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Introduction

Complex geometry can certainly be seen as a major source for the development and
refinement of topological concepts and topological methods.

To exemplify this claim, we like to give to instances, which also will have impact
on the proper topic of this work.

First there is the paper of Lefschetz on the topology of complex projective mani-
folds, which only later were adequately expressed in the language of algebraic topol-
ogy. For example the Picard Lefschetz formula of ordinary double points is due to
this paper.

Second we want to mention the theorem of van Kampen. It yields, in quite
general situations, a presentation of the fundamental group of a union of spaces in
terms of presentations of their fundamental groups. Originally conceived while in-
vestigating the fundamental group of plane curve complements, it is in its abstract
form a standard topic of basic algebraic topology and a backbone for geometric and
combinatorial group theory.

On the other hand new topological concepts are often tested in the reals of com-
plex geometry. One may observe that many classifying spaces, Eilenberg-MacLane
space in particular, have a natural complex structure and can thus be considered to
belong to complex geometry.

A prominent example for the fruitful interplay of geometric, topological and
combinatorial methods is singularity theory, into which the present work has to be
subsumed.

Given a holomorphic function f or a holomorphic function germ it is standard
procedure to consider a versal unfolding which is given by a function

F (x, z, u) = f(x)− z +
∑

biui.

In case of a semi universal unfolding the unfolding dimension is given by the
Milnor number µ = µ(f) and we get a diagram

z, u1, ..., uµ−1 Cµ ⊃ D = {(z, u)|F (0, z, u) = 0 = ∇F (0, z, u)}
↓ ↓

u1, ..., uµ−1 Cµ−1 ⊃ B = {u|F ( , 0, u) is not Morse}

The restriction p|D of the projection to the discriminant is a finite map, such that
the branch set coincides with the bifurcation set B.

One contribution of the present work is to show, that a suitable restriction of
p to a subset of p

−1

(Cµ−1 \ B) \ D is a fibre bundle in a natural way. Its fibres a
diffeomorphic to the µ-punctured disc and its isomorphism type depends only on
the right equivalence class of f .

When the focus was on the case of simple hypersurface singularities, this aspect
was not needed, since there is a lot of additional structure one may resort to.
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In this case the fundamental groups of discriminant complements of functions
of type ADE are given by the Artin-Brieskorn groups of the same type. Moreover
these groups have a natural presentation encoded by the Dynkin diagram of that
type.

The complements of discriminants and of bifurcation sets were shown to be
Eilenberg-MacLane spaces and homogeneous spaces. Moreover they were related to
natural combinatorial structures via their Weyl groups.

More of this abundance of structure and relations will be used in chapter four.
But sadly enough it only covers the simple singularities. We can observe that partial
aspects can be generalized – especially to parabolic and hyperbolic singularities –
but progress to arbitrary singularities has been sparse and slow.

On the other hand, parts of the theory prospered when they became the starting
point of their own theory. Artin Brieskorn groups have lead to generalized Artin
groups and the theory of Garside groups now subsumes them into a very active field
of research.

Having succeeded in describing the discriminant complement in the case of sim-
ple singularities, Brieskorn, in [7], casts a light on some problems, which he intended
for guidelines to the case of more general singularities. Among other problems he
asked for the fundamental group and suggests to obtain these groups from a generic
plane section using the theorem of Zariski and of van Kampen. But up to now, only
in the case of simply elliptic singularities presentations of the fundamental group
have been given.

Independently – initiated by Moishezon two decades ago – the study of com-
plements of plane curves by the methods of Zariski and van Kampen has been
revived and has found a lot of applications. Conceptionally recast as braid mono-
dromy theory it has been successfully used for projective surfaces and symplectic
four-manifolds alike by investigating branch curves of finite branched maps to P2.

The theory of braid monodromy has been generalized to the complements of
hyperplane arrangements and it has found an interesting new interpretation in the
theory polynomial coverings by Hansen.

The braid monodromy we develop in this work is based on this interpretation.
In its context the fibre bundle obtained from p|D naturally gives rise to a braid
monodromy homomorphism, which then can be made a braid monodromy invariant
of the unfolded function f .

As in the case of plane curves the method of van Kampen leads to an explicit
presentation of the fundamental group of the discriminant complement Cµ \ D in
terms of generators and relations.

Having accomplished this aim of more theoretical nature, we address next the
problem to find the invariants and the group presentations for π1(C

µ \D) in case of
polynomial functions of the kind given by f(x) =

∑

xl1+1
i .

6



Pham investigated this class of function in the spirit of Lefschetz. He computed
the homology of the regular fibre and then gave the global monodromy transforma-
tion thus generalizing the Picard Lefschetz situation li = 1.

Brieskorn exploited the same class of functions. He showed some of their links to
be examples of exotic spheres. In his list [7] of problems he asks for the intersection
lattice of f .

This problem has soon found a solution by a paper of Hefez and Lazzeri [19].
Their article has quite an impact on the present work, we owe them the description
of a Milnor fibre and the choice of a natural geometrically distinguished path system.

We follow common convention by calling functions f of this class Brieskorn Pham
polynomials.

We succeed to solve the Brieskorn problem of three decades ago in one go for the
large and infinite class of Brieskorn Pham polynomials. Though generally speaking
we follow the approach suggested by Brieskorn, our method to determine the presen-
tation of the fundamental groups deviates in some essential aspects. To have explicit
formula for the bifurcation divisor, we are forced to consider plane sections of Cµ,
which fall short of the genericity conditions in even several ways. Nevertheless by a
substantial amount of additional arguments and concepts, we finally get the desired
results on the braid monodromy.

The presentations of fundamental groups thus obtained depend on the Brieskorn
Pham polynomial chosen. They are natural generalizations of the presentations of
Artin Brieskorn groups associated to the simple singularities. As in the case of
simple singularities we can show, that they are determined by a intersection graph
of f , given in [19]. Thus a further result has found an adequate generalization.

Its interesting to note, that also triangles, i.e. 2-simplices of the Dynkin diagram,
make their contribution to the relations of the presentation. Surely one may expect,
that the methods of combinatorial group theory will eventually provide a lot of ad-
ditional properties of these groups.

With a chapter on elliptic fibrations we want to point to the fact, that also in the
realm of compact manifolds the concept of braid monodromy may result in new and
fruitful observations. Elliptic surfaces are good candidates, since in families almost
always the fibration map deforms well, so we can make the singular value divisor of
such a family the object of our braid monodromy considerations.

Concerning future developments we may only speculate. Nevertheless in the
presence of such a lot of open problems we venture to finish our last chapter by
some conjectures, the choice being led by personal interest and the newly gained
insight.

7



We like to give a short outline of particular chapters.

The first two chapters are mainly of an introductory character. The first reviews
braid monodromy. We start with braid monodromy of plane curves in the spirit of
Moishezon and proceed like Hansen to get braid monodromy of horizontal divisors
and of affine hypersurface germs. The result of van Kampen on fundamental groups
is developed in each set up. Interspersed we mention results of Libgober on the
complement of plane curve and applications by Moishezon and Teicher to the theory
of branched covers of the projective plane.

In the second we review basic notions of singularity theory. We introduce dis-
criminant divisors which we consider as a horizontal divisor over truncated versal
unfoldings. We close the chapter with the definition of our new braid monodromy
invariants for right equivalence classes of singular functions and the implications for
the fundamental group of the discriminant complement.

With the third chapter we enter our computations of the braid monodromy of
Brieskorn Pham polynomials. The equations of the discriminant and the bifurcation
set of their unfoldings by linear polynomials are the main topic of this chapter. We
then define a distinguished system of paths in regular fibres of a certain kind.

In the forth chapter the special case of singularities of type An is solved and the
results prepared for later use in an inductive argument.

The fifth chapter the versal braid monodromy and provides the means to com-
pute the braid monodromy of Brieskorn Pham polynomials from the versal braid
monodromy of two one-parameter families of functions.

This is computed in the sixth chapter for one of the families in case of Brieskorn
Pham polynomials defined on the plane. We have to develop a big machinery to
distill from our geometric insight the concrete results we want to prove.

In the seventh chapter we conclude the computation of the braid monodromy
by an inductive argument. Again we have to present more geometric notations and
results.

The eighth chapter is devoted to the study of elliptic surfaces we mentioned be-
fore. We relate each family of elliptic surfaces with a family of divisors in Hirzebruch
surfaces and can thus make use of a detailed study of plane polynomial functions.

In the final chapter we compute the fundamental group of discriminant com-
plements in case of Brieskorn Pham polynomials. We consider and prove a close
relationship to the Dynkin diagram found by Pham. Some immediate corollaries to
general function are presented and all these results are used as motivation for the
concluding conjectures.

It is my pleasure to express my thanks to Prof. Ebeling, who introduced me to
the beautiful topic of singularity theory, and to my colleges in Hannover for their
interest and many fruitful discussions.

While special thanks go to Andrea Honecker for the proofreading, I want to
thank my family and all my friends for constant support.
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Chapter 1

introduction to braid

monodromy

Given a singular curve C in the affine plane C2 it is natural to ask for the topology
of the complement C2 \C. The study of its fundamental group π1(C

2 \C) for various
types of algebraic curves is a classical subject going back to the work of Zariski. An
algorithm for its computation was given by van Kampen in [20]. It was obtained
again by Moishezon as an application of his notion of braid monodromy, which he
introduced in [31] and elaborated with Teicher in subsequent papers, eg. [33, 34].
Libgober [23] finally proved that the 2-complex associated to the braid monodromy
even captures all homotopy properties of the curve complement C2 \ C.

Before generalizing the considerations to complements of divisors in affine space,
we present the interpretation given in [10] of the process by which the braid mono-
dromy of a curve C is defined. It is close to the approach in [23], but uses a self-
contained argument based on Hansen’s theory of polynomial covering maps, [17],
[18].

Given a simple Weierstrass polynomial f : X ×C→ C of degree n, we consider
the complement of its zero locus Y = X ×C \ {f(x, z) = 0}. In Theorem 1.3, we
show that the projection p = pr1 |Y : Y → X is a fiber bundle map, with structure
group the braid group Brn, and monodromy the homomorphism from π1(X) to Brn
induced by the coefficient map of f .

This result can be applied when a plane curve C is defined by a polynomial f , and
X = C\{y1, . . . , ys} is the set of regular values of a generic linear projection, so that
by restriction to X ×C the polynomial f becomes simple Weierstrass of degree n.
The braid monodromy of C is simply the coefficient homomorphism, a∗ : Fs → Brn.

Obviously a∗ depends on the choice of a generic projection, of loops representing
a basis of Fs, of an identification of mapping classes with braid group generators,
and of basepoints. However, the braid-equivalence class of the monodromy – the
double coset [a∗] ∈ Brs \Hom(Fs,Brn)/Brn, where Brs acts on the left by the Artin
representation, and Brn acts on the right by conjugation – is uniquely determined
by C.

9



Remark 1.1: Recall that the braid monodromy depends not only on the number
and types of the singularities of a curve but is also sensitive to their relative
positions as is shown by the famous example of Zariski [42], [43] consisting of
two sextics, both with six cusps, one with all cusps on a conic, the other not.

It even captures more than the fundamental group of the curve complement
as is shown in [10], and one may hope that it detects to some extend the
homeomorphism type of the complement or the ambient homeomorphism type
of the curve.

When passing to higher dimensions we assume to be given a Weierstrass polyno-
mial f : Cr ×C→ C defining a horizontal divisor D over Cr. If X := Cr \ B is the
set of regular values, the complement of the bifurcation divisor B of the branched
covering D → Cr, then the restriction of f to X×C is a simple Weierstrass polyno-
mial of degree n equal to the degree of the covering. The braid monodromy is again
the coefficient homomorphism a∗ : π1(X) → Brn. Also the method to compute the
fundamental group of the plane curve complement extends to the given situation
and provides the tool to get the fundamental group π1(C

r \ D).

We push the generalization even further to include the case of analytic germs.
With a generic choice of local coordinates the Weierstrass preparation theorem can
be applied and provides us with a Weierstrass polynomial which is simple in the
complement of the germ of a divisor. Again the subsequent definitions generalize.

1.1 Polynomial covers and Brn-bundles

We begin by reviewing polynomial covering maps. These were introduced by Hansen
in [17], and studied to some detail in his book [18]. Together with the by now classical
book of Birman [5] it should serve as the basic reference for this section. We then
consider the relation between bundles of punctured discs, whose structure group is
Artin’s braid group Brn, and polynomial n-fold covers.

1.1.1 Polynomial covers

Let X be a path-connected topological manifold. A Weierstrass polynomial of degree
n is a map f : X ×C→ C given by

f(x, z) = zn +
n
∑

i=1

ai(x)z
n−i,

with continuous coefficient maps ai : X → C. If f has no multiple roots for any
x ∈ X, then f is called a simple Weierstrass polynomial.

Given such f , the restriction of the first-coordinate projection map X ×C→ X
to the subspace

E = E(f) = {(x, z) ∈ X ×C | f(x, z) = 0}

defines an n-fold topological cover π = πf : E → X, the polynomial covering map
associated to f .

10



Since f has no multiple roots, the coefficient map

a = (a1, . . . , an) : X → Cn

takes values in the complement Bn = Cn \∆n of the discriminant set ∆n, which is
a tautology by the definition of ∆n as the set of coefficient n-tuples such that the
corresponding polynomial of degree n has at least one multiple root.

Over Bn, there is a tautological n-fold polynomial covering

πn := π
fn

: E(fn)→ Bn, (1.1)

determined by the tautological Weierstrass polynomial

fn : Cn ×C −→ C, (x1, ..., xn, z) 7→ zn +

n
∑

i=1

xiz
n−i.

The polynomial cover πf : E(f) → X can then be identified with the pull-back of
πn : E(fn)→ Bn along the coefficient map a : X → Bn.

This can be interpreted on the level of fundamental groups as follows. The funda-
mental group of the configuration space, Bn, of n unordered points in C is the group
Brn of braids on n strands. The map a determines the coefficient homomorphism
a∗ : π1(X)→ Brn, unique up to conjugacy.

Recall that the structure group of a topological n-sheeted cover is the permuta-
tion group Σn and the associated cover monodromy is a homomorphism from the
fundamental group of the base to Σn. So it is immediate that the monodromy of the
polynomial cover π : E → X factors through the coefficient homomorphism a∗ and
the canonical surjection Brn → Σn. In fact this condition is sufficient, i.e. one may
characterize polynomial covers by this factorization property of their permutation
monodromy map.

Assume now that the simple Weierstrass polynomial f is completely solvable, i.e.
f factors as

f(x, z) =

n
∏

i=1

(z − bi(x)),

with continuous roots bi : X → C. Since the Weierstrass polynomial f is simple,
the root map b = (b1, . . . , bn) : X → Cn takes values in the complement Pn of
the braid arrangement An = {(w1, ..., wn)|wi 6= wj ∀i < j} in Cn. Over Pn,

there is a canonical n-fold covering map, π̃n = πf̃n
: E(f̃n) → Pn, determined by

the Weierstrass polynomial f̃n(w, z) = (z − w1) · · · (z − wn). Evidently, the cover

πf : E → X is the pull-back of π̃n : E(f̃n)→ Pn along the root map b : X → Pn.

The fundamental group of the configuration space, Pn, of n ordered points in
C is the group, PBrn = ker(Brn → Σn), of pure braids on n strands. The map b
determines the root homomorphism b∗ : π1(X) → PBrn, unique up to conjugacy.
The polynomial covers which are trivial covers (in the usual sense) are precisely
those for which the coefficient homomorphism a∗ has image in the subgroup PBrn
of Brn.

11



1.1.2 Brn-Bundles

The group Brn is isomorphic the mapping class group Mapn(D2) of orientation-
preserving diffeomorphisms of the disc D2, permuting a collection of n marked
points. A natural way to fix an isomorphism is the choice of a ’frame’ as in [34].
But it pays off immediately if we choose instead a different geometric object (which
incidentally is called ’bush’ in [34]).

Definition 1.2: A geometrically distinguished system of paths in D2 with respect
to marked points yi, 1 ≤ i ≤ n, is a finite sequence of paths pi : [0, 1] → D2,
such that:

i) y0 := pi(0) is the unique point in the intersection of two paths, pi(1) = yi,

ii) on some loop around y0 in R2 the intersection points with the pi are in
bijection with the indices i = 1, ..., n, preserving the order.

t t

t

t

t

t

t t

t t

t

t

t

Figure 1.1: Examples of geometrically distinguished path systems

They give rise to a basis t1, ..., tn of free generators of π1(D
2 \ {y1, ..., yn}, y0),

which accordingly is called geometrically distinguished, too.

The free basis of the fundamental group is unambiguously represented by loops
which are are obtained by replacing each path pi by a sufficiently close noose em-
bedded into D2 \ {y1, ..., yn}, based at y0, and linking the marked point yi once.

rr

Figure 1.2: Noose associated to a path

Upon identifying π1(D
2 \ {n points}) in such a way with the free group Fn, the

action of Brn on π1 yields the Artin representation, αn : Brn → Aut(Fn). As shown
by Artin, this representation is faithful. Hence, we may identify a braid β ∈ Brn
with the corresponding braid automorphism, αn(β) ∈ Aut(Fn).

Now let f : X×C→ C be a simple Weierstrass polynomial. Let πf : E(f)→ X
be the corresponding polynomial n-fold cover, and a : X → Bn the coefficient map.
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Consider the complement

Y = Y (f) = X ×C \ E(f),

and let p = pf : Y (f)→ X be the restriction of pr1 : X ×C→ X to Y .

The fibre over a single point we denote by Cn := C \ {n points}.

Theorem 1.3 The map p : Y → X is a locally trivial bundle, with structure group
Brn and fiber Cn. Upon identifying π1(Cn) with Fn, the monodromy of this bundle
may be written as αn ◦a∗, where a∗ : π1(X)→ Brn is the coefficient homomorphism.

Moreover, if f is completely solvable, the structure group reduces to PBrn, and
the monodromy is αn ◦ b∗, where b∗ : π1(X)→ PBrn is the root homomorphism.

Proof: We first prove the theorem for the configuration spaces, and their canon-
ical Weierstrass polynomials. Start with X = Pn, f = f̃n, and the canonical cover
π̃n : E(f̃n)→ Pn. Clearly, Y (f̃n) = Cn+1 \E(f̃n) is equal to the configuration space
Pn+1. Let pf̃n

: Pn+1 → Pn be the restriction of pr1 : Cn × C → Cn. As shown
by Faddell and Neuwirth [16], this is a bundle map, with fiber Cn, and monodromy
the restriction of the Artin representation to PBrn.

Next consider X = Bn, f = fn, and the canonical cover πn : E(fn) → Bn.
Forgetting the order of the points defines a covering projection from the ordered to
the unordered configuration space, κn : Pn → Bn.

In coordinates, κn(w1, . . . , wn) = (x1, . . . , xn), where xi = (−1)isi(w1, . . . , wn),
and si are the elementary symmetric functions. By Vieta’s formulas, we have

f̃n(w, z) = fn(κn(w), z).

Let Y n+1 = Y (fn) and pfn
: Y n+1 → Bn. By the above formula, we see that

κn × id : Pn × C → Bn × C restricts to a map κ̄n+1 : Y (f̃n) → Y (fn), which fits
into the fiber product diagram

Pn+1
p

f̃n−→ Pn

↓ κ̄n+1 ↓ κn
Y n+1 pfn−→ Bn

where the vertical maps are principal Σn-bundles.

Since the bundle map pf̃n
: Pn+1 → Pn is naturally equivariant with respect to

the Σn-actions, the map on quotients, pfn
: Y n+1 → Bn, is also a bundle map, with

fiber Cn, and monodromy action the Artin representation of Brn. This finishes the
proof in the case of the canonical Weierstrass polynomials over configuration spaces.

Now let f : X×C→ C be an arbitrary simple Weierstrass polynomial. We then
have the following Cartesian square:

Y −→ Y n+1



y p


y pfn

X −→ Bn
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In other words, p : Y → X is the pull back of the bundle pfn
: Y n+1 → Bn along

the coefficient map a. Thus, p is a bundle map, with fiber Cn, and monodromy
representation αn ◦ a∗. When f is completely solvable, the bundle p : Y → X is
the pull back of pf̃n

: Pn+1 → Pn along the root map b. Since a∗ = b∗ then, the
monodromy is as claimed. 2

Let us summarize the above discussion of braid bundles over configuration spaces.
From the Faddell-Neuwirth theorem [16], it follows that Pn is aK(π1, 1) space. Since
Bn is covered by Pn, it is also an K(π1, 1) space.

So in both cases the groups are discrete and any of their representations as
groups of diffeomorphisms determines a locally trivial bundle over the corresponding
configuration space Pn, resp. Bn.

Example 1.4: We considered two bundles over Pn obtained in this way:

(i) π̃n : E(f̃n)→ Pn, by the trivial representation of PBrn on {1, . . . , n};
(ii) pf̃n

: Pn+1 → Pn, by the geometric Artin representation of PBrn on Cn.

Over Bn we have even seen three instances of bundles of this kind:

(iii) κn : Pn → Bn, by the canonical surjection Brn → Σn, acting by left
translations on the discrete set Σn,

(iv) πn : E(fn)→ Bn, by the above, followed by the permutation representa-
tion of Σn on {1, . . . , n};

(v) pn : Y n+1 → Bn, by the (geometric) Artin representation of Brn on Cn.

Note finally, that π1(Y
n+1) is isomorphic to Brn,1 = Fn ×αn Brn, the group of

braids on n+ 1 strands that fix the endpoint of the last strand, and that Y n+1 is a
K(Brn,1, 1) space.

1.2 The braid monodromy of a plane algebraic curve

We are now ready to define the braid monodromy of an algebraic curve in the com-
plex plane. The construction, based on classical work of Zariski and van Kampen,
is due to Moishezon [31]. Though we want to include the results of Libgober [23],
[24], [25], we prefer to interpret the construction in the context established in the
previous section.

1.2.1 The construction

Let C be a reduced curve in the affine plane C2 defined by a polynomial f . Let
π : C2 → C be a linear projection, such that no fibre of π is a component of C, and
let S = {y1, . . . , ys} be the set of points in C for which the corresponding fiber of π
is tangent to C or contains a singular point of C.

In case we assume π to be generic with respect to C, we mean that, for each k,
the line Lk = π−1(yk) passes transversally through regular points of C except for
either a single regular point vk at which it is a simple tangent or for one singular
point vk at which it is not contained in the tangent cone.
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Let L denote the union of the lines Lk, and let y0 be a basepoint in C \ S. The
definition of the braid monodromy of C depends on two observations:

(i) The restriction of the projection map, p : C2 \ C ∪ L → C \ S, is a locally
trivial bundle.

Identify the fiber p−1(y0) with Cn for the appropriate n and fix a basepoint
v0 ∈ Cn. The monodromy of C is, by definition, the holonomy of the bundle,
ρ : π1(C \ S, y0) → Aut(π1(Cn, v0)). Upon identifying π1(C \ S, y0) with Fs, and
π1(Cn, v0) with Fn using geometrically distinguished systems of paths with respect
to the exceptional points, this can be written as ρ : Fs → Aut(Fn).

(ii) The image of ρ is contained in the braid group Brn (viewed as a subgroup of
Aut(Fn) via the Artin embedding αn).

Definition 1.5: The homomorphism α : Fs → Brn determined by αn ◦ α = ρ is
called braid monodromy homomorphism of C with respect to π.

In case π is generic, α : Fs → Brn is simply called braid monodromy homo-
morphism of C.

We shall present a self-contained proof of the two assertions, and, in the process,
identify the map α. The first assertion is well-known, and can also be proved by
standard techniques (using blow-up and Ehresmann’s criterion—see [11], page 123),
but our approach sheds some light on the underlying topology of the situation.

We may assume – after a linear change of variables in C2 if necessary – that π
is the projection map pr1 onto the first coordinate. In the chosen coordinates, the
defining polynomial f of C may be written as f(x, z) = zn +

∑n
i=1 ai(x)z

n−i. Since
C is reduced, for each x /∈ S, the equation f(x, z) = 0 has n distinct roots. Thus f
is a simple Weierstrass polynomial over C \ S, and

π = πf : C \ L ∩ C → C \ S (1.2)

is the associated polynomial n-fold cover.

Note that Y (f) = ((C\S)×C)\(C\L∩C) is equal to C2\C∪L. By theorem 1.3,
the restriction of pr1 to Y (f),

p : C2 \ C ∪ L → C \ S, (1.3)

is a bundle map, with structure group Brn, fiber Cn, and monodromy homomor-
phism

α = a∗ : π1(C \ S)→ Brn . (1.4)

This proves assertions (i) and (ii), and implies immediately:

Proposition 1.6 The braid monodromy of a plane algebraic curve coincides with
the coefficient homomorphism of the associated polynomial cover.
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1.2.2 Braid equivalence

The braid monodromy of a plane algebraic curve is not unique, but rather, depends
on the choices made in defining it. This indeterminacy was studied to its full ex-
tend by Libgober in [24], [25]. To make the analysis more precise, we first need a
definition.

Definition 1.7: Two homomorphisms α : Fs → Brn and α′ : Fs → Brn are braid
equivalent if there exist an automorphisms ψ ∈ Aut(Fs) in the image of the
Artin representation and φ ∈ Brn such that α′(ψ(g)) = φ−1 · α(g) · φ, for all
g ∈ Fs. In other words, the following diagram commutes

Fs
α−→ Brn

↓ ψ ↓ conjφ

Fs
α′

−→ Brn .

Theorem 1.8 The braid monodromy of a plane algebraic curve C is well-defined up
to braid-equivalence, and so are the braid monodromies with respect to a fixed linear
projection.

Proof: First fix the projection. The identification π1(C \ S) = Fs depends on
the choice of a distinguished system of paths, and any two such choices yield mono-
dromies which differ by a braid automorphism of Fs, see [24]. Furthermore, there is
the choice of basepoints, and any two such choices yield monodromies differing by a
conjugation in Brn.

Finally, one must analyze the effect of a change in the choice of generic projec-
tion. Let π and π′ be two such projections, with critical sets S and S ′, and braid
monodromies a∗ : π1(C \ S)→ Brn and a′∗ : π1(C \ S ′)→ Brn. Libgober [25] shows
that there is a homeomorphism h : C → C, isotopic to the identity, and taking
S to S ′, for which the isomorphism h∗ : π1(C \ S) → π1(C \ S ′) induced by the
restriction of h satisfies a′∗ ◦ h∗ = a∗. From the construction, we see that h can be
taken to be the identity outside a ball of large radius (containing S ∪ S ′). Thus,
once the identifications of source and target with Fs using distinguished systems of
paths are made, h∗ can be written as a braid automorphism of Fs: h∗ = ψ, since
Brn acts transitively on the isotopy classes of distinguished path systems. We obtain
a′∗ ◦ ψ = a∗, completing the proof. 2

Thus, we may regard the braid monodromy of C as a braid-equivalence class,
i.e., as a double coset [a∗] ∈ Brs \Hom(Fs,Brn)/Brn, uniquely determined by C. In
fact, it follows from [25] that [a∗] depends only on the equisingular isotopy class of
the curve.

1.3 The fundamental group of a plane algebraic curve

We now give the braid monodromy presentation of the fundamental group of the
complement of a plane algebraic curve C. This presentation first appeared in the
classical work of van Kampen and Zariski [20], [43], and has been much studied
since, e.g. by Moishezon, Teicher [34, 40], Libgober [23, 24], Rudolph [38] and many
more.

16



1.3.1 Braid monodromy presentation

We want to find a presentation of π1(C
2 \ C). As a first approximation we give a

presentation of π1(C
2 \ C ∪ L) which can be derived with the help of the previous

discussions. The essential step in then to extract enough information out of the
embedding C2 \ C ∪ L → C2 \ C to determine the presentation of π1(C

2 \ C) sought
for.

The first necessary observation is the following:

Lemma 1.9 Given a Weierstrass polynomial f : X ×C→ C there is a topological
section s : X → X ×C to the projection X ×C

pr→ X with image in the complement
of the zero set of f .

Proof: It is a well known fact, that the zeroes of a monic polynomial are bounded
by the sum of the absolute values of all coefficients. Since the coefficients are con-
tinuous functions on X, this bound – considered as a complex valued function on X
– defines a continuous section with image disjoint from f

−1

(0). 2

Since the s-punctured complex line C \ S ∼= Cs is a K(Fs, 1), the long exact
homotopy sequence of the bundle p : C2 \ C ∪ L → C \ S yields a short exact
sequence which is split due to the preceding lemma:

1→ π1(Cn)→ π1(C
2 \ C ∪ L)

s∗←−−→p∗ π1(C \ S)→ 1.

Moreover the action is given by the braid monodromy homomorphism a∗ of (1.4),
so π1(C

2 \ C ∪ L) is the semi-direct product via α∗, a presentation of which can be
derived from presentations of π1(Cn) and π1(C \ S).

As remarked before, these groups are free, but in the given geometric set up
the identifications with an abstractly presented free groups Fn = 〈t1, ..., tn| 〉 and
Fs = 〈γ1, ..., γs| 〉 determined by geometrically distinguished bases are privileged.

Having chosen such geometrically distinguished bases for Cn and C \ S, which
amounts to a distinguished choice of isomorphisms π1(Cn) ∼= 〈t1, ..., tn| 〉 and
π1(C \ S) ∼= 〈γ1, ..., γs| 〉, the split sequence above naturally induces an isomorphism

π1(C
2 \ C ∪ L) = 〈t1, . . . tn, γ1 . . . , γs | γ−1

k · ti · γk = a∗(γk)(ti)〉.

To proceed we are in need of a result relating the fundamental groups given the
injective map C2\C∪L → C2\C, where L is a divisor with no component in common
with C. This is very much in the spirit of the Zariski van Kampen results although
we owe it mostly to [4], to which we have added only a distinctive topological flavour.

Definition 1.10: Let D be a reduced divisor in affine space Cn. An element g
of π1(C

n \ D) is called a simple geometric element if there is an embedded
oriented disc in Cn, which intersects D transversally in a unique point, such
that the orientations of D and the disc give the orientation of Cn and such
that the oriented boundary is freely homotopic to g.
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Definition 1.11: Let D in Cn be a reduced divisor and p a point of Cn in the
complement of D. Let D0 be an irreducible component of D. Then an element
g of π1(C

n\D, p) is called the simple geometric element associated to D0 if g is
freely homotopic to the oriented boundary of a disc intersectingD transversally
in a unique point of D0.

There are of course simple geometric elements in abundance, examples of which
are provided by the nooses associated to a system of paths.

Lemma 1.12 The simple geometric elements associated to the same component are
conjugate and any element conjugate to a simple geometric one is itself a simple
geometric element associated to the same component.

Proof: The open part Dreg of the given component consisting of points which
are regular and not contained in any other component is path connected. So if
transversal discs to points in Dreg are given, these points are connected by a path
embedded in Dreg. Along this path Dreg is a submanifold of real codimension two,
so a normal disc bundle exists, which shows that the boundaries of both discs are
freely homotopic. Hence the geometric elements are freely homotopic as well, which
implies the first claim. The second is obvious. 2

Lemma 1.13 Let U be a smooth connected complex variety. Let D1 and D2 be
divisors with no irreducible component in common. Then the naturally induced map
π1(U −D1 ∪D2)→ π1(U −D1) is surjective and

i) For any simple geometric element in π1(U −D1) associated to an irreducible
component J of D1, there is a lift in π1(U − D1 ∪ D2) which is a simple
geometric element associated to J .

ii) The simple geometric elements of π1(U −D1 ∪D2) associated to D2 generate
the kernel.

Proof: Since a path is of real dimension 1 and the divisorD2 is of real codimension
two, any path in the complement of D1 is isotopic in U −D1 to a path disjoint from
D2, so surjectivity holds as claimed.

To address the claim i), let any simple geometric element in π1(U − D1) be
given which is associated to an irreducible component J of D1. Choose any simple
geometric element in π1(U −D) associated to J . Its image in π1(U −D1) is still a
simple geometric element associated to J , hence freely homotopic to the given one.
By 1.12 they are even conjugate.

Since surjectivity is already established we may find a preimage of the conju-
gating element by which we can conjugate the chosen geometric element to get a
preimage of the given element. So by 1.12 we have found a preimage which itself is
a geometric element.

We prove the last claim by induction on the number of irreducible components
of D2: If we have just a single component J we know the claim to be true in case
dimU = 1 and J consists only of an isolated point. If dimU ≥ 2 any element in
the kernel is represented by a path isotopic in U −D1 to the constant path. By a
general position check we may assume that the isotopy is transversal to J .
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Hence a suitable modification can be found which is supported in the comple-
ment of J and exhibits the path to be isotopic to a concatenation of boundaries of
discs normal to J and segments connecting these. So its class in π(U −D1 ∪ J) is
represented by a product of simple geometric elements and their inverses.

Suppose finally D2 = D′
2 ∪ J , so by induction hypothesis the simple geometric

elements associated to D′
2 generate the kernel of π1(U − D1 ∪ D′

2) → π1(U − D1)
and the simple geometric elements associated to J generate the kernel of

π1(U −D1 ∪D2)→ π1(U −D1 ∪D′
2).

By i) the simple geometric elements associated to D′
2 lift to simple geometric

elements associated to D′
2, hence we can conclude that the kernel of the composed

map
π1(U −D1 ∪D2)→ π1(U −D1 ∪D′

2)→ π1(U −D1)

is generated by simple geometric elements associated to D2 as claimed. 2

We can now apply this technical lemma to the curves C and L in C2.

Lemma 1.14 The fundamental group π1(C
2 \ C) of the complement of the curve is

the quotient of π1(C
2 \ C ∪ L) by the normal closure of Fs considered as a subgroup

by the presentation above, thus it is presented as

π1(C
2 \ C) = 〈t1, . . . , tn | ti = a∗(γk)(ti)〉.

Remark 1.15: Some if the given relations may be trivial, e.g. if a∗(γk) = σ1 then
ti = a∗(γk)(ti) = ti for i > 2.

Proof of lemma 1.14: First by 1.13 the map i∗ : π1(C
2 \ C ∪L)→ π1(C

2 \ C) is
surjective. By the construction Fs is considered a subgroup via

Fs ∼= π1(C \ S, y0)
s∗−→ π1(C

2 \ C ∪ L, s(y0))
∼= π1(C

2 \ C ∪ L).

Since s(C) is disjoint from C and a section to the projection C2 → C, it is con-
tractible and all elements of π1(C \ S) are therefore mapped to the trivial class. So
as claimed the normal closure of Fs is contained in the kernel of i∗.

We are left to prove that it actually coincides with this kernel. As we know
by 1.13 the kernel is generated by simple geometric elements associated to the irre-
ducible components of L. Pick Lk among the irreducible components, then a simple
geometric element in π1(C \ S) associated to yk is mapped by s∗ to a simple geo-
metric element in π1(C

2 \C ∪L) associated to Lk. So by 1.12 each simple geometric
element associated to an irreducible component of L is conjugated to an element in
the image of s∗ and thus in the normal closure of Fs as claimed.

