDA and SCL. SDA (Serial Data) is the data signal and SCL (Serial Clock) is the clock signal. The clock signal is always
generated by the current bus controller; some peripheral devices may force the clock low at times to delay the controller sending more data (or to require more
time to prepare data before the controller attempts to clock it out). This is called "clock stretching" and is described on the protocol page.

Unlike UART or SPI connections, the I2C bus drivers are "open drain", meaning that they can pull the corresponding signal line low, but cannot drive it high. Thus,
there can be no bus contention where one device is trying to drive the line high while another tries to pull it low, eliminating the potential for damage to the drivers
or excessive power dissipation in the system. Each signal line has a pull-up resistor on it, to restore the signal to high when no device is asserting it low.
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Notice the two pull-up resistors on the two communication lines.

Resistor selection varies with devices on the bus, but a good rule of thumb is to start with 4.7kΩ resistor and adjust down if necessary. I2C is a fairly robust
protocol, and can be used with short runs of wire (2-3m). For long runs, or systems with lots of devices, smaller resistors are better.

Most I2C devices offered in the SparkFun catalog usually include pull-up resistors for the SCL and SDA pins. If you have many I2C devices on the same bus, you
may need to adjust the equivalent value for the pull-up resistors by disconnecting the pull-up resistors on a few of the devices. Depending on what is connected
to the bus and the design, you can include about 7x I2C devices on the same bus. However, if you are having any issues, you can cut the two traces connecting
to the center jumper pad using an hobby knife or remove solder on the three jumper pads using a soldering iron to disconnect the resistors on certain boards. As
you can see, the design of the GPS board on the left used traces to connect the jumper pads for the pull-up resistors. The design of the GPS board on the right
used solder to connect the jumper pads for the pull-up resistors.

Trace Connecting Jumper Pads on the SAM-M8Q Solder Connecting Jumper Pads on the XA1110
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If your design requires longer runs of wire, you can use a dedicated IC to extend the signal such as the PCA9615.

Qwiic Differential I2C Bus Extender (PCA9615) Hookup Guide

May 31, 2018

Learn how to extend the range of your I2C communication bus with the Qwiic differential I2C bus extender (PCA9615 ) breakout board.
Favorited Favorite 9

Signal Logic Levels

Since the devices on the bus don't actually drive the signals high, I2C allows for some flexibility in connecting devices with different I/O voltages. In general, in a
system where one device is at a higher voltage than another, it may be possible to connect the two devices via I2C without any level shifting circuitry in between
them. The trick is to connect the pull-up resistors to the lower of the two voltages. This only works in some cases, where the lower of the two system voltages
exceeds the high-level input voltage of the the higher voltage system--for example, a 5V Arduino and a 3.3V accelerometer. Depending on the design of the
Arduino or the I2C device, we recommend using a logic level converter to be consistent and avoid damaging any device on the bus.

If the voltage difference between the two systems is too great (say, 5V and 2.5V), SparkFun offers a simple I2C level shifter board — e.g. the PCA9306 Level
Translator Breakout. This dedicated level shifter board the board also includes an enable line, it can be used to disable communications to selected devices. This
is useful in cases where more than one device with the same address is to be connected to a single controller — Wii Nunchucks are a good example. There are
also bi-directional logic level converters that can be used.

SparkFun Logic Level Converter - Bi-Directional

BOB-12009
$3.50
114
Favorited Favorite 145
Wish List

SparkFun Level Translator Breakout - PCA9306

BOB-15439
$4.95
Favorited Favorite 22
Wish List

Protocol

Communication via I2C is more complex than with a UART or SPI solution. The signalling must adhere to a certain protocol for the devices on the bus to
recognize it as valid I2C communications. Fortunately, most devices take care of all the fiddly details for you, allowing you to concentrate on the data you wish to
exchange.

Basics

Messages are broken up into two types of frame: an address frame, where the controller indicates the peripheral to which the message is being sent, and one or
more data frames, which are 8-bit data messages passed from controller to peripheral or vice versa. Data is placed on the SDA line after SCL goes low, and is
sampled after the SCL line goes high. The time between clock edge and data read/write is defined by the devices on the bus and will vary from chip to chip.
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Click on image for a closer view.

