
ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 1 of 12

BV4213
I2C-Motor Controller
Product specification October 2008 V1.a

©ByVac 2008

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 2 of 12

Contents
1. Introduction ..4
2. Features ...4
3. Electrical Specification..4

3.1.1. I2C..4
3.2. Operation Mode...4

3.2.1. Step Interface...5
3.2.2. Motor Interface ...5

3.3. Typical Motor Connections ..5
4. I2C Command set..6
5. The DC Motor Command Set ...6

5.1. Command 1 ..7
5.2. Command 2 ..7
5.3. Command 3 ..7
5.4. Command 4 ..7
5.5. Command 5 ..7
5.6. Command 0x11...7
5.7. Command 0x12...7
5.8. Command 0x13...7
5.9. Command 0x14...7
5.10. Command 0x15...7
5.11. Command 0x16...8

6. I2C Stepper Commands..8
6.1. Command 0x20...8
6.2. Command 0x21...8
6.3. Command 0x22...8
6.4. Command 0x23...8
6.5. Command 0x24...8
6.6. Command 0x30...9
6.7. Command 0x31...9
6.8. Command 0x32...9
6.9. Command 0x33...9

7. I2C System Commands ..10
7.1. 0x55 ..10
7.2. Command 0x90...10
7.3. Command 0x91...10
7.4. Command 0x93...10
7.5. Command 0x94...11
7.6. Command 0x95...11
7.7. Command 0x98...11
7.8. Command 0x99...11
7.9. Command 0xA0...11

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 3 of 12

7.10. Command 0xA1...11
8. Hardware Reset...11
9. Command Diagrams...11

9.1. Sending a single command ...12
9.2. Sending a command with a parameter byte/s ...12
9.3. Receiving bytes from the salve..12

10. Trouble Shooting ...12
10.1. Pulse Stretching ..12
10.2. Last Read NACK ..12
10.3. Pull Up’s ...12

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 4 of 12

Rev Change
December
2007

Preliminary

Oct 2008 Updated ** Firmware version
2.a has some extra but is
backward compatible apart form
the factory reset command.

Jun 2009 Updated to make mode selection
clearer – section 3.2

1. Introduction
The BV4213 is a multi purpose motor
controller, capable of controlling DC motors
with optional PWM (Pulse Width Modulation)
and one stepper motor through an I2C
interface or through a step interface with a
choice of full or half step modes.

2. Features
• I2C up to 400kHz
• Simple command set
• Up to 4 DC motors single directions
• 2 DC motors with forward and

reverse
• PWM for DC motors
• 1 stepper motor, full step half step
• Step complete output pin
• Step on change pin interface
• 1.2A peek output current
• Connects directly to motor, no

external components required
• Motor supply up to 35V
• Operating voltage 4.5 to 5.5V
• Current <1mA @ 5V

3. Electrical Specification

Figure 1 Annotation Diagram
There are three interfaces to the device, the
I2C, the Step and the motor interface.

3.1.1. I2C
This interface provides the power to the device
and the serial and clock lines.

Pin Description I2C Pins
1 SCK
2 GND
3 SDA
4 +5V

Table 1 I2C Pin Description
The logic power is provided through this
interface but the motor power is provided
through the motor interface. The SDA and SCK
lines require a pull up resistor to pin 4.

Figure 2 Pull up Resistors for I2C

3.2. Operation Mode
The device has two modes of operation, the
I2C mode and the Step mode. This mode is
determined at device reset or power up. The
mode of operation is determined by pin 6
(/Step interface enable).

Pin 6 Mode
High when reset I2C mode
Low when reset Step mode

By default, no pins connected the device will
start in I2C mode this is because there is a
pull up resistor connected to pin 6.
In I2C mode pin 4 is an output the goes low at
the end of step count, no other pins, except
for ground are active.
With pin 6 enabled (low), a low to high or high
to low transition of pin 5 will cause the motor
to step once, direction being determined by
pin 3 and half or full step, stepping being
determined by pin 2. When pin 2 is low, full
stepping is selected.
In this mode pin 6 is used to cut power to the
motor when high (disable). This can save
energy as the enable lines are activated while
ever this line is low.
The I2C interface can still be used in this
mode but should not be used to drive motors
as unpredictable results may occur.
By default pins 2 to 4 and 6 are high and
maintained so by a pull up resistor and so can

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 5 of 12

be left disconnected if this interface is not
required.
Factory Reset
Pin 4 of the Step interface is the factory reset
pin and this has a resistor to hold it high at
switch on. By holding this pin low at power on
a factory reset will take place, see section 8.