Finally we have to derive the given presentation. We start with a presentation
of π1(C

2 \C ∪L). Since γ1, ..., γs generate the subgroup Fs we get a presentation for
π1(C

r \ C) by adding γ1, ..., γs to the set of relations. In the third step we get rid of
generators γi and relations γi simultaneously and must replace γi by the identity in
the remaining relations. In fact we get the presentation as claimed. 2
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Remark 1.16: The group G(a∗) defined by presentation (1.14) is the quotient of
Fn by the normal subgroup generated by {γ(t) · t−1 | γ ∈ im(a∗), t ∈ Fn}. In
other words, G(a∗) is the maximal quotient of Fn on which the representation
a∗ : Fs → Brn acts trivially.

For use in a later chapter we prove a slight variation of this claim and compute
the fundamental group of the complement of C and a single component of L.

Lemma 1.17 Suppose L1 is a single component of L, then the fundamental group
π1(C

2 \ C ∪ L1) is generated by i∗(π1(Cn)) and any simple geometric element asso-
ciated to L1.

Proof: By the same argument as before, we get a presentation

π1(C
2 \ C) = 〈t1, . . . , tn | γ

−1

1 · tiγ1 = a∗(γ1)(ti), ti = a∗(γk)(ti), k > 1〉.

A simple geometric element associated to L1 is then in the conjugation class of γ1,
thus represented by a word wγ1w

−1

. Due to the relations γ
−1

1 · ti ·γ1 = a∗(γ1)(ti) we
may assume that w does not contain the letter γ1, since they can be moved to the
end of w and then cancel through γ1. But then it is obvious that the fundamental
group is generated by the ti and wγ1w

−1

. 2

Remark 1.18: Suppose a′∗ : Fs → Brn is related to a∗ by a commutative diagram

Fs
a∗−→ Brn

αn−→ Aut(Fn)
ψ ↓ ↓ conjφ

Fs
a′∗−→ Brn

αn−→ Aut(Fn)

with ψ ∈ Aut(Fs), φ ∈ Aut(Fn) such that the restriction of φ to αn(Brn) is
an isomorphism of αn(Brn). Then G(a∗) is isomorphic to G(a′∗). Indeed, this
condition can be written as φ(a∗(g)(t) · t−1) = a′∗(ψ(g))(φ(t)) ·φ(t)−1 , ∀g ∈ Fs,
∀t ∈ Fn. Thus φ ∈ Aut(Fn) induces an isomorphism φ̄ : G(a∗)→ G(a′∗).

Since a∗, a
′
∗ need not to be braid equivalent we see that the fundamental groups

of complements can be isomorphic, in fact the curve complements can be
homotopy equivalent, for curves which have different braid monodromies. An
example of this kind was given in [10].

1.3.2 braid monodromy generators

We now make the presentation (1.14) more precise. To this end recall that the
braid group Brn can be presented by generators σ1, . . . , σn−1 subjected to relations
σiσi+1σi = σi+1σiσi+1 (1 ≤ i < n − 1), σiσj = σjσi (|i − j| > 1), see [5], [18]. The
Artin representation αn : Brn → Aut(Fn) is then given in terms of Fn = 〈t1, ..., tn| 〉
by:

σi(tj) =











titi+1t
−1
i if j = i,

ti if j = i+ 1,

tj otherwise.
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So far we chose systems of paths in C \ S and the fibre Cn over y0 only. But of
course we may do so in any fibre p

−1

(y), y ∈ C \ S – though not in a coherent way,
as that would amount to a global trivialization of the bundle.

As we have represented the elements γi by nooses we may divide them into small
loops ωi based at the neck, and long ropes ηi.

Like γi induce braid automorphism upon the choice of a system of paths for Cn,
so do the ωi upon a choice for the fibre over the neck of the noose.

The identification of ηi with an element in Brn depends on both choices. Note
that restricted to ηi the bundle is trivializable, hence one choice is sufficient as a
global choice. So we can compare both choices.

In fact the different choices up to isotopy form a simply transitive orbit under the
Artin representation, hence an ordered pair determines uniquely the corresponding
transition braid.

These constructions fit naturally together to yield

a∗(γk) = β−1
k αkβk,

where αk ∈ Brn is the monodromy along ωk and βk ∈ Brn is the transition along ηk.
So as one would like to express these braids in terms of the standard generators

σi of Brn, one may try to accomplish this in two steps.

Step 1 The structure of the isolated singularities in the fibre at yk determines the
local braid αk ∈ Brn, upon a choice of a geometrically distinguished system of
paths for the fibre at y0

k, the neck of the noose and base point of ωk.

This braid may be obtained from the Puiseux series expansion of the defining
polynomial of C at each intersection point with π

−1

(y0
k). The actual algorithm

is implicit in the work of Brieskorn, Knörrer [8] and Eisenbud, Neumann [14].

Step 2 A transition braid βk depends on the relation between the choices of systems
of paths in the fibres to be compared along the path.

The pull back of the bundle along the path ηk is a trivial Brn-bundle, hence
the mapping class groups of the two fibres at the endpoints are identified by
parallel transport. Since both are identified with the abstract braid group we
get an isomorphism of braid groups.

This is actually obtained by inner conjugation since the isomorphisms are all
defined in terms of distinguished systems of paths.

The important point to note is that in case the local braid αk involves few
strings we don’t need to understand the parallel transport resp. βk to full
extend, but only βk up to the stabilizer of the local braid under the conjugation
action, in order to determine β

−1

k αkβk.

Let us try the first step on some specific singularities and exemplify the final
remark of the second step.

Example 1.19: Consider the plane curve C : zp − xq = 0. The fundamental group
of its complement was determined by Oka [35]. A look at Oka’s computation
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?
π : (x, y) 7→ x

C

C2
C

q q q

q q q

Figure 1.3: vertical tangent, node and cusp

reveals a natural choice of system of paths such that the braid monodromy
generator is (σ1 · · · σp−1)

q ∈ Brp . For instance, to a simple tangency yields σ1, a
node yields σ2

1, and a cusp yields σ3
1 . Hence the individual monodromies around

the special points yk are conjugated to powers of half-twists, the exponent
being 1 in the case of tangency points, 2 in the case of ordinary nodes, and 3
in the case of ordinary cusps.

Example 1.20: If the monodromy α of ω is conjugated to a power of a half twist
as above, then this twist is determined by an isotopy class of arcs between the
two punctures involved. Of course βαβ

−1

is a half twist again, so in fact we
need to determine the image of the arc under the parallel transport along η
only.

We close this section with two remarks touching only on the surface of recent
developments.

Remark 1.21: The program presented so far is well adapted to the study of branch
curves of generic projections of projective surfaces to complex projective plane.
Such curves have only singular points which are ordinary cusps or nodes.

The methods have also been generalized to the symplectic set up.

Remark 1.22: In the case of branch curves Moishezon and Teicher, [32, 40], de-
veloped a degeneration technique. They start with a projective embedding of
the complex surface X, and deforms the image of this embedding to a singu-
lar configuration X0 consisting of a union of planes intersecting along lines.
The branch curve of a projection of X0 to C2 is therefore a union of lines;
the manner in which the smoothing of X0 affects this curve can be studied
explicitly, by considering a certain number of standard local models near the
various points of X0 where three or more planes intersect.

1.4 braid monodromy of horizontal divisors

We want now to generalize the considerations for plane algebraic curves in two
aspects. We go to higher dimensions, i.e. affine algebraic divisors in complex affine
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space, and include the local case of analytic space germs in Cr+1, 0. The latter is in
fact a generalization of the local considerations at singularities vk of a plane curve
by means of Puiseux series.

So we work with a polynomial f or a holomorphic function germ of vanishing
order n in r+ 1 variables. For simplicity we assume that the projection is along the
distinguished coordinate z and that f is monic of degree n in the polynomial ring
over C[x1, ..., xr], resp. z-general in C[x, z]. Then in the local analytic case we may
use the Weierstrass preparation theorem to end up in either case with the divisor
given by the zero set of a Weierstrass polynomial function f : Cr ×C→ C,

f(x, z) = zn +
n−1
∑

i=0

ai(x)z
i,

with ai ∈ C[x] resp. ai ∈ mr := {a ∈ Or|a(0) = 0}.
Let us resume the local analytic case later merely addressing the necessary im-

provements and stick to the affine case now.

The set S ⊂ Cr of points for which the corresponding fibre is tangent to the
divisor H defined by f or contains a singular point of H is the zero locus of the
resultant of f and ∂zf which eliminates z and coincides with the pull back of the
discriminant ∆n in Cn along the coefficient map a = (a0, ..., an−1) : Cr → Cn.

Let L denote the linear extension of S to Cr×C by pull back. In generalization
of the plane curve case we get a locally trivial bundle

Cr+1 \ H ∪ L −→ Cr \ S

with structure group Brn, fibre Cn and holonomy

ρ : π1(C
r \ S, y0)→ Aut(π1(Cn, v0)) (1.5)

which is the coefficient homomorphism a∗ : π1(C
r \ S, y0) → Brn, if Brn is iden-

tified with its image under the Artin representation using a suitable geometrically
distinguished system of paths. So we define:

Definition 1.23: The homomorphism α : π1(C
r \ S) → Brn determined by the

composition αn ◦ α = ρ is called braid monodromy homomorphism of the
hypersurface H projected along z.

It is only well defined up to a certain isomorphisms of the source and conjugation
in the target, but to proceed we won’t have to specify them.

1.4.1 braid monodromy presentation

To get a presentation for π1(C
r+1 \ H) we argue as in the curve case. So we start

with the long exact homotopy sequence of the bundle Cr+1 \ H ∪ L → Cr \ S.

This time our argument must be a bit more substantial to get a short exact
sequence out of it:

Lemma 1.24 The boundary map π2(C
r \ S)→ π1(Cn) is trivial.

23



Proof: Of course the image of the boundary map is normal and abelian. We get
the proof now in cases n = 1 and n > 1 separately. If n = 1 then f is a linear
polynomial and S is empty so π2(C

r \ S) = 0. If n > 1 the group π1(Cn) is free of
rank at least two. But then only the trivial subgroup is normal and abelian. 2

Since the splitting argument 1.9 still applies, we can base the proof of the fol-
lowing lemma on the short split exact sequence:

1→ π1(Cn)→ π1(C
r+1 \ H ∪ L)

s∗←−−→p∗ π1(C
r \ S)→ 1,

with action given by the braid monodromy homomorphism a∗ (1.5).

Lemma 1.25 The fundamental group π1(C
r+1 \H) of the complement of an affine

divisor H is the quotient of π1(C
r+1 \ H ∪ L) by the normal closure of π1(C

r \ S)
considered as a subgroup by the section s∗, thus it is presented as

π1(C
r+1 \ H) = 〈t1, ..., tn| ti = a∗(γk)(ti)〉,

where γ1, ..., γm is any system of generators for π1(C
r \ S).

Proof: By 1.13 the map i∗ : π1(C
r+1 \H∪L)→ π1(C

r+1 \H) is surjective. Since
s(Cr) is contractible the image by s∗ of π1(C

r \ S) and its normal closure must be
trivial in π1(C

r+1 \ H). As in the curve case 1.14 we can give an argument relying
on 1.13 that this is the kernel of i∗.

The presentation is then obtained using the split sequence, s∗, and i∗. Let us
suppose we are given an arbitrary presentation

π1(C
r \ S) = 〈γ1, ..., γs| r1, ..., rm〉,

where r1, ..., rm are words in the listed generators. Since the fibre of the bundle has
fundamental group presented as π1(Cn) = 〈t1, ..., tn| 〉, we get with the split exact
sequence:

π1(C
r+1 \ H ∪ L) = 〈t1, ..., tn, γ1, ..., γs| r1, ..., rm, γktiγ

−1

k = a∗(γk)(ti)〉

As in the curve case the results on the kernel of i∗ imply, that we get a presentation
for π1(C

r+1 \H) if we add the relations γ1, ..., γs. So we may drop generators γk and
replace γk in all relations by the identity, to get a Tietze equivalent presentation.
Because γ1, ..., γs, r1, ..., rm become trivial relations, we may as well discard them
and end up with

π1(C
r+1 \ H) = 〈t1, ..., tn| ti = a∗(γk)(ti)〉,

as claimed, since in the beginning we may have chosen any set of generators for
π1(C

r \ S). 2

In fact, to get presentations of fundamental groups as in lemma 1.25, we may go
back to the case of curves:
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Consider a generic fibre L of a generic fibration of Cr \ S. Then π1(L \ SL)
surjects onto π1(C

r \ S). So given generators γ1, ..., γs for π1(L \ SL) we get by the
last result a presentation

π1(C
r+1 \ H) = 〈t1, ..., tn| ti = a∗(γk)(ti)〉,

If we define in the plane p
−1

(L) the curve CL := H∩ p−1

(L) then by our arguments
the above presentation is also valid for π1(p

−1

(L) \ CL). This is of course one of the
well known Zariski van Kampen results.

1.4.2 braid monodromy of local analytic divisors

To get the analogous results in the case of local analytic divisors, we must go through
the same procedure, but we are forced to make some more choices in the construction,
which we later have to show to have no bearing on the definitions.

We already reached the stage at which we have to deal with a Weierstrass poly-
nomial f(x, z) = zn +

∑

ai(x)z
i, ai(0) = 0. It defines the given analytic germ H

and for sufficiently small ρ the coefficients ai are defined and bounded for |x| < ρ.

Since the divisor was assumed to be reduced, the set of points |x| < ρ such that
f(x, z) is a simple Weierstrass polynomial is the complement of a proper analytic
subset Sρ, which is defined by the resultant of f and ∂zf with respect to z. So we
get an associated polynomial cover over Xρ := Bρ \ Sρ:

f : Xρ ×C→ C, (x, z) 7→ zn +
∑

ai(x)z
i.

By the choice of ρ, the zeroes of f are uniformly bounded for x ∈ Bρ, hence there is
a section s to the projection π : Xρ ×C→ Xρ which avoids the zero set of f .

As in the previous cases we have a locally trivial bundle

Yρ → Xρ, Yρ := Xρ ×C \ f−1

(0),

for which a holonomy π1(Xρ, y0) → Aut(π1(Cn, v0)) is given after a choice of base

points, y0 ∈ Xρ and v0 in the fibre π
−1

(y0).
For ρ below some finite bound, the isomorphism type of π1(Xρ, y0) is well defined,

hence we may define:

Definition 1.26: For ρ sufficiently small, the map a∗ : π1(Xρ, y0) → Brn induced
by the coefficient map of Yρ → Xρ is called braid monodromy homomorphism
of the germ H projected along z.

It is well defined at least up to isomorphisms of the source and conjugation in
the target, which is all we need in the sequel.

Moreover the local analogue of lemma 1.25 holds true:

Lemma 1.27 Suppose H represents the germ of a divisor in Cr+1, 0, then for ε and
ρ = ρ(ε) sufficiently small, the isomorphism class π1(Bε × Bρ \ H) of fundamental
groups is presented as

π1(Bε ×Bρ \ H) = 〈t1, ..., tn| ti = a∗(γk)(ti)〉,
where γ1, ..., γm is any system of generators for π1(Xρ, y0).
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Proof: Let ε and ρ be small enough to make sure that Bε×Bρ∩H is a branched
cover of degree n over Bρ and branched along an analytic subset with complement
Xρ.

Then Bε × Bρ \ H is a strong deformation retract of Yρ and the claim follows
along the line of argument of lemma 1.25. 2

Remark 1.28: If H is given by a quasi homogeneous polynomial f with a good
C∗-action, then so is Sρ. In that case the C∗-action can be used to show that

Bε ×Bρ \ H is a strong deformation retract of Cr+1 \ f−1

(0) by a map which
respects the projection to Bε resp. Cr.

Hence all braid monodromy considerations for the hypersurface germ H are
equal to those for the affine hypersurface defined by f .
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Chapter 2

braid monodromy of singular

functions

In this chapter we review the notion of semi universal unfoldings of singular func-
tion germs and show how a natural polynomial cover arises in this set-up. The
corresponding braid monodromy homomorphisms and braid monodromy groups are
then associated invariantly to equivalence classes of function germs via their versal
unfoldings.

In particular a presentation for the fundamental group of the discriminant com-
plement will be derived from the new invariants.

But to get that far, we have to make quick digression through the theory of
unfoldings of singular functions touching on such diverse notions as discriminant
sets, truncated unfoldings, and bifurcation sets.

2.1 preliminaries on unfoldings

The basic objects in singularity theory we start with are holomorphic function germs
on affine coordinate space, f : Cn, 0 → C, which form the C-algebra On. It is a
local algebra with maximal ideal

mn = {f ∈ On| f(0) = 0}

Since a function on abstract affine space is identified with different elements of
On depending on a choice of coordinates, it is natural to consider such elements to
be equivalent, more precisely:

Definition 2.1: Given elements f, g ∈ On are called right equivalent or simply
equivalent, f ∼ g, if there is a holomorphic map ρ : Cn, 0 → Cn, 0 such that
f(x) = g(ρ(x)) and ρ is biholomorphic.
If X ⊂ mn is an equivalence class and f ∈ X, then f is called a function of
type X.

Example 2.2: The classes of simple singularities according to Arnold, cf. [1], are
represented by

Ak: x
k+1
1 + x2

2 + · · ·+ x2
n,
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Dk: x
2
1x2 + xk−1

2 + x2
3 + · · ·+ x2

n,

E6: x
3
1 + x4

2 + x2
3 + · · ·+ x2

n,

E7: x
3
1 + x1x

3
2 + x2

3 + · · · + x2
n,

E8: x
3
1 + x5

2 + x2
3 + · · ·+ x2

n,

2.1.1 versal unfolding

Proceeding deeper into the theory we introduce secondary objects to a given function
germ f ∈ On:

Definition 2.3: A function germ F on affine coordinate germ Cn ×Ck, 0 is called
unfolding of f ∈ On, if F0 = f for F0 := F |Cn×{0},0. Then k is called the un-

folding dimension and Ck, 0 the base or the parameter space of the unfolding.

This notion should be understood as a family of function germs in On param-
eterized over a space germ Ck, 0. This interpretation is also at the base of the
equivalence notion induced on unfoldings.

Definition 2.4: Suppose F,G ∈ On+k are unfoldings of f ∈ On. Then F,G are
called equivalent, if there is a holomorphic map germ ρ : Cn+k, 0→ Cn, 0 such
that G(u, x) = F (u, ρ(u, x)), ρ(0, x) = x.

And as with families one can consider the pull back of an unfolding along a map
to its base: Suppose F ∈ On+k is an unfolding of f ∈ On and ϕ : Cl, 0 → Ck, 0
is a map germ, we call G ∈ On+l the unfolding of f induced from F by ϕ, if
G(v, x) = F (ϕ(v), x).

Thus prepared we can now introduce the concept best suited for classification in
singularity theory.

Definition 2.5: If F ∈ On+k is an unfolding of f ∈ On then F is called versal, if
each unfolding G ∈ On+l of f is equivalent to an unfolding induced from F .

A versal unfolding is called miniversal if it is versal and of minimal dimension.

Naturally one would ask to induce a given unfolding in a unique way but expe-
rience taught to be content with uniqueness only of the differential of the pull back
map.

Accordingly the miniversal unfoldings which have got this property are also called
semi universal.

Remark 2.6: Versality is an open condition in the following sense. If a represen-
tative of a versal unfolding F is given and is defined for u, 0, then G given by
G(v, x) := F (u+ v, x) is an unfolding of the function x 7→ F (u, x).

The case of functions with an isolated singularity – which we are interested in
exclusively – is characterized by the finite codimension in On of the Jacobian ideal
generated by the partial derivatives, J(f) = 〈∂1f, ..., ∂nf〉.

In this case specific miniversal unfoldings and the mutual relations of versal
unfoldings can be described according to [1], chapter 8:
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Proposition 2.7 Given f ∈ mn and b1, ..., bk ∈ On such that the classes of b1, ..., bk
modulo J(f) form a generating set (a basis) of On/J(f). A versal (semi universal)
unfolding of f is then given by F (u1, ..., uk , x) := f(x) + u1b1(x) + ...+ ukbk(x).

Proof: By hypothesis the function bi and the ideal J(f) span the tangent space
of On at f . The ideal J(f) can be shown to be the tangent space to the orbit of
action by biholomorphic maps of the source of f . The point of the proof is thus – as
indicated in [1] – that the infinitesimal transversality to the orbit of f lifts to local
transversality to all orbits sufficiently close.

Proposition 2.8 Suppose F ∈ On+k and G ∈ On+l are versal unfoldings of f ∈ On
and k ≥ l. Then F is equivalent to some unfolding induced from G by a map germ
ϕ : Ck, 0→ Cl, 0 of full rank.

Proof: This result can be derived from the previous by a careful analysis of all
the definitions involved.

2.1.2 discriminant set

The discriminant set is the germ of subsets in the base of a versal unfolding F ∈ On+k

of a singular function f ∈ O given by those parameters u for which 0 is a critical
value of the function Fu : x 7→ F (u, x).

To give a precise meaning to this description, we examine the situation for a
representative of the germ F . W.l.o.g. assume f : Cn, 0 → C, 0 to be a germ with
an isolated critical point at 0. Choose sufficiently small neighbourhoods of zero
M = {x| ‖x‖ ≤ ρ} ⊂ Cn and U = {u| ‖u‖ ≤ δ} ⊂ Ck, for which a representative F̃
is defined.

By the curve selection lemma we may assume ρ and δ = δ(ρ) sufficiently small
such that the level set {x| F̃ (u, x) = 0} is non-singular on the boundary ∂M of the
ball M and is transverse to ∂M for every u ∈ U , cf. [28].

If we distinguish u ∈ U into singular and non-singular parameters according to
Vu := {x|F (u, x) = 0} ∩M being singular or not, we define the discriminant set by
means of any representative of F :

Definition 2.9: The discriminant set in the base of the versal unfolding F ∈ On+k

of a singularity f ∈ On is represented by the singular parameters in U for a
representative of F .

Of course any other representative of F coincides with the chosen one for suffi-
ciently small neighbourhoods and so does the corresponding set of singular param-
eters.

Example 2.10: Let f(x) = x3, F (u, x) = x3 + u1x + u0. The discriminant set for
f is precisely the set of pairs u1, u0 such that the polynomial x3 + u1x + u0

has multiple roots. Hence the discriminant is the hypersurface germ cut out
by the equation 27u2

0 + 4u3
1 = 0.

This examples exposes a common feature of all discriminant sets:
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Proposition 2.11 The discriminant set in the base of a versal unfolding F of a
singular function f is an irreducible hypersurface germ.

Proof: The proof uses suitable representatives again and exploits the fact, that
the discriminant is the image of the critical set, which is irreducible and analytic,
under a proper finite map, cf. [13] 2

2.1.3 truncated versal unfolding

Let f : Cn, 0→ C, 0 be a function germ. Instead of unfoldings F ∈ On+k, which can
be considered as families of elements in On, we now confine ourselves to unfoldings
F such that F (u, 0) ≡ 0, which can be considered as families of elements in mn.

The definitions of equivalence, induced unfoldings, and versality carry over with-
out modifications to the present case.

Definition 2.12: If F ∈ mn+k is an unfolding of f ∈ mn then F is called a trun-
cated versal unfolding, if F (u, 0) ≡ 0 and each unfolding G ∈ mn+l of f with
G(v, 0) ≡ 0 is equivalent to an unfolding induced from F .

The relation to versal unfoldings in the ordinary sense is readily given:

Proposition 2.13 Suppose F ∈ On+k and F# ∈ mn+k−1 are unfoldings of f ∈ mk

related by F (u, x) = F#(u#, x) + u0. Then F# is a truncated versal unfolding of f
if and only if F is a versal unfolding of f .

This stems from the fact that a miniversal truncated unfolding is given by
F#(u, x) = f(x) + u1b1 + ... + uk−1bk−1 if for mn → mn/J(f) the bi map to a
basis of the quotient, cf. prop. 2.7.

Given a truncated versal unfolding F# we call the versal unfolding F of the
proposition the completed versal unfolding corresponding to F#.

2.1.4 bifurcation set

A function is said to be a Morse function, if it has only non-degenerate critical
points and their values are distinct. For the definition of the bifurcation set as
the set of parameters in the base of a truncated versal unfolding F#, for which
the corresponding function is not Morse, we have once again to resort to a local
representative:

Definition 2.14: The bifurcation set in the base of a truncated versal unfolding F#

of a singular function f is represented by the set of parameters for which the
corresponding function restricted to a sufficiently small ball M is not a Morse
function.

Again one should convince oneself that this definition does not depend on the
choice of representatives and sufficiently small neighbourhoods.
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Example 2.15: By F#(u, x) = x4 + u2x
2 + u1x a truncated versal unfolding of

f(x) = x4 is given. This polynomial has degenerate critical points if and only
if its derivative has multiple roots, i.e. 27u2

1 + 8u3
2 = 0. Moreover one can

verify that critical values coincide only if Fu is an even function, i.e. u1 = 0.
The bifurcation set is thus the union of a cusp corresponding to functions with
degenerate critical points and a line corresponding generically to functions
with common values of distinct critical points.

The example is but an instance of general facts which are more involved than in
the case of discriminants and which are summarized below.

Proposition 2.16 In the base of a truncated versal unfolding the set of parameters
such that the corresponding function has a degenerate critical points (not of type
A1) defines an analytic hypersurface germ. It is empty only for f of type A1 and
irreducible otherwise.

Proof: Similar to the proof of prop. 2.11 one has to use the fact that the deter-
minant of the Hessian is transversal to the critical set and thus determines a smooth
analytic germ of dimension k−1 which can be shown to project properly and finitely
to the set under scrutiny, cf. [41],[37]. 2

The complement of this strict bifurcation variety consists of parameters corre-
sponding to functions with non-degenerate critical points only, at least two of which
have a common value. Its closure goes by several names, e.g. Maxwell stratum [2],
or conflict variety [41], and its decomposition into irreducible components was de-
termined by Wirthmüller [41], cf. also [37]:

Proposition 2.17 The conflict variety in the base of a truncated versal unfolding
is an analytic hypersurface germ, it is

i) empty, if f is of type A1, A2,

ii) the union of three irreducible components, if f is of type D4,

iii) the union of two irreducible components, if f is of type Dµ, µ ≥ 5,

iv) irreducible in all remaining cases.

2.2 discriminant braid monodromy

We finally draw closer to our proper objective. For any given f ∈ mn with iso-
lated singularity consider a truncated versal unfolding F# and the corresponding
completed versal unfolding F .

The discriminant is an analytic hypersurface germ, in the base Ck, 0 of F , hence
given by a reduced holomorphic function ∆. Since f is assumed to have an isolated
singularity only, its singular value 0 is isolated, too. Therefore ∆ is u0-regular and
we may define:
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Definition 2.18: The braid monodromy homomorphism associated to the truncated
versal unfolding F# is the braid monodromy homomorphism of the discrimi-
nant in the base of the corresponding completed versal unfolding F projected
along u0.

It is this notion which is the central one of this paper and we will devote the rest
of the section to some of its general properties, before we start the investigation for
specific classes of singularities.

2.2.1 basic properties

First we identify the range of the braid monodromy homomorphism. We actually
link it to the Milnor number µ of the singular function f , which can be defined as
the multiplicity of the critical value.

Lemma 2.19 The function ∆ defining the discriminant divisor is u0-regular of
order equal to the Milnor number of f .

Proof: This follows from the fact that in the base of a versal unfolding of the
given kind the line u1 = ... = uk−1 = 0 is not in the tangent cone of the discriminant.
We have just to add the information that the Milnor number gives the multiplicity
of the discriminant. 2

Corollary 2.20 The range of the braid monodromy homomorphism is Brµ(f).

Next we identify the source with the help of the bifurcation set Sρ in the base of
F# restricted to a ball of sufficiently small radius ρ centered at the origin.

Proposition 2.21 The braid monodromy homomorphism of a truncated versal un-
folding F# is defined on the isomorphism class π1(Bρ \ Sρ) for ρ sufficiently small.

Proof: Note first that by the Weierstrass preparation theorem ∆ can be assumed
to be a Weierstrass polynomial. By the construction of the braid monodromy ho-
momorphism of projected hypersurface germs, it suffices to show, that the the dis-
criminant set coincides with the set of parameters for which ∆ fails to be a simple
Weierstrass polynomial, at least for ρ sufficiently small.

Now the multiplicity of a critical value is one, if and only if it is the value of a
single non-degenerate critical point. Therefore the number of critical values drops
for sufficiently small ρ, if and only if the corresponding function is not a Morse
function. 2

2.2.2 invariance properties

Most important are the invariance properties of the braid monodromy homomor-
phism. We have already noted, that the assignment of a braid monodromy homo-
morphism to an affine hypersurface germ projected along a suitable coordinate is
not well-defined. But if we consider equivalence classes up to isomorphisms of the
source and conjugation in the range, then the induced map is well defined.
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In fact with this interpretation we get the invariance on the class of all truncated
versal unfoldings of equivalent functions with isolated singularity.

Proposition 2.22 Given braid monodromy homomorphisms α(F ), α(G) associated
to truncated versal unfoldings F# and G# of equivalent functions f, g, then there
exists a commutative diagram

π1(B
F
ρ \ SFρ )

α(F )→ Brµ(f)

∼= ↓ ↓ conjφ
π1(B

G
ρ \ SGρ )

α(G)→ Brµ(g),

where µ(f) = µ(g) and conjφ is conjugation by φ ∈ Brµ.

Proof: Suppose w.l.o.g. that k ≥ l for the unfolding dimensions of F and G. By
hypothesis and prop. 2.8 there is a map germ of full rank ϕ# : Ck−1, 0→ Cl−1, 0 and
a map germ ρ# : Ck−1×Cn, 0→ Cn, 0 with ρ# restricted to 0×Cn, 0 biholomorphic
and

F#(u, x) = G#(ϕ#(u), ρ#(u, x)).

The map germs ϕ : u 7→ (u0, ϕ
#(u#)) and ρ : u, x 7→ ρ#(u#, x) then have analogous

properties with

F (u, x) = G(ϕ(u), ρ(u, x)).

Hence we arrive at a commutative square of germs

Ck, 0
ϕ→ Cl, 0



yπu0



yπu0

Ck−1, 0
ϕ#

→ Cl−1, 0,

which induces a commutative square for sufficiently small representatives.
Since the pull back of the discriminant for G along ϕ yields the discriminant

for F , the bottom map ϕ# induces an isomorphism of fundamental groups of local
bifurcation complements.

Moreover the associated polynomial cover for F is the pull back by ϕ,ϕ# of the
polynomial cover associated to G. Hence the holonomy is the same.

The assertion of the proposition then follows, since conjugation on the right
corresponds to different choices of geometrically distinguished systems of paths used
for an identification of the holonomy group with the abstract group Brµ. 2

2.2.3 invariants

Though keeping in mind the invariance along equivalence classes of singular func-
tions, we will for linguistic reasons define an invariant of singular functions:

Definition 2.23: The class of braid monodromy homomorphisms associated to a
truncated versal unfolding of a singular function f with isolated singularity is
called the braid monodromy homomorphism of f .
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An invariant which is easier to handle is obtained by considering the image of
the braid monodromy homomorphism only, up to conjugation of course.

Definition 2.24: The braid monodromy group associated to f is the conjugacy
class of subgroups of Brµ(f) given as the image of a braid monodromy homo-
morphism.

Supposing we have generators for the braid monodromy group associated to f , we
get a presentation of the local fundamental group of the discriminant complement:

Lemma 2.25 Suppose the braid monodromy group associated to a singular function
f is given as the conjugacy class determined by a subgroup of Brµ generated by braids
β1, ..., βn. Then the isomorphism class π1(Bε×Bρ\H∆) for ε, ρ(ε) sufficiently small
is represented by the finitely presented group

〈t1, ..., tµ| t
−1

i βj(ti)〉.

Proof: If braids βj generate the image of the braid monodromy homomorphism,
their preimages γj and generators of the kernel generate the source. Hence the claim
follows from 1.27, since the trivial braid yields the trivial relation only. 2

In fact we should also include an algebraic observation, which reduces the number
of relations dramatically in case the generators are conjugated to braids non-trivial
only on a few strands.

First we note that the choice of the generators βj and of generators of the free
group does not matter.

Lemma 2.26 Suppose B is a subgroup of Brn which acts on generators t1, ..., tn of
a free group Fn by the Artin representation. Then the normal closure of the subgroup
of Fn generated by

w
−1

i βj(wi)

is independent of the choice of a finite set of generators {βj} of B and a finite set
of generators {wi} of Fn.

Now we can use this to reduce the number of relations in case a braid generator
β is conjugated to a twist.

Lemma 2.27 Suppose β = β0σ
l
1β

−1

0 ∈ Brn, then the normal subgroup generated by
t
−1

i σ(ti), i = 1, ..., n, is equal to the normal subgroup generated by

β0(t
−1

1 )β0(σ
l
1(t1)), β0(t

−1

2 )β0(σ
l
1(t2)).

Proof: By the previous lemma the first normal subgroup is equal to the normal
subgroup generated by β0(t

−1

i )β0(σ
l
1(ti)). Since these elements are trivial except for

i =∈ {1, 2}, the claim follows. 2
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Chapter 3

Hefez Lazzeri unfoldings

The singular functions to which this study is devoted are the Brieskorn-Pham poly-
nomials in arbitrary dimensions.

Definition 3.1: A polynomial f ∈ C[x1, ..., xn] is called a Brieskorn Pham polyno-
mial, if there are positive integers l1, ..., ln and

f(x1, ..., xn) = xl1+1
1 + · · · + xln+1

n .

They exhibit a lot of symmetry, most apparent the invariance of the polynomial
under multiplication of the coordinate xi with (li+1)st roots of 1. But more impor-
tant to us is the invariance of its singular values under multiplication with lthi unit
roots, for this invariance persists to the singular values of all functions obtained by
linear perturbation terms. It is due to these symmetries that singular values and the
bifurcation can be given by explicit polynomials, whereas in general such description
seems quite unattainable.

In [19], Hefez and Lazzeri exploited the unfolding over the linear perturbation
terms to some extend, computing the intersection lattice for Brieskorn polynomials.
In order to extend their exploits, we review their results on the discriminant of f
unfolded over the space of linear monomials and determine the bifurcation divisor,
too. Moreover we show how this sheds light on various geometric aspects of the
unfolding and of the corresponding perturbed functions.

3.1 discriminant and bifurcation hypersurface

Our current objective is to compute the corresponding discriminant and bifurcation
divisor, the discriminant for the unfolding of f ∈ C[x1, ..., xn] given by

F (x, α, z) := f(x) + z −
n
∑

i=1

αi(li + 1)xi,

and the bifurcation divisor for the unfolding

F#(x, α) := f(x)−
n
∑

i=1

αi(li + 1)xi.
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The partial derivatives are given by

∂iF (x, α, z) = ∂iF
#(x, α) = (li + 1)(xlii − αi), i = 1, ..., n.