Start Condition

To initiate the address frame, the controller device leaves SCL high and pulls SDA low. This puts all peripheral devices on notice that a transmission is about to
start. If two controllers wish to take ownership of the bus at one time, whichever device pulls SDA low first wins the race and gains control of the bus. It is
possible to issue repeated starts, initiating a new communication sequence without relinquishing control of the bus to other controller(s); we'll talk about that later.

Address Frame

The address frame is always first in any new communication sequence. For a 7-bit address, the address is clocked out most significant bit (MSB) first, followed
by a R/W bit indicating whether this is a read (1) or write (0) operation.

The 9th bit of the frame is the NACK/ACK bit. This is the case for all frames (data or address). Once the first 8 bits of the frame are sent, the receiving device is
given control over SDA. If the receiving device does not pull the SDA line low before the 9th clock pulse, it can be inferred that the receiving device either did not
receive the data or did not know how to parse the message. In that case, the exchange halts, and it's up to the controller of the system to decide how to
proceed.

Data Frames

After the address frame has been sent, data can begin being transmitted. The controller will simply continue generating clock pulses at a regular interval, and the
data will be placed on SDA by either the controller or the peripheral, depending on whether the R/W bit indicated a read or write operation. The number of data
frames is arbitrary, and most peripheral devices will auto-increment the internal register, meaning that subsequent reads or writes will come from the next
register in line.

Stop condition

Once all the data frames have been sent, the controller will generate a stop condition. Stop conditions are defined by a 0->1 (low to high) transition on SDA after
a 0->1 transition on SCL, with SCL remaining high. During normal data writing operation, the value on SDA should not change when SCL is high, to avoid false
stop conditions.

Advanced Protocol Topics

10-bit Addresses

In a 10-bit addressing system, two frames are required to transmit the peripheral address. The first frame will consist of the code b11110xyz, where 'x' is the
MSB of the peripheral address, y is bit 8 of the peripheral address, and z is the read/write bit as described above. The first frame's ACK bit will be asserted by all
peripherals which match the first two bits of the address.

Click on image for a closer view.

As with a normal 7-bit transfer, another transfer begins immediately, and this transfer contains bits 7:0 of the address. At this point, the addressed peripheral
should respond with an ACK bit. If it doesn't, the failure mode is the same as a 7-bit system.

Note that 10-bit address devices can coexist with 7-bit address devices, since the leading '11110' part of the address is not a part of any valid 7-bit addresses.

Repeated Start Conditions

Sometimes, it is important that a controller be allowed to exchange several messages in one go, without allowing other controllers on the bus to interfere. For this
reason, the repeated start condition has been defined.
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To perform a repeated start, SDA is allowed to go high while SCL is low, SCL is allowed to go high, and then SDA is brought low again while SCL is high.
Because there was no stop condition on the bus, the previous communication wasn't truly completed and the current controller maintains control of the bus.

At this point, the next message can begin transmission. The syntax of this new message is the same as any other message--an address frame followed by data
frames. Any number of repeated starts is allowed, and the controller will maintain control of the bus until it issues a stop condition.

Clock Stretching

At times, the controller's data rate will exceed the peripheral's ability to provide that data. This can be because the data isn't ready yet (for instance, the
peripheral hasn't completed an analog-to-digital conversion yet) or because a previous operation hasn't yet completed (say, an EEPROM which hasn't completed
writing to non-volatile memory yet and needs to finish that before it can service other requests).

In this case, some peripheral devices will execute what is referred to as "clock stretching". Nominally, all clocking is driven by the controller — peripherals simply
put data on the bus or take data off the bus in response to the controller's clock pulses. At any point in the data transfer process, an addressed peripheral can
hold the SCL line low after the controller releases it. The controller is required to refrain from additional clock pulses or data transfer until such time as the
peripheral releases the SCL line.

Tip: If you are looking for examples that use clock stretching, try looking at the CCS811 used with Arduino and Python for ideas! The library and examples in the
following tutorials adjust the clock signal for the device. 

CCS811 Air Quality Breakout Hookup Guide

April 27, 2017

This tutorial shows you how to get data from a CCS811 breakout board with the I2C interface.
Favorited Favorite 4

Qwiic Kit for Raspberry Pi Hookup Guide

July 4, 2019

Get started with the CCS811, BME280, VCNL4040, and microOLED via I2C using the Qwiic system and Python on a Raspberry Pi! Take sensor readings from
the environment and display them on the microOLED, serial terminal, or the cloud with Cayenne!
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Favorited Favorite 1

Interested in learning more foundational topics?