3.2.1. Step Interface
The step interface provides the end of step
interrupt and an alternative to driving the
motor with an I2C interface.

Pin Description Step Interface
1 GND
2 Half - /Full Step
3 Direction
4 /End of Step (factory)
5 Step
6 /Step interface enable

Table 2 Step Pin Description
With pin 6 not connected to anything, it has
an internal pull up resistor, this interface will
be disabled. The only relevant pin that is
always enabled is the end of step pin 4. When
an I2C command for stepping has been given,
this pin goes low when the end of step count
has been reached. This pin can be monitored
by the host processor.
With pin 6 enabled (low), a low to high or high
to low transition of pin 5 will cause the motor
to step once, direction being determined by
pin 3 and half or full step, stepping being
determined by pin 2. When pin 2 is low, full
stepping is selected.
By default pins 2 to 4 and 6 are high and
maintained so by a pull up resistor and so can
be left disconnected if this interface is not
required.
Factory Reset
Pin 4 of the Step interface is the factory reset
pin and this has a resistor to hold it high at
switch on. By holding this pin low at power on
a factory reset will take place, see section
Error! Reference source not found..

3.2.2. Motor Interface
This is the output from the H-Bridge chip
(L293D). The input is fed from a
microcontroller that is controlled either by the
I2C interface r the Step interface.
The supply for the motor is also provided by
pin 5 which can be up to 35V. This is
independent of the logic supply but must be
present for a motor output to occur.

Pin Description Motor Interface
1 Y1
2 Y2
3 Y3

4 Y4
5 Motor Power
6 GND

Table 3 Motor Pin Description
Y1-Y4 should be either connected to either 4
DC motors, 2 DC motors or 1 stepper motor

3.3. Typical Motor Connections

Figure 3 4 DC Motors
This is probably the least used but can provide
an output for up to four motors. The motors
will be capable of only going in one direction.
I2C commands are provided that can control
the output of each individual Y output.

Figure 4 Differential Control
This shows the connection for driving two
motors bi-directionally. In this mode Y1-Y2 is
considered one channel and Y3-Y4 is
considered the other. I2C commands are
provided that can control these as a channel.

Figure 5 Stepper Motor
Shown here is a typical stepper set up.
Stepper motors vary from 4 to 6 wires and
shown is a 6 wire motor. Five wire motors
have the centre tap wires connected together
and 4 wire motors do not have a centre tap.

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 6 of 12

The centre taps can be either left disconnected,
connected to +ve or connected to ground for
whichever gives the best results.

4. I2C Command set
The format used by this device consists of a
command, this is a number, followed by other
bytes depending on that command.
There are three type of command, those
referring to the DC-Motor, those referring to
the Stepper-Motor and those referring to the
system. The system commands enable
changing of the device address etc.

Device default I2C address is
0x42

All I2C commands have one of two formats.
Fro writing to the device:
<S-Addr><Command><data..><Stop>
and for reading from the device:
<S-Addr><Command><RS-
add><data..[NACK]><Stop>
S-Addr is a start condition followed by the
device address. The address here will always
be an even number, i.e. with bit 0 clear (0).
All command begin by writing to the device
and the first thing that is written is the
command number. What follows after this is
dependant on the command.
Where the command requires information
from the device (read) it is necessary to send
a start condition again followed by the address
+ 1, this is shown by RS-Addr above.
Some read commands can be terminated by
sending not-acknowledge (NACK) before the
supply of data is exhausted.
All command strings whether read or write
terminate with a stop condition.

Command DC-Motor Command Set
1 Enable output Y1,Y2
2 Enable output Y3,Y4
3 power saver 0 power off 1

power on
4 Differential control for channel

A - Y1 and Y2
5 Differential control for channel

B - Y3 and Y4
0x11 Output for Y1
0x12 Output for Y2
0x13 Output for Y3
0x14 Output for Y4
0x15 PWM for Channel A, 0 is off

0x16 PWM for Channel B 0 is off
Command Stepper
0x20 Step Continuous
0x21 Step Stop
0x22 Step number of steps
0x23 Set step parameters (4 bytes)
0x24 Read step parameters (up to

6 bytes)
0x30 Set direction
0x31 Set Speed
0x32 Set mode half/full
0x33 Set Ramp

Table 4 LCD & System Command Set

0x30 Set direction
0x31 Set Speed
0x32 Set mode half/full
0x33 Set Ramp

Table 4 is a command summary.

5. The DC Motor Command Set
There are two sets of I2C commands, those
dealing with the operation of one or more DC
motors and those dealing with the stepper
motor. This section deals with the former.
The method of writing to the device using the
I2C protocol follows a consistent format,
typically:
<S-Addr><Command><data..><Stop>
Where S-Addr is the start condition followed
by the device address (0x42). Command is
one of the commands given in the table. Data
is one or more bytes and Stop is the stop
condition.
Reading data requires a restart and this will be
in the format:
<S-Addr><Command><R-
Addr><data..[NACK]><Stop>
The restart address will be one greater then
the start address, thus if the start address is
0x42, the restart address will be 0x43. Again
the data can be one or more bytes read from
the device.
Each command will have it’s own format and is
described in the text that follows. A start
condition and address is always followed by a
command. The device has an internal 32 byte
I2C buffer, the effect of this is two fold:

1. Only 32 bytes can be sent to the I2C
bus at any one time, this includes the

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 7 of 12

command itself and any restart
address that may be required.

2. The device will only respond after the
stop command is received.

Using a buffer enables the I2C bus to work at
full speed even though the device it is
connected to may be slower.

5.1. Command 1
Name: Enable output Y1 & Y2
Format: <S-addr><1><byte><Stop>
Byte is either 1 for enable and 0 for disable.
This directly controls the enable lines of the
L293 H-Bridge driver chip.

5.2. Command 2
Name: Enable output Y3 & Y4
Format: <S-addr><2><byte><Stop>
Byte is either 1 for enable and 0 for disable.
This directly controls the enable lines of the
L293 H-Bridge driver chip.

5.3. Command 3
Name: Power Saver
Format: <S-addr><3><byte><Stop>
Byte is either 0 to 1.
The circuit board is capable of switching off
the power to the L293 chip. This saves
approximately 16mA if the motor is powered
down. The default is powered up (1), this
command does not need activating at reset.

5.4. Command 4
Name: Differential control for channel A
Format: <S-addr><4><byte><Stop>
Byte is 0 to 4.
Channel A is Y1 and Y2 working together to
supply a forward and reverse control to a DC
motor. A value is sent from between 0 to 4
that will have the following effect:
BYTE ENA Y1 Y2
0 0 0 0
1 1 1 0
2 1 0 1
3 1 1 1
4 1 0 0

Byte is the value of the byte in the command
and ENA is the enable for Y1 and Y2. The
circuit for use with this command is shown in
Figure 4.
Sending 0 will disable the channel by setting
ENA low and thus the motor will be disabled.

Setting 4 and 3 are similar but with the chip
enabled, depending on the motor this may
have a breaking effect.
1 & 2 send the motor in a forward and reverse
direction.

5.5. Command 5
Name: Differential control for channel B
Format: <S-addr><5><byte><Stop>
Byte is 0 to 4.
This is the same as command 4 except this
acts on Y3 and Y4.

5.6. Command 0x11
Name: Y1 output
Format: <S-addr><0x11><byte><Stop>
Byte is either 0 or 1.
This directly controls the Y1 output and sets it
or either 1 or 0. The channel must be enabled
using commend 1 for anything to happen.

5.7. Command 0x12
Name: Y1 output
Format: <S-addr><0x12><byte><Stop>
Byte is either 0 or 1.
This directly controls the Y2 output and sets it
or either 1 or 0. The channel must be enabled
using commend 1 for anything to happen.

5.8. Command 0x13
Name: Y1 output
Format: <S-addr><0x13><byte><Stop>
Byte is either 0 or 1.
This directly controls the Y3 output and sets it
or either 1 or 0. The channel must be enabled
using commend 2 for anything to happen.

5.9. Command 0x14
Name: Y1 output
Format: <S-addr><0x14><byte><Stop>
Byte is either 0 or 1.
This directly controls the Y4 output and sets it
or either 1 or 0. The channel must be enabled
using commend 2 for anything to happen.