Of course we shouldn’t neglect the obvious quasi-homogeneity apparent in this
situation:

Lemma 3.2 The functions F, ∂iF are weighted homogeneous of degree one, resp.
li
li+1 , if wt(xi) = 1

li+1 , wt(z) = 1 and wt(αi) = li
li+1 .

It implies in particular that the critical set, the discriminant divisor and the bi-
furcation divisor are quasi-homogeneous in their ambient affine spaces with a good
C∗-action.

We adopt now the following notation referring to roots of unity:

ξi : the primitive lthi root of 1 of least angle in ]0, 2π[.

Then we can state the two central results of this section:

Lemma 3.3 The polynomial defining the critical value divisor is given by the ex-
pansion of the formal product

∏

1≤ν1≤l1

· · ·
∏

1≤νn≤ln

(

−z +
n
∑

i=1

liξ
νi

i α
li+1

li

i

)

.

Proof: The discriminant is the set of points (α1, ..., αn, z) such that F and its
partial derivatives ∂xi

F vanish simultaneously at a point (x, α, z). Since the discrim-
inant is known to be an algebraic hypersurface we are thus looking for a reduced
monic polynomial p∆ ∈ C[α1, ..., αn, z] with zero set equal to the discriminant set.

Therefore we try to eliminate the variables xi from the system of equations
F = ∂iF = 0. In a first step we replace xlii by αi in the equation F = 0 and get
instead

z =
n
∑

i=1

αilixi.

Now it is helpful to consider the Galois extension of C(α1, ..., αn) defined by the
polynomials xlii − αi which we denote by C(a1, ..., an) with alii = αi.

Then the system of equations is easily solvable in C(a1, ..., an)[x1, ..., xn, z] with
xi = ξνi

i ai to be eliminated to get

z =

n
∑

i=1

αilixi =

n
∑

i=1

liξ
νi

i a
li+1
i , 0 ≤ νi < li.

So the corresponding discriminant is simply given by the polynomial

∏

1≤νi≤li

(

−z +
n
∑

i=1

liξ
νi

i a
li+1
i

)

.
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It is in fact a polynomial in C[α1, ..., αn, z] since it is invariant under the action of
the Galois group of the extension which acts by multiplication of ξi on ai. 2

In particular the Milnor number µ of f , which coincides with the z-degree of the
discriminant, is thus shown to be

µ =

n
∏

i=1

li.

Similarly we get a description of the bifurcation divisor:

Lemma 3.4 The polynomial defining the bifurcation divisor in the base of F# is
given by the expansion of the formal product

∏

1≤νi≤li
1≤ηi≤li

ννν 6=ηηη

(

n
∑

i=1

liα
li+1

li

i (ξνi

i − ξ
ηi

i )

)

.

Proof: Of course the polynomial is uniquely defined up to a constant as the dis-
criminant with respect to the variable z of the polynomial defining the discriminant
divisor, given in lemma 3.3.

Passing to the Galois extension of C(α1, ..., αn) once again, we have to compute
the discriminant of a polynomial which is a product of linear factors in C(a1, ..., an)[z].
So up to a constant the discriminant is the product of the squares of the mutual
differences between the zeroes of distinct factors.

discrz(p∆) =
∏

1≤νi,ηi≤li
ννν 6=ηηη

(

n
∑

i=1

lia
li+1
i (ξνi

i − ξ
ηi

i )

)

.

Since this polynomial is Galois invariant, the claim follows as above. 2

Due to the importance of the bifurcation divisor this polynomial deserves a
proper name, it will be denote by pB and henceforth be called the Hefez-Lazzeri
polynomial of f .

We end this section with some corollaries, highlighting some of the nice geometric
properties of the Hefez-Lazzeri unfoldings of Brieskorn Pham polynomials.

Lemma 3.5 The polynomial pB vanishes to order exactly (l2i − 1)µ/li along the
hyperplane αi = 0.

Proof: We have to show that αi exponentiated to the given order is a divisor of
pB while higher powers are not. From the factorization of pB in C[a1, ..., an], we see
that ai divides a factor if and only if νj = ηj for all j 6= i. An easy check shows that

(l2i − 1)µ is the vanishing order of ai. So the claim follows, for alii = αi. 2

Lemma 3.6 The leading coefficient of pB ∈ C[α1, ..., αn] with respect to the variable
αn is the lthn power of the Hefez Lazzeri polynomial of the Brieskorn Pham function

g(x1, ..., xn−1) = xl1+1
1 + · · ·+ x

ln−1+1
n−1 .
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Proof: In the factorization of pB in C[a1, ..., an] we note that a factor is either a
polynomial in an with constant leading coefficient or does not contain an at all. We
conclude that up to a constant the leading coefficient with respect to the variable
an is the product of those factors not containing an. So we get this coefficient by
collecting the factors with νn = ηn from the factorization of pB:

∏

νn=ηn≤ln

∏

νi,ηi≤li
i<n
ννν 6=ηηη

(

n
∑

i=1

lia
li+1
i (ξνi

i − ξ
ηi

i )

)

=
∏

νi,ηi≤li
i<n
ννν 6=ηηη

(

n−1
∑

i=1

lia
li+1
i (ξνi

i − ξ
ηi

i )

)ln

Compare this product with the proof of 3.4 and the claim is immediate. 2

Lemma 3.7 Given a Brieskorn Pham polynomial f , then the generic degenerations
in its Hefez-Lazzeri unfolding are:

i) at a generic point of the coordinate hyperplane αi = 0, the corresponding
function has l′i = µ/li critical points of type Ali with distinct critical values,

ii) at any point on the coordinate hyperplanes, the corresponding function is of
Brieskorn Pham type,

iii) at a generic point of any other component of the Lazzeri discriminant, the
corresponding projection has critical points of type A1 with at least two of
common value.

Proof: The Hessian of the function F#(x, α) with respect to the variables x only
is given by the diagonal matrix with entries li(li + 1)xli−1δi,j , which is of full rank
outside the hyperplanes xi = 0.

From the gradient of F# with respect to x we deduce, that there is a critical
point on the ith hyperplane xi = 0 if and only if the parameter α is on the hyperplane
αi = 0.

Hence for each parameter in the complement of the hyperplanes αi = 0 the
Hessian of the corresponding function is of full rank, so all its critical points are of
type A1 only.

Thus the parameter belongs to the bifurcation divisor if and only if the function
maps at least two of its critical points to the same value.

The bifurcation locus outside the coordinate hyperplanes is therefore part of the
Maxwell stratum and corresponds to the transversal intersection of several branches
of the discriminant locus, the number of which is half the local degree of the bifur-
cation locus plus one.

On the other hand a parameter on a coordinate hyperplane is considered generic
if it does not belong to any other hyperplane. Assume in this case w.l.o.g. that
αn = 0 , so the corresponding function is

F#(x, α) = f(x) +

n−1
∑

i=1

αi(li + 1)xi.

At each point of its critical locus, the Hessian is of corank one, therefore the type of
the critical point is easily seen to be Aln .
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The generalization to arbitrary parameters on the coordinate hyperplanes can
be checked to yield the second claim. 2

Lemma 3.8 Suppose the exponents are in increasing order, l1 ≤ ... ≤ ln, then the
total degree of the Hefez Lazzeri polynomial pB is

µ





n
∑

i=1

(

l2i − 1

li

∏

i<j≤n

lj

)



 .

Proof: In case n = 1 the degree is l2 − 1 in accordance with the claim since

pB =
∏

1≤ν,η≤l
ν 6=η

(

lα
l+1

l (ξν − ξη)
)

.

In case n > 1 we argue by induction: In each formal factor of pB only pure monomials
occur, so if α1 occurs, the corresponding monomial is the term of highest degree.
The number of such factors is µ2(l1 − 1)/(l1). The product of the other factors is
nothing else but the leading coefficient with respect to the variable α1.

Hence by lemma 3.6 and the induction hypothesis the total degree is

µ2 l
2
1 − 1

l21
+ µ





n
∑

i=2

(

l2i − 1

li

∏

i<j≤n

lj

)



 .

But this is the claim, since µ/l1 = l2 · · · ln. 2

3.2 Hefez Lazzeri path system

In case of the Brieskorn Pham polynomials Hefez and Lazzeri described an method
to define a path system using induction on the dimension for a regular fibre obtained
by a linear perturbation under the sole assumption that the parameters αi are of
quite distinctive magnitude.

So if αn ≪ ... ≪ α2 ≪ α1 the critical values are distributed on circles of radius

lnα
ln+1

ln
n centred at the critical values of the polynomial

xl1+1
1 − α1(l1 + 1)x1 + · · ·+ x

ln−1+1
n−1 − αn−1(ln−1 + 1)xn−1

according to lemma 3.3.

Therefore we need to replace all paths by ln copies and refine the system on these
discs then.

Inductively we start with a path system of a first kind, as depicted in figure 1.
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q

qq

Figure 3.1: path system of the first kind, l = 4

For the second step we replace it by the system of the second kind, which is
given in the second figure, except for the fact that we did not care to distinguish the
copies we take of each single path.

l

l

l

l

Figure 3.2: a path system of second kind in case l = 4

Into each of the small discs we have to paste a path system of the first kind to
get a path system in case n = 2.

Inductively then, we have to replace all systems of the first kind pasted in step
n− 1 by path systems of the second kind and to paste systems of the first kind into
the new smaller discs left by the systems of the second kind.

These path systems are called Hefez Lazzeri path systems.
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Chapter 4

singularities of type An

The simplest singular functions for which we have to determine the braid monodromy
are those of type An. So let us investigate the holomorphic function f : x 7→ xn+1.
A versal unfolding can be chosen to be quasi-homogeneous

F (x, u, z) = xn+1 + z +

n−1
∑

i=1

uix
i,

while the associated truncated versal deformation is

F#(x, u) = xn+1 +

n−1
∑

i=1

uix
i.

This case of functions of type An is special in some aspects. First, being quasi-
homogeneous with good C∗-action, we may work in the affine set up, 1.4.2, and
avoid the cumbersome notation used for germs. So we consider the projection p
from Cn to Cn−1 of the base spaces of the versal resp. truncated versal unfoldings
above and get the braid monodromy as the coefficient homomorphism for the bundle
which we obtain by restriction of p to

p : Cn \∆ ∪ p−1

(B) −→ Cn−1 \ B.

Second, being of codimension one, there is another map besides p to which the theory
of polynomial covers applies. Consider the projection p̃ from Cn+1 to Cn from the
domain of the versal deformation F to its base and the zero set F

−1

(0) ⊂ Cn+1.
Then there is a restriction, which again is a polynomial covering space, but of degree
n+ 1:

p̃ : Cn+1 \ F−1

(0) ∪ p̃−1

(∆) −→ Cn \∆.

Of course p̃ is induced from the tautological bundle (1.1), p.11, we have seen before,
but even more is true. It is a subbundle which is a strong deformation retract.

When we now attack the braid monodromy of f – recall this to be the braid
monodromy of p – our argument is not straightforward, but relies heavily on prop-
erties of p̃ and citations from the literature.

But setting out with the fibration p, let us first choose a base point, such that we
can describe the corresponding fibre in more detail. To rely on previous results we
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choose u = (0, ..., 0,−α(n+1)) ∈ Cn−1 from the base of the Hefez-Lazzeri unfolding
with corresponding function fα = xn+1 − α(n + 1)x. The fibre of p at u, which we
henceforth refer to by Lα, falls into the topological class we denoted by Cn, but we
easily compute from ∂xfα = 0 that the critical locus is at the nth roots of α and
that the fibre is punctured at the critical values which coincide with the nth roots of
αn+1 multiplied by n, cf. lemma 3.3. Thus we get even the true geometric picture
for Lα:

t t

t

t

t

t

This punctured line Lα is a subset in the base of the bundle p̃, and as we said,
an understanding of the bundle p̃ will eventually lead to the braid monodromy of p.

Looking for a distinguished regular base point of the restricted bundle p̃α := p̃|Lα

the origin is the obvious choice. The corresponding fibre is an affine line punctured
at the zeroes of xn+1 − α(n+ 1)x, i.e.. at 0 and the nth roots of α(n+ 1).

u u

u u

u

u

u

But we need more information to compute the monodromy. Assuming α to be
real, we consider the punctures in the fibres of p̃ over points ρ ≥ 0 of the positive
real axis in the base Lα ∼= C. We make the following observations:

i) By the sign rule of Descartes the number of positive real zeroes of the polyno-
mial xn+1 − α(n+ 1)x+ ρ is either two or none.

ii) Let ρα := n
n
√
αn+1 be a positive real by choosing

n
√
αn+1 the only positive real

among the nth roots of αn+1. Then ρα is the base of the only singular fibre of
p̃ over the positive real axis, with a single ordinary double point x = n

√
α.

iii) Both facts together imply that the number of positive real zeroes along the
real axis ρ ∈ R≥0 is constantly two over [0, ρα[, a zero of multiplicity two at
ρα and vanishes over ]ρα,∞[.
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We elaborate on these observations to get the proofs of the following two lemmas
concerning the monodromy homomorphism to Σn+1 for the cover associated to p̃,
resp. the braid monodromy of p̃ itself. Though the first would certainly suffice in the
course of the argument, we couldn’t help including the second, and if only to show
the particular flavour of arguments applied in braid monodromy considerations.

Lemma 4.1 Given the simple branched cover of C by p̃ restricted to F
−1

(0) over
the complex line (0,−α(n + 1), z), α 6= 0 fix, in the base of the versal unfolding
F . Suppose αn is any nth root of α, then the Hurwitz monodromy of the cover
associates to the radial path from 0 around nααn the transposition of the points 0
and αn

n
√
n+ 1.

Proof: We just considered the radial path in the special case of α,αn ∈ R>0.
In that case the local monodromy is the transposition of the merging points which
originate in the said points 0 and αn

n
√
n+ 1 of the fibre at the origin.

The setting is quasi-homogeneous with respect to weights wt(x) = 1, wt(α) = n,
wt(z) = n+ 1. That’s why multiplication by a suitable factor maps the special case
bijectively to any other and so the proof is obtained. 2

Lemma 4.2 Consider the cover p̃ restricted to the complex line (0,−α(n + 1), z),
α 6= 0 fix, in the base of the versal unfolding F . Suppose αn is any nth root of α,
then the braid monodromy associates to the radial path from 0 around nααn in the
base the twist on the radial arc from 0 to αn

n
√
n+ 1 in the fibre.

Proof: By quasi-homogeneity it suffices to prove the special case of α ∈ R>0,
αn ∈ R>0. In that case the local monodromy is a twist since the degeneration is an
ordinary double point. In a fibre sufficiently close to the degenerate fibre this is a
twist on the straight arc between the merging points.

We choose the nearby fibre at a positive real base parameter and get an arc
supported on the positive real axis in the fibre.

In the description of the general strategy for the computation of braid mono-
dromies we have mused for some time on the fact that it suffices to understand the
parallel transport of this arc to the reference fibre, which is the fibre at the origin
in the case at hand.

So we have to prove that the arc in a close by fibre can be transported to the
radial arc from 0 to αn

n
√
n+ 1 in the fibre at the origin. In fact we can do so by

choosing a suitable vector field. Since the punctures have to be transported along
integral curves, the vector field is determined at the punctures, but otherwise we
may smoothly interpolate as we need. At the two punctures moving on the positive
real axis the vector field is parallel to the axis. Moreover no other puncture hits the
positive real axis, as we observed above, due to the sign rule of Descartes. So we
interpolate by a vector field on the ray parallel to the axis, such that the arc in the
nearby fibre is stretched to the claimed interval. 2

As was noted previously, 1.3.1, the fundamental group π1(C
n − ∆) is a quo-

tient of π1(Cn) such that the braid automorphisms of π1(Cn) descend to trivial
automorphisms of π1(C

n −∆).
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So the braid monodromy homomorphism of p with range considered as auto-
morphism of π1(Cn) may map only to elements a∗(β) which stabilize the coefficient
homomorphism ã∗ for p̃ followed by the natural homomorphism π : Brn+1 → Sn+1:

π1(Cn)
π◦ã∗−→ Sn+1

a∗(β)


y



y id

π1(Cn)
π◦ã∗−→ Sn+1

To make the argument more explicit we introduce geometric bases in the two
punctured lines. If we do so for the fibre of p punctured at the nth roots of αn+1

dilated by n in the way as depicted on the left and for the fibre of p̃ punctured at
zero and the nth roots of α(n + 1) as shown on the right

t t

t

t

t

t

�
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�
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T
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T
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T
T
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u u

u u

u

u

u

then the mapping class group is identified with Brn+1 = 〈σi|...〉 in such a way
that the twists on the radial arcs considered in the lemma above correspond to
σ1,2, σ1,3, ..., σ1,l+1.

The coefficient homomorphism a∗ is given on the generator system 〈t′1, ..., t′n|〉 of
Fn thus determined by

t′i 7→ σ1,i+1.

If we work instead with a geometric basis given by the next figure, the map a∗ is
given on the generator set t1, ..., tn thus defined by

Fn → Brn+1, ti 7→ σi
( π7→ ( i i+1 )

)

as can be checked inductively.

t t

t

t

t

t
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Not least do we prefer the second choice since the corresponding group of stabilizing
automorphisms in the image of the Artin homomorphism Brn → Aut(Fn) has been
investigated in several aspects which – when brought together – are sufficient to
yield our goal.

Let us first cite from the results of Catanese/Wajnryb [9], Kluitmann [22], and
Dörner [12], who gave the stabilizer group for the naturally induced homomorphism
to the symmetric group Sn+1 in terms of generators as follows.

Lemma 4.3 Suppose h : 〈t1, ..., tn| 〉 → Sn+1 is given on generators by ti 7→ ( i i+1 )
and α : Brn → Aut(〈t1, ..., tn| 〉) is the Artin homomorphism, then the set of braids
β ∈ Brn such that h ◦ α(β) = h is a subgroup, called the braid stabilizer group of h,
which is generated by

δ32 , ..., δ
n+1
n ,

or equivalently by

σ3
i , σ

2
i,j, |i − j| ≥ 2.

Proof: We refer to [9] and give only the relations between the two sets of gener-
ators which can be proved inductively as in [22], [12]:

δi+1
i =

(

σ3
1(σ

2
1,3 · · · σ2

1,i)
)(

σ3
2(σ

2
2,4

)

· · · σ2,i

)

· · ·
(

σ3
i−1

)

respectively for the other direction:

σ3
1 = δ32

σ2
1,3 = δ−3

2 (δ43)2δ−3
2 δ−4

3

σ2
1,i+1 = δ−i−1

i δi+2
i+1δ

i+2
i+1δ

−i−1
i δ−i−2

i+1

σ3
i = (δn+1

n )iσ3
1(δ

n+1
n )−i

σ2
i+1,j = (δn+1

n )iσ2
1,j−i(δ

n+1
n )−i

2

The stabilizer of the braid monodromy homomorphism with respect to the same
geometric bases can be deduced now. Of course it must be a subgroup of the
stabilizer group just computed and a direct check shows that it is even the whole
group.

Lemma 4.4 Suppose h : 〈t1, ..., tn| 〉 → Brn+1 is given on generators by ti 7→ σi
and α : Brn → Aut(〈t1, ..., tn| 〉) is the Artin homomorphism, then the set of braids
β ∈ Brn such that h ◦ α(β) = h is a subgroup, called the braid stabilizer group of h,
which is generated by

δ31 , ..., δ
n+1
n ,

or equivalently by

σ3
i , σ

2
i,j, |i − j| ≥ 2.
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Proof: We show the stabilizing property for the second set of generators. To do
so we recall the automorphisms associated to σi ∈ Brn:

σi(tk) =











titi+1t
−1
i if k = i,

ti if k = i+ 1,

tk otherwise.

and compute then the automorphisms associated to σ3
i , σ

2
i,j:

σ3
i (tk) =







titi+1titi+1t
−1
i t

−1

i+1t
−1

i if k = i,

titi+1tit
−1

i+1t
−1

i if k = i+ 1,
tk otherwise.

σi,j(tk) =















titjt
−1

i if k = i,
ti if k = j,

tit
−1

j tktjt
−1

i if i < k < j,

tk otherwise.

σ2
i,j(tk) =



















titjtit
−1

j t
−1

i if k = i,

titjt
−1

i if k = j,

titjt
−1

i t
−1

j tk(titjt
−1

i t
−1

j )
−1

if i < k < j,

tk otherwise.

So we are left checking for i < n− 1 and i < k < j:

σi = σiσi+1σiσi+1σ
−1
i σ

−1

i+1σ
−1

i

σi+1 = σiσi+1σiσ
−1

i+1σ
−1

i

σi = σiσjσiσ
−1

j σ
−1

i

σj = σiσjσ
−1

i

σk = σiσjσ
−1

i σ
−1

j σk(σiσjσ
−1

i σ
−1

j )
−1

which follow easily from the braid relations. 2

The counterpart of these results is provided by the paper of Looijenga, [27]. He
already investigated – in different terminology – the coefficient homomorphism of
the projection p and he observed:

Lemma 4.5 The image of the coefficient homomorphism of the projection p coin-
cides with the stabilizer of the monodromy homomorphism of the finite cover asso-
ciated to p̃.

Proof: We have seen before that there is an inclusion of these groups. So the
seemingly weaker result of Looijenga that both groups are conjugate subgroups of
Brn immediately implies the stronger form. 2

We must admit, that we fall short of finding the braid monodromy for the pro-
jection p, but what we have determined is the braid monodromy group of p with
respect to the base choices specified above.
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Lemma 4.6 The braid monodromy group of the singular function x 7→ xn+1 is
identified by the geometric bases above with the subgroup of Brn generated by

σ3
i , σ

2
i,j, |i − j| ≥ 2.

Proof: The braid monodromy group is the image of the coefficient homomor-
phism. By the result of Looijenga this coincides with the stabilizer, so the claim
follows. 2

For later application we translate this result back into a statement on mapping
classes of the reference fibre at a positive real α.

Lemma 4.7 A set of mapping classes which generate the braid monodromy in the

fibre at (0, ..., 0,−α(n + 1)) punctured at the roots nα
n+1

n is given by

i) the 3
2 -twists on the straight arcs joining consecutive punctures,

ii) the full twists on arcs joining non-consecutive punctures in the complement of
the inscribed polygon and the open cone defined by the 1 and the last puncture.

u u

u

u

u

u

Proof: We have to show that the generators in lemma 4.6 and the arcs described
in the assertion are related as claimed by the geometric basis chosen above.

More precisely, the generators with exponent 3 correspond to 3
2 -twists on arcs

obtained by joining consecutive paths of the geometric bases up to isotopy, the
generators with exponent 2 correspond to full twists on arcs obtained by joining
non-consecutive paths.

The arcs thus obtained can be characterized as in the assertion due to the fact
that the complement of the inscribed polygon and the given cone is simply connected
and contains the geometric basis. 2
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Having thus computed our first braid monodromy group, we can deduce by 2.25
a presentation for the fundamental group of the discriminant complement of the An
singularity, which of course is well known since long:

Corollary 4.8 The fundamental group of the complement of the discriminant for
f(x) = xn+1 is isomorphic to the braid group on n+ 1 strands given by the presen-
tation

〈t1, ..., tn|titi+1ti = ti+1titi+1, titj = tjti if |i− j| > 1〉.

The results of this chapter should also be regarded as a tool to compute braid
monodromy groups of complicated singularities. In our present set up, we start
with a generic one parameter family of functions induced from the base of the trun-
cated versal unfolding, compute the local monodromy and its parallel transport to
a common reference fibre.

In the next chapter we prove that we may consider instead special families to
compute the braid monodromy group. We will then have to compute not the mono-
dromy but the monodromy group of each degeneration – what we can do now, if
the degeneration is of type An. Parallel transport has still to be performed, but in
a much simpler family.

In fact it will be families induced from the Hefez-Lazzeri unfolding.
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Chapter 5

results of Zariski type

Having defined the braid monodromy group of a singular function we only succeeded
to compute it for functions of type An by means of strong results cited from the
literature. To proceed we have to develop powerful methods for the computations
of braid monodromy groups.

Generally speaking, in this chapter we will link the braid monodromy of a sin-
gular function to the braid monodromy of adjacent functions. We will actually de-
termine the braid monodromy of a function from a tame ℓ-perturbation, a suitably
defined unfolding over a two-dimensional base, using the degeneration properties
over the conflict divisor and braid monodromy of adjacent singularities in this fam-
ily only. In fact this method can be applied in such a way that – in principal – the
braid monodromy group of a Brieskorn-Pham polynomial can be computed from
its Hefez-Lazzeri unfolding and the monodromy groups of adjacent Brieskorn Pham
polynomials.

The actual execution of this computation and the set up of the necessary induc-
tion are topics of subsequent chapters.

5.1 generalization of Morsification

A Morsification of a singular function f ∈ On is usually defined as a map representing
an unfolding of f

Cn ×C −→ C

x, λ 7→ fλ(x)

such that for generic λ the function fλ is a Morse function.
Given any versal unfolding of f represented by a map

Cn ×Ck −→ C

x, u 7→ f(x)− u0 +
∑

uibi

with bi ∈ mn, cf. 2.7, then a Morsification as above can also be understood as an
unfolding

Cn ×C2 −→ C

x, λ, u 7→ fλ(x)− u
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which is induced by a map C2 → Ck such that the restriction to a line with λ equal
to a generic constant maps onto a line transversal to the discriminant.

In fact we get a pencil of lines in the base of the versal unfolding parameterized
by λ, such that all lines sufficiently close to the line λ = 0 are transversal to the
discriminant.

We want to have a notion which generalizes this property to the case of truncated
versal unfoldings.

However we do not have a preferred element like the constant 1 ∈ On anymore,
but have to choose among the elements of mn which are not in the Jacobi ideal Jf .
In fact we will allow any choice among the linear functions yielding Morsifications -
as given by the usual existence proof for Morsifications, [13].

As long as this choice is unspecified we denote it by ℓ, otherwise its place in the
subsequent definitions can be taken by the polynomial actually chosen.

We consider now two parameter unfoldings of a singular function f in the max-
imal ideal mn,

Cn ×C2 −→ C

x, λ, u 7→ fλ(x) + uℓ(x)

which are of course induced from any truncated versal deformation of f . So we may
also consider the associated pencil of lines parameterized by λ in the base of the
truncated versal unfolding.

Definition 5.1: A two parameter unfolding as above is called ℓ-perturbation, if all
lines of the pencil sufficiently close to the origin meet the bifurcation set in
isolated points only.

By assumption on ℓ the line through the origin is not contained in the bifur-
cation set.

Definition 5.2: A two parameter unfolding as above is called ℓ-generification, if
all lines of the pencil sufficiently close to the origin are transversal to the
bifurcation set. (In particular they meet the bifurcation set in generic points
only corresponding to functions which have non-degenerate critical points only
with distinct critical values except for a unique critical point of type A2 or a
pair with conflicting values).

Any ℓ-generification or ℓ-perturbation of a function of Milnor number µ deter-
mines a Cµ-bundle over a multiply punctured disc, well defined up to fibration
isomorphism, since the lines of the pencil close to the origin are transverse to the
bifurcation set in a uniform way.

As a Morsification may serve for the computation of monodromy groups so a
generification of a function f can replace its truncated versal unfolding:

Lemma 5.3 The braid monodromy group of a ℓ-generification is equal to the braid
monodromy group.
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Proof: It just suffices to point to the analogous argument in the case of a Mor-
sification. The important point to note is, that the lines of the pencil are generic
with respect to the bifurcation set and therefore the induced map on fundamental
groups surjects. 2

5.2 versal braid monodromy group

Given a one-parameter family of monic polynomials we have formerly divided the
computation of the braid monodromy group into two steps. First we assign the local
monodromy generator to a local Milnor fibre, second we use parallel transport to
get mapping classes in just one regular fibre. Upon the choice of a geometrically dis-
tinguished system of paths in that fibre, the subgroup generated by the transported
classes is identified with the braid monodromy group.

In a similar approach, we will assign a group instead of a generator to local
Milnor fibres close to each singular fibre, and we will then use parallel transport of
the group elements to get mapping classes again in a single regular fibre.

It is the local assignment which we have to define carefully to get a sensible
additional notion of braid monodromy.

In fact it will only be defined for one parameter families of monic polynomials
associated to a family of functions on which – for technical simplicity only – we
impose the further restriction of tameness.

Definition 5.4: A one parameter family of functions is called tame if of each func-
tion only non-degenerate critical points may have conflicting values.

Given a tame family of functions then locally at a singular function f the asso-
ciated family of monic polynomials pλ is parameterized by λ in a disc such that the
coefficient map is holomorphic and such that the polynomial is a simple Weierstrass
polynomial for λ 6= 0:

pλ : (λ, x) 7→ xn +
n−1
∑

i=0

ai(λ)xi.

Suppose now p0 not to be simple with roots denoted by vj . Then for ε and δ = δ(ε)
sufficiently small, the local family

Y := C×Bδ \ p
−1

λ (0)

is trivializable over Bδ in the complement of ∪jBε(vj), cf. fig. 5.1.

We conclude that all mapping classes of the local family Y can be given with
support on the intersection ∪jDj of a local Milnor fibre with ∪jBε(vj). Moreover we
notice that the restriction to a disc Dj yields the braid monodromy transformations
of the local discriminant divisor at vj.

We finally assign a group of mapping classes to pλ by a choice of a group of
mapping classes supported on Dj for each root vj of p0.
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Figure 5.1: Milnor fibration

Consider first the case that vj is a multiple root of p0, which is the image of a
single critical point cj of f . Then for the germ of f at cj braid monodromy yields a
well defined group of mapping classes supported on Dj .

In case vj is the image of several non-degenerate critical points of f , we sim-
ply choose the group of mapping classes of Dj which fix the punctures and which
therefore correspond to pure braids.

By tameness these are the only possible cases. The generalization to other fami-
lies is conceptionally straight forward, but notationally a mess, so we decided to skip
it here.

Anyway we should sum up our definition:

Definition 5.5: Given a tame family of functions we assign a group of mapping
classes to a Milnor fibre of each singular fibre of the associated family. The
generators are given by mapping classes in the Milnor fibres Dj of the multiple
roots vj :

i) all mapping classes which fix the punctures in case vj is the image of
non-degenerate critical points only,

ii) the mapping classes provided by braid monodromy of a critical point cj
in case cj is the only critical point which maps to vj .

The group of mapping classes in a regular fibre obtained by parallel transport
is called the versal braid monodromy group of the tame family of functions.

Of course this determines a well defined conjugacy class of subgroups of the
braid group Brn upon the choice of a geometrically distinguished system of paths in
a regular fibre.

Remark 5.6: We note that a given ℓ-perturbation of a singular function determines
a one-parameter family of functions up to smooth fibration isomorphism, hence
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in case the family is tame we may also speak of the versal braid monodromy
of the ℓ-perturbation.

Moreover we may extend the notion of versal braid monodromy to the case
where several tame families are given which have a regular fibre in common:
Then it denotes the group of mapping classes of the common fibre which is
generated by the subgroups which are the versal braid monodromies of the
separate families.

By the definition we have to consider all possible transports to the reference
fibre, but in fact we can restrict the computation to the transport along the paths
of a distinguished system.

Lemma 5.7 The versal braid monodromy of a family is obtained if the locally as-
signed groups are transported along the paths of a geometrically distinguished system.

Proof: The key observation is, that the local braid monodromy transformation
belongs to the locally assigned group. We can thus conclude as in the classical case.

2

5.3 comparison of braid monodromies

In this section we relate the versal braid monodromy of a tame ℓ-perturbation to
the braid monodromy of a versal family, which will eventually justify the name.

Proposition 5.8 The braid monodromy group of a function f is equal to the versal
braid monodromy group of any of its ℓ-perturbation which is tame.

Proof: Suppose the ℓ-perturbation is represented by a map

Cn ×C2 −→ C

x, λ, u 7→ fλ(x) + uℓ(x).

We extend it to an unfolding with base of dimension 3

Cn ×C3 −→ C

x, λ, u1, u 7→ fλ(x) + u1b1(x) + uℓ(x),

such that the restriction to λ = 0 is a ℓ-generification. We can check that the
bifurcation set is of codimension one and its singular locus of codimension two in
this base. This is immediate from our assumptions, since a non empty part of a
generification is induced from the complement of the bifurcation set and another
non empty part from the complement of its singular locus.

The conclusion still holds for the dominantly induced unfolding

Cn ×C3 −→ C

x, λ, λ1, u 7→ fλ(x) + λλ1b1(x) + uℓ(x),

Restricted to λ1 = 0 this is the ℓ-perturbation we started with. Restricted to some
fixed λ1 6= 0 and sufficiently small it is still a ℓ-perturbation of f , but its base only
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meets the singular locus of the bifurcation set in isolated points. Hence we get even
a ℓ-generification of f .

For the rest of the proof we fix λ at a sufficiently small non-zero value and
consider various restrictions of the family

F : Cn ×C2 −→ C

x, λ1, u 7→ fλ(x) + λλ1b1(x) + uℓ(x).

For example F |λ1=0 is the tame family of which we want to understand the versal
braid monodromy and for sufficiently small η we get a tame family F |λ1=η which
has braid monodromy equal to that of f by lemma 5.3.

For each critical parameter yi in the bifurcation set on the line λ1 = 0 we choose
a local ball Ui in the base of F centered at yi. We fix η sufficiently small and the
tubular neighbourhood Nη of the line λ1 = 0 of radius η, such that the bifurcation
set of F |Nη is contained in the union of the Ui and its singular locus is a subset of
the yi.

The braid monodromy of F |Nη is then equal to the braid monodromy of f ,
since it contains the family F |λ1=η. On the other hand it is generated by the braid
monodromies of the F |Ui

and parallel transport over the complement of the Ui.
This should be compared to the fact that the versal braid monodromy of F |λ1=0

is generated by the versal braid monodromies of F |Ei
– where Ei denotes the inter-

section of λ1 = 0 with Ui – and parallel transport over the complement of the Ei.

We have therefore accomplished a major reduction step in the proof:

It suffices to prove that the versal braid monodromy of F |Ei
is equal to

the braid monodromy of F |Ui
for each i, since the complement of the Ui

in Nη retracts onto the complement of the Ei on λ1 = 0.

We move thus our attention to the discriminant family of F restricted to a single
ball U of the base. The restriction to E yields a discriminant family with a single
singular fibre for which we gave a local description in section 5.2 already.

In fact this description extends to U if it is chosen appropriately: The comple-
ment Y of the discriminant in C × U is trivializable over U in the complement of
balls Bε(vj) centered at the roots vj on the fibre over y.

The braid monodromy of F |U and the versal braid monodromy of F |E can thus
be considered as a group of mapping classes which are supported on the intersection
∪jDj of a local Milnor fibre with ∪jBε(vj).

According to the decomposition of the discriminant into connected components
Dj over U , the bifurcation divisor decomposes as B = ∪jBj, such that each divisor
Bj is the branch locus of the finite map of Dj onto U .

As the Bε(vj) are disjoint the braid monodromy transformations along simple
geometric elements associated to different parts of B commute.

In particular the braid monodromy transformation along a simple geometric
element based at the chosen Milnor fibre and associated to Bj can be chosen with
support in Dj .
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Now let us consider first a multiple root vj of the critical fibre at y which is the
image of several non-degenerate critical points of the corresponding function. Then
the corresponding local discriminant divisor Dj in Bε(vj) has irreducible components
in bijection to the preimages. Hence all mapping classes in the braid monodromy of
F |U restrict to mapping classes of Dj which fix the punctures pointwise.

On the other hand E′ := U ∩ {λ1 = η} is transversal to the bifurcation set,
so the divisorial discriminant components in Bε(vj) meet pairwise, transversally,
and over distinct points of the bifurcation set Bj ∩ E′. This implies that the braid
monodromy of F |E′ contains all pure mapping classes of Dj , i.e. the group of map-
ping classes which are supported on Dj and fix the punctures pointwise. Hence this
braid monodromy contains all mapping classes we assign to vj to get the versal braid
monodromy group of F |E

����������
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Figure 5.2: generification of smooth branches

Similarly we argue in case the multiple root vj is the image of a unique critical
point cj. Then Bε(vj) can be considered as a discriminant family induced from the
base of a versal truncated unfolding of the function at cj.

It is in fact a generification, since its bifurcation set Bj is met by E in a single
point only and transversally by E′.

Hence the braid monodromy of F |U contains the braid monodromy of the func-
tion at cj considered as mapping classes on Dj extended by the identity to the Milnor
fibre of F |U , which is just what we assigned to vj to get the versal braid monodromy
group.
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Figure 5.3: generification of irreducible branch

So we have shown, that the versal braid monodromy of F |E is contained in the
braid monodromy of F |U .

For the reverse inclusion it suffices to argue that all braid monodromy transfor-
mations along simple geometric elements belong to the versal braid monodromy of
F |E . Suppose the element is associated to a component of Bj, then the correspond-
ing monodromy transformation is supported on the intersection with Bε(vj), and
therefore it is equal to its restriction to Dj extended by the identity.

If vj is of the first kind considered above, then we noted that the restriction to
Dj of any monodromy transformation belongs to the pure mapping classes of Dj .
Their extension by the identity are thus elements of the versal braid monodromy
group of F |E assigned to vj.

If vj is of the second kind, then the restriction to Dj must be an element of
the braid monodromy of the discriminant family given by the restriction to Bε(vj).
Again the extension by the identity is an element of the versal braid monodromy
group of F |E assigned to vj. 2

This result can be generalized to arbitrary perturbations, but we need only this
form and have therefore preferred to avoid the bulk of technicalities involved in the
general case.

5.4 Hefez-Lazzeri base

In the case of a Brieskorn-Pham polynomial we want finally reduce the computa-
tion of the braid monodromy group to the computation of versal braid monodromy
groups of families which are monomial perturbations induced from the Hefez-Lazzeri
unfolding.
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Cn ×Cn −→ C

x, u 7→
∑

i

(xli+1
i + uixi)

Notation 5.9: We introduce the following shorthand notation for families param-
eterized by α with fixed real constants εi > 0:
By fα(x1, x2) denote the α-family

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2.

By gα(x1, x2) denote the α-family

xl1+1
1 − (l1 + 1)x1 + xl2+1

2 − αε2(l2 + 1)x2.

By fα(x1, ..., xn) denote the α-family

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2 + · · · + xln+1
n − εn(ln + 1)xn.

By gα(x1, ..., xn) denote the α-family

xl1+1
1 − (l1 + 1)x1 + xl2+1

2 − αε2(l2 + 1)x2 + · · ·+ xln+1
n − αεn(ln + 1)xn.

As a first step we have to show that at least for suitable choices of constants the
versal braid monodromy is defined for the given families.

Lemma 5.10 The families gα(x1, ..., xn) are tame.

Proof: A degenerate critical point may only occur if the Hessian determinant
vanishes. But for any family induced from the Hefez Lazzeri unfolding this deter-
minant is constantly equal to

xl1−1
1 · ... · xln−1

n

∏

i

li(li + 1).

Hence at least one coordinate xi of a degenerate critical point must vanish. The
vanishing of the gradient then implies via

∂if(x, u) = (li + 1)xlii + ui

that the corresponding parameter vanishes too. So in the case of the induced family
gα we conclude that α = 0 if a degenerate critical point occurs.

In that case the critical points are determined by

xlii = 1 ∧ x2 = ... = xn = 0

and we get a bijection between the set of critical points and their values:

{(ξk1 , 0, ..., 0)}
1:1←→ {−l1ξk1}, ξl11 = 1.

Hence the families gα are indeed tame. 2
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Lemma 5.11 The family fα(x1, ..., xn) is tame if the function f0|x1=0 is a Morse
function.

Proof: By the preceding proof we need to worry only about the function for
α = 0, since otherwise all critical points are non-degenerate.

On the other hand any critical point of f0 is situated on the hyperplane x1 = 0
due to

∂1f0(x) = (l1 + 1)xl11 = 0.

So each must also be a critical point of f0|x1=0. If now f0|x1=0 is a Morse function
then it maps the set of critical points bijectively onto the set of critical values, hence
no pair of critical points of f0 may map to the same critical value. 2

Indeed we can deduce from the cases considered in the preceding proofs the
following criterion for the tameness of a family induced from the Hefez Lazzeri base.

Lemma 5.12 A one-parameter family of functions induced from the Hefez Lazzeri
base is tame, if any function is one of the following list:

i) a function induced from the complement of the coordinate hyperplanes,

ii) a function induced from a coordinate axis,

iii) a function induced from a point on just one coordinate hyperplane αi = 0, such
that its restriction to xi = 0 is a Morse function.

We call a positive real constant ε2 resp. a tuple ε2, ..., εn of positive real constants
admissible, if the fibre corresponding to g1 in the discriminant family associated to
gα is regular. The condition is met if and only if g1 is a Morse function.

Lemma 5.13 If positive real constants ε2, ..., εn are chosen generically, then they
are admissible and g1(x1, ..., xn) is a Morse function.

Proof: There is a Zariski open set of complex constants, such that g1 is a Morse
function. Furthermore we note that g1 is not a Morse function for all choices of
complex constants if and only if the defining polynomial of the bifurcation divisor
given in 3.4 vanishes on the hyperplane α1 = 1. Since that is not the case, the
Zariski set above is non-empty.

But then it must contain a dense subset of all tuples of positive real constants,
too. 2

We can now consider the case n = 2. Then f0|x1=0 is a Morse function, thus for
an admissible choice of ε2 > 0 the versal braid monodromy of the families fα and
gα is defined and we can establish the following result:

Proposition 5.14 For an admissible choice ε2 > 0 the braid monodromy of the
function f = xl1+1

1 + xl2+1
2 is given by the versal braid monodromy of the fami-

lies fα,ε(x1, x2) and gα(x1, x2), where the parameter of the second family may be
restricted to the unit disc.
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Proof: By the result of the last section it suffices to show that the versal braid
monodromy of the two families is equal to the versal braid monodromy of some
ℓ-perturbation of the function f .

So let us first pick an ℓ-perturbation which we want to compare to the families
fα and gα:

Since the bifurcation set in the Hefez Lazzeri base is a divisor, there is a transverse
line and the corresponding linear polynomial ℓ may even be assumed to be different
from x1 by genericity. Hence the ℓ-perturbation

x, α, λ 7→ f(x) + αx1 + λℓ

is just induced from the Hefez Lazzeri unfolding by a change of parameters. Denote
by hλ the family of functions which is induced from an affine line Lh in the Hefez
Lazzeri base parallel and sufficiently close to the line given by ℓ. Moreover from the
first two criteria of lemma 5.12 it is immediate that this family is tame.

Note that incidentally the families f1 and g1 are induced from affine lines Lf and
Lg in the Hefez Lazzeri base parallel to the u2-axis and the u1-axis respectively.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Lh Lf

Lg

Figure 5.4: Hefez Lazzeri base

Next we make some observations regarding the fundamental group of the bifur-
cation complement:

Let L′ denote the intersection of a line L with the complement of B. We first note
that B is a curve without vertical components with respect to the linear projection
parallel to Lh. So as we remarked before, lemma 1.14 and its proof imply

π1(L
′
h)→−→ π1(C

2 \ B).

Moreover we extended this result to handle the projection parallel to Lf . Then the
u1-axis is the unique vertical component of B and by lemma 1.17 we get

π1(L
′
f ) ∗ Z→−→ π1(C

2 \ B),

where the free generator is given by a geometric element supported on Lg and asso-
ciated to α1 = 0. Therefore the braid monodromies of the families hλ resp. fα and
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gα|, the restriction of gα to any base containing the unit disc, are both given by the
braid monodromy of the Hefez Lazzeri unfolding.

A further ingredient of the argument is the geometry of the bifurcation divisor
with respect to the lines Lf and Lg:

The Hefez Lazzeri base is of dimension two and the bifurcation divisor is quasi
homogeneous with respect to a good C∗-action. The line Lf has a common point
with every C∗ orbit except the u2-axis, so we may conclude that each component of
the bifurcation divisor, which obviously is the closure of a C∗-orbit, meets Lf in at
least one point or Lg at its intersection with u1 = 0.

Finally we bring back our attention to the versal braid monodromies associated
to the families hλ resp. fα and gα|:

To compare them we chose a path p1 in the Hefez Lazzeri base which connects
the base points of the respective reference fibres and which is disjoint from the
bifurcation divisor.

As we noted in the proof of lemma 5.7 the versal braid monodromy of a tame
family contains its braid monodromy. Hence it suffices by the surjectivity result
above to show that every generator of the versal braid monodromy on one hand
is equal to a generator on the other hand transported along p1 up to the braid
monodromy of the families.

The set of generators of the versal braid monodromy of the family hλ can be
chosen among parallel transports of generators in the local groups for hλ. Suppose
β is such a generator associated to a degeneration of hλ, i.e. to a multiple root
vj in a singular fibre of the corresponding discriminant family. Let B0 denote the
component of the bifurcation divisor in the Hefez Lazzeri base, from which this
singular fibre is induced.

Then the same component meets the base of fα or gα| as we noted above. So
we may find a path q2 in the smooth locus of B0 which connects the singular fibres.
By equisingularity along the smooth part of B0 or by the explicit equations we get a
Whitney stratification for the discriminant family over a neighbourhood of q2, where
the components of the smooth locus of the discriminant are the strata of codimension
one, and the components of its singular locus are the strata of codimension two.

A lift q̂2 of q2 to the codimension two stratum which contains vj ends at some
multiple root vj in the singular fibre at the end of q2. Topological triviality along q̂2
implies that the local families over Lf or Lg and Lh restricted to neighbourhoods of
vj resp. v′j are topologically identified under parallel transport. Hence β transported
along a path p2 in the complement of the bifurcation divisor but sufficiently close
to q2 yields a mapping class β′ which belongs to the local group of fα or gα|.

Therefore the parallel transport of β along any path ph in L′
h and the parallel

transport of β′ along a path pfg in L′
h∪L′

g yield mapping classes which are equal up
to parallel transport along the closed path obtained as the union of p1, p2, ph and pfg.

But then by the surjectivity on fundamental groups the same class is represented
by a path in the base of fα and gα, hence any parallel transport of β in the base of
hλ is equal to some parallel transport of β′ in the base of fα and gα.
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The argument can also be read with hλ taking the role of fα and gα| and vice
versa, and then yields the reverse implication. 2

We have to extend the result to the higher dimensional case. In principal the
argument is the same but now some particular steps become more involved since
the components of the bifurcation divisor are no longer smooth outside the origin.
So to work on the smooth locus we have to add some more genericity assumptions

Lemma 5.15 For a generic choice of admissible constants ε2, ..., εn, the base of fα
meets the reduced bifurcation divisor in regular points only.

Proof: The claim can be deduced by a dimension count. The set of singular
points of the reduced bifurcation divisor is of codimension two in the Hefez Lazzeri
base.

On the other hand the complex constants ε2, ..., εn parameterize the parallels to
the u1-axis in the base. A generic line of this family does not meet the singular
set above, so there is a non-empty Zariski open set of constants, such that the
corresponding line is disjoint from the singular set.

But then even most tuples of positive real constants must belong to this set. 2

Proposition 5.16 For a generic choice of admissible constants ε2, ..., εn > 0 the
braid monodromy of the function xl1+1

1 + · · · + xln+1
n is given by the versal braid

monodromy of the families fα(x1, ..., xn) and gα(x1, ..., xn) where the parameter of
the second family may be restricted to the unit disc.

Proof: Due to lemma 5.8 again it suffices to show that the versal braid mono-
dromy of the families fα and gα| is equal to the versal braid monodromy of some
tame ℓ-perturbation of the function f = xl1+1

1 + · · ·+ xln+1
n .

We assume that admissible constants εi > 0 are chosen in such way, that the
base Lf of fα meets the reduced bifurcation divisor only in regular points, cf. lemma
5.15. By assumption f0|x1=0 = g1|x1=0 is a Morse function. But then so is gα|x1=0

for almost all values of the parameter α.

We define ℓ = cx1 + ε2(l2 + 1)x2 + ...+ εn(ln + 1)xn for a generic constant c 6= 0
and an unfolding with two-dimensional base E

x, u, λ 7→ f(x) + ux1 + λℓ.

Then let hλ be the family induced for u = ε1 constant and sufficiently close to 0.
Furthermore note that fα is induced from E for λ = −1 and u = −α(l1 + 1) − c
while gα is induced for λ = −α, u = αc.

Since the only functions in hλ induced from the coordinate hyperplanes of the
Hefez Lazzeri base are h0 and h−ε1/c we conclude that the family hλ is tame by 5.12:

i) E considered as a plane in the Hefez Lazzeri base is not contained in the
coordinate hyperplanes, hence each function hλ, λ 6= 0,−ε1/c is of the first
kind considered in 5.12,
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ii) h0(x) = f(x) + ε1x1 is induced from a coordinate axis, so it is of the second
kind considered in 5.12,

iii) h−ε1/c|x1=0 = g−ε1/c|x1=0 is a Morse function for ε1 sufficiently small, so h−ε1/c
is of the third kind considered in 5.12.

Next we make some observations on the bifurcation locus restricted to E con-
sidered as a plane in the Hefez Lazzeri base.

By assumption g1 is a Morse function, hence the bifurcation locus is of codi-
mension one in E. The restriction of the Hefez Lazzeri base to E is obtained by
imposing some linear relations on the base coordinates. From the defining equation
3.4 of the bifurcation divisor B we can read off the fact, that each component of
the restriction BE = B ∩E contains the origin. Therefore each component different
from the u1-axis meets Lf .

This situation is very similar to that encountered in the case n = 2. Since Lh is
a general line in E with respect to BE and since by assumption Lf meets BE in its
regular locus only, we may conclude as before:

π1(L
′
h) →−→ π1(E \ BE),

π1(L
′
f ) ∗ Z →−→ π1(E \ BE),

where the free generator maps to any geometric element supported on Lg associated
to the u1-axis.

Since π1(E \ BE) ∼= π1(C
n \ B), the braid monodromies of the families hλ resp.

fα and gα| are both given by the braid monodromy of the Hefez Lazzeri unfolding.

The argument then proceeds as in the n = 2 case. 2
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Chapter 6

braid monodromy of plane

curve families

This chapter can be considered the central one. Admittedly it is devoted to a
partial computation only of the braid monodromy group of a plane Brieskorn Pham
polynomial. Nevertheless it will be the essential ingredient for the computation of
braid monodromy groups associated to arbitrary Brieskorn Pham polynomials which
will be the topic of the next chapter.

Given a plane Brieskorn Pham polynomial xl1+1
1 +xl2+1

2 , we consider for generic
small ε2 > 0 the one parameter family of functions defined in the last chapter:

fα(x1, x2) = xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2.

It corresponds to a line in the Hefez Lazzeri base which in turn can be considered
as a plane in the base of a suitable truncated miniversal unfolding. We have already
obtained the necessary formulae for the singular value divisor in the third chapter
which are of course needed for further calculations.

Using the preceding chapter we will actually compute the versal braid mono-
dromy of the family fα. So remember that we have two tasks. For each singular
function we have to determine the local group which is a group of mapping classes in
a regular fibre close to the corresponding fibre in the discriminant family. We have
then to find the group of mapping classes in a distinguished reference fibre generated
by translates of the elements of the local groups obtained by parallel transport.

Let us muse a moment on what we have to do: We are given a one dimensional
base of a family with a lot of degeneration points. Close to these points we may
choose local Milnor fibres and are then given mapping classes in these Milnor fibres.
Next we have to choose a geometrically distinguished system of paths joining them
to a global reference fibre. Finally we transport the local mapping classes to the
reference fibre and determine the subgroup of braids they generate under the identi-
fication of the mapping class group with the braid group given by the Hefez Lazzeri
system of paths in the fibre.

All steps will be addressed in this chapter, though not in the given order. More-
over we need to modify this approach, so let us point out some details:
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Instead of parallel transport in the discriminant family we will consider parallel
transport in a closely related family from the first section on. Only in section 6.8
we will return to the proper discriminant family and exploit the relation of both
families to transfer the result to the family where we actually need them.

The computation of the local monodromy groups is postponed to section 6.7,
so we can concentrate on the parallel transport in the first sections. Note that we
won’t transport general classes but exploit the bijection between twist classes and
isotopy classes of arcs which join the two punctures twisted around each other. In
fact it suffices to consider the parallel transport of a specific sort of arcs only since
we will prove in section 6.7, that all local mapping classes form a group generated
by twists on such arcs.

The most difficult task is the parallel transport of mapping classes. As said
we will in fact transport the arcs such that the corresponding twists generate the
mapping class groups.

Since all the paths we use decompose into radial and circular segments, we study
the differential flow over such segments and determine the parallel transport of arcs
along radial segments in the first section. It will be possible in subsequent sections to
determine the parallel transport of arcs, since we arrange our arcs to be determined
by geometric data which are preserved and some geometric datum which changes in
a way we can actually measure.

6.1 parallel transport in the model family

In this section we consider the parallel transport in a punctured disc bundle associ-
ated to the discriminant bundle of the function families fα. Recall that we have to
transport the local groups to a global reference fibre along a geometrically distin-
guished system of paths. Such a system can be chosen to consist of paths which are
obtained by unions of radial segments with circular segments on circles centred at
the origin.

So we find suitable vector fields and differentiable flows along such segments.
Thereby we get representatives of mapping classes which in turn will be used to get
representatives of parallel transport of braid mapping classes.

Let us consider then the punctured disc bundle associated to the line arrangement
∏

ξ
l1
1 ,ξ

l2
2 =1

(z − λξ1 − η2ξ2) = 0.

which we call the model discriminant family associated to l1, l2, η2 ≪ 1.
In section 3.2 we have indexed the paths of the Hefez Lazzeri path system for

the fibre at λ = 1 by elements of the set {i1i2 | 1 ≤ i1 ≤ l1, 1 ≤ i2 ≤ l2}. We
assign indices accordingly to the punctures in the fibre at λ = 1, to the lines of the
arrangement and hence to any puncture in any fibre.

Our aim is to describe the parallel transport along radial paths and along circle
segments with radius 1 or close to 0. We will find appropriate diffeomorphisms and
obtain transported arcs.
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Notation 6.1: We introduce polar coordinates λ = teϑ, eϑ := eiϑ of unit absolute
value and t ∈ R≥0.

Definition 6.2: A parameter teϑ is called critical, if there is a pair i1i2, j1j2 of
indices such that the corresponding lines meet at teϑ.
The pair may be specified and teϑ called critical for the pair i1i2, j1j2.

Let us first outline our general approach. For a family we first give a vector
field on its total space. Next we check that the punctures form integral curves,
so the corresponding flow preserves the punctures. Then we obtain some of the
properties of the induced diffeomorphisms, to get finally the parallel transport of
some geometric objects.
As most important technical tool we employ bump functions:

Notation 6.3: We introduce smooth functions χ, χε : C→ R for any real ε > 0:

χ : 0 ≤ χ(z) = χ(|z|) ≤ 1, χ(z) = 0 if |z| ≥ 1, χ(z) = 1 if |z| ≤ 1

2
,

χε : χε(z) = χ(z/ε),

with support contained in the unit disc, resp. the disc of radius ε.

For a start we consider the local situation, i.e. the family z − t = 0, |z| ≤ 1,
t ∈ [−1

2 ,
1
2 ].

Lemma 6.4 On the unit disc |z| ≤ 1 there is the vector field

v(z) = χ(z),

which induces a family φt, t ∈ [−1
2 ,

1
2 ] of diffeomorphisms of the disc such that

i) φt preserves horizontal lines,

ii) Reφt2(z) ≥ Reφt1(z) if t2 ≥ t1, i.e. φt propagates on horizontal lines,

iii) φt(0) = t, i.e. z = t is an integral curve.

Proof: The first and second property are consequences of the vector field directing
parallel to the positive real numbers. The last is due to the vector field being the
derivative of the function z 7→ Rez in the disc of radius 1

2 . 2

Example 6.5: As an illustration we sketch the images of some vertical lines under
φ0, φ 1

4
and φ 1

2
:

φ0 φ 1
4

φ 1
2
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So we may infer the following result.

Lemma 6.6 The family of diffeomorphisms represents the diffeotopy class associ-
ated to the family of punctured discs given by the function ft(z) = z − t.

radial families

Now we investigate the model discriminant family restricted to a radial path teϑ0
,

t ∈ [t0, 1]. We will consider the case only when this restriction has constant number
of punctures, in which case we call it a regular family. Since all punctures depend
affine linearly on the parameter without ever meeting, the local situation is modeled
on the case considered first.
When passing to a global view, we want to understand the corresponding parallel
transport diffeomorphism mapping the initial fibre to the terminal fibre. Considered
as an endomorphism of the plane it is seen to be supported on the set of points which
are close enough to some puncture at some parameter, i.e. close enough to the union
of their traces:

Definition 6.7: The trace of index i1i2 in a family is the set of points z in the plane
C such that z is a puncture of index i1i2 for some parameter of the family base.

This we can make explicit with a quick check:

Lemma 6.8 Let ε > 0 be bounded from above by half the minimal distance between
punctures in the fibres of the regular family over teϑ0

, t ∈ [t0, 1]. Then the punctures
form integral curves for the vector field

vε(z, t) =
∑

ξ
l1
1 ,ξ

l2
2 =1

χε(z − teϑ0
ξ1 − η2ξ2)eϑ0

ξ1,

and the corresponding diffeomorphisms are supported on the ε-neighbourhood of the
union of all traces.

Hence parallel transport only affects small neighbourhoods of the punctures. Any
arc will be changed only due to the movements of its endpoints and of the critical
values which come close enough, to distances less than ε in fact. So we can imagine
what happens to a given arc in the fibre at t0:

Let the arc be a piece of rope. As the parameter t increases additional rope is
laid out on the traces of both the critical values which form the ends of the arc. A
critical value about to cross the arc will push it ahead and lay out a double rope
behind forming a loop around its trace.

Likewise any time a critical value crosses a trace along which a multiple rope has
previously laid down, it picks this rope up and pushes a multiple loop into it along
its own trace.

So in the end the rope is lain down in an arbitrary small neighbourhood of the
union of all traces, in fact the union can be restricted to that part of each trace
traced after the corresponding critical value picked up rope for the first time.

We want to apply parallel transport to a very restricted set of arcs:
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Definition 6.9: Given a critical parameter t0eϑ0
for the index pair i1i2, j1j2, an arc

between the corresponding critical points in the fibre at t1eϑ1
is called local

v-arc if

i) it is supported on the corresponding traces,

ii) the difference t1 − t0 is positive and small compared to the distances of
critical parameters.

In case of j1− i1 = l1/2, i2 6= j2, the traces of the corresponding critical points
in a fibre t1eϑ1

meet only if ϑ1 = ϑ0. In this case we allow ϑ1 6= ϑ0 nevertheless
and concede that the local v-arc are supported on the traces except for a small
part to join them.

Definition 6.10: Parallel transport of a local v-arc in a radial family by the differ-
entiable flow to radius t = 1 yields an arc called tangled v-arc.

Definition 6.11: An arc in the fibre at t1eϑ1
is called local w-arc if

i) it connects punctures of indices i1i2, j1j2, i
+
1 < j1, i2 = j2, by four line

segments, i+1 = i1 + 1,

ii) two segments are supported on the traces of the two punctures,

iii) the central pair forms a sharp wedge over the trace of the puncture of
index i+1 i2,

iv) its length and t1 are small compared to the distance of critical parameters.

Definition 6.12: Parallel transport of a local w-arc in a radial family by the dif-
ferentiable flow to radius t = 1 yields an arc called tangled w-arc.

To describe the local situation at a crossing of two or more critical points, we
consider tangled tails of punctures. These one should imagine just as a piece of rope
laid out by a critical point on its trace and tangled by subsequent critical points.
Looking locally at the tail implies that it may decompose into several pieces.

Example 6.13: Imagine a crossing of just two traces, then the tangled tails look
locally like

@
@
@

@
@
@

(The critical points pass from bottom to top, the first from left to right, the
second from right to left.)

By construction a local v-arc is approximately supported on tails hence so is the
transported arc throughout the radial family. In fact more is true. At each crossing
of critical points, to which the transported arc comes close, it is approximately
supported on the tails of the crossing punctures:

67



Lemma 6.14 Locally at a crossing P all local components of a tangled v-arc can
be assumed to be arbitrarily close approximations to one of the tangled tails of the
punctures passing through P .

Proof: All local components are laid out by a critical point which pushes them
through P . Hence the smaller ε is, the better the approximation will be. 2

Example 6.15: For the family with l1 = 3, l2 = 2 and ϑ = π
12 we have the sketches

of a local v-arc at .12eϑ and its parallel transports at .56eϑ, .78eϑ and eϑ
together with the traces of all critical values.
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In this example only one additional critical value is entangled.

Finally we observe, that almost all radial families are regular.

Definition 6.16: The angle ϑ1 is called regular if for all t1 > 0 the family over the
line segment from t1eϑ1

to eϑ1

i) is a regular family, i.e. the segment does not pass a critical parameter,

ii) has no pair of distinct traces having more than one point in common,

Note that distinct traces have at most one point in common, if and only if no
trace contains a point η2ξ2, ξ

l2
2 = 1. So we can show:

Lemma 6.17 Given a critical parameter t0eϑ0
, then there is a regular angle ϑ1

arbitrarily close to ϑ0.

Proof: Both regularity conditions are open. Hence it suffices to prove that for
each condition there is an angle arbitrarily close to ϑ0 such that the condition is
met. For both conditions this is easy to see, since in both cases a finite set is to
be avoided by the traces and the traces of one puncture along different radial paths
have no point in common. 2
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circular families

Similar to the case of radial families we can get hold of a diffeomorphism which
represents the parallel transport over circular segments in the base. On particular
subsets the map is in fact quite easily described.

Lemma 6.18 Given the vector field

v(z, ϑ) = i

(

z +
∑

ξ
l1
1 =1

χ2η2(z − eϑξ1)(eϑξ1 − z)
)

then

i) the punctures of the model family over the circle of radius t = 1 form integral
curves,

ii) supposing |z0 − eϑξ1| ≤ 2η2 the flow of v preserves the distance of z0(ϑ) and
eϑξ1.

iii) supposing |z0 − ξ1| ≥ 2η2 for all ξ1, ξ
l1
1 = 1, z0(ϑ) = z0eϑ is an integral curve.

Proof: i) Each puncture forms a curve eϑξ1 + η2ξ2, ξ
l1
1 , ξ

l2
2 = 1, for which we can

check the integrality condition:

d

dϑ
(eϑξ1 + η2ξ2) = ieϑξ1 = i(eϑξ1 + η2ξ2 − η2ξ2) = v(eϑξ1 + η2ξ2, ϑ).

ii) We have to show that the following complex numbers considered as real vectors
are perpendicular for all ϑ:

(eϑξ1 − z0(ϑ)) · d
dϑ

(eϑξ1 − z0(ϑ)).

Both points move along integral curves, hence d
dϑeϑξ1 = ieϑξ1 and

d

dϑ
z0(ϑ) = v(z0(ϑ), ϑ)

= iz0(ϑ) + iχ2η2(z0(ϑ)− eϑξ1)(eϑξ1 − z0(ϑ)).

Since χ is a real valued function, the second function is a purely imaginary
multiple of the first, hence they are orthogonal at all ϑ.
iii) Again we have only to check an integrality condition

d

dϑ
z0eϑ = iz0eϑ = v(z0eϑ, ϑ).

2

Let us rephrase the result of the lemma in more geometrical terms:

i) the flow realises parallel transport in the model family over circle segments of
radius t = 1,
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ii) the 2η2-discs at points ξ1, ξ
l2
1 = 1 are mapped bijectively to 2η2-discs of the

transported points preserving the distance,

iii) points outside these discs are mapped by a rigid rotation around the origin.

Lemma 6.19 Given the vector field for ε << η2

v(z) = i
∑

ξ
l2
2 =1

χ4ε(z − η2ξ2)(z − η2ξ2)

then

i) the punctures of the model family over the circle of radius t = ε form integral
curves,

ii) suppose |z0 − η2ξ2| ≤ 2ε, ξl22 = 1 then the curves z0(ϑ) = (z0 − η2ξ2)eϑ + ε1ξ2
are integral for the flow of v,

iii) suppose |z0−η2ξ2| ≥ 4ε for all ξ2, ξ
λ2

2 = 1, then z0(ϑ) = z0 is an integral curve.

Proof: i) Since each puncture is on a curve εeϑξ1 + η2ξ2, the assertion follows
from case ii).

ii) We check the integrality condition:

d

dϑ
((z0 − η2ξ2)eϑ + η2ξ2) = i(z0 − η2ξ2)eϑ = v((z0 − η2ξ2)eϑ + η2ξ2), ϑ).

iii) Since the vector field vanishes at these points constant curves are integral
curves. 2

Again we restate these results in geometrical terms:

i) the flow realises parallel transport in the model family over circle segments of
radius t = ε,

ii) the 2ε-discs at points η2ξ2, ξ
l2
2 = 1, are rotated rigidly under parallel transport,

iii) points outside 4ε-discs of these points stay fix.

6.2 from tangled v-arcs to isosceles arcs

In this section we consider two different kinds of mapping classes in a fibre of large
radius. Both kinds are twists on embedded arcs. So we may equally well investigate
these arcs. Arcs of the first kind are called tangled v-arcs, they are obtained from
local v-arcs by parallel transport along a radial path using the differentiable flow of
the preceding section.

Arcs of the second kind are called isosceles arcs. They are supported on traces
of two punctures and form the two sides of an approximate isosceles triangle. Again
the degenerate case requires extra care. If two traces are parallel but close, an arc
which is supported on these traces except for a small join between them is called a
straight isosceles arc.
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An isosceles arc is said to correspond to a tangled v-arc if it connects the same
punctures. In general these two arcs are not isotopic. But we will define a group of
mapping classes such that they belong to one orbit. In fact we will give some arcs,
such that the group generated by the full twists on these arcs will do. They will be
called bisceles arcs for the reason that they are supported on segments of two traces
not necessarily of similar length.

Note that by this definition all isosceles arcs are subsumed under the notion of
bisceles arcs except for the straight isosceles arcs.

We want to encode the isotopy class of a tangled v-arc into a planar diagram in
the fibre at eϑ. This diagram will consist of all the traces each of which is directed
from its source point – which is one of ξ2, ξ

l2
2 = 1 – to its puncture.

Apart from the source points, there are only ordinary crossings, which are given
by the mutual transversal intersection of several traces.

Crossings which are sufficiently close to the tangled v-arc are called vertices of
the diagram. The segments of traces close to the tangled v-arc are called essential
traces, they connect a vertex to a puncture.

At each vertex we put an order on the essential traces. The first or dominant trace
is the one which passed last, which is incidentally the one such that the puncture
end is closest. The other follow according to increasing distance to their puncture
end. The order can be made explicit by labels assigned to the essential traces at
each vertex. We can also make the dominant trace pass over by replacing the other
traces by broken lines. Finally the lines are labeled at their ends by the index of the
corresponding puncture.

We define the essential diagram to be obtained by discarding all lines except the
essential traces and we notice that the tangled v-arc is still determined by this datum.

Example 6.20: From the tangled v-arc of the previous example, we get the follow-
ing diagram for l1 = 3, l2 = 2, ϑ = π

12 , in which we have discarded all traces
which do not pass a vertex.

1|2

3|1

2|1
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Definition 6.21: No essential diagram contains a directed cycle, hence the height
function on vertices is well-defined by

ht(P ) = max
P ′<P

(ht(P ′), 0) + 1.
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where the maximum is taken over all vertices P ′ between P and a puncture
on an essential trace. Each such vertex is called subordinate to P .

Given an essential diagram we consider simple transformations at vertices. We
may change the crossing order at a vertex P if and only if all traces through P are
dominant at each subordinate vertex. Note that on transformed diagrams we have
to make the order explicit, since it can no longer be read off the distances to the
punctures.

The first observation is that we can change an essential diagram by simple trans-
formations only to get a diagram in which the traces of the v-arc punctures are
dominant at all vertices they cross.

Lemma 6.22 Given any vertex there is a composition of simple transformations
which changes the crossing order at this vertex but nowhere else.

Proof: If the vertex is of height one we can change it by a simple transformation.
If not, a simple transformation can only be performed if the essential traces are
dominant on subordinate vertices. But then we can argue inductively on the height
of the vertex. All subordinate vertices are of less height, so by induction we may
assume the existence of a composite transformation which makes the traces under
consideration dominant there.

Then we can perform the simple transformation to change the local order. Finally
we invoke the inverse of the composite transformation to put all other transformed
vertices back to their initial state. 2

In particular, a series of simple transformations can be found such that the traces
of the v-arc punctures become dominant.

Example 6.23: We illustrate this procedure in the following sequence of diagrams.
In each step we perform a simple transformation on some vertices which do
not share subordinate vertices.
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The important step is to see, that for any simple transformation at a vertex P
there is a choice of a mapping class such that

i) the mapping class is given by a product of full twists on bisceles arcs supported
on the essential traces through P ,

ii) a diagram transformed by a sequence of simple transformations encodes the
isotopy class of the tangled v-arc transformed by the composition of the chosen
mapping classes.

For the induction in the proof of the following lemma we need also a relation
between tails at a vertex.

Definition 6.24: At a vertex a tail dominates another one, if it is isotopic to its
trace up to an isotopy fixing the endpoints of both tails but not necessarily
the punctures not involved.

Lemma 6.25 Given a diagram with orders at its vertices which are obtained by
a composition of simple transformations from those of the essential diagram of a
tangled v-arc. Then there is a diffeomorphism such that

i) it represents a mapping class which is a product of full twists on bisceles arcs
supported on essential traces,

ii) it is supported close to the essential traces,

iii) locally at every vertex the dominant trace is close to the image of the corre-
sponding tail.

Proof: We assume in addition that each simple transformation reverses the order
of consecutive traces and start an induction on the number of such transformations
in the composite transformation.