See our Engineering Essentials page for a full list of cornerstone topics surrounding electrical engineering.

Take me there!

Qwiic Connect System

The SparkFun Qwiic Connect System was developed by Nate in SparkX and released in 2017. If you are unfamiliar, the Qwiic Connect System is an ecosystem
of I2C sensors, actuators, shields, cables and more, that make prototyping faster and less prone to error.

All Qwiic-enabled boards use a common 1 mm pitch, 4-pin JST connector which takes out the extra steps required to solder and strip wires between boards. The
connector reduces the amount of required PCB space, and polarized connections mean you can’t hook it up wrong. Boards can be daisy chained together which
allows multiple devices to be connected on the same bus. For more information, check out the Qwiic's Frequently Asked Questions or the video below!

no soldering
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Qwiic cables (4-pin JST) plug easily from development boards to sensors, shields, accessory boards and more, making easy work of setting up a new prototype.

polarized connector

There's no need to worry about accidentally swapping the SDA and SCL wires on your breadboard. The Qwiic connector is polarized so you know you’ll have it
wired correctly every time, right from the start.

daisy chain-able

It’s time to leverage the power of the I2C bus! Most Qwiic boards will have two or more connectors on them, allowing multiple devices to be connected.

Resources and Going Further

I2C is a relatively complex interface, and there are many resources out there to help you deal with it. Below are some of the more informative ones.

Wikipedia Article on I2C - Not great, but not a terrible place to start.
Terminology Concerns

Standards Doc - Phillips Semiconductor became NXP a few years back; this is the official standards doc for I2C.
I2C primer - The official primer on I2C and related technologies.
Linux Tools for I2C - A nice set of tools for working with I2C and related buses in embedded Linux environments, like pcDuino or Raspberry Pi.
Open Source Hardware Association: A Resolution to Redefine SPI Signal Names
Qwiic Connect System

To use I2C over long distances, check out the dedicated PCA9615 differential I2C bus extender.

Qwiic Differential I2C Bus Extender (PCA9615) Hookup Guide

May 31, 2018

Learn how to extend the range of your I2C communication bus with the Qwiic differential I2C bus extender (PCA9615 ) breakout board.
Favorited Favorite 9

Or check out our SPI and I2C tutorial with a Raspberry Pi.

Raspberry Pi SPI and I2C Tutorial

October 29, 2015

Learn how to use serial I2C and SPI buses on your Raspberry Pi using the wiringPi I/O library for C/C++ and spidev/smbus for Python.
Favorited Favorite 23

Need some inspiration for your next project? Check out some of these related tutorials:

Sensor Kit Resource Hub

An overview of each component in the SparkFun Sensor Kit, plus links to tutorials and other resources you'll need to hook them up.
Favorited Favorite 6

Power Delivery Board - USB-C (Qwiic) Hookup Guide
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This guide will go over how to use the USB Type-C Power Delivery Board.
Favorited Favorite 3

SparkFun Air Quality Sensor - SGP30 (Qwiic) Hookup Guide

A hookup guide to get started with the SparkFun Air Quality Sensor - SGP30 (Qwiic).
Favorited Favorite 1

RP2040 Thing Plus Hookup Guide

Want to take a stab at advancing your programming skills? Check out the Thing Plus - RP2040, with the first microcontroller from the Raspberry Pi Foundation.
This guide will get you started working with the RP2040 and programming in MicroPython and C/C++.
Favorited Favorite 2

Looking for more inspiration? Check out some of these blog posts for ideas:

According to Pete - SPI and I2C

October 15, 2012
Favorited Favorite 0

Enginursday: I2Considerations

April 20, 2017
Favorited Favorite 5

Passing Software I2C streams by Reference to Libraries

March 27, 2018
Favorited Favorite 0

All the Ports! And I2C Multiplexing

April 5, 2017
Favorited Favorite 1

New Connector System

April 3, 2017
Favorited Favorite 1

Genericizing Arduino Libraries

October 3, 2016
Favorited Favorite 4

Python for SparkFun's Qwiic Connect System

July 9, 2019
Favorited Favorite 2
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