5.10. Command 0x15
Name: PWM for channel A
Format: <S-addr><0x15><byte><Stop>
Byte is a value from 0 to 255
This command modulates the output to ENA
and therefore controls the power applied to Y1

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 8 of 12

and Y2. This can be used with any DC motor
command.

5.11. Command 0x16
Name: PWM for channel B
Format: <S-addr><0x16><byte><Stop>
Byte is a value from 0 to 255
This command modulates the output to ENB
and therefore controls the power applied to Y3
and Y4. This can be used with any DC motor
command.

6. I2C Stepper Commands
Command Stepper
0x20 Step Continuous
0x21 Step Stop
0x22 Step number of steps
0x23 Set step parameters (4 bytes)
0x24 Read step parameters (up to

6 bytes)
0x30 Set direction
0x31 Set Speed
0x32 Set mode half/full
0x33 Set Ramp

These commands relate directly to driving a
stepper motor connected in a similar way to
Figure 5. The default set up should work for
most motors sufficiently to get it working. A
command can be issued to step the motor a
number of steps. There is an internal counter
(16 bit) that counts down and this can be
checked with command 0x26.
Any of the commands can be issued at any
time even if the motor is still stepping.

6.1. Command 0x20
Name: Step Continuous
Format: <S-addr><0x20><Stop>
Causes the motor to continue receiving step
pulses until the Step Stop command is
received.

6.2. Command 0x21
Name: Step Stop
Format: <S-addr><0x21><Stop>

or
Format: <S-addr><0x21><1><Stop>

This will stop the motor. There are two
acceptable versions. The first version will stop
the motor and disable the output (ENA, ENB =
0). The second will stop the motor and leave
the enable lines activated. This has the effect
of breaking the motor but uses a considerable
amount of power.

6.3. Command 0x22
Name: Step number of steps
Format: <S-addr><0x22><2-bytes>
<Stop>
The number of steps is stored internally in a
16 byte register. This means that the
maximum number of steps is 65,535. The host
must split this number into two bytes and sent
the highest byte first.
As an example suppose 20,452 steps are
required. This is 0x4FE4, so the command
would be:
<S-addr><0x22><0x4f><0xe4><Stop>
The high byte is sent before the low byte.

6.4. Command 0x23
Name: Set step parameters
Format: <S-addr><0x23><x>
<Stop>
Where x is 4 bytes as follows:
First Direction 1 or 0
Second Speed 0 to 255
Third Half/Full 0=full 1=half

(stepping mode)
Forth Ramp 0 to 7, 7= slow ramp

up to speed.

The command expects all four bytes even if
only one is changed. NOTE, the above
parameters can also be changed individually,
see commands 0x30 to 0x33

6.5. Command 0x24
Name: Read step parameters
Format: <S-addr><0x24><RS-Add><x>
<Stop>
Where x is UP TO 6 bytes as follows:
First High Number of steps to

go
Second Low Number of steps to

go
Third Direction 1 or 0
Forth Speed 0 to 255
Fifth Half/Full 0=full 1=half

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 9 of 12

(stepping mode)
Sixth Ramp 0 to 7, 7= slow ramp

up to speed.

There is no need to read all of the 6 bytes, a
NACK can be sent for the lat byte that is read.
For example if only the number of steps to go
are required then the command would be:
<S-addr><0x24><RS-
Add><hb><lb><NACK><Stop>
The two bytes read hb and lb would indicate
the number of steps to go and the NACK is
issued to the I2C bus to indicate that there are
no more bytes required from this command.

6.6. Command 0x30
Name: Direction
Format: <S-addr><0x30><1 or 0>
<Stop>
Changes the direction of stepping
Default at reset = 0/

6.7. Command 0x31
Name: Speed
Format: <S-addr><0x31><0 to 255>
<Stop>
Sets the stepping rate where 0 is the slowest
and 255 is the fastest speed.
Default at reset = 100 (0x64).

6.8. Command 0x32
Name: Mode
Format: <S-addr><0x32><0 or 1>
<Stop>
Sets the step mode to either half step or full
step. 0 is full step and 1 is half step
Default at reset = 0.

6.9. Command 0x33
Name: Ramp
Format: <S-addr><0x33><0 to 7>
<Stop>
This will set the number of steps that the
stepping rate will take to obtain full speed,
most motors, depending on what they are
connected to will not start at full speed.
Setting this to any value other than 0 will slow
don the first few (as set) steps.
Default at reset = 3.