So we consider a simple transformation. For simplicity we first assume that
the vertex at which the order is changed is met by only two essential traces. By
assumption these traces are dominant at subordinate vertices, hence we can depict
the tangled tails of the two punctures involved as follows:

@
@
@

@
@
@

(The critical points pass from bottom to top, the first from left to right,
the second from right to left.)
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Now a full twist on the bisceles arc with the appropriate choice of orientation
can be performed close to these traces to yield:

�
�

�

�
�

�

Hence our claim is true in this case.

The same applies if there are more essential traces and we want to reverse the
order of the first two, since the corresponding tails are not effected by tails of lower
order.

The situation changes drastically if our simple transformation reverses the order
of traces none of which is dominant. Then the picture is modified by the essential
traces of larger order pushing loops into the depicted tails.

But on the same time they push loops into the bisceles arc and hence into the
support of the diffeomorphism we want to perform. Hence we need only to show
that this pushed diffeomorphism will do.

Of course it has the second property. It also has the first property since the
full twist on the modified bisceles arc is isotopic to the full twist on the bisceles arc
conjugated by full twists on bisceles arcs with apex in the same vertex.

The third property is given, since the dominant traces and the corresponding
tails are locally not changed except for the explicit case considered first, where the
property can be simply checked.

Moreover for the induction process we should notice that any of our diffeomor-
phisms preserves domination of a tail over another one, except that it exchanges the
role of the tails corresponding to the traces of which the order has been reversed.

To proceed our induction the first two properties are no obstacle. But we have
to prove that the third property is preserved when performing an additional trans-
formation.

If the additional transformation does not affect a dominant trace, then neither
does the diffeomorphism we perform. Since it also preserves the corresponding tail,
we are done in this case.

So let us assume the additional transformation affects a dominant trace. Then
the diffeomorphism we choose also affects both the trace and the tail. What we have
to show is that the image of the tail which was second before and is first now has
the claimed property.

By assumption this tail is only tangled along the essential traces through the
vertex under consideration. Moreover we may assume that it dominates all tails
through this vertex apart from the dominant one. Hence it is only tangled by the
dominant trace and our diffeomorphism can be chosen to map it close to its trace
as in the case depicted above. 2
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Lemma 6.26 Given a tangled v-arc there is a mapping class given by a composition
of full twists on bisceles arcs supported on essential traces which maps the tangled
v-arc to the isotopy class of the corresponding isosceles arc.

Proof: By lemma 6.22 there is a composition of simple transformation changing
vertex orders of the essential diagram of the given tangled v-arc in such a way that
the traces of both puncture ends are dominant at each vertex.

Then by lemma 6.25 there is a diffeomorphism representing a mapping class as
in the claim, which maps the tangled tails in such a way that locally at each vertex
the dominant trace is close to its tail.

Thus the images of the tangled tails of both puncture ends may no longer deviate
from the traces at any vertex. So they are isotopic to the traces and we conclude
that the image arc is isotopic to the corresponding isosceles arc. 2

We did not bother to adjust our arguments explicitly for j1− i1 = l1/2, since we
can choose 0 < ε ≪ t0|ϑ0 − ϑ1| small in comparison with the minimal diameter of
local neighbourhoods of vertices.

We close this section with two observation, which will be used later:

Remark 6.27: All bisceles arcs supported on essential traces are – apart from the
obvious one – not isosceles arcs, since one critical point has to pass after the
other.

For the same reason, the length of each bisceles arc supported on essential
traces of a tangled v-arc is bounded by the length of the corresponding isosceles
arc.
The length is defined to be the maximum of the lengths of the two sides.

6.3 from bisceles arcs to coiled isosceles arcs

We stay in the same fibre as before, so we work in the same group of mapping
classes. And we are still interested into orbits of subgroups generated by full twists
on bisceles arcs.

We have accomplished so far, that we can express a tangled v-arc by means of
an isosceles arc and twists on bisceles arcs. Now in a similar way we want to relate
bisceles arcs and straight isosceles arcs to a third kind of arcs called coiled isosceles
arcs. With straight isosceles arcs we will deal only at the end of the section.

Again a bisceles arc and the associated coiled isosceles arc connect the same pair
of punctures and – though not isotopic in general – belong to one orbit of a group
generated by twists on specific bisceles arcs.

To make these statements precise, we first need to introduce some more geometric
notions.

Definition 6.28: The central core is the disc of radius η2 at the origin with all
source points distributed on its boundary circle.

Definition 6.29: The peripheral cores are the discs of radius η2 centred at the
points ξ1eϑ, ξ

l1
1 = 1. All critical points for λ = eϑ are distributed on their

boundaries, the peripheral circles.
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By looking at the following sketches we notice that a bisceles arc can take essen-
tially two different positions relative to a peripheral core which contains one of its
punctures.
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Definition 6.30: A bisceles arc is called unobstructed if it is isotopic to some arc
supported outside the peripheral cores. It is called obstructed otherwise.

A bisceles arc of index pair i1i2, j1j2 is said to be obstructed on the i-side, if
punctures of index i1i

′
2 are obstacles to unobstructedness.

If a bisceles arc is obstructed then at least one side cuts through the correspond-
ing peripheral circle and thus divides the set of critical points on the circle into two
subsets.

Definition 6.31: If a bisceles arc is obstructed, then a set of critical points is called
obstructing set, if the bisceles arc is unobstructed in the complement of the
other punctures, i.e. isotopic to some arc supported outside the peripheral
cores.

Since we may not isotopy arcs through punctures, we have to resort to changing
the isotopy class by means of full twists on some suitable bisceles arcs. This has
to be done in such a way, that up to isotopy the terminal part of the obstructed
bisceles arc is simply replaced by a spiral segment coiled around the peripheral core.

@
@

@
@

@
@

@
@@

To do so properly we choose a suitable obstructing set and employ twists on arcs
which are supported on pairs of parallels to the sides of the bisceles arc and which
connect a point of the obstructing set to another one or to a puncture of the bisceles
arc.
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By construction a bisceles arc bounds a well defined convex cone which we call
the inner cone of the bisceles arc.

Thus given an obstructed bisceles arc, the critical points on its peripheral circles
in the inner cone form a natural obstructing set and the parallels for this obstructing
set are naturally called either inner parallels or obstructing parallels of the bisceles
arc.

Next we choose a topological disc, which contains the obstructed bisceles arc and
its inner parallels, but no further critical point. There is a natural way to identify
the mapping class group of this disc with an abstract braid group:

Number all traces from left to right – supposing the cone opens upwards as in
the sketch above. Let k′ be the number of traces parallel to the first an let k be the
total number of traces. If σi,j, 1 ≤ i ≤ k′ < j ≤ k is the class of the half twist on
the parallel supported on the ith and jth trace, then we put

σi,j = σj,kσi,kσ
−1

j,k if 1 ≤ i < j ≤ k′,
σi,j = σ1,iσ1,jσ

−1

1,i if k′ < i < j ≤ k.

Then considering the elements σi,i+1 as the Artin generators of an abstract braid
group yields the isomorphism, since it can be checked that arcs for the σi,i+1 can be
chosen in such a way that they are disjoint outside the punctures.

Under this identification the full twists on obstructing parallels are given by

σ2
i,j, i ≤ k′ < j ≤ k, (i, j) 6= (1, k).

We can now prove the result concerning the new kind of arcs we want to consider:

Definition 6.32: Any arc supported on two radial rays and two spiral segments in
the η2-neighbourhoods of peripheral cores is called a coiled isosceles arc.

Given a bisceles arc it is called the associated coiled isosceles arc, if both are
isotopic to each other up to full twists on inner parallels.

Example 6.33: Naturally we imagine a coiled arc to spiral monotonously towards
the peripheral cores. For l2 = 6 and l2 = 4 the given arc is a coiled isosceles arc.
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Remark 6.34: By this definition an unobstructed bisceles arc is its own associated
coiled isosceles arc.

Lemma 6.35 Given a bisceles arc, there is an associated coiled isosceles arc unique
up to isotopy.

Proof: Due to the remark above in case of unobstructed bisceles arcs there is
nothing to prove, because there are no inner parallels.

Otherwise, given a bisceles arc connecting punctures of indices i1i2, j1j2, an
associated coiled isosceles arc – if it exists – must be isotopic to an arc supported
in the topological disc considered above. But up to isotopy there is a unique arc in
this disc which is supported in the complement of the peripheral cores and which
connects the same pair of punctures. Hence the uniqueness claim is proved.

Then we consider the half twists corresponding to the bisceles arc and the arc
just considered. They are identified with σ1,k and σ̌i,k (as defined on page 148).
Since by A.7 they belong to an orbit under conjugation by full twists on the inner
parallels, so do the corresponding arcs and existence of an associated coiled isosceles
arc is shown. 2

From the simple observation that any side of a bisceles arc may only cut through
either the central core or a peripheral core we can conclude – relying on some results
from the appendix on geometry – that obstructing parallels are in fact bisceles arcs.

Lemma 6.36 If a bisceles arc is obstructed then its apex is outside the central core.

Proof: Suppose the apex of a bisceles arc is inside the central core, then both its
sides pass through the central core. But then they are both disjoint to the peripheral
cores, so the bisceles arc is unobstructed. 2

Lemma 6.37 Each obstructing parallel is a bisceles arc.

Proof: Since an obstructing parallel is supported on the lines given by a pair of
non parallel sides, a parallel is not a bisceles arc if and only if the intersection point
fails to belong to both sides.

Let us assume now that an obstructing parallel to the bisceles arc is not a bisceles
arc itself. Hence by the previous considerations there must be a source point in the
closed cone defined by the bisceles arc which does not contain its source points.
With lemma 6.86 we conclude that the apex of the bisceles arc is contained inside
the circle through the three source points under consideration, that is in the central
core. This is a contradiction by lemma 6.36. 2

We prefer to rephrase lemma 6.35 using lemma 6.37.
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Proposition 6.38 The class of a bisceles arc and the associated coiled isosceles arc
belong to the same orbit for the action of full twists on bisceles arcs which are inner
parallels.

For the closing remark we come back to the topic of straight isosceles.

Remark 6.39: A straight isosceles arc only occurs for j1− i1 = l1/2 and by a short
check we see, that the corresponding traces are directing in opposite ways. So
they come close only if they pass the central core. Immediately we deduce,
that a straight isosceles arc is isotopic to its associated coiled isosceles arc.

6.4 from coiled isosceles arcs to coiled twists

The aim of this section is to identify the isotopy class of the transported arc at
λ = 1 in terms of the Hefez Lazzeri system of paths. In fact this system yields a
well-defined identification of the mapping class group of the corresponding fibre with
the abstract braid group, so we finally can even identify the twists on transported
arcs with abstract braids.

We will see that a coiled isosceles arc transported along a circular segment at
radius t = 1 is a coiled isosceles arc again, so we have to introduce notations and
definitions in such a way, that we get hold of those geometric properties which even-
tually determine the braid associated to a coiled isosceles arc.

The fibre at λ = 1, equal to the fibre at α = 1, is a punctured disc for which
Hefez and Lazzeri have given a strongly distinguished system of paths, of which we
should remind ourselves, 3.2.

If paths ωi1i2 , 1 ≤ i1 ≤ l1, 1 ≤ i2 ≤ l2, ordered lexicographically, form the Hefez
Lazzeri system, then up to isotopy they can be obtained from two figures like the
following in case l1 = l2 = 8.

m

m

m

m

m m

mm
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In the first figure a path has to be selected according to i1. It terminates at a
disc (an η2-neighbourhood of a peripheral core), which should be replaced by the
second figure.

The path selected in the second figure according to i2 can be joint to the first,
so they represent the isotopy class of ωi1i2 .

Notation 6.40: Denote by ω(i1) the positive loop around all ωi1i2 , 1 ≤ i2 ≤ l2.

Instead of a path segment as given in the second figure we may also join a path
which spirals around the core n full times and then down to a puncture

Such a path is naturally selected by an index i′2 = i2 +nl2 and the notation ωi1i2
is naturally extended to indices i1i2 with i2 an arbitrary integer.

Remark 6.41: For i1 6= j1 the paths ωi1i2 , ωj1j2 do not intersect, whatever the
integers i2, j2 are.
Moreover the loops ω(k1) can be chosen disjoint from both.

Now we can introduce twist braids corresponding to arcs which are determined
by suitable joins of paths.
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Notation 6.42: σi1i2,j1j2 is the 1
2 -twist on the union of ωi1i2 with ωj1j2 .

Notation 6.43: τi1i2,j1j2 is the 1
2 -twist on the union of ωi1i2 and ωj1j2 with the

ω(k1), i1 ≤ k1 < j1 in between.

Example 6.44:

ω(5)τ1i2,4j2

σ6i2,8j2

m

m

m

m

m m

mm

`

So far we have dwelled on the topology of the fibre at λ = 1. Now we extract
the characteristic properties of the coiled isosceles.

Definition 6.45: The winding angle of a directed arc Γ in the plane of complex
numbers with respect to a disjoint point z0 is – in generalization of the winding
number of a closed curve – defined by

ϑΓ :=

∫

Γ

−idz

z − z0
, (i2 = −1).

Notation 6.46: We introduce notation for some characteristic angles:

i) ϑ1, ϑ2, the angles between consecutive lth1 , resp. lth2 roots of unity,

ii) ϑo := (j1 − i1)ϑ1, the angle at the apex of the coiled isosceles arc with
index pair i1i2, j1j2, note that 0 < ϑo < 2π,

iii) ϑi, ϑj , the winding angle of the i-side, resp. j-side starting at the apex,
with respect to the center of the core of the corresponding peripheral
circle,

iv) ϑoj := ϑj + ϑo, a useful shorthand.

The winding angle of a spiral is positive if it turns positively when approaching
the peripheral core.

Example 6.47: In the example considered before, suppose the horizontal line sup-
ports the i-side then ϑi = −π

2 , ϑj = π
3 , otherwise ϑi = π

3 , ϑj = π
6 .
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We want now to pin down some geometric properties shared by the coiled isosce-
les arcs associated to bisceles arcs or straight isosceles arcs.

Lemma 6.48 The winding angle of a side of a coiled isosceles arc is in the open
interval ]− 3π

2 ,
3π
2 [.

Proof: The side of the bisceles arc is parallel to a side of the associated coiled
isosceles arc. If the endpoint is on the half of the peripheral circle facing the origin,
then the side is unobstructed and the winding angle is therefore in the range [−π

2 ,
π
2 ].

Otherwise it may be obstructed and there are two ways to make it unobstructed
depending on the other side. But in any case the absolute value of the winding angle
does not exceed 3π

2 . 2

Lemma 6.49 The following inclusions hold:

if ϑo ≤ π : ϑi ∈ ]− 3π

2
,
π

2
],

ϑj ∈ [−π
2
,
3π

2
[;

if ϑo > π : ϑi ∈ [−π
2
,
3π

2
[,

ϑj ∈ ]− 3π

2
,
π

2
].

Proof: If the endpoint of the i-side is on the half circle facing the origin, then its
winding angle is in [−π

2 ,
π
2 ].

If the endpoint is on the opposite half circle, then the winding angle is in either
]− 3π

2 ,−π
2 [ or ]π2 ,

3π
2 [ and the sign depends on the second endpoint. The sign is that

of π − ϑo for the i-side and the opposite for the j-side. 2

Moreover the considerations of this proof immediately yield the observation:

Lemma 6.50 The j-side of the bisceles arc is disjoint from the central core if and
only if

either ϑo ≤ π and ϑj ∈ ]
π

2
,
3π

2
[,

or ϑo > π and ϑj ∈ ]− 3π

2
,−π

2
[.

The next thing we have to exploit is the fact that at a parameter λ = eϑ bisceles
do not exists for all index pairs.
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Lemma 6.51 A bisceles arc with index pair i1i2, j1j2 exists at λ = eϑ only if

i) i2 = j2,

ii) ϑo ≤ π and sinϑi ≤ sinϑoj , ϑ
o
j <

3π
2 ,

or

iii) ϑo > π and sinϑi ≥ sinϑoj , ϑ
o
j >

π
2 .

Proof: In the first case the claim is obvious since the traces have their source
points in common. So from now on we assume that the source points are distinct.
Let us consider the case ϑo ≤ π next. Then the possible traces for the index i1i2
are sketched near to the central core as well as the direction of possible traces with
index j1j2. The second inequality is now read off easily, since sinϑi is the vertical
component of the i-side and sinϑoj the maximal vertical component of the j-side.

@
@

@

�
�

�

sin ϑ increases




y ϑ = 0

Suppose now ϑoj exceeds 3π
2 , then ϑj exceeds π

2 and by 6.50 the j-side does not
pass the central core. To be cut properly by the trace of the i-side its source point
must be on the right hand half of the circle. But the horizontal component of ϑoj is

cos ϑoj which is not positive for ϑoj ∈ [3π2 , ϑ
o + 3π

2 ].

The final case ϑo > π can be handled in strict analogy. 2

Since these better bounds hold obviously in the case of straight isosceles we get
an improvement on the assertion of 6.49:

Lemma 6.52 The following inclusions hold:

if ϑo ≤ π : ϑi ∈ ]− 3π

2
,
π

2
],

ϑj ∈ [−π
2
,
3π

2
− ϑo[;

if ϑo > π : ϑi ∈ [−π
2
,
3π

2
[,

ϑj ∈ ]
π

2
− ϑo, π

2
].

Now we combine the results to obtain a relation between the winding angles.
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Lemma 6.53 The winding angles are subject to

ϑi ≤ ϑoj ≤ ϑi + 2π.

Proof: Suppose ϑo > π. Then by lemma 6.52 ϑoj ∈]π2 ,
π
2 + ϑo] so

i) ϑi ≤ ϑoj or ii) ϑi, ϑ
o
j ∈]

π

2
,
3π

2
[.

Also the conditions in the latter case imply ϑi ≤ ϑoj , since sinϑi ≥ sinϑoj by lemma

6.51 and the sine function is decreasing in ]π2 ,
3π
2 [.

On the other hand by lemma 6.52

i) ϑi + 2π ≥ ϑoj or ii) ϑi + 2π, ϑoj ∈]
3π

2
,
5π

2
[.

and again the second case is a subcase of the first, since the sine function is increasing
on ]3π2 ,

5π
2 [.

The case ϑo ≤ π is done analogously. 2

Next we investigate the impact of parallel transport.

Lemma 6.54 Under parallel transport along a circle segment of winding angle ϑ at
radius t = 1 a coiled isosceles arc is mapped up to isotopy to a coiled isosceles arc
with winding angles changed by −ϑ.

Proof: The line segments of the isosceles arc belong to the part which is rotated
rigidly by the flow of the vector field in 6.18. The total rotation is of angle ϑ.
On the other hand the spirals are wound resp. unwound, since the endpoints are
fixed relative to their peripheral centres, while the points on the boundary of the
2η2-discs are relatively rotated in opposite direction, hence the amount and sign of
the change in the winding angles. 2

Remark 6.55: If we introduce ϑ′i := ϑi− ϑ, (similarly ϑj := ϑj −ϑ), then ϑi is the
i-side winding angle of the isosceles arc transported from angular parameter
ϑ to λ = 1.

Lemma 6.56 Suppose a coiled isosceles arc is associated to a bisceles arc or to an
isosceles arc with index pair i1i2, j1j2, i1 < j1, i2 6= j2, then the full twist on any of
its parallel transports to λ = 1 along a circle segment of radius t = 1 is identified
with one of the abstract braid elements

τ2
i1i′2,j1j

′
2
, 1 ≤ i1 < j1 ≤ l1, 1 ≤ j′2 − i′2 < l2.

Proof: The transported coiled isosceles arc at λ = 1 can be represented in a
unique way by the join of loops ω(k1), i1 ≤ k1 < j1 and two paths ωi1i′2 , ωj1j′2
with i′2, j

′
2 suitable chosen. Hence the corresponding half twist is identified with the

abstract braid element τi1i′2,j1j′2.
We note further that

(j′2 − 1)ϑ2 = ϑ′j − π + (j1 − 1)ϑ1,

(i′2 − 1)ϑ2 = ϑ′i − π + (i1 − 1)ϑ1.
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Computing the difference using ϑ′j − ϑ′i = ϑj − ϑi and (j1 − i1)ϑ1 = ϑo we get:

(j′2 − i′2)ϑ2 = ϑj − ϑi + ϑo = ϑoj − ϑi.

In case j′2 − i′2 ≤ 0 this implies ϑoj − ϑi ≤ 0, in case j′2 − i′2 ≥ l2 we conclude
2π ≤ ϑoj − ϑi, so both these cases contradict the assertion of lemma 6.53, since
neither ϑoj = ϑi nor ϑoj = ϑi+2π is possible under the assumption i2 6= j2. Therefore
we get 1 ≤ j′2 − i′2 < l2, as claimed. 2

Example 6.57: Suppose the example from page 77 has been transported by an
angle ϑ = 5π

3 along the circle arc of radius t = 1. Following the recipe above
we get:

��
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��
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��

b b
Hence assuming l1 = 6, l2 = 4 the associated abstract braid is τ22,45.

Let us call a coiled isosceles arc in the fibre at λ = 1 associated to a local v-arc,
if it is obtained from the local v-arc by parallel transport along a radial segment, a
transformation by full twists to get the associated coiled isosceles arc and parallel
transport along a circle segment at t = 1.

We note then the following converse to 6.56:

Lemma 6.58 Each element τ2
i1i2,j1j2

, 1 ≤ i1 < j1 ≤ l1, 1 ≤ j2 − i2 < l2, is the full
twist on a coiled isosceles arc associated to a local v-arc.

Proof: There is a local v-arc for each index pair i1i2, j1j2, 1 ≤ i1 < j1 ≤ l1,
1 ≤ i2, j2 ≤ l2. For each such local v-arc there is an associated coiled isosceles arc in
the fibre at λ = 1, which determines some τ as above by 6.56. All others are then
obtained by changing the winding angle of the circular path by suitable multiples of
2π. 2

The case i2 = j2 requires extra care. We have analogues to lemma 6.56 and
lemma 6.58.

Lemma 6.59 Suppose a coiled isosceles arc is associated to a bisceles arc or to an
isosceles arc with index pair i1i2, j1j2, i1 < j1, i2 = j2, then the full twist on any of
its parallel transports to λ = 1 along a circle segment of radius t = 1 is identified
with one of the abstract braid elements

τ2
i1i′2,j1j

′
2
, 1 ≤ i1 < j1 ≤ l1, j′2 − i′2 ∈ {0, l2}.

Proof: With the same argument as in the proof of lemma 6.56 we can exclude
the cases j′2 − i′2 < 0 and j′2 − i′2 > l2. Since i2, i

′
2 and j2, j

′
2 may only differ by

multiples of l2 we are left with the two possibilities of the claim. 2
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Lemma 6.60 Given an index pair i1i2, j1j2, 1 ≤ i1 < j1 ≤ l1, j2 − i2 = l2, at least
one of τi1i2,j1i2 , τi1i2,j1j2 is the half twist on a coiled isosceles arc associated to a local
v-arc.

Proof: There is an local v-arc for the index pair i1i2, j1i2, 1 ≤ i1 < j1 ≤ l1,
1 ≤ i2 ≤ l2. We know that for each such local v-arc there is an associated coiled
isosceles arc in the fibre at λ = 1, which determines one of τi1i′2,j1i′2 , τi1i′2,j1j′2 as above
by 6.59. All others are then obtained by changing the winding angle of the circular
path by suitable multiples of 2π. 2

We close this section be identifying the twists unambiguously under special ge-
ometric assumptions.

Lemma 6.61 Given any coiled isosceles arc with punctures of indices i1i2, j1j2,
i1 < j1, i2 = j2, facing the origin, then the twist on any of its parallel transports to
λ = 1 along a circle segment of radius t = 1 is identified with one of the abstract
braid elements

τi1i′2,j1j′2, 1 ≤ i1 < j1 ≤ l1,
with i′2 = j′2 if ϑo ≤ π and i′2 + l2 = j′2 if ϑo > π.

Proof: We run through the same consideration as in 6.56. But in the final step
we are stuck since now ϑi = ϑoj mod 2π, so ϑi = ϑoj and ϑi = ϑoj − 2π are possible
by 6.53. Since both punctures face the origin by hypothesis,

ϑi ∈ [−π
2
,
π

2
], ϑj ∈ [−π

2
,
π

2
].

In case ϑi = ϑoj which corresponds to i′2 = j′2 we must have ϑo = ϑi−ϑj ≤ π. In case
ϑi + 2π = ϑoj corresponding to i′2 + l2 = j′2 we conclude that ϑo = 2π + ϑi − ϑj ≥ π.

2

Lemma 6.62 Given any coiled isosceles arc associated to a bisceles arc with punc-
tures of indices i1i2, j1j2, i1 < j1, i2 = j2, one of which exactly facing the origin,
then the half twist on any of its parallel transports to λ = 1 along a circle segment
of radius t = 1 is identified with one of the abstract braid elements

τi1i′2,j1j′2 , 1 ≤ i1 < j1 ≤ l1, i′2 + l2 = j′2,

under the assumption that ϑo ≤ π.

Proof: The claim is secured by similar considerations as in the proof of 6.61. We
know that ϑi = ϑoj or ϑi = ϑoj + 2π and we imposed ϑo ≤ π.
If the puncture of index i1i2 faces the origin, then from 6.49 and 6.50:

ϑi ∈ [−π
2
,
π

2
], ϑj ∈]

π

2
,
3π

2
[.

If the puncture of index i1i2 does not face the origin, then we get:

ϑi ∈]− 3π

2
,−π

2
[, ϑj ∈ [−π

2
,
π

2
].

In either case we can check that we are left with the possibility ϑi = ϑoj − 2π. Hence
j′2 = i′2 + l2 holds in the index pair of the corresponding abstract braid. 2
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6.5 from local w-arcs to coiled twists

Having understood the parallel transport of local v-arcs sufficiently well, we can now
consider the parallel transport of local w-arcs. They are only considered close to the
degeneration at λ = 0 with i2 = j2.

Let us first look at parallel transport along circular segments of very small radius.

Lemma 6.63 Under parallel transport along circle segments of radius ε << η2 local
w-arcs are mapped to local w-arcs.

Proof: This is immediate, for the parallel transport can be realised by the flow
of the vector field in 6.19, which is rigid rotation for the support of the local w-arcs.

2

Next local w-arcs are transported along a radial segment. We get then tangled
w-arcs in the fibre eϑ. The simpler arcs, to which we want to compare them, are
called isosceles w-arcs and they relate to isosceles arcs as local w-arcs relate to local
v-arcs.

The isosceles w-arc of index pair i1i2, j1i2 can be best understood from the
isosceles arcs of index pairs i1i2, i

+
1 i2 and i+1 i2, j1i2, which are called its constituents.

It is isotopic to the first constituent acted on by a positive half twist on the second.
It can be chosen to be composed of four line segments, two of which are supported
on the traces of the punctures i1i2 and j1i2, while the middle pair forms a sharp
wedge over the trace of the puncture i+1 i2, cf. the example below.

An isosceles w-arc is called corresponding to a given tangled w-arc, if both connect
the same pair of punctures.

The same methods as in the case of tangled v-arcs can now be employed to relate
tangled and isosceles w-arcs.

Lemma 6.64 Up to conjugation by full twists on bisceles arcs of shorter length a
tangled w-arc is isotopic to the corresponding isosceles w-arc.

We now make an observation which will help us to be concerned mostly with
isosceles w-arcs which are supported outside the peripheral circles except for an
arbitrarily small neighbourhood of the puncture i+1 i2. They shall be referred to as
unobstructed isosceles w-arcs.

Lemma 6.65 Any local w-arc for the index pair i1i2, j1i2 can be transported to
radius t = 1 along a circle segment of radius t = ε and a radial segment such that
the corresponding isosceles w-arc is unobstructed, except in case of j1−i1 = (l1+1)/2.

Proof: In the cases under consideration either j1 − i1 ≤ l1/2 or j1 − i+1 > l1/2.
We choose ϑ = (i2 − 1)ϑ2 − (j1 − 1)ϑ1 ∓ π

2 respectively, so we get

|(i2 − 1)ϑ2 − (k1 − 1)ϑ1 − ϑ)| ≥ π

2
for k1 = i1, i

+
1 , j1.

Therefore at λ = eϑ the punctures with index pairs i1i2, i
+
1 i2, j1i2 are all situated on

the halfs of their peripheral circles facing the origin. Accordingly the isosceles w-arc
corresponding to the transported local w-arc is unobstructed. 2
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In the remaining case we can only arrange that the punctures of the i-side and
of the j-side face the origin.

Lemma 6.66 If j1 − i1 = (l1 + 1)/2, then the local w-arc can be transported to
radius t = 1 along a circle segment of radius t = ε and a radial segment such that

i) only the wedge of the corresponding isosceles w-arc is obstructed,

ii) every critical point of its peripheral circle belongs to the inner cone of either
of the constituents or is of index i+1 i2.

Proof: We choose ϑ = (i2 − 1)ϑ2 − (j1 − 1)ϑ1 + π
2 and get

|(i2 − 1)ϑ2 − (k1 − 1)ϑ1 − ϑ)| ≥ π

2
for k1 = i1, j1,

|(i2 − 1)ϑ2 − (i+1 − 1)ϑ1 − ϑ)| < π

2
.

So the punctures of the i-side and of the j-side of the corresponding isosceles w-arc
face the origin as before, but the wedge is obstructed. Since both inner angles are
less than π, all critical points on the corresponding peripheral circle belong to an
inner cone, except the puncture of index i+1 i2. 2

Example 6.67: An isosceles w-arc with obstructed wedge is obtained in case of
l1 = 3, l2 = 4, i2 = 2:

��
��

��
��

��
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The final parallel transport of an isosceles w-arc along a circular segment at
radius t = 1 can be understood using its constituents.

Lemma 6.68 Parallel transport along a circle segment of radius t = 1 of an un-
obstructed isosceles w-arc yields an arc isotopic to the parallel transport of its first
constituent acted upon by a positive half twist on the parallel transport of its second
constituent.

Proof: The relation between an isosceles w-arc and its constituents is preserved
under parallel transport. 2
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Lemma 6.69 Up to full twists on bisceles arcs of shorter length an isosceles w-arc
obstructed on its wedge only is isotopic to the coiled isosceles arc associated to its first
constituent acted upon by a positive half twist on the coiled isosceles arc associated
to its second constituent.

Proof: The same full twists on inner parallels which map the constituents to the
isotopy classes of their associated coiled isosceles arcs also maps the isosceles w-arc
to the isotopy class of the arc obtained from the associated coiled isosceles arcs. 2

Let us finally summarize the results of this section:

Lemma 6.70 Local w-arcs in a fibre close to the origin and twists among the fol-
lowing elements with 1 ≤ i1 < j1 ≤ l1, i′2 = i2 − l2,

τ
−1

i1i′2,i
+
1 i

′
2

τ2
i+1 i

′
2,j1i

′
2

τi1i′2,i
+
1 i

′
2
, j1 − i1 ≤ l1/2,

τ
−1

i1i′2,i
+
1 i

′
2

τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i

′
2
, j1 − i1 ≥ l1/2 + 1,

τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2
, j1 − i1 = l1/2 + 1/2.

correspond in such a way that

i) each local w-arc can be transported along a circle arc of radius ε and a radial
segment to t = 1, such that the twist on the corresponding isosceles w-arc trans-
ports to λ = 1 along the circle of radius t = 1 to yield one of the given twists
up to conjugation by full twists on obstructing parallels to its constituents.

ii) each given twist can be obtained from a local w-arc as in i).

Proof: If j1− i1 ≤ l1/2 then (j1 − i+1 )ϑ1, (i
+
1 − i1)ϑ1 ≤ π, hence by 6.61 and 6.68

we can get an element of the first row, since by the braid relation it does not matter
if we transform the first constituent by a positive full twist on the second or if we
transform the second by a negative full twist on the first.

Similarly if j1 − i+1 > l1/2 then (i+1 − i1)ϑ1 ≤ π but (j1 − i+1 )ϑ1 > π, so we get a
twist of the second row, again with 6.61 and 6.68.

In the final case we argue along the same line with 6.62 and 6.69, so also in case
j1 − i1 = l1/2 + 1/2 we get twists among the given ones.

As in the similar cases proved before, we get all twist this way as we can transport
around the circle at t = 1 as many times as necessary. 2

6.6 the length of bisceles arcs

In this section we want to compare the length of bisceles arcs to a real number we
assign to index pairs.

Definition 6.71: The modulus of a pair i1i2, j1j2 of indices is given by

η2

∣

∣

∣

∣

∣

sin(π i2−j2l2
)

sin(π i1−j1l1
)

∣

∣

∣

∣

∣

.

In this way a modulus is assigned to all objects with an index pair.
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Since modulus is in some way complementary to length, we introduce it also for
bisceles arcs.

Definition 6.72: The modulus of a bisceles arc is the shorter of the two distances
from the apex to both source points.

Lemma 6.73 The modulus t0 of a critical parameter t0eϑ0
for the pair i1i2, j1j2

coincides with the modulus for that index pair.

Proof: Given the traces at angle ϑ0 the pair corresponding to i1i2, j1j2 meet at
an apex which forms an isosceles triangle with both source points on the circle of
radius η2. So with δ = ±π i2−j2l2

, φ = ±2π i1−j1l1
the length of the sides equals the

modulus as can be seen from the following sketch.
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Lemma 6.74 The modulus of a bisceles arc bounds the modulus of the corresponding
index pair from below. Equality holds only in the case that the bisceles arc is an
isosceles arc.

Proof: The apex of the bisceles arc which depends on the parameter angle ϑ
determines a triangle over the base given by the two source points. The base and
the angle over it are independent of ϑ, whereas the length of the shorter side is the
bisceles arc modulus. The modulus of the pair is the length of a side if both sides
are equal which happens for a specific ϑ.
The claim is now obvious from the following sketch, mb ≥ m2 = min(m1,m2):
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The algebraic argument reads as follows: By the cosine formula

m2
1 +m2

2 − 2m1m2 cos(apex) = 2m2
b − 2m2

b cos(apex).

We can get a lower bound for the l.h.s. assuming w.l.o.g. m1 ≤ m2:

m2
1 +m2

2 − 2m1m2 cos(apex) = (m1 −m2)
2 +m1m2(2− 2 cos(apex))

≥ m2
1(2− 2 cos(apex))

Then the conclusion mb ≥ m1 is immediate. 2

Now we compare the modulus of arcs we encountered in preceding sections.

Lemma 6.75 The modulus of a bisceles arc supported on the essential traces of a
tangled v-arc is strictly larger than the modulus of the corresponding isosceles arc.

Proof: This claim follows from lemma 6.74 above and the remark on page 75.
2

Lemma 6.76 An obstructing parallel to a bisceles arc is of strictly larger modulus.

Proof: Let us consider first the case that the obstructing parallel has a side in
common with the obstructed bisceles arc:
We have thus a triangle ABC formed by the source points A,C of the traces of ob-
structed bisceles arc and its apex B. Similarly we have a triangle AED formed by the
source points A,D of the obstructing parallel and its apex E. We have gAE = gAB
and B ∈ AE. Moreover gDE‖gBC and D is separated from A by gBC . Denote by F
the intersection of gDE and gAC . Then gDE is divided into rays bounded by E resp.
F and the finite segment EF .

Now D may not be on the ray bounded by E, since then B is in the interior
of ACD, hence in the central core contrary to the assumption on obstructedness.
Neither may D belong to EF since otherwise BD cuts BC which is impossible since
BC is on the obstructed side of the bisceles arc and may hence not be cut by the
chord BD of the central core.
So finally F is on DE and we conclude with lemma 6.88.
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Suppose now that the obstructing parallel has no side in common with the ob-
structed bisceles arc, then there is an intermediate obstructing parallel which has a
side in common with each. So the full result is obtained in two steps as above.
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Lemma 6.77 The modulus of a bisceles arc supported on the essential traces of a
tangled v-arc or a tangled w-arc and the modulus of any of its obstructing parallels
is strictly larger than the modulus of the corresponding isosceles arc.

Proof: Thanks to 6.75 we need only to argue for the obstructing parallels, but
their modulus is strictly bounded from below by the modulus of the obstructed
bisceles arc by lemma 6.76. 2

Lemma 6.78 The full twist on a bisceles arc which is not an isosceles arc trans-
ported along t = 1 to λ = 1 is in the group generated by all twists τ2 of modulus
larger than the modulus of the bisceles arc.

Proof: The obstructing parallels are bisceles arcs of strictly larger modulus.
Hence we may as well assume the bisceles arc to be unobstructed. Its parallel
transport is then isotopic to an arc defining some τ of larger modulus, which is
strictly larger in case the bisceles arc is no isosceles arc. 2

6.7 the discriminant family

In this section we will work with the discriminant family of the families of function
we consider. In order to compute the versal braid monodromy in the next section,
we have to find the locally assigned groups. Moreover we need to compare the par-
allel transport in the discriminant family to parallel transport in the model family.

Lemma 6.79 The discriminant and the model discriminant family over the punc-
tured parameter bases have a common unramified cover.
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Proof: The equation for the discriminant family has a formal factorisation

∏

ξ
l1
1 ,ξ

l2
2 =1

(z − α
l1+1

l1 ξ1 − ε
l2+1

l2
2 ξ2) =

∏

ξ
l1
1 =1

((z − α
l1+1

l1 ξ1)
l2 − εl2+1

2 ) = 0.

as opposed to the equation for the model discriminant family:

∏

ξ
l1
1 ,ξ

l2
2 =1

(z − λξ1 − η2ξ2) =
∏

ξ
l1
1 =1

((z − λξ1)l2 − ηl22 ) = 0.

These equations coincide for ηl22 = εl2+1
2 and λl1 = αl1+1. Hence the family parame-

terized by β
∏

ξ
l1
1 =1

((z − βl1+1ξ1)
l2 − εl2+1

2 ) = 0.

is isomorphic to the pull backs of the discriminant family and the model discriminant
family by the covering map β 7→ α = βl1 resp. β 7→ λ = βl1+1, if ε21l2 + 1 = ηl22 .

In this way we can understand polar coordinates of the bases of the two discrim-
inant families as different coordinates of the universal cover of the bases punctured
at the origin.

So with polar coordinates r and θ in the base of the discriminant family we can
immediately compare parallel transport in the two families:

Lemma 6.80 Parallel transport in the discriminant family and in the model dis-
criminant family coincides if rl1+1

0 = tl10 and θ(l1 + 1) = ϑl1

i) along radial paths teϑ, t ∈ [t0, 1] and reθ, r ∈ [r0, 1],

ii) along circular paths of radius 1 of winding angles ϑ and θ respectively.

We can now define standard paths in the bases of both families by asking them
to be supported on radial segments and circular segments as in the lemma.

And for each standard path in one base we get another one in the other with the
same parallel transport.

Example 6.81: A system of standard paths for the discriminant family associated
to l1 = 4, l2 = 2 is thus related to standard paths in the base of the model
discriminant family:
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To get the versal braid monodromy of the discriminant family, we therefore need
to transfer the locally assigned groups from local Milnor fibres of the discriminant
family to local Milnor fibres of the model discriminant family and transport them
along all possible standard paths.

We assign a group to a local Milnor fibre in the model discriminant using the
fact that the fibre is isomorphic to a local Milnor fibre in the discriminant family by
way of the two finite covering maps.

Lemma 6.82 The group assigned to a Milnor fibre at a regular parameter t1eϑ1
,

sufficiently close to a singular parameter t0eϑ0
6= 0 with t1 − t0 > 0, is generated by

full twists on local v-arcs.

Proof: The singular fibre corresponds to a function with non-degenerate critical
points only, cf. the proof of the lemmas 5.10, 5.11. So by definition the locally as-
signed group is generated by mapping classes fixing all punctures and supported on
small discs each of which is a Milnor fibre for just one multiple puncture.

By close inspection we can see that the local v-arcs are supported on such discs
and the full twists on local v-arcs generate the group of all mapping classes of each
disc which preserve the punctures. 2

Lemma 6.83 The group assigned to a Milnor fibre at a regular parameter t1eϑ1
,

sufficiently close to a singular parameter λ = 0, is generated by full twists on local
w-arcs and 3

2 -twists on local v-arcs with index pair i1i2, i
+
1 i2.

Proof: The singular fibre corresponds to a function which has l2 critical points
of type Al1 with distinct critical values. So by definition the group locally assigned
to each disc, which is a local Milnor fibre of a multiple puncture, is generated by the
mapping classes of the braid monodromy of the singular function germ it corresponds
to.

Each of the critical points of type Al1 is unfolded linearly, so the local Milnor
fibre can be naturally identified with the Milnor fibre encountered in lemma 4.7.
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And in combination with lemma 4.6 we conclude that local generators are given
by the 3

2 -twists on v-arcs with index pairs i1i2, i
+
1 i2 and full twists on arcs winding

positively from a puncture of index i1i2 to a puncture of index j1i2, j2 > i+1 = i1 +1,
around all v-arcs.

By lemma A.4 we can see that instead we can use the twists of the claim to
generate the same group. 2

To summarize the preceding discussion we should note:

Remark 6.84: The versal braid monodromy of the family of functions

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2

is generated by the parallel transport of the appropriate twists as given by
lemma 6.82 and lemma 6.83 along all standard paths in the model discriminant
family.

6.8 conclusion

Finally we keep our promise and give braid elements which generate the versal braid
monodromy:

Proposition 6.85 The versal braid monodromy the family of functions

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2

is generated by twists (i+1 = i1 + 1, i′2 = i2 − l2):

τ2
i1i2,j1j2, 1 ≤ i1 < j1 ≤ l1, 1 ≤ j2 − i2 < l2,

τ3
i1i′2,i

+
1 i2
, 1 ≤ i1 < i+1 ≤ l1, 1 ≤ i2 ≤ l2,

τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2
, 1 < i+1 < j1 ≤ l1, 1 ≤ i2 ≤ l2.

Proof: The versal braid monodromy of a one parameter family can by definition
be computed from their locally assigned groups of mapping classes and the parallel
transport of these groups along a distinguished system of paths in the associated
discriminant family, cf. lemma 5.7

The locally assigned groups in the discriminant family were given in lemma 6.82
and lemma 6.83 to be twists on local v-arcs and local w-arcs.

So by the closing remark of the last section parallel transport of local v-arcs and
local w-arcs along all possible standard paths in the base of the model discriminant
family generate the versal braid monodromy.

Note that the length of the circular part is not necessarily restricted to [0, 2π[.

We denote by T the set of braid generators obtained by parallel transport and
identification using the Hefez Lazzeri path system in the fibre at λ = 1.
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T is divided into subsets according to the index pair of the punctures connected
by the corresponding arc.

The given set S of braid group elements is also divided into subsets according to
the modulus the index pairs of each element, which is unambiguous since we note
immediately that the modulus of all index pairs occurring in the second and third
row is zero.

Since the moduli of elements in T and S form a finite descending sequence
m1 > ... > mn = 0, we can impose finite filtrations

Tk := {τ ∈ T |m(τ) ≥ mk}, Sk := {τ ∈ S|m(τ) ≥ mk}.

To prove our claim, we are thus left to check the hypotheses of lemma A.17:

Since l2 > 1, the maximal modulus m1 is positive. Hence S1 only contains twists
on parallel transports of local v-arcs. The local v-arcs of highest modulus get not
tangled when transported along a radial arc, since entangling bisceles arcs have to
be of larger modulus 6.75. The isosceles thus obtained are unobstructed, since ob-
structing parallels would be of larger modulus, 6.76. By 6.56 each element of T1 is
in S1. Conversely by 6.58, each element in S1 is an element in T of equal modulus,
hence in T1.

Given an element in T of modulus mk > 0, which is the parallel transport of
an local v-arc, then there is an element in S obtained from the same local v-arc
transported along the same path, but conjugated by twists which are the parallel
transports of bisceles arcs of strictly larger modulus, 6.75, 6.77, 6.76. So the second
hypothesis of lemma A.17 holds for elements in Tk − Tk−1 of positive modulus.

Conversely each full twist in S of positive modulus is obtained by parallel trans-
port from an local v-arc of equal modulus up to twists by entangled and obstructing
bisceles arcs, 6.58. So due to 6.75, 6.77, 6.76 again the third hypothesis holds for
the twists obtained from local v-arcs of positive modulus.

We are left with elements of modulus mn = 0 and consider local w-arcs first.
Though we have to transport along a standard path to get full twist elements in
Tn − Tn−1, we have to rely on a result which makes use of a different kind of paths.
We recall that in section 6.5 we transported a local w-arc along a circular arc of
small radius, then along a radial segment and finally along a circular segment of
radius t = 1.

Each standard path can be coupled with a path of the second kind in such a way,
that the closed path obtained as their join has winding number zero with respect to
the origin. Hence parallel transport from λ = 1 along this closed path amounts to
conjugation by a composition of full twists of positive modulus in Tn−1.

We deduce that the elements of T obtained by parallel transport along standard
paths yield the elements given in lemma 6.70 up to conjugation by full twists in Tn−1

and Sn−1. By lemma A.9 they are even conjugate to the full twists in Sn − Sn−1.
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This relation can obviously be reversed in the sense, that for each full twist in
Sn of modulus zero we have an element in T equal up to conjugation by elements in
Sn−1 and Tn−1.

Finally we have to address the 3
2 -twists in T a nd S. A 3

2 -twist in T is obtained
by the parallel transport of a local v-arc with index pair i1i2, i

+
1 i2. We conclude

that up to full twists elements in Sn−1 and Tn−1 the 3
2 -twists in T are among the

elements given in lemma 6.59. By lemma A.8 they are among the elements in S
even up to full twists in Sn−1 and Tn−1.

Conversely the pairs of twists considered in lemma 6.60 correspond bijectively
to the 3

2 -twists of S and are both equal up to conjugation by full twists of positive
modulus by lemma A.8. We deduce that also each 3

2 -twist of S is an element of T
up to conjugation by full twists in Sn−1 and Tn−1. 2

6.9 appendix on plane elementary geometry

Lemma 6.86 Given a proper triangle ABC and lines through A,C resp. B,C. If
a fourth point D is in the opposite cone to AB at C, then C is a point in the disc
with boundary through ABD.
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Proof: Denote the line through a pair of points by g indexed with the pair. Then
the assumptions can be stated as:

i) C,D are on the same side of the line gAB ,

ii) A,D are on different sides of gBC ,

iii) B,D are on different sides of gAC .

These imply

iv) A,C are on the same side of gBD by i) and ii),

v) B,C are on the same side of gAD by i) and iii).

But i),iv) and v) together form the assertion of the lemma. 2

Lemma 6.87 Suppose in a quadrilateral ABCD the points B,D are on opposite
sides of the diagonal d through A and C. Let E be the intersection of the line through
A and B and the parallel to BC through D. If |AB| < |BC| then |AE| < |DE|.
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Proof: By hypothesis there is an intersection point F on DE with the diagonal d,
so |EF | < |DE|. Hence the claim follows since by proportionality |AB| < |BC| =⇒
|AE| < |EF |.
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Lemma 6.88 Suppose in a quadrilateral ABCD the points B,D are on opposite
sides of the diagonal dAC through A and C and the points A,D are on opposite
sides of the line through B and C. If E is the intersection of the line through A and
B and the parallel to BC through D then

min(|DE|, |AE|) > min(|AB|, |BC|).

Proof: By hypothesis E and A are on opposite sides of the line through B and C,
hence |AB| < |AE| and by proportionality |EF | > |BC| which implies |DE| > |BC|.

So with the result of lemma 6.87 we get in case |AB| = min(|AB|, |BC|) that
|DE| > |AE| > |AB|. In case |BC| = min(|AB|, |BC|) we get the claim since
|AE| > |AB| ≥ |BC| and |DE| > |BC|. 2
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Chapter 7

braid monodromy induction to

higher dimension

In the previous chapter we determined the braid monodromy of a one parameter
family of polynomials on the plane. Due to the results of chapter 5 this yields the
main contribution to the braid monodromy of a plane Brieskorn Pham polynomial.

In the present chapter we exploit the results of both chapters to set up an induc-
tion for the computation of the braid monodromy for Brieskorn Pham polynomials
in arbitrary dimensions. Since we have to relate the monodromies of families of dif-
ferent numbers of variables and deal with an arbitrary number in the general case,
we made some efforts to chose our notation. We devote the first section to introduce
this notations, quite a few new definitions and to rephrase results of the preceding
chapters in a unified way.

In the second and third section the induction argument is given by way of con-
sidering the versal braid monodromies of families of functions

fα : xl1+1
1 − α(l1 + 1)x1 +

n
∑

i=2

(

xli+1
i − εi(li + 1)xi

)

,

gα : xl1+1
1 − (l1 + 1)x1 +

n
∑

i=2

(

xli+1
i − αεi(li + 1)xi

)

,

which were introduced in chapter 5.
To merge the various groups we have to choose the generating sets in many dif-

ferent ways. Even though many of the braid computations have been put into an
appendix, the computational load is quite high.

The actual geometric argument which makes induction possible is presented in
the fourth and fifth section. We present a prove of a result which connects the braid
monodromy of a discriminant family to a family which is obtained by replacing the
divisor by a number of parallel copies. This l-companion family is studied to the
details to relate the associated versal monodromies.

Both sections should be regarded as a sort of appendix to which we may resort
on need.
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7.1 preliminaries

The choice of a Hefez Lazzeri base in the reference fibre provides a natural bijection of
the punctures with a multiindex set associated appropriately to the given Brieskorn
Pham polynomial.

Notation 7.1: Given a finite sequence l1, ..., ln of positive integers, define the mul-
tiindex set In = In(l1, ..., ln) to be

In := {i1...in | 1 ≤ iν ≤ lν , 1 ≤ ν ≤ n}

equipped with the natural lexicographical order.

While i denotes an element i1...in, we will use i+ for its immediate successor and
i′ := i1...in−1 for the naturally associated element in In(l1, ..., ln−1).

Whether the following property is given or not determines to some extend the
role of index pairs and index triples.

Definition 7.2: Multiindices i, j ∈ In are called correlated or a correlated pair, if
i < j and jν ∈ {iν , iν + 1} , 1 ≤ ν ≤ n.
Multiindices i, j, k ∈ In are called correlated or a correlated triple, if i < j,
i < k, j < k are correlated.
A quadruple of indices is called correlated if each pair is correlated.

For the induction we need several homomorphisms between braid groups of dif-
ferent numbers of strings.

Definition 7.3: Given a multiindex set {i1...in | 1 ≤ iν ≤ lν , 1 ≤ ν ≤ n}
the primary homomorphisms are defined for 1 ≤ i1 ≤ l1:

φi1 : Brl2...ln −→ Brl1...ln
σi2...in,j2...jn 7→ σi1i2...in,i1j2...jn

the secondary homomorphisms are defined for 1 ≤ in ≤ ln:

ψin : Brl1...ln−1
−→ Brl1...ln

σi1...in−1,j1...jn−1
7→ σi1...in,j1...jn−1in

the ln-band homomorphism

ηl : Brl1...ln−1
−→ Brl1...ln

which assigns to a braid a braid of ln-times as many strand by replacing each
strand with a ribbon of ln strands.

This definition should be understood from the following picture: To a twist,
i.e. an exchange of two strands, we associate a band or ribbon twist, i.e. an
exchange of two bands or ribbons into which l strands each have been assem-
bled:
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Figure 7.1: band twist, the image of a half twist under ηln

Definition 7.4: The level of an index pair is the difference of the leading compo-
nents.
The level of a braid σi,k or τi,k is the level of its index pair.

Definition 7.5: The element δn := σ1,2 · · · σn−1,n is called the fundamental element
of the BKL presentation, cf. [6] of the braid group Brn, δ

n is the full twist on
the disc, i.e. a generator of the center of Brn.

Definition 7.6: Given a pair of indices i, j the associated subcable twist is defined
as the BKL fundamental word on the braid subgroup on the punctures with
index k, i ≤ k ≤ j, it can be given as

δi,j :=
∏

i≤k<j

σk,k+.

Definition 7.7: The ln-cable twist in Brl1...ln is defined to be the element

δφ,n :=
∏

i′∈In−1

δi′1,i′ln .

In the disguise of turning the peripheral circles we already considered this cable
twist, so in case n = 2 conjugation by the cable twist δj11,j1l2 yields maps

τi1i2,j1j2 7→ τi1i2,j1j+2
,

τj1j2,k1k2 7→ τj1j+2 ,k1k2
,

σi1i2,j1j2 7→ σi1i2,j1j+2
,

σj1j2,k1k2 7→ σj1j+2 ,k1k2
,

where as usual we assume i < j < k.
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We extend the range of possible indices in higher dimensions accordingly.

Definition 7.8: Suppose i′n − in =: mi, j
′
n − jn =: mj then define

σi′i′n,j′j′n := δ
−mj

j′1,j′ln
δ−mi

i′1,i′ln
σi1i2,j1j2δ

mi

i′1,i′ln
δ
mj

j′1,j′ln
.

Example 7.9: In case n = 2, i1 = 1, j1 = 2 there are the following examples:

q q q q q q σ13,21, σ13,22

q q q q q q σ12,20, σ12,21

q q q q q q σ11,2(−1), σ11,20

q q q q q q σ14,22, σ14,23

Lemma 7.10 Conjugation by the cable twist δφ induces a level preserving bijection
of braids τ2

i1i2,j1j2
with 1 ≤ i1 < j1 ≤ l1, 1 ≤ j2 − i2 < l2 and of braids σ2

i1i2,j1j2
with

1 ≤ i1 < j1 ≤ l1, 1 ≤ j2 − i2 < l2 such that:

τ2
i1i2,j1j2 7→ τ2

i1i
+
2 ,j1j

+
2

,

σ2
i1i2,j1j2 7→ σ2

i1i
+
2 ,j1j

+
2

Notation 7.11: By A(l1) denote the singular function xl1+1. By BP (l1, ..., ln) de-
note the singular function xl1+1

1 + · · · + xln+1
n .

With respect to the Hefez Lazzeri base these functions determine by braid
monodromy well defined subgroups of the braid group Brµ, which are denoted
by

BrA(l1) resp. BrBP (l1,...,ln) .

braid monodromy results

We have to review our main results for braid monodromy of Brieskorn Pham poly-
nomials up to now. The first records a slight reformulation of theorem 6.85. The
second is the previously noted result for singularities of type Al.

We remark once and for all that the constants ε1 = 1, εi > 0 are chosen in such
a way that εi+1 ≪ εi.
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Lemma 7.12 The versal braid monodromy of the family

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2

is generated by twists

τ2
i1i2,j1j2 , 1 ≤ i1 < j1 ≤ l1, 1 ≤ j2 − i2 < l2,

σ3
i1i2,i

+
1 i2
, 1 ≤ i1 < i+1 ≤ l1, 1 ≤ i2 ≤ l2,

σ2
i1i2,j1i2 , 1 < i+1 < j1 ≤ l1, 1 ≤ i2 ≤ l2.

Proof: By definition τ3
i1i′2,i

+
1 i2

= σ3
i1i2,i

+
1 i2

, 1 ≤ i1 < i+1 ≤ l1, 1 ≤ i2 ≤ l2.
We then notice that ψi2(Br(Al1)) is generated by

σ3
i1i2,i

+
1 i2
, σ2
i1i2,j1i2 , 1 ≤ i1 < i+1 < j1 ≤ l1.

By lemma A.4 then ψi2(Br(Al1)) is also generated by

σ3
i1i2,i

+
1 i2
, ψi2(σ

−2
i,i+

σ̌2
i1,j1σ

2
i,i+), 1 ≤ i1 < i+1 < j1 ≤ l1.

Since the latter elements coincide with τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2

we are done. 2

In this proof we used the braid monodromy of Al-singularities, which we recall
from 4.6 for convenience.

Lemma 7.13 The braid monodromy of the function xl+1 with respect to the Hefez
Lazzeri system of paths is given by

σ3
i,i+ , 1 ≤ i < l, σ2

i,j, 1 < i+ < j < l.

7.2 families of type gα

The topic of this section are the versal braid monodromies of families of functions
gα. We refer by G2, G3 and Gn to the groups associated to polynomials of two, three
resp. n variables.

Let us remark that by lemma 5.16 the groups determined in this section are in
a sense the smaller complement to the the groups for the families of type f , which
have been investigated in the plane case in the last chapter and will also be the topic
of the next section.

The choice of the constants εi is tacitly assumed to be made in such a way, that
the unit parameter disc of the families gα contains no singular parameter apart from
the origin.

Lemma 7.14 The versal braid monodromy G2 of the family gα(x1, x2) restricted to
the unit disc is generated by the homomorphic images in Brl1l2 of the braid mono-
dromy groups BrA(l2) ⊂ Brl2 under the primary homomorphisms φi1 , 1 ≤ i1 ≤ l1.
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Proof: The only critical parameter in the disc |α| ≤ 1 is α = 0. The correspond-
ing critical function is xl1+1

1 − (l1 + 1)x1 + xl2+1
2 , which has l1 critical point of type

A(l2) with distinct critical values.
The bifurcation divisors of the families of functions parameterized by α,

−l1ξ + xl2+1
2 + ε2α(l2 + 1)x2, ξl1 = 1,

embed into the bifurcation divisor of gα, and the corresponding embeddings of punc-
tured discs induce embeddings of mapping class groups which correspond to the
embeddings φi1 under the standard identifications with the braid groups Brl1l2 and
Brl2 by the Hefez Lazzeri choice of a strongly distinguished system of paths. The
versal braid monodromies of the families above can be identified with the braid
monodromy of lemma 7.13 and yield then the versal braid monodromy of the family
gα as claimed. 2

Lemma 7.15 The group G2 ⊂ Brl1l2 is generated by the elements

σ3
i1i2,i1j2

, 1 ≤ i2 = j2 − 1 < l2, 1 ≤ i1 ≤ l1,
σ2
i1i2,i1j2

, 1 ≤ i2 < j2 − 1 < l2, 1 ≤ i1 ≤ l1.

Proof: The group BrA(l2) is generated by elements

σ3
i2,i

+
2

, 1 ≤ i2 < l2, σ2
i2,j2, 1 ≤ i2 < j2 − 1 < l2,

so the claim holds by lemma 7.14 since their images under the primary homomor-
phisms φi1 are the elements of the assertion. 2

Lemma 7.16 The versal braid monodromy G3 of the family gα(x1, x2, x3) restricted
to the unit disc is the subgroup of Brl1l2l3 generated by the homomorphic images of
the braid monodromy groups BrBP (l2,l3) ⊂ Brl2l3 under the primary homomorphisms
φi1 , 1 ≤ i1 ≤ l1.

Proof: We give the proof stressing the analogy to the case n = 2 of 7.14:
The only critical parameter in the disc |α| ≤ 1 is α = 0. The corresponding critical
function is xl1+1

1 − (l1 + 1)x1 + xl2+1
2 + xl3+1

3 , which has l1 critical points of type
BP (l2, l3) with distinct critical values.

The bifurcation divisors of the families of functions

−l1ξ + xl2+1
2 + ε2α(l2 + 1)x2 + xl3+1

3 + ε3α(l3 + 1)x3, ξl1 = 1,

embed into the bifurcation divisor of gα, and the corresponding embeddings of punc-
tured discs induce embeddings of mapping class groups which correspond to the em-
beddings φi1 under the Hefez Lazzeri identifications with the braid groups Brl1l2l3
and Brl2l3. The versal braid monodromies of the families above, which are given by
the braid monodromy of polynomials of type BP (l2, l3), then yield the claim. 2

For the next lemma we have to resort for the first time to the forthcoming sections
on l-companion families.
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Lemma 7.17 The group G3 contains the image of G2 under the l3-band homomor-
phism.

Proof: The group G2 is generated by the braid monodromy of singular polyno-
mials of type Al1 under the primary homomorphisms. The l3-companion family of
the discriminant family of gα(x1, x2) is the discriminant family of:

xl1+1
1 − (l1 + 1)x1 + xl2+1

2 + ε2α(l2 + 1)x2 + xl3+1
3 − ε3(l3 + 1)x3.

Similarly its versal braid monodromy group is generated by the images under the
primary homomorphisms of the versal braid monodromy for the l3-companion of the
discriminant family of the families of functions

−l1ξ + xl2+1
2 + ε2α(l2 + 1)x2, ξl1 = 1.

Their versal braid monodromy coincides with the braid monodromy of the versal
unfolding of a singular function of type Al2 . So by lemma 7.50 we conclude that the
versal braid monodromy of the family of functions

xl1+1
1 − (l1 + 1)x1 + xl2+1

2 + ε2α(l2 + 1)x2 + xl3+1
3 − ε3(l3 + 1)x3

contains the images under the φi1 and ηl3 of the braid monodromy of the function

−l1ξ + xl2+1
2 + ε2α(l2 + 1)x2, ξl1 = 1.

Hence also ηl3(G2) is contained. But then it must be a subgroup of the versal braid
monodromy of the family of functions

xl1+1
1 − (l1 + 1)x1 + xl2+1

2 + ε2α(l2 + 1)x2 + xl3+1
3 − ε3α(l3 + 1)x3

at α = 0, which is G3. 2

Analogous to the cases n = 2, 3 dealt with in 7.14,7.16 we obtain the generalisa-
tion to arbitrary n.

Lemma 7.18 The versal braid monodromy Gn of the family gα(x1, ..., xn) restricted
to the unit disc is generated by the homomorphic images of the braid monodromy
groups BrBP (l2,...,ln) ⊂ Brl2···ln under the primary homomorphisms φi1 , 1 ≤ i1 ≤ l1.

Similarly we can extend the assertion of lemma 7.17 for the pair 2, 3 to arbitrary
pairs n− 1, n.

Lemma 7.19 The group Gn contains the image of Gn−1 under the ln-band homo-
morphism.

Since the generators given by Catanese and Wajnryb [9], cf. 4.3, are cable twists
we can guess that there are many cable twists in the groups considered here.

Lemma 7.20 Suppose i′in < i′jn is a pair of indices, then δjn−in+2
i,j ∈ Gn, especially

δln+1
φ ∈ Gn.
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Proof: If we consider the family of functions

xl1+1
1 − (l1 + 1)x1 + (

n−1
∑

ν=2

xlν+1
ν − εν(lν + 1)xν) + xln+1

n − αεn(ln + 1)xn,

we see that its monodromy at α = 0 is contained in the monodromy at α = 0 of
the family gα(x1, ..., xn). Similarly to 7.14 the family can be shown to have l1...ln−1

critical points of type A(ln). Their local monodromies embed via compositions
φi′ := φi1 ◦ ... ◦ φin−1

of primary homomorphisms into BrBP (l1...ln), so δjn−in+2
i,j is in

Gn if δjn−in+2
in,jn

is in BrA(ln).

Since the classical geometric monodromy of the An singularity is

δn+1
φ = σ3

1,2σ
2
1,3...σ

2
1,nσ

3
2,3σ

2
2,4...σ

2
2,n...σ

3
n−1,n,

we can deduce in fact

δj2−i2+2
in,jn

=
∏

i≤k<j

(σ3
k,k+

∏

k+<k′≤j

σ2
k,k′) ∈ BrA(ln) .

The additional claim follows from δl2+1
φ =

∏

i′ δ
ln+1
i′1,i′ln

. 2

Lemma 7.21 For given i′ < j′ the same braid subgroup is generated by the elements

σ2
i′in,j′jn , 1 ≤ in − jn < ln,

and by suitably chosen Gn-conjugates of elements

σ2
i′in,j′jn

1 ≤ in, jn ≤ ln, in, i+n 6= jn,

σ2
i′in,j′in

σ2
i′in,j′jn

σ−2
i′in,j′in

1 < i+n = jn ≤ ln,
σ2
i′in,i′jn

σ2
i′in,j′jn

σ−2
i′in,i′jn

1 < i+n = jn ≤ ln.

Proof: We introduce filtrations T = T3 ⊃ T2 and S = S3 ⊃ S2 ⊃ S1 on the two
sets of elements by

S1 = {σ2
i′in,j′jn |1 ≤ jn < in ≤ ln}

S2 = S1 ∪ {σ2
i′in,j′jn |1 ≤ in < i+n < jn ≤ ln}

T2 = T1 ∪ {σ2
i′in,j′jn |in, jn 6≡ 0 mod (ln + 1)}

Then it suffices to show that for each s ∈ S2 there is a t ∈ T2 with t equal to
some Gn-conjugate of s and that for each s ∈ S3 − S2 there is a ∈ T3 − T2 with a
Gn-conjugate of s equal to t conjugated by some elements of T2 and vice versa, cf.
lemma A.17.

Since δln+1
φ ∈ Gn by 7.20, we may conjugate the elements of S1 by all powers

δ
m(ln+1)
φ . Similarly δln+1

j′1,j′ln
is an element of Gn by 7.20, hence all elements

δ
m(ln+1)
φ (δln+1

j′1,j′ln
σ2
i′in,j′jnδ

−ln−1
j′1,j′ln

)δ
−m(ln+1)
φ = δ

m(ln+1)
φ σ2

i′in,j′j′n
δ
−m(ln+1)
φ ,
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where j′n = jn− ln−1, are Gn-conjugates of elements in S2−S1. In fact the elements
thus obtained are just all the elements in T2.

Finally we observe that the braids δln−in+1

j′i+n ,j′ln
, resp. δjn

i′1,i′j−n
are elements of Gn due

to 7.20 again. Hence we may invoke A.16 to show that the elements in S3−S2 have
Gn-conjugates which are equal up to conjugation by elements in T2 to elements

σ2
i′in,j′0, σ

2
i′l+n ,j′jn

, 1 ≤ in < ln, 1 < jn ≤ ln,

which in turn are contained in T3 − T2.

Because conjugation by powers δ
m(ln+1)
φ yields all elements of T3 − T2 and pre-

serves the set T2, all elements in T3 − T2 up to conjugation by elements in T2 are
Gn-conjugates of elements in S3 − S2, so we are done. 2

7.3 families of type fα

We turn our attention now to the families of type fα, for which the versal braid
monodromy has to be computed not only locally. But in fact all geometric insight
is in the case n = 2 dealt with in chapter 6 and the notion of l-companion families,
which will be exploited in the next two section. So here we mainly have to translate
between various results and to organize them in such a way we need for the induction.

Lemma 7.22 The versal braid monodromy of a family of functions fα(x1, x2) is
generated by the elements

σ3
i1i2,j1j2

, i2 = j2, i1 < j1 correlated,

σ2
i1i2,j1j2

, i2 = j2, i1 < j1 not correlated,

σ2
i1i2,j1j2

with 1 ≤ i1 < j1 ≤ l1, 1 ≤ i2 − j2 < l2.

Proof: We have to show that the elements in 7.22 and those in 7.12 generate
the same subgroup of Brl1l2 . Since both generator sets have the elements with equal
second index component in common, it suffices to prove that the remaining elements
of each set generate the same braid subgroup.

Notice that both sets are filtered by level – which is underlined – with

S1 = {σ2
i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, j1 − i1 = 1, 1 ≤ i2 − j2 < l2}
S2 = S1 ∪ {σ2

i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, j1 − i1 = 2, 1 ≤ i2 − j2 < l2}
...

Sl1 = {σ2
i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, 1 ≤ i2 − j2 < l2}

T1 = {τ2
i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, j1 − i1 = 1, 1 < j2 − i2 ≤ l2}
T2 = T1 ∪ {τ2

i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, j1 − i1 = 2, 1 < j2 − i2 ≤ l2}
...

Tl1 = {τ2
i1i2,j1j2

∣

∣1 ≤ i1 < j1 ≤ l1, 1 < j2 − i2 ≤ l2}.
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For the proof we need therefore to check the hypotheses of A.17 only: The first,
S1 = T1, is immediate, since elements of level one coincide almost by definition

σi1i2,i+1 j2
= τi1i′2,i

+
1 j2
, i′2 + l2 = i2.

For the inductive hypothesis lemma A.10 yields, that elements τ2
i10,k1k2

and

σ2
i1l2,k1k2

with 1 ≤ i1 < k1 ≤ l1, 1 ≤ k2 < l2 are equal up to conjugation by ele-
ments in Sk1−i1−1 ∪ Tk1−i1−1, i.e. by elements of smaller level.

To extend this result to the remaining elements we consider the action of overall
conjugation by δφ. Since this conjugation is level preserving, we get, that

σ2
i1i2,k1j2 = δ

i′2
φ σ

2
i1l2,k1k2δ

−i′2
φ , τ2

i1i′2,k1j2
= δ

i′2
φ τ

2
i10,k1k2δ

−i′2
φ

are equal up to conjugation by elements of smaller level since σ2
i1l2,k1k2

, τ2
i10,k1k2

are.

The hypotheses are hence met, for each generator σ2
i1i2,j1j2

or τ2
i1i2,j1j2

is in the

conjugation orbit of a σ2
i1l2,k1k2

resp. τ2
i10,k1k2

by δφ. 2

The generator set has still the draw back that it is not finite. Though this
could be amended we even take a step further and proceed to a generator set which
generates the same group only up to the subgroup G2.

Lemma 7.23 The versal braid monodromy of fα(x1, x2) is generated by elements
G2-conjugate to

σ3
i1i2,j1j2

: i2 = j2, i1 < j1 correlated,

σ2
i1i2,j1j2

: i2 = j2, i1 < j1 not correlated,

σ2
i1i2,j1j2

: i1 < j1, i2 6= j2, i < j not correlated,

σ2
i1i2,j1j2

σ2
i1i2,k1k2

σ−2
i1i2,j1j2

: i2 + 1 = k2, i < j < k correlated.

Proof: We have to show, that we can assign G2 conjugates to the given elements,
such that these conjugates generate the same braid subgroup as the elements of 7.22.

The first two rows of elements obviously coincide. If we apply the case n = 2 of
lemma 7.21 to the last row of 7.22, then we get the bottom rows here. 2

Lemma 7.24 The versal braid monodromy of the family of functions

x3
1 − 3αx1 + xl2+1

2 − ε2(l2 + 1)x2

is generated by elements

σ3
1i2,2j2

, i2 = j2,

σ2
1i2,2j2

with 1 ≤ i2 − j2 < l2.