ByVac Product Specification

I2C-Motor Controller BV4213

©ByVac Page 10 of 12

Rev System Section Changes
Oct 2008 Preliminary
Dec 2008 Removed command 96
Aug 2008 Added command 0xa1 (not

applicable to all devices)

7. I2C System Commands
The following section deals with system
commands that are common to all I2C devices.
Note that not all of theses commands are
available for all devices.

Command System Command Set
0x55 Test
0x90 Read EEPROM
0x91 Write EEPROM
0x93 End of EEPROM
0x94 Sleep
0x95 Reset
0x98 Change Device Address

Temporary
0x99 Change Device Address

Permanent
0xA0 Firmware Version
0xA1 Returns device ID

Most but not all devices contain an EEPROM
that can store data when the power is off. The
first 16 bytes of the memory is reserved for
system use and should not be changed by
using these commands.
If the contents of the first 16 bytes are
changed then, depending on the device
unpredictable results may occur. A factory
reset will put the contents back to normal. In
some devices not all 16 bytes are used.
The rest of the EEPROM can be used by the
user for any purpose.

7.1. 0x55
Name: Test
Format: < S-addr><0x55><start><R-
Addr><Value..><NACK><Stop>
BV4221 Example
0x42>s 55 r g-3 p
The above command will return 1,2,3 if the
device is connected and working correctly.
This command simply returns an incrementing
value until NACK is sent by the master prior to

stop. This can be useful for testing the
interface.
It can be used for testing the presence or
other wise of a device at a particular address.
It is also useful during the development stage
to ensure that the I2C is working for that
device.

7.2. Command 0x90
Name: Read EEPROM
Format: <S-addr><0x90><EE-
Address><R-Addr><data…><Stop>
BV4221 Example
0x42>s 90 0 r g-3 p
The above will fetch 3 bytes from the EERPOM
addresses 0, 1 and 2
This command will allow a single or several
bytes to be read from a specified EEPROM
address.

7.3. Command 0x91
Name: Write EEPROM
Format: <S-addr><0x91><EE-
Address><data…><Stop>
BV4221 Example
0x42>s 91 10 1 2 3 p
The above write 1,2 and 3 to EEPROM
addresses 0x10, 0x11 & 0x12
This command will write one or more, up to a
maximum of 30 bytes at any one time, to be
written to the EEPROM. Address 0 of the
EEPROM is the device address and this cannot
be written to by this command. A special
command 0x99 is used for this purpose.
The first 16 bytes 0 to 15 are reserved for
system use.

7.4. Command 0x93
Name: End of EEPROM
Format: <S-addr><0x93><R-
Addr><data><Stop>
BV4221 Example
0x42>s 93 r g-1 p
Returns the address of the end of the
EEPROM, normally 0xff
The system only uses a small portion of the
first part of the EEPROM, the rest of the
EEPROM can be used for user data or other
purposes depending on the device. This
command returns a single byte that will
determine the last writeable address of
EEPROM, normally 0xFF.

©ByVac Page 11 of 12

7.5. Command 0x94
Name: Sleep
Format: <S-addr><0x94><Stop>
BV4221 Example
0x42>s 94 p
This will put the IC into sleep mode. Any other
command will wake the IC. Depending on the
device this can be a considerable power saving.

7.6. Command 0x95
Name: Reset
Format: <S-addr><0x95><Stop>
BV4221 Example
0x42>s 95 p
Resets the device, this is equivalent to
disconnecting and then connecting the power
again.

7.7. Command 0x98
Name: Change Device Address Temporary
Format: <S-addr><0x98><New-
Addr><Stop>
BV4221 Example
0x42>s 98 62 p
Changes the device address to 0x62, the
device will revert back to 0x42 at reset.
This will change the device address with
immediate effect and so the next command
must use the new address. The address must
be a write address (even number) Odd
numbers will simply be ignored. The effect will
last as long as the device is switched on.
Resetting the device will restore the address
to its original value. The address is stored in
EEPROM location 0.

7.8. Command 0x99
Name: Change Device Address Permanent
Format: <S-addr><0x99><New-
Addr><0x55><0xaa><Current-
Addr><Stop>
BV4221 Example
0x42>s 99 62 55 aa 42 p
Permanently changes the device address to
0x62.
This command changes the address
immediately (the next command will need to
use the new address) and permanently (see
hardware reset). The address must be a write
address (even number) and follow the
sequence exactly.
Permanent in this case means that the device
will retain this address after power down, i.e.
it is stored in EEPROM. Should anything go

wrong the default address can be restored by
using a hardware reset.