Proof: This is the special case l1 = 2 of lemma 7.22. 2

Again we have to use the results of the next two sections.
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Lemma 7.25 The versal braid monodromy of fα(x1, x2, x3) is generated by elements
η(G2)-conjugate to

σ3
i1i2i3,j1j2j3

: i1 = j1 − 1, i2 = j2, i3 = j3,

σ2
i1i2i3,j1j2j3

: i+1 = j1, i2 = j2, 1 ≤ i3 − j3 < l3

σ2
i1i2i3,j1j2j3

: i1 < j1 − 1, i2 = j2,

σ2
i1i2i3,j1j2j3

: i1 < j1, i2 6= j2, i1i2 < j1j2 not correlated,

η(σ2
i,j)σ

2
ii3,kk3

η(σ−2
i,j ) : i1i2 < j1j2 < k1k2 correlated.

Proof: First note that the discriminant family associated to fα(x1, x2, x3) is
the l3-companion family of the discriminant family associated to fα(x1, x2). So by
lemma 7.49 the versal braid monodromy is generated by the l3-companions of the
generators given in lemma 7.22.

But instead of the l3-companions of the generators in 7.22 we take the l3-
companions of the elements in 7.23. The definition implies that up to conjugation
by elements of η(G2) they generate the same group, which suffices for our claim.

So we need only to run the list of 7.23 through the procedure given in 7.38 to
get the list of the claim. 2

Lemma 7.26 The versal braid monodromy of the family fα(x1, x2, x3) is generated
by a set of braids G3-conjugate to elements of

σ3
i,j : i+1 = j1, i2 = j2, i3 = j3,

σ2
i,k : i1 < k1, i < k not correlated,

σ2
i,jσ

2
i,kσ

−2
i,j : i1 < k1, i < k correlated, j ∈ {i+1 i2i3, i1k2k3}.

Proof: Since η(G2) ⊂ G3 by 7.17 it suffices to show that the elements in 7.25
are G3-conjugates of those given here. Our method of proof consists in replacing
elements of a row by others obtained through conjugation with elements of previous
rows and elements of G3, since under such transformations the group generated by
G3-conjugates does not change.

Let us start with the fifth row. We have there the 2(l1 − 1)(l2 − 1)l23 elements

η(σ2
i1i2,j1j2)σ

2
i1i2i3,k1k2k3 η(σ

−2
i1i2,j1j2

) 1 < i+1 = k1 ≤ l1, 1 < i+2 = k2 ≤ l2,
1 ≤ i3, k3 ≤ l3, j1j2 ∈ {i1k2, k

+
1 i2}.

By A.14 those with j1j2 = i+1 i2 equal σ2
i,j1j2i3

σ2
i,kσ

−2
i,j1j2i3

= σ−2
j1j2i3,k

σ2
i,kσ

2
j1j2i3,k

up

to conjugation by elements of the second row. Since j1 = k1, the twist σ2
j1j2i3,k

is in

G3, if σ2
j2i3,k2k3

is in the braid monodromy group BrBP (l2,l3), cf. 7.16.
If i < k are not correlated, then j2i3 < k2k3 aren’t either, with j2 < k2. We

deduce with 7.23 that σ2
j1j2i3,k

then is in G3. Hence the elements of the fifth row

with j1j2 = i+1 i2 are equal to

i) σ2
i1i2i3,j1j2i3

σ2
i1i2i3,k1k2k3

σ−2
i1i2i3,j1j2i3

if i < k are correlated,

ii) σi1i2i3,k1k2k3 if i < k are not correlated,
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up to conjugation by elements of the second row and of G3.
Similarly by A.15 those with j1j2 = i1k2 are equal to

i’) σ2
i1i2i3,j1j2k3

σ2
i1i2i3,k1k2k3

σ−2
i1i2i3,j1j2k3

if i < k are correlated,

ii’) σi1i2i3,k1k2k3 if i < k are not correlated,

up to conjugation by elements of the second row and of G3.
Note that ii) and ii′) yield the same elements and that we have the following

restrictions on the indices, 1 ≤ iν , jν , kν ≤ lν , ν = 1, 2, 3, assumed in all cases:

i) i+1 i
+
2 i3, i

+
1 i

+
2 i

+
3 = k1k2k3, j1j2j3 = i+1 i2i3,

ii) i+1 i
+
2 = k1k2, i3, i

+
3 6= k3,

i’) i+1 i
+
2 i3, i

+
1 i

+
2 i

+
3 = k1k2k3, j1j2j3 = i1k2k3.

Second we want to replace the elements of the second row. Lemma 7.21 implies
in case i′ = i1i2, j

′ = j1j2, n = 3 that the elements

σ2
i1i2i3,j1j2j3, i+1 i2 = j1j2, 1 ≤ in − jn < ln,

are G3-conjugates of elements

iii) σ2
i1i2i3,i

+
1 i2k3

, i3, i
+
3 6= k3,

iv) σ2
i1i2i3,i

+
1 i2i3

σ2
i1i2i3,i

+
1 i2i

+
3

σ−2
i1i2i3,i

+
1 i2i3

,

v) σ2
i1i2i3,i1i2i

+
3

σ2
i1i2i3,i

+
1 i2i

+
3

σ−2
i1i2i3,i1i2i

+
3

.

We reassemble the elements thus obtained according to the form in which they
are given, twists of exponent 3, twists of exponent 2 given as σ2

i,k and twists of

exponent 2 given as σ2
i,jσ

2
i,kσ

−2
i,j . The two final steps then consists in collecting the

corresponding sets of indices.
For the elements which are full twists of the form σ2

i,k we get:

{i, k|i+1 i2 = k1k2, i3, i
+
3 6= k3} iii)

∪ {i, k|i+1 < k1, i2 = k2} 3rd row of 7.25

∪ {i, k|i1 < k1, i2 6= k2, i
+
1 i

+
2 6= k1k2} 4th row of 7.25

∪ {i, k|i+1 i+2 = k1k2, i3, i
+
3 6= k3} ii)

= {i, k|i1 < k1, i < k not correlated} 2nd row of 7.26

For the elements which are full twists of the form σ2
i,jσ

2
i,kσ

−2
i,j we get:

{i, j, k|j1j2j3 = i+1 i2i3, k1k2k3 ∈ {i+1 i+2 i3, i+1 i+2 i+3 }} i)

∪ {i, j, k|k1k2k3 ∈ {i+1 i+2 i3, i+1 i+2 i+3 }, j1j2j3 = i1k2k3} i′)

∪ {i, j, k|j1j2j3 = i+1 i2i3, k1k2k3 = i+1 i2i
+
3 } iv)

∪ {i, j, k|j1j2j3 = i1i2i
+
3 , k1k2k3 = i+1 i2i

+
3 } v)

= {i, j, k|i1 < k1, i < k correlated, j ∈ {i+1 i2i3, i1k2k3}}
So the set we obtained replacing the elements of 7.25 by G3-conjugates of another

generating set is exactly that of our claim, and we are done. 2
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Lemma 7.27 The versal braid monodromy of the family fα(x1, ..., xn) is generated
by a set of Gn-conjugates of braids

σ3
i,j : i+1 = j1, i2...in = j2...jn,

σ2
i,k : i1 < k1, i < k not correlated,

σ2
i,jσ

2
i,kσ

−2
i,j : i+1 = k1, i < k correlated, j ∈ {i+1 , i2...in, i1k2...kn}.

Proof: This can be proved by induction on n, with the cases n = 2, 3 already
done, 7.23,7.26. So let us assume the claim holds for n− 1.

By 7.49 generators are given by the ln-companions of generators for the braid
monodromy group of fα(x1, ..., xn−1).

If such generators are given up to conjugation by elements of Gn−1 only, then
their ln-companions are known up to conjugation by elements of η(Gn−1) due to the
definition. This is fine here, since we are interested in generators up to conjugation
by elements of Gn which is even coarser because η(Gn−1) ⊂ Gn by 7.19.

Hence we conclude that up to conjugation by elements of Gn generators for the
braid monodromy of fα(x1, ...xn) are obtained from the list of Gn−1-conjugates of
generators for fα(x1, ..., xn−1) by taking the ln-companions according to the rule
7.38:

σ3
i′,k′ : σ3

i,k i+1 i2...in = k1k2...kn,

σ2
i,k, i+1 i2...in−1 = k1k2...kn−1,

1 ≤ in − kn < ln

σ2
i′,k′ : σ2

i,k, i1 < k1, i
′ < k′ not correlated,

σ2
i′,j′σ

2
i′,k′σ

−2
i′,j′ : η(σ2

i′,j′)σ
2
i,kη(σ

−2
i′,j′) i1 < k1, i

′ < k′ correlated,

j′ ∈ {i+1 i2...in−1, i1k2...kn−1}.

We proceed in strict analogy to the proof of 7.26. Without changing the group which
Gn-conjugates generate, we replace the elements of the fourth row by

i) σ2
i,j′in

σ2
i,kσ

−2
i,j′in

, if i < k correlated, j′ = i+1 i2...in−1,

i’) σ2
i,j′kn

σ2
i,kσ

−2
i,j′kn

, if i < k correlated, j′ = i1k2...kn−1,

ii) σ2
i,k if i < k not correlated, i+1 = k1, i

′ < k′ correlated.

We go on and replace the elements of the second row by elements

iii) σ2
i1...in,i

+
1 i2...in−1kn

, in, i
+
n 6= kn,

iv) σ2
i,jσ

2
i,kσ

−2
i,j , i2...in−1 = j2...jn−1 = k2...kn−1, i

+
1 i

+
n = j1j

+
n = k1kn,

v) σ2
i,jσ

2
i,kσ

−2
i,j , i2...in−1 = j2...jn−1 = k2...kn−1, i

+
1 i

+
n = j+1 jn = k1kn.

A final check that the lists of index pairs and triples for the generators thus obtained
and the elements of the claim coincide completes the proof. 2
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Theorem 7.28 The braid monodromy of the function xl1+1
1 +· · ·+xln+1

n is generated
by

S =







σ3
i,k i < k correlated,

σ2
i,k i < k not correlated,

σ2
i,jσ

2
i,kσ

−2
i,j i < j < k correlated







Proof: The proof can be obtained by induction on n. Since the claim has been
proved already for n = 1, 2 we may suppose n > 2 and that the case n− 1 is already
known.

So we deduce from 7.18 that the braid monodromy group Gn is generated by

σ3
i,k i1 = k1, i < k correlated,

σ2
i,k i1 = k1, i < k not correlated,

σ2
i,jσ

2
i,kσ

−2
i,j i1 = k1, i < j < k correlated

To get generators for the total braid monodromy we have – by 5.16 – to add the
elements of 7.27.

σ3
i,j i+1 = j1, i2...in = j2...jn,

σ2
i,k, i1 < k1, i < k not correlated,

σ2
i,jσ

2
i,kσ

−2
i,j i+1 = k1, i < k correlated, j ∈ {i+1 , i2...in, i1k2...kn}.

By a check on the indices occurring in these two sets, we see, that in order to get
the claim we have to add elements

σ3
i,j i+1 = j1, i2...in 6= j2...jn,

σ2
i,jσ

2
i,kσ

−2
i,j i+1 = k1, i < j < k correlated, j 6∈ {i+1 i2...in, i1k2...kn}.

Of course they may be added without harm if and only if they are elements of the
braid monodromy.

So let us first consider triples of correlated indices i < j < k with j1 = i+1 .
Then i < i+1 i2...in < j < k is a correlated quadruple such that the full twists
associated to the correlated triples of i < k, i < j and j < k with i+1 i2...in are
among the given generators of the braid monodromy. Hence we may conclude with
A.12 that all elements σ2

i,jσ
2
i,kσ

−2
i,j with j1 = i+1 , i < j < k correlated, are in the

braid monodromy.

Similarly we argue for correlated index triples i < j < k with j1 = i1. Since
i < j < i1k2...kn < k is a correlated quadruple then, we may conclude as above
that all elements σ2

i,jσ
2
i,kσ

−2
i,j with j1 = i1, i < j < k correlated, are in the braid

monodromy.

Finally let i < k be any pair of correlated indices. If σ3
i,k is not among the

generators given for the braid monodromy, set j := i+1 i2...in. Then i < j < k is
a correlated triple such that σ3

i,j and σ3
j,k are among the given generators of the

braid monodromy. Since so is σ2
i,jσ

2
i,kσ

−2
i,j , we conclude with A.11 that also σ3

i,k is an
element of the braid monodromy. 2
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7.4 l-companion models

We introduce in this section the notion of a companion family, which is associated to
a discriminant family by replacing the singular value divisor by a number of parallel
copies. If the discriminant family arises from a family of functions, so does the
companion family, hence we may try to relate not only the braid monodromy but
also the versal braid monodromies of both families.

In this section we have a closer look at the companion families of the simplest
discriminant families, the ordinary node and the ordinary cusp, and provide the
necessary definitions and arguments to get first results on these companion families
and their monodromy.

Definition 7.29: Given a discriminant family E defined by a polynomial d(z, α),
a discriminant family E(l) defined by a polynomial d(l) is called l-companion
family if

d(l)(z, α) =
∏

ξl=1

d(z − ξε, α)

for some 0 < ε≪ 1.

So for example we get an l-companion family of the ordinary node z2−α2 defined
by the equation

∏

ξl=1

(

(z − ξε)2 − α2
)

= 0.

The close relation between the two equations should – and shall – result in more
ties between the two families E and E(l).

First note that there is a natural way to pass from a distinguished system of
paths for a regular fibre of E at a parameter α to a system of paths for the fibre of
E(l) at α.

Of course we have to impose ε to be small enough to get again a regular fibre.
For a suitable choice of ε then the given system of paths for E meets the boundary
of the 2ε-discs at the punctures once only. By changing the system in its isotopy
class only, we may even assume that this boundary point corresponds to puncture
translated by 2ε.

We then split each path into a bunch of l paths and connect it with the punctures
of the E(l) fibre in the order of increasing angle arg(ξ).

The system of paths thus obtained we call the Hefez-Lazzeri refinement, as the
procedure mimics the iteration step given in the Hefez-Lazzeri article for a special
system of paths.

Example 7.30: Cut discs of radius 2ε off the original fibre and replace the trun-
cated paths by l-bunches.
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Glue in copies of a 2ε disc punctured at points of absolute value ε and argument
ξ, ξl = 1, and provided with a standard system of paths.

`
`
`

So from now on given a system of paths for a fibre of E , we may tacitly assume
that a system of paths in the fibre of E(l) is given by the Hefez-Lazzeri refinement.
We will still sometimes say so explicitly but even if we won’t this should be under-
stood without mentioning.

In particular this means that given the braid monodromy group of a family as
a subgroup of an abstract braid group Brl′ , which involves an implicit choice of a
system of paths, we may consider the braid monodromy group of a l-companion
family to be a subgroup of Brl′l since we may make the necessary identification by
implicit use of the Hefez-Lazzeri refined system of paths.

Now let us have some exercise with the simplest discriminant families:

Lemma 7.31 The versal braid monodromy of the l-companion family associated to
the discriminant family defined by z2 − α2 with defining equation

∏

ξl=1

(

(z − ξε)2 − α2
)

= 0

is generated by

σ2
1i,2j, 1 ≤ i, j ≤ l.

and is isomorphic to ker(PBr2l → PBrl×PBrl2).
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Proof: The l-companion family in this case coincides with the model discriminant
family for the family of function fα(x1, x2) in case l1 = 2, l2 = l. Hence the versal
braid monodromy is almost that of the discriminant family of fα(x1, x2). We need
only remark that the group locally assigned to the singular fibre at the origin is
generated by full twists on v-arcs as in the case of all other fibres. Then the same
methods show then that

τ1i,2j , 1 ≤ j − i ≤ l2
generate the braid monodromy. But this is just the claim up to inner conjugations.

2

Lemma 7.32 The versal braid monodromy of the l-companion family associated
to the discriminant family defined by z2 − α3 is equal to the subgroup of BrBP (2,l)

generated by
σ3

1i2,2j2
, i2 = j2,

σ2
1i2,2j2

with 1 ≤ i2 − j2 < l2.

Proof: The l-companion family associated to the discriminant family defined by
z2 − α3 coincides with the discriminant family of the family of functions

x3
1 − 3αx1 + xl2+1

2 − ε2(l2 + 1)x2.

The versal braid monodromy has be computed in 7.24. 2

In order to avoid giving lists of elements as in the preceding lemmas, we introduce
some new notions.

Definition 7.33: An element g ∈ Brn is called positive twist element of exponent
k ∈ N, if there is h ∈ Brn such that hgh

−1

= σk1 .

Definition 7.34: The l-companions in Brl′l of σ2
1 ∈ Brl′ are the elements

σ2
1i,2j , 1 ≤ i, j ≤ l,

the l-companions in Brl′l of σ3
1 ∈ Brl are the elements

σ3
1i,2i, 1 ≤ i ≤ l,

σ2
1i,2j , 1 ≤ i− j < l.

Definition 7.35: If g ∈ Brl′ is a twist of exponent 2 and hgh
−1

= σ2
1 , then the

l-companions in Brl′l of g ∈ Brl′ are the elements

η(h
−1

)σ2
1i,2jη(h), 1 ≤ i, j ≤ l.

Definition 7.36: If g ∈ Brl′ is a twist of exponent 3 and hgh
−1

= σ3
1 , then the

l-companions in Brl′l of g ∈ Brl′ are the elements

η(h
−1

)σ3
1i,2iη(h), 1 ≤ i ≤ l,

η(h
−1

)σ2
1i,2jη(h), 1 ≤ i− j < l.
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Of course in the last two definitions there arises the question of well-definedness.
But this is easily taken care of:

Lemma 7.37 The definition of l-companions is independent on the choice of h.

Proof: If we replace h by h′h with h′σ1 = σ1h
′, i.e. h′ in the stabilizer of σ1, then

ηl(h
′) commutes with σ1i,2j . 2

With these definitions we can easily determine l-companions of various elements:

Lemma 7.38 The following table lists the l-companions of the elements given in
the left column:

σ2
i′,j′ : σ2

i′in,j′jn
, in, jn ≤ l,

σ3
i′,j′ : σ3

i′in,j′jn
, in = jn < l,

σ2
i′in,j′jn

, 1 ≤ in − jn < l,

σ2
i′,j′σ

2
i′,k′σ

−2
i′,j′ : η(σ2

i′,j′)σ
2
i′in,k′kn

η(σ−2
i′,j′), in, jn ≤ l.

Lemma 7.39 The versal braid monodromy of the l-companion family associated to
the discriminant family defined by a homogeneous polynomial d(z, α) of degree l1
with defining equation

∏

ξl2=1

d(z − ξε, α) = 0

is generated by

σ2
i1i2,j1j2, 1 ≤ i1, j1 ≤ l, 1 ≤ i2, j2 ≤ 2.

and is isomorphic to ker(PBrl1l2 → ×l1 PBrl).

Proof: Without loss of generality we may assume d(z, α) = zl1 − αl1 . The l2-
companion family in this case coincides with the model discriminant family for the
family of function fα(x1, x2). Hence the versal braid monodromy is almost that of
the discriminant family of fα(x1, x2). We need only remark that the group locally
assigned to the singular fibre at the origin is generated by full twists on v-arcs as in
the case of all other fibres. Then the same methods show then that

τi1i2,j1j2, 1 ≤ i1, i2 ≤ l1, 1 ≤ j2 − i2 ≤ l2

generate the braid monodromy. But this is just the claim up to inner conjugations.
2

Lemma 7.40 The versal braid monodromy of the l2-companion family associated
to the discriminant family of the families of functions

xl1+1 − α(l1 + 1)x

is equal to the subgroup of Brl1l2 generated by the l2-companions of σ3
i1,i

+
1

and σ2
i1,j1

,

1 < i+1 < j1 ≤ l1.
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Proof: The l2-companion family coincides with the discriminant family of the
family of functions

xl1+1
1 − α(l1 + 1)x1 + xl2+1

2 − ε2(l2 + 1)x2.

A set of generators for the versal braid monodromy has been given in lemma 7.22.
By close inspection these are the l2-companions of the given elements. 2

7.5 l-companion monodromy

The aim of this section is to compute the versal braid monodromy of the l-companion
family E(l) associated to a family E in terms of the braid monodromy data given for
E .

So we suppose E is a discriminant family with critical parameters confined to
the interior of the unit disc E.

Moreover we suppose that suitable strongly distinguished systems of paths are
given in the parameter disc with base point at α = 1 and in the corresponding fibre.

The first provides us with a basis for the fundamental group of the base of the
punctured disc bundle associated to E , the second is used to provide an isomorphism
between the mapping class group of the punctured fibre at α = 1 with the abstract
braid group Brl′ on l′ strands in bijection to the punctures.

With these data given, the versal braid monodromy is the subgroup of Brl′ gener-
ated by the parallel transport of generators of the groups locally assigned to regular
fibres close to singular ones.

From now on we pursue the strategy to build up the monodromy for E(l) from
small pieces related to the critical parameters of E in order to obtain a close relation
between the monodromies over these pieces in terms of the results of the previous
section. To do so we actually need only to choose ε sufficiently small, but to make
this precise we start with the following technical tool:

Definition 7.41: Given a monic polynomial p in C[z], define the root distance by

δ(p) = min{|z1 − z2|
∣

∣(z − z1)(z − z2) divides p}.

Definition 7.42: Given a discriminant polynomial p ∈ C[z, α] which is monic in
the variable z. Define the discriminant root distance to be the function

δ(α) := δ(pα),

which is a continuous non-negative function.

Lemma 7.43 (’minimum principle’) If δ has a strictly positive minimum on a
bounded domain, then it attains the minimum on the boundary.
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Proof: Assume, that δ attains the minimum at an interior point α0. Since by
assumption δ(α0) > 0, there is a neighbourhood U of α0 such that p(z, α) is given
over U as the union of graphs of holomorphic functions φi : U → C. Hence δ is
given over U by mini6=j |φi(α)−φj(α)|. By the minimum principle for non-vanishing
holomorphic functions, we conclude, that δ is constant on U . But we can extend
this argument to the whole closure of our domain, so δ attains the minimum on the
boundary, too. 2

Suppose the critical points of E are zi,ν , αi, which are the critical points for
the projection to the parameter space of the zero set of the defining polynomial
p = p(z, α).

We then want to introduce small discs Ui := Bη(αi) in the parameter base
subjected to a lot of properties which actually all hold if we choose η appropriately
small enough.

i) Since the αi are distinct and in the interior of E, we may impose Ui ⊂ E, and
Ui ∩ Ui′ = { } if i 6= i′.

ii) The distinguished system of paths intersects the boundary of each Ui in a
unique point α′

i. So its restriction to the complement of the Ui is a distin-
guished system of paths for the Ui.

iii) At a critical parameter αi the polynomial pαi
of a generic discriminant family

factors as
∏

ν

(z − zi,ν)mi,ν

according to the multiplicities mi,ν of the punctures zi,ν . So Hensel’s lemma
yields – η again assumed small enough – a factorization over Ui

p =
∏

qi,ν , with qi,ν(z, αi) = (z − zi,ν)mi,ν .

iv) There is a positive constant δ0 such that for α ∈ Ui:

qi,ν(z, α) = 0 =⇒ z ∈ B 1
2
δ0

(zi,ν)

and roots of different factors are at least 2δ0 apart from each other.

Next we introduce E′ := E−⋃Ui and show that the discriminant root distance
is bounded away from 0 on E′.

Lemma 7.44 There is a positive constant δη such that for the defining polynomial
p of the discriminant family E

δ(α) > δη, ∀α ∈ E′.

Proof: The set Ē′ is a domain on which δ is strictly positive. Moreover by the
minimum principle for δ the function attains its minimum on ∂E′ which we may
take as 2δη to get the claim. 2

We can now prove a kind of continuity of critical parameters.
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Lemma 7.45 There is a locally generic perturbation E(l) of an l-companion family
of E, such that all critical parameters in E are confined to

⋃

Ui.

Proof: First we prove the claim for the l-companion family itself, which is defined
by a polynomial p(l) :=

∏

p(z − ξε, α). Since a parameter is critical if and only if
it is in the zero locus of the discriminant root distance δ, it suffices to show that δ
does not vanish on E′.

For α ∈ E′ by lemma 7.44 the distance of roots of pα is bounded from below by

some positive number δη. If zκ are the roots of pα, then zκ + ξνε are those of p
(l)
α .

The distance of a pair of roots is then

|zκ1
+ ξν1ε− zκ2

− ξν2ε| = |ξν1ε− ξν2ε| 6= 0, in case κ1 = κ2, ν1 6= ν2,

|zκ1
+ ξν1ε− zκ2

− ξν2ε| ≥ |zκ1
− zκ2

| − |ξν1ε− ξν2ε|
> δη − 2ε, in case κ1 6= κ2.

So if we impose ε < 1
2δη, we get the claim for E(l). 2

Now that we got little discs Ui carrying all the degenerations and hence the
local contributions to the monodromy, we may take the next step and compute the
monodromy over Ui for a local generic perturbation of E(l)|Ui

.
Let us first have a look at the monodromy of E|Ui

in the fibre over α′
i ∈ ∂Ui.

The fibre contains the discs Bδ0(zi,ν). Outside polydiscs Ui ×Bδ0(zi,ν) the fibration
is locally trivial, therefore all mapping classes of the monodromy can be realized
by diffeomorphisms supported on Bδ0(zi,ν). In fact they are given by the locally
assigned group.

Let us choose now a strongly distinguished system of paths in the fibre of E
at α′

i. We refine this system of paths to a system for the fibre of E(l) following
the Hefez-Lazzeri construction. Note that the local triviality in the complement of
Ui ×Bδ0(zi) carries over to E(l).

In the final step we want to obtain generators for the braid monodromy group
of the l-companion family, which we identify with a subgroup of Brl′l by the choice
of the Hefez-Lazzeri refined system of paths in the fibre at α = 1.

Since we have got a system of paths for the Ui, it suffices to understand parallel
transport to α = 1 to get generators for the global monodromy group from local ones.

The chosen system of paths in the fibre at α′
i for E and its Hefez-Lazzeri refine-

ment for E(l) yield system of paths in the fibres at α = 1 under parallel transport
along the truncated system of paths in E′. This has to be subjected to a thorough
investigation in order to determine properties which are preserved:

Remark 7.46: Recall the existence of smooth ’bump’ functions χ, χε : C → R for
any real ε > 0:

χ : 0 ≤ χ(z) = χ(|z|) ≤ 1, χ(z) = 0 if |z| ≥ 1, χ(z) = 1 if |z| ≤ 1

2
,

χε : χε(z) = χ(z/ε),

with support contained in the unit disc, resp. the disc of radius ε.
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Lemma 7.47 Suppose γ parameterizes a path in E′. Given a vector field on γ∗E
such that the punctures form integral curves, then for ε sufficiently small a vector
field can be found such that all parallels of distance bounded by ε form integral curves.

Proof: Let v(z, t) be the given field, zi(t) the punctures, then define

vε(z, t) := v(z −
∑

i

χ2ε(z − zi(t))(z − zi(t)), t).

The parallels of punctures of distance bounded by ε are given by functions zi,c(t) :=
zi(t) + c with |c| ≤ ε.

Since |zi,c(t) − zj(t)| ≥ 2ε for i 6= j (given that |zi − zj | ≥ 3ε) all summands
except for the ith vanish at zi,c, hence

vε(zi,c(t), t) = v(zi,c − χ2ε(c)c, t) = v(zi, t).

The claim is therefore proved, because ∂
∂tzi,c = ∂

∂tzi = v(zi, t) by hypothesis. 2

Lemma 7.48 If parallel transport in E over a path in E′ is realized by a diffeomor-
phism φ, then parallel transport in E and E(l) is realized by a diffeomorphism defined
by

φ(l)(z) := φ(z) +
∑

i

χ2ε(z − zi)(φ(zi)− zi − φ(z) + z).

Proof: If φ is the integrated flow of a vector field v, just take φ(l) to be the
integrated flow of the vector field provided by 7.47. 2

We conclude that parallel transport commutes with Hefez-Lazzeri refinement:
The parallel transport of a Hefez-Lazzeri refinement is the Hefez-Lazzeri refinement
of the parallel transport.

The change of path system from the transported one to the given one on the
α = 1 fibre is realized by the action of a suitable diffeomorphism. This induces a
map on the braid group given by conjugation with the corresponding mapping class.

The same considerations apply to the family E(l) and the corresponding mapping
class is the image under the band homomorphism ηl of the former.

So now we can determine the generators transported from the fibre at α′
i. We

know the transported generator of E . This determines the conjugating mapping
class up to stabilizers. The image under ηl is the conjugating mapping class up to
stabilizers for the local generators of E(l), if these are only among the l-companions
of the generators for E .

As in the proof of 7.37 the stabilizers do not influence the conjugation of l-com-
panions, and we may conclude, that the braid monodromy of E(l) is generated by
the l-companions of generators of the monodromy of E .
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Lemma 7.49 For n ≥ 2 the versal braid monodromy of a family of functions
fa(x1, ..., xn), is generated by the ln-companions of generators of the versal braid
monodromy of the family of functions f ′α given by

xl1+1
1 − α(l1 + 1)x1 +

n−1
∑

i=2

(

xli+1
i − εi(li + 1)xi

)

Proof: In the family f ′α there are only ordinary multiple points and multiple
points which are the images of critical points of type Aln . In fact the local pieces
are isomorphic to the cases given in lemma 7.39 and lemma 7.40. So versal braid
monodromy over the Ui is given by the ln-companions of the generators of the locally
assigned groups for f ′α. Hence the claim follows by the discussion above. 2

Lemma 7.50 The versal braid monodromy of the l-companion of the discriminant
family E contains the image under the l-band homomorphism ηl of the braid mono-
dromy of E.

Proof: For any given element of the braid monodromy of E there is a path in
the base to which it is assigned. This path can be taken outside the Ui so we can
conclude that in the associated l-companion family the image under ηl is assigned
to this path. 2
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Chapter 8

bifurcation braid monodromy of

elliptic fibrations

Given a family over a base T of smooth regular elliptic surfaces with an elliptic
fibration induced by a global map to P1. Suppose all surfaces have smooth fibres
only except for k fibres of type I1, l of type I∗0 , the divisor of critical values defined
in T ×P1 is a finite cover of T of degree k + l.

The associated monodromy homomorphism takes values in the braid group of
the sphere. We show that its image is contained up to conjugacy in a subgroup
associated to a family Xk,l of elliptic fibrations.

On the other hand a fibration preserving topological automorphism of an ellip-
tic fibration induces an mapping class of the base P1 punctured at the base points
of the singular fibres. We give a topological characterization of a subgroup of in-
duced mapping classes which we show to contain the image of the braid monodromy
homomorphism and to coincide with the image in case of the families X6,l.

8.1 introduction

The monodromy problems we want to discuss fit quite nicely into the following gen-
eral scheme: Given an algebraic object X consider an algebraic family g : X → T
such that a fibre g

−1

(t0) is isomorphic to X and such that the restriction to a con-
nected subfamily g| : X ′ → T ′ containing X is a locally trivial C∞ fibre bundle. If
G is the structure group of this bundle, the geometric monodromy is the natural
homomorphism ρ : π1(T

′, t0)→ G. A monodromy map with values in a group A is
obtained by composition with some representation G→ A.

In the standard setting X is a complex manifold, e.g. a smooth complex pro-
jective curve. In this case X is a flat family of compact curves containing X, the
subfamily X ′ contains only the smooth curves and is a locally trivial bundle of C∞

surfaces with structure group the mapping class group Map(X). From the geomet-
ric monodromy one can obtain the algebraic monodromy by means of the natural
representation Map(X)→ Aut(H1(X)).

In the present paper we investigate the monodromy of regular elliptic fibrations.
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So X is an elliptic surface with a map f : X → P1 onto the projective line. We
consider families g : X → T of elliptic surface containing X with a map fT : X → P1

which extends f and induces an elliptic fibration on each surface. Subfamilies X ′

are to be chosen as C∞ fibre bundles with structure group Difff (X), the group of
isotopy classes of diffeomorphism which commute with the fibration map up to a
diffeomorphism of the base.

This structure group has a natural representation in the mapping class group
of the base P1 punctured at the singular values of the fibration map f . The corre-
sponding monodromy homomorphism is called the braid monodromy of the family
X ′, since the mapping class group of the punctured base is isomorphic to a braid
group of the sphere.

Br
s

n =

〈

σ1, ..., σn−1

∣

∣

∣

∣

∣

∣

σiσi+1σi = σi+1σiσi+1,
σiσj = σjσi if |i− j| ≥ 2,
(σ1 · ... · σn−1)

n = 1

〉

.

From all possible C∞-types of elliptic fibrations we choose the subset only of
those represented by elliptic fibrations with singular fibres of types I1, I

∗
0 only, which

is significant for any elliptic fibrations without multiple fibres deforms to such a
fibration. We call a subgroup E of a spherical braid group the braid monodromy

group of a fibration X, if E is the smallest subgroup (w.r.t. inclusion) such that
for all admissible X the image of the braid monodromy is a subgroup of E up to
conjugation and prove:

Main Theorem The braid monodromy group of a regular elliptic fibration X with
no singular fibres except 6k fibres of type I1 and l fibres of type I∗0 is a subgroup of
Br

s

6k+l representing the conjugacy class of

Es6k,l :=

〈

σ
mij

ij , i < j

∣

∣

∣

∣

∣

∣

mij =







1 if i, j ≤ l ∨ i ≡ j (2), i, j > l
2 if i ≤ l < j
3 if i, j > l, i 6≡ j (2)

〉

.

(Here σi,i+1 := σi, while for j > i+ 1 we define σi,j := σj−1 · · · σi+1σiσ
−1

i+1 · · · σ
−1

j−1.)

Along with the proof of the theorem we will notice that each mapping class in
the braid monodromy group Esn(X) is represented by a diffeomorphism which can be
lifted to a diffeomorphism of X inducing the trivial mapping class on some generic
fibre. Hence we ask for the converse:

Does every diffeomorphism of X, isotopic to the identity mapping on
some generic fibre, induce a mapping class of the punctured base which
is in the monodromy group of X?

A positive answer would yield a topological characterisation of the braid mono-
dromy group!

In fact we show that the group of mapping classes induced in the said way
coincides with the stabiliser group of an appropriate Hurwitz action. Then we use
[26] to give an affirmative answer to the question above in case the number of fibres
of type I1 does not exceed 6.
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Theorem 8.1 The braid monodromy group Esn of a regular elliptic fibration X with
no singular fibres except 6 fibres of type I1 and l fibres of type I∗0 coincides with the
group of mapping classes of the punctured base of X which are induced by diffeo-
morphisms of X which respect the fibration, preserve a fibre F and induce a map on
F isotopic to the identity.

8.2 bifurcation braid monodromy

With each locally trivial bundle one can associate the structure homomorphism
defined on the fundamental group of the base with respect to any base point. It
takes values in the mapping classes of the fibre over the base point.

Given a curve C in the affine plane we can take a projection to the affine line
which restricts to a finite covering C → C. The complement of the curve and its
vertical tangents is the total space of a punctured disc bundle over the complement
of the branch points in the affine line.

The structure homomorphism of this bundle is called the braid monodromy of
the plane curve with respect to the projection, and it can be naturally regarded as
a homomorphism from the fundamental group of the branch point complement to
the braid group, since the latter is naturally isomorphic to the mapping class group
of the punctured disc.

This definition is readily generalized to the case of a divisor in the Cartesian
product of the affine or projective line with an irreducible base T . Then the structure
homomorphism takes values in a braid group, resp. in a mapping class group of a
punctured sphere which is naturally isomorphic to the spherical braid group Br

s

n.

In situations as we are interested in, such a divisor is defined as the locus of
critical values of a family of algebraic functions of constant bifurcation degree with
values in L ∼= P1 or C. Thus we give the relevant definitions:

Definition: A flat family X → T with an algebraic morphism f : X → L is called
a framed family of functions (X , T, f).

Definition: The bifurcation set of a framed family of functions over T is the smallest
Zariski closed subset B in T × L such that the diagonal map X → T × L is
smooth over the complement of B.

Definition: The discriminant set of a framed family of functions over T is the
divisor in T such that the bifurcation set B is an unbranched cover over its
complement by the restriction of the natural projection T × L→ T .

Definition: A framed family of functions is called of constant bifurcation degree if
the bifurcation set is a finite cover of T .

Definition: The bifurcation braid monodromy of a framed family of functions with
constant bifurcation degree over an irreducible base T is defined to be the
braid monodromy of B in T × L over T .

Note that this definition of braid monodromy differs slightly from the definition
given in the introduction but that the resulting objects are the same.

125



8.3 families of divisors in Hirzebruch surfaces

Given a Hirzebruch surface Fk with a unique section C−k of selfintersection −k, we
consider families of divisors on which the ruling of the Hirzebruch surface defines
families of functions with constant bifurcation type.
We can pull back divisors form the base along the ruling to get divisors on Fk which
we call vertical, among others the fibre divisor L.
Consider now the family of divisors on Fk which consist of a vertical part of degree l
and a divisor in the complete linear system of OFk

(4C−k+3kL) called the horizontal
part. It is a family parameterized by T = PH0(OP1(l))× PH0(OFk

(4C−k + 3kL))
with total space

Dk,l = {(x, t) ∈ Fk × T |x ∈ Dt ⊂ Fk} .

Let T ′ be the Zariski open subset of T which is the base of the family D′
k,l of divisors

in Dk,l with reduced horizontal part.

Lemma 8.2 The ruling on Fk defines a morphisms D′
k,l → P1 by which it becomes

a framed family of functions of constant bifurcation degree.

Proof: The critical value set of the vertical part of a divisor is the divisor of
which it is the pull back, thus it is constant of degree l.
The assumption on reducedness forces the horizontal part to be without fibre com-
ponents. We may even conclude that a reduced horizontal part consists of C−k and
a disjoint divisor which is a branched cover of the base of degree 3. The critical
values set is therefore the branch set which is of constant degree 6k, and we are
done. 2

Note that we can consider the abstract braid group presented as

Brn = 〈σ1, ..., σn−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2〉.

resp. Br
s

n as presented in the introduction to be realised by the mapping class group
of the punctured disc, resp. sphere. Such an identification is given if each σi is
realised by the half-twist on an embedded arc ai connecting two punctures provided
that ai ∩ ai+1 is a single puncture and ai ∩ aj is empty if |i− j| ≥ 2.

Proposition 8.3 The image of the bifurcation braid monodromy homomorphism of
the family D′

k,l is conjugated to the subgroup of Br
s

6k+l:

Es6k,l :=

〈

σ
mij

ij , i < j

∣

∣

∣

∣

∣

∣

mij =







1 if i, j ≤ l ∨ i ≡ j (2), i, j > l
2 if i ≤ l < j
3 if i, j > l, i 6≡ j (2)

〉

.

The proof of this proposition and a couple of preparatory results will take the
rest of the section.

First note that our whole concern lies in the understanding of the bifurcation
set B in T ′ × P1 with its projection to T ′. As an approximation we will consider
families of affine plane curves given by families of polynomials in affine coordinates
x, y with the regular map induced by the affine projection (x, y) 7→ x.
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Their bifurcation sets are contained in the Cartesian product of the family bases
with the affine line C, and it will soon be shown that this pair can be induced from
(T ′×P1,B). Eventually we can extract all necessary information from such families
to prove our claim.

Lemma 8.4 Consider y3 − 3 p(x) y + 2 q(x) as a family of polynomial functions
C2 × T → C parametrised by a base T of pairs p, q of univariate polynomials. Then
the bifurcation set is the zero set of g(x) := p3(x) − q2(x), the discriminant set is
the zero set of the discriminant of g with respect to x.

Proof: The bifurcation divisor is cut out by the discriminant polynomial of y3−
3p(x)y + 2q(x) with respect to y. The first claim is then immediate since g is
proportional to the corresponding Sylvester determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −3p 2q
1 0 −3p 2q

3 0 −3p
3 0 −3p

3 0 −3p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For the second claim we only note that a pair p, q belongs to the discriminant set if
and only if p3−q2 has a multiple root hence this locus is cut out by the discriminant
of g with respect to x. 2

Lemma 8.5 The discriminant locus of a family y3 + 3r(x)y2 − 3p(x)y + 2q(x) is
the union of the degeneration component of triples p, q, r defining singular curves
and the cuspidal component of triples defining polynomial maps with a degenerate
critical point.

Proof: In general a branched cover of C has not the maximal number of branch
points only if the cover is singular, or the number of preimages of a branch point
differs by more than one from the degree of the branching. The second alternative
occurs only if there is a degenerate critical point in the preimage or if there are two
critical points. Since the last case can not occur in a cover of degree only three we
are done. 2

Lemma 8.6 Given the family y3 +3r(x)y2−3p(x)y+2q(x) the cuspidal component
of the discriminant is the zero set of the resultant of p(x) + r2(x) and 2q(x)− r3(x)
with respect to x.
Its equation - considered a polynomial in the variable λ0 - is of degree n with coprime
coefficients if

p(x) =
d
∑

i=0

λix
i, q(x) = xn +

n−1
∑

i=0

ξix
i, r(x) =

⌊n/3⌋
∑

i=0

ζix
i.

Proof: The cuspidal discriminant is the locus of all parameters for which there
is a common zero of f, ∂yf, ∂

2
yf . Since ∂2

yf = 0 is linear in y, we can eliminate y and

127



get the resultant of p(x) + r2(x) and 2q(x)− r3(x) with respect to x.
By the degree bound on q and r the discriminant equation is the resultant of a matrix
in which the variable λ0 occurs exactly n times. Moreover the diagonal determines
the coefficient of λn0 to be (1−ζ3

n/3)
max(d,2n/43) resp. 1 depending on whether n/3 ∈ Z

or not. Even in the first case the coefficients are coprime since the resultant is not
divisible by (1− ζ3

n/3). 2

Lemma 8.7 For the family y3 + 3r(x)y2 − 3p(x)y + 2q(x) the degeneration com-
ponent of the discriminant is the locus of triples for which there is a common zero
in x, y of the polynomial and its two partial derivatives. Its equation - considered a
polynomial in the variable ξ0 - is monic of degree 2n− 2 if

p(x) =

d
∑

i=0

λix
i, q(x) = xn +

n−1
∑

i=0

ξix
i, r(x) =

⌊n/3⌋
∑

i=0

ζix
i.

Proof: The degeneration locus is given by the Jacobian criterion as claimed. The
equation of the discriminant of the subdiagonal unfolding of the quasihomogeneous
singularity y3 − xn is known to the quasihomogeneous and of degree 2n − 2 in ξ0.
Since the unfolding over the ξ0-parameter is a Morsification the coefficient of ξ2n−2

0

must be constant. 2

Lemma 8.8 The bifurcation braid monodromy of the family y3 − 3λy + 2(xn + ξ)
maps onto a subgroup of Br2n which is conjugated to the subgroup generated by

(σ1 · · · σ2n−1)
3, (σ2n−2,2n · · · σ2,4)

n+1, (σ2n−3,2n−1 · · · σ1,3)
n+1.

Proof: As one can show with the help of the preceding lemmas, the discriminant
locus is the union of the degeneration locus and the cuspidal component which are
cut out respectively by the polynomials λ3 − ξ2 and λ.

By Zariski/van Kampen the fundamental group of the complement with base
point (λ, ξ) = (1, 0) is generated by the fundamental group of the complement
restricted to the line λ = 1 and the homotopy class of a loop which links the line
λ = 0 once.

For the pair (1, 0) the set of regular values of the polynomial consists of the affine
line punctured at the (2n)-th roots of unity, which we number counterclockwise, 1
the first puncture. To express the bifurcation braid group in terms of abstract
generators, we identify the elements σi with the half twist on the circle segment
between the i-th and i+ 1-st puncture.

For the line λ = 1 the bifurcation locus is given by (xn+ ξ− 1)(xn+ ξ+1). This
locus is smooth but branches of degree n over the base at ξ = ±1. The corresponding
monodromy transformations are the second and third transformation given in the
claim.

Associated to the degeneration path (λ, ξ) = (1 − t,
√
−1t), t ∈ [0, 1] there

is a loop in the complex line λ = 1 +
√
−1ξ which links the line λ = 0. For

this degeneration the bifurcation divisor is regular and contains points of common
absolute value determined by t only, except for t = 1 where it has n ordinary cusps
with horizontal tangent cone. Since a cusp corresponds to a triple half twist and the

128



first and second puncture merge in the degeneration, the monodromy transformation
for our loop is the first braid of the claim. 2

Lemma 8.9 The bifurcation braid monodromy of the family y3−3λy+2(xn+ξ+εx),
ε small and fix, is in the conjugation class of the subgroup of the braid group generated
by

(σ1σ3 · · · σ2n−1)
3, σi,i+2, i = 1, ..., 2n − 2.

Proof: The discriminant locus in the λ, ξ parameter plane consists again of the
cuspidal component λ = 0 and the degeneration component.

Since the perturbation ε is arbitrarily small, some features of the family of
lemma 8.8 are preserved. The conclusion of the Zariski/van Kampen argument
still holds, each braid group generators σi is now realized as half twist on segments
of a slightly distorted circle, and the loop linking λ = 0 is only slightly perturbed.
So the monodromy transformation associated to this loop is formally the same as
before, the first braid in the claim.

The dramatic change occurs in the bifurcation curve over the line λ = 1. Now
the bifurcation locus is the union of two disjoint smooth components each of which
branches simply of degree n with all branch points near ξ = 1, resp. ξ = −1.
Since the local model xn + εx has the full braid group as its monodromy group, the
monodromy along λ = 1 is generated by the elements σi,i+2 as claimed. 2

Lemma 8.10 The bifurcation braid monodromy of the family

y3 − 3(λ+ λ1x)y + 2(xn + ξ + ξ1x)

is in the conjugation class of the subgroup generated by

σ3
i , i ≡ 1(2), σi,i+2, 0 < i < 2n − 1.

Proof: The components of the discriminant are the degeneration component and
the cuspidal component.

The line λ = 1, λ1 = 0, ξ1 = ε small and fix, is generic for the degeneration
component and we may conclude from lemma 8.9 that there are elements in the
fundamental group of the discriminant complement with respect to (λ, λ1, ξ, ξ1) =
(1, 0, 0, 0) which map to σi,i+2 as in lemma 8.9.

Since the line ξ = i, ξ1 = λ1 = 0 is transversal for the cuspidal component so
are parallel lines with λ1 = ε′ small and fix. The bifurcation curve is then given
by (λ+ ε′x)3 = (xn +

√
−1)2. For λ = 0 the critical values are distributed in pairs

along a circle in the affine line which merge pairwise for λ1 → 0.
But for ε′ sufficiently small and by varying λ to an appropriate small extend

such that the degeneration component is not met, there are n obvious degenerations
when λ is of the same modulus as ε′ and λ+ε′x is a factor of xn+

√
−1. By the local

nature of the degeneration a degree argument shows that these are all possibilities.
Moreover one can easily see that the corresponding monodromy transformations are
triple half twist for each one of the pairs.

Moreover these twists are transformed to the transformations σ3
i,i+1, i odd, when

transported along (1− t,
√
−1t, 0, ε′t), t ∈ [0, 1] to the chosen reference point.
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The monodromy group is thus completely determined since the fundamental
group is generated by elements which map to the given group under the monodromy
homomorphism. 2

Lemma 8.11 Let a family of plane polynomials be given which is of the form

y3 + 3
(

dr
∑

i=0

ζix
i
)

y2 − 3
(

dp
∑

i=0

λix
i
)

y + 2
(

xn +

n−1
∑

i=0

ξix
i
)

,

2 ≤ n, 0 < 3dp ≤ 2n, 3dr ≤ n.
Then the bifurcation braid monodromy group is in the conjugation class of the sub-
group of the braid group generated by

σ3
i , i ≡ 1(2), σi,i+2, 0 < i < 2n − 1.

Proof: Since the family considered in the previous lemma is a subfamily now and
has the claimed monodromy, we have to show that the new family has no additional
monodromy transformations.

In the proof above we have seen that the cuspidal component is cut in n points
by a line in λ0 direction. The component is reduced since its multiplicity at the
origin is n, too, by lemma 8.6. The degeneration component is reduced by the
analogous argument relying on lemma 8.7 and transversally cut in 2n− 2 points by
a line in ξ0 direction. Hence by Zariski/van Kampen arguments as proved in [4] the
fundamental group of the discriminant complement of the subfamily surjects onto
the fundamental group of the family considered now. 2

Lemma 8.12 Define a subgroup of the braid group Br2n+l:

E2n,l :=

〈

σ
mij

i,j , i < j

∣

∣

∣

∣

∣

∣

mij =







1 if i, j ≤ l ∨ i ≡ j(2), i > l
2 if i ≤ l < j
3 if i, j > l ∧ i 6≡ j(2)

〉

.

Then the same subgroup is generated also by

σi, i < l, σi,i+2, l < i, σ2
i,j , i ≤ l < j, σ3

i , i > l, i 6≡ l(2).

Proof: We have to show that the redundant elements can be expressed in the
elements of the bottom line. This is immediate from the following relations (i < j):

σi,j = σ
−1

j−1 · · · σ
−1

i+1σi σi+1 · · · σj−1, j ≤ l,
σi,j = σ

−1

j−2,j · · · σ
−1

i+2,i+4σi,i+2σi+2,i+4 · · · σj−2,j, l < i, i ≡ j(2),
σ3
i,j = σ

−1

j−2,2 · · · σ
−1

i+1,i+3σ
3
i σi+1,i+3 · · · σj−2,j, l < i, i 6≡ l, j(2),

σ3
i,j = σ

−1

j−2,2 · · · σ
−1

i+1,i+3σi−1,i+1σ
3
i−1,iσ

−1

i−1,i+1σi+1,i+3 · · · σj−2,j, l < i, j 6≡ l, i(2).

2
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Lemma 8.13 Consider a family
(

y3 − 3p(x)y + 2q(x)
)

a(x) parametrised by triples
p, q, a, with p from the vector space of univariate polynomials of degree at most 2n/3,
q, a from the affine space of monic polynomials of degree n and l respectively. Then
the subgroup E2n,l of Br2n+l is conjugate to a subgroup of the image of the bifurcation
braid monodromy.

Proof: We choose our reference divisor to be (y3 − 3y + 2xn)
∏l
i(x − l − 2 + i)

with corresponding bifurcation set xi = l+ 2− i, i ≤ l on the real axis and xl+1 = 1
and the xi, i > l+ 1 equal to the 2kth-roots of unity in counterclockwise numbering.
We identify the elements σi,j of the braid group with the half twist on arcs between
xi, xj , which are chosen to be

i) a circle segment through the lower half plane, if i, j ≤ l,

ii) a circle secant in the unit disc, if i, j > l,

iii) the union of a secant in the unit disc to a point on its boundary between x2n+l

and 1 with an arc through the lower half plane, if i ≤ l < j.

(Of each kind we have depicted one in the following figure.)

r

r s s s s

s s

xl−2 x1

xl+2xl+3

xl+1 xl xl−1

x2n+l

Since keeping the horizontal part y3− 3y+2xn fix, the bifurcation divisor of the
vertical is equivalent to that of the universal unfolding of the function xl we have
the elements σi, i < l in the braid monodromy. These elements are obtained for
example in families

a(x) =
(

(x− l + i− 3/2)2 + λ
)

l
∏

j 6=i,i+1

(x− l − 2 + j).

The second set of elements, σ2
i,j, i ≤ l < j is obtained by families of the kind

(y3 − 3y + 2xn)(x− l − 2 + i− λ)

l
∏

j 6=i

(x− l − 2 + j)

since the zero l+ 2− i+ λ may trace any given path in the range of the projection,
in particular that around an arc on which the full twist σ2

i,j is performed.
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Finally varying the horizontal part as in lemma 8.10 while keeping the a(x) factor
fix proves that the braid group elements σi,i+2, l < i and σi, l < i, i 6≡ l(2) are in the
image of the monodromy. So we may conclude that this image contains E2n,l up to
conjugacy. 2

Proof of prop. 8.3: Denote by S the Zariski open subset of T ′ which parameter-
izes divisors of the family D′

k,l which have no singular value at a point∞ ∈ P1. The
corresponding family in Fk×S may then be restricted to a family Fk,l in C×C×S,
where Fk is trivialized as C×C in the complement of the negative section C−k and
the fibre over ∞. By construction Fk,l has constant bifurcation degree.
Consider now the family of polynomials

(

y3 + 3r(x)y2 − 3p(x)y + 2q(x)
)

a(x),

where r, p, q, a are taken from the family of all quadruples of polynomials in one
variable subject to the conditions that

i) r, p are of respective degrees k and 2k,

ii) q is monic of degree 3k, a is monic of degree l

iii) the discriminant of y3 + 3r(x)y2 − 3p(x)y + 2q(x) is not identically zero.

This family can be naturally identified with Fk,l. By lemma 8.13, up to conjugacy,
E6k,l is contained in the monodromy image ρ(π1(S \Discr(Fk,l))).

For the converse we note that the bifurcation set of the family decomposes into
the bifurcation sets Bifh of the horizontal part y3+3r(x)y2−3p(x)y+2q(x) and Bifv
of the vertical part a(x). Hence the monodromy is contained in the subgroup Br(6k,l)
of braids which do not permute points belonging to different components. Br(6k,l)
has natural maps to Br6k and Brl which commute with the braid monodromies of
both bifurcation set considered on their own.

The discriminant decomposes into the discriminants of Bifh, Bifv and the divisor
of parameters for which Bifh ∩Bifv not empty. They give rise in turn to braids which
can be considered as elements in

Br6k, Brl resp. Br0,0(6k,l) := {β ∈ Br(6k,l) |β trivial in Br6k ×Brl}.

Now with lemma 8.12 we can identify E6k.l as the subgroup of Br6k+l generated by
E6k ⊂ Br6k, Brl and Br0,0(6k,l) which are generated in turn by the elements

{σi,i+2, σ
3
i , l < i}, {σi, i < l}, {σ2

i,j , i ≤ l < j} resp.

And by lemma 8.11 the image can not contain more elements.
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Since the bifurcation diagram of Fk,l embeds in the bifurcation diagram of D′
k,l

with complement of codimension one, there is a commutative diagram

π1(S \Discr(Fk,l)) −→−→ π1(T
′ \Discr(D′

k,l))

↓↓
∣

∣

∣

E6k,l

∣

∣

⌉
∣

∣

∣↓


y

Br6k+l −→−→ Br
s

6k+l

from which we read off our claim. 2

Corollary 8.14 For any element β in the braid monodromy group of D′
k,l there is

a diffeomorphism of the base P1 which fixes a neighbourhood of ∞ ∈ P1 and which
represents the mapping class β.

Proof: The element β is image of an element β′ in the braid monodromy of the
bifurcation diagram of Fk,l. The bifurcation set does not meet the boundary so
integration along a suitable vector field yields a realisation of β′ as a diffeomorphism
acting trivially on a neighbourhood of the boundary. Its trivial extension to the
point ∞ is the diffeomorphism sought for. 2

8.4 families of elliptic surfaces

In this section we start investigating families of regular elliptic surfaces for which the
type of singular fibres is restricted to I1 and I∗0 . We will go back and forth between
a family of elliptic fibrations, its associated family of fibrations with a section and a
corresponding Weierstrass model of the latter, so we note some of their properties:

Proposition 8.15 Given a family of elliptic fibrations with constant bifurcation
type over an irreducible base T , there is a family of elliptic fibrations with a section,
such that the bifurcation sets of both families coincide.

Proof: Given a family as claimed there is the associated family of Jacobian
fibrations, cf. [15, I.5.30]. The bifurcation sets of both families coincide. 2

In turn, for each family of elliptic fibrations with a section there is a correspond-
ing family of Weierstrass fibrations, cf. Seiler [39].

A regular Weierstrass fibration W is defined by an equation

wz2 = 4y3 − 3Pw2y + 2Qw3

in the projectivisation of the vector bundle O ⊕ O(2χ) ⊕ O(3χ) over the projec-
tive line P1 where χ is the holomorphic Euler number of the fibration, w, y, z are
’homogeneous coordinates’ of the bundle, and P,Q are sections of O(4χ),O(6χ) re-
spectively.
So W is a double cover of the Hirzebruch surface F2χ = P(O ⊕ O(2χ)) branched
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along the section σ2χ and the divisor in its complement O(2χ) defined by the equa-
tion y3 − 3Py + 2Q = 0.

A framed family of Weierstrass fibrations over a parameter space T is a given by
data as before where now P,Q are sections of the pull backs to T×P1 ofO(4χ),O(6χ)
such that for each parameter λ ∈ T they define a Weierstrass fibration. In the sequel
P,Q are referred to as the coefficient data of the Weierstrass family.

Lemma 8.16 Let W be the Weierstrass family associated to a framed family over
T of regular elliptic fibrations in which all surfaces have no singular fibres except
for l of type I∗0 and 6k of I1 with coefficient data P,Q, then there are three families
of sections a, p, q of O(l),O(2k),O(3k) respectively, such that p, q have no common
zero,

p · a2 = P, q · a3 = Q,

and the bifurcation set is given by

a
(

p3 − q2
)

= 0 ⊂ T ×P1.

Proof: By the classification of Kas [21] at base points of regular fibres the dis-
criminant P 3−Q2 does not vanish, at base points of fibres of type I1 the discriminant
vanishes but neither P nor Q and at base points of fibres of type I∗0 the vanishing
order of P is two, the vanishing order of Q is three.
Since by hypothesis the locus of base points of singular fibres of type I∗0 form a
family of point divisors of degree l there is a section a of O(l) such that P has a
factor a2 and Q a factor a3.
With degP = 2(l + k), degQ = 3(l + k) we get the other degree claims.
Finally the discriminant of the Weierstrass fibration is given by P 3 −Q2 which has
– by the above – the same zero set as a

(

p3 − q2
)

. 2

Remark: In the situation of the lemma, a family of divisors is given for Fk by
the equation a(y3 − 3pw2y + 2qw3) = 0, a cutting out the vertical part. The
double cover along this divisor is a family of fibrations obtained from the
original family by contracting all smooth rational curves of selfintersection
−2, of which there are four for each fibre of type I∗0 .

We are now prepared to come back to the main theorem:

Proof of the main theorem: Given any framed family of regular elliptic fibrations
containing X we consider a Weierstrass model W of the associated Jacobian family.
Since W is again framed there is an induced family of divisors on a Hirzebruch
surface obtained as before.
This family of divisors is a pull back from the space Dk,l so the monodromy is a
subgroup of the bifurcation monodromy of Hirzebruch divisors.

On the other hand for the family of triples of polynomials p(x), q(x), a(x) with
p of degree at most 2k and q, a monic of degree 3k respectively l, we can form the
family given by

z2 = y3 − 3p(x)a2(x) + 2q(x)a3(x),
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which is Weierstrass in the complement of parameters where a(x)
(

p3(x)− q2(x)
)

has a multiple root or vanishes identically. At least after suitable base change, cf.
[15, p. 163], this Weierstrass family has a simultaneous resolution yielding a family
Xk,l of elliptic surfaces with a section.
The Jacobian of X is contained in Xk,l, since its Weierstrass data consist of sections
P,Q which are factorisable as a2p, a3q according to lemma 8.16 and after the choice
of a suitable ∞ this data can be identified with polynomials in this family.
The fibration X is deformation equivalent to its Jacobian with constant local ana-
lytic type, cf. [15, thm. I.5.13] and hence of constant fibre type. The monodromy
group therefore contains the bifurcation monodromy group of divisors on Hirzebruch
surfaces Dk,l and so the two groups even coincide. 2

Regarding elements in the braid monodromy as mapping classes again they can
be shown to be induced by diffeomorphism of the elliptic fibration, but more is true
in fact:

Proposition 8.17 For each braid β in the framed braid monodromy group there is
a diffeomorphism of the elliptic fibration which preserves the fibration, induces β on
the base and the trivial mapping class on some fibre.

Proof: As we have seen in the corollary to prop. 8.3 we can find a representative
ϕ for the braid β by careful integration of a suitable vector field such that ϕ is the
identity next to a point ∞.
In [15, II.1.2] there is a proof for families of nodal elliptic fibrations and sufficient
hints for more general families of constant singular fibre types, that a horizontal
vector field on the total family can be found which fails to be a lift only in arbitrarily
small neighbourhoods of singular points on singular fibres. Integration of such a
vector field yields a diffeomorphism Φ which is a lift of ϕ.
We have seen that the monodromy generators arising from the horizontal part can
be realized over a suitable polydisc parameter space, cf. lemma 8.10. Since the
vertical part as in lemma 8.13 does not have any effect on the fibre F∞ over ∞ we
can conclude that this fibration family is the trivial family next to F∞. So we apply
the argument above to get a lift Φ which induces the trivial mapping class on F∞.

2

8.5 Hurwitz stabilizer groups

In this section we determine the stabilizers of the action of the braid group Brn on
homomorphisms defined on the free group Fn generated by elements t1, ..., tn. The
action is given by precomposition with the Hurwitz automorphism of Fn associated
to a braid in Brn:

Brn → AutFn : σi,i+1 7→






tj 7→











tj j 6= i, i + 1

titjt
−1

i j = i

ti j = i+ 1






.

We start with a result from [26]:
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Proposition 8.18 Let Fn := 〈ti, 1 ≤ i ≤ n | 〉 be the free group on n generators,
define a homomorphism φn : Fn → Br3 = 〈a, b | aba = bab〉 by

φn(ti) =

{

a i odd
b i even

and let Brn act on homomorphisms Fn → Br3 by Hurwitz automorphisms of Fn.
Then the stabilizer group Stabφn

contains the braid subgroup

En = 〈σmij

i,j |mij = 1, 3 if j ≡ i, resp. i 6≡ j mod 2〉

with En = Stabφn
, if n ≤ 6.

Note that the action in [26] was defined on tuples (φn(t1), ..., φn(tn)) but that it
is obviously equivalent to the action considered here.
This result can now be applied to find stabilizers of similar homomorphisms:

Proposition 8.19 Let Fn := 〈ti, 1 ≤ i ≤ n | 〉 be the free group on n generators,
define a homomorphism ψn : Fn → SL2Z by

ψn(ti) =

{

( 1 1
0 1 ) i odd
(

1 0
−1 1

)

i even

and let Brn act on homomorphisms Fn → SL2Z by Hurwitz automorphisms of Fn.
Then the stabilizer group Stabψn

of ψn is equal to the stabilizer group Stabφn
of φn.

Proof: Both groups, SL2Z and Br3, are central extensions of PSL, and both φn
and ψn induce the same homomorphism χn : Fn → PSL. Of course Stabχ contains
Stabφ and Stabψ and thus our claim is proved as soon as we can show the opposite
inclusions.
First note that the braid action defined on homomorphisms as above is equivalent
to the Hurwitz action on the tuples of images of the specified generators ti ∈ Fn,
hence the braid action will not change the conjugation class of these images.
Now let β be a braid in Stabχ. Then φ ◦ β(ti) = (ab)3kiφ(ti) since (ab)3 is the
fundamental element of Br3 which generates the center of Br3 and thus the kernel
of the extension Br3 → PSL. The degree homomorphism d : Br3 → Z is a class
function with value one on all φ(ti), hence d((ab)3ki) = 0. Since d(ab) = 2 we
conclude ki = 0 and β ∈ Stabφ.
Similarly we have ψ ◦ β(ti) = ±ψ(tj) for β ∈ Stabχ. Since the trace is a class
function on SL2Z which has value 2 on all ψ(ti) while it is −2 on −ψ(ti), we also
get β ∈ Stabψ. 2

Proposition 8.20 Let Fn := 〈ti, 1 ≤ i ≤ n | 〉 be the free group on n = l + l′

generators, define a homomorphism ψl,l′ : Fn → SL2Z by

ψl,l′(ti) =















( 1 1
0 1 ) i > l, i 6≡ l mod 2
(

1 0
−1 1

)

i > l, i ≡ l mod 2
(

−1 0
0 −1

)

i ≤ l
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and let Brn act on homomorphisms Fn → SL2Z by Hurwitz automorphisms of Fn.
Then the stabilizer group Stabψl,l′

of ψl,l′ is generated by the image of Stabψl′
under

the inclusion Brl′ →֒ Brn mapping to braids with only the last l′ strands braided and

El,l′ :=

〈

σ
mij

ij , 1 ≤ i < j ≤ n

∣

∣

∣

∣

∣

∣

mij =







1 if j ≤ l ∨ i ≡ j(2), i > l
2 if i ≤ l < j
3 if i > l, i 6≡ j(2)

〉

.

If l′ ≤ 6 then even Stabψl,l′
= El,l′.

Proof: Again we argue with the equivalent Hurwitz action on images of the
generators. First we consider the induced action on conjugacy classes. On n-tuples
of conjugacy classes the Hurwitz action induces an action of Brn through the natural
homomorphism π to the permutation group Sn. Since the tuple induced from ψ
consists of l copies of the conjugacy class of −id followed by l′ copies of the distinct
conjugacy class of ψ(t1), the associated stabilizer group is Ẽ := π

−1

(Sl × Sl′), and
as in [22] one can check that

Ẽ = 〈σij , i < j ≤ l or l < i < j; τij := σ2
ij, i ≤ l < j〉.

So as a first step we have Stabψ contained in Ẽ.

Since −id is central it is the only element in its conjugacy class and we may
conclude that the Ẽ orbit of ψ contains only homomorphisms which map the first l
generators onto −id. With a short calculation using that −id is a central involution
we can check that the τij act trivially on such elements:

τij(−id, ...,−id,Ml+1, ...,Mn)

= σ
−1

i+1 · · · σ
−1

j−1σ
2
jσj−1 · · · σi+1(−id, ...,−id,Ml+1, ...,Mn)

= σ
−1

i+1 · · · σ
−1

j−1σ
2
j (−id, ...,−id,Ml+1 , ...,Mj−1,−id,Mj , ...,Mn)

= σ
−1

i+1 · · · σ
−1

j−1(−id, ...,−id,Ml+1, ...,Mj−1,−id,Mj , ...,Mn)

= (−id, ...,−id,Ml+1 , ...,Mn)

Therefore given β ∈ Ẽ as a word w in the generators σij, τij of Ẽ the action of β
on ψ is the same as that of β′ where β′ is given by a word w′ obtained from w by
dropping all letters τij . By the commutation relations of the σij we may collect all
letters σij, i, j ≤ l to the right of letters σij, i, j > l without changing β′ and get a
factorization β′ = β′1β

′
2 with β′1 ∈ Brl, β

′
2 ∈ Brl′ .

Hence β ∈ Ẽ acts trivially on ψ if and only if β′1β
′
2 does so if and only if β′2

acts trivially on ψl′ . Thus Stabψl,l′
is generated by the τij the σij, i, j ≤ l and the

β′2 ∈ Stabψl′
. Both conclusions of the proposition then follow since σij , i, j > l are

contained in Stabψl′
and since they are even generators if l′ ≤ 6, prop. 8.18. 2

8.6 mapping class groups of elliptic fibrations

We return to elliptic fibrations and obtain some results concerning mapping classes
of elliptic fibrations. We need in fact to enrich the structure a bit:
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Definition: A marked elliptic fibration is an elliptic fibration with a distinguished
regular fibre, f : X,F → B, b0, which can be thought of as given by a marking
F →֒ E.

Definition: A fibration preserving map of a marked elliptic surface f : X,F → B, b0
is a homeomorphism ΦX ofX such that f◦ΦX = ϕB,b0◦f for a homeomorphism
ϕB,b0 of (B, b0) and such that ΦX |F is isotopic to the identity on F .
The map ϕB,b0 is called the induced base homeomorphism.

An induced homeomorphism necessarily preserves the set ∆(f) of singular values
of the fibration map f and therefore can be regarded as a homeomorphism of the
punctured base B,∆(f) preserving the base point.

On the other hand with each elliptic fibration f : X → B we have a torus bundle
over B −∆(f). Its structure homomorphism is the natural map

ψ : π1(B, b0) −→ Diff(F )

to the group of isotopy classes of diffeomorphisms of the distinguished fibre.

Proposition 8.21 Given a marked elliptic fibration and a braid β representing an
isotopy class of homeomorphisms of its punctured base, there is a fibration preserving
map inducing β if and only if β stabilizes the structure map of the associated torus
bundle.

Proof: A fibration preserving homeomorphism Φ of an unmarked elliptic surface
induces a map ϕB of the punctured base. By the classification of torus bundles there
exists then a commutative diagram

π1(B −∆(f), b0)
(ϕB)∗
−−−→ π1(B −∆(f), ϕB(b0))

↓ ψb0 ↓ ψϕ(b0)

Diff(F )
(Φ|F )∗
−−−−→ Diff(Φ(F ))

But the result of Moishezon [30, p. 169] implies that the reverse implication is true
in the absence of multiple fibres.
If now Φ is a fibration preserving homeomorphism of a marked elliptic surface then
the bottom map is the identity and the claim is immediate. 2

Proposition 8.22 Given a marked elliptic fibration with only fibres of types I1, I
∗
0

there is a choice of free generators for π1(B, b0), an isomorphism Diff(F ) ∼= SL2Z
and an isomorphism of the abstract braid group onto the mapping class group such
that the structure homomorphism of the associated bundle is ψ6k,l and such that the
action of Brn on Fn commutes with the action of Diff(B,∆) on π1.

Proof: The proof proceeds along the lines of Moishezon’s proof, cf. [15], for the
normal form of an elliptic surface with only fibres of type I1. The same strategy
leads to our claim since fibres of type I∗0 have local monodromy in the center of
SL2Z. 2
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By now we have finally got all necessary results to prove theorem 1 as stated in
the introduction.

Proof of theorem 8.1: The mapping class group of the base punctured at the
base points of singular fibres is isomorphic to the braid group Br

s

6+l of the sphere.
We have previously shown that the mapping classes induced by fibration preserving
maps