7.9. Command 0xA0
Name: Firmware version
Format: <S-addr><a0><R-
Addr><byte><byte><Stop>
BV4221 Example
0x42>s a0 r g-2 p
This will return the two firmware bytes.
This simply returns two bytes that represents
the firmware version.

7.10. Command 0xA1
Name: Device ID
Format: <S-addr><a0><R-
Addr><byte><byte><Stop>
BV4221 Example
0x42>s a1 r g-2 p
This returns two bytes that represent the
device ID. This is a later addition to the
command sent and so may not be available on
all devices.

8. Hardware Reset
A hardware reset has been provided should
the device address be changed to some
unknown value.
The method of restoring the factory defaults
and thus the default device address is as
follows:

1) Remove power
2) Hold the designated pin low or high

or connect two pins together. The
actual pins are device dependant and
will be referenced in the sections
above this text.

3) Apply power
4) Remove power
5) Remove shorting link

When power is now restored the device will
have the default I2C address, normally 0x42.

9. Command Diagrams
To further explain the format of the
commands this section has been provided.
The design of the interface has been purposely
kept simple and so there are only a few
standard sequences required.
Key

Start condition

Slave
Master

S

©ByVac Page 12 of 12

 Stop Condition
 Acknowledge = 1
 Not acknowledge = 0

9.1. Sending a single command
This is designated in the list as:
<S-addr><cmd><Stop>
This sequence is used for simple functions
where no data is involved. The I2C sequence,
using the default address is:

9.2. Sending a command with a
parameter byte/s

This is designated in the list as:
<S-addr><cmd><data…><Stop>
Some commands expect a parameter after the
command. In this case the bytes are sent one
after the other up to the maximum of 31 bytes.
The stop command tells the slave that there is
a command ready to be executed.

9.3. Receiving bytes from the salve
<S-addr><cmd-Addr><byte><Stop>
When receiving one or a number of bytes from
the device a restart is required.
The command is sent with an even address
(the R/W bit 0). When the slave acknowledges
the command another start condition is sent
with the R/W bit set to 1. This is called a
restart. After this restart the slave will
continue to send bytes until the master sends
a not acknowledge (N or NACK).
If the master does not send a NACK at the last
byte the slave will be expecting another byte
to be requested and this may cause either
unpredictable results or the I2C bus to lock.

10. Trouble Shooting
This section has been added to answer
frequently asked questions. The problems are
usually caused because the master device has
not had the I2C specification fully
implemented.

10.1. Pulse Stretching
This is a method of I2C handshaking which is
used in BV slave devices but it is not always

supported by the master system. The
symptoms are erratic behaviour, some
commands will be accepted an others will not.
To explain: when the slave device is busy it
holds the clock line low (normally only the
master controls the clock line), the master
should check that the clock line is high before
sending the start condition. If it is low the
master should wait until it is free.
Quite a few slave devices do not use pulse
stretching and so this not being implemented
in the master does not show up. However
when dealing with relatively slow hardware, an
LCD display for example (i.e. BV4219), this
will become a problem. The work round is to
make sure that the master recognises pulse
stretching properly or introduce delays after
each command.

10.2. Last Read NACK
When optionally multiple reads of a slave is
required (the 0x55 command is a good
example) the last read should send a NACK
rather then a ACK. This informs the slave that
no more reads from that command are
required.
It has been found that some master
implementations do not send a NACK on the
last read. This causes the BV slave to remain
in the (multi read) command effectively
blocking any other commands.
The typical symptoms are that when the 0x55
command is implemented no other commands
will work after that.

10.3. Pull Up’s
The most common problem when trying to get
a new device going is to forget to put the pull
up resistors somewhere on the bus. BV Slave
devices do not have pull up resistor on board
so they must be provided by the master (the
BV4221 has pull up’s) or provided externally.
A value of around 5k is okay but this is not
usually critical.

P
A
N

0 1 0 0 0 0 1 0S A Command A P

0 1 0 0 0 0 1 0S A Command A

A Byte... A PByte

0 1 0 0 0 0 1 0S A Command A

0 1 0 0 0 0 1 1S A Byte A

Byte A Byte N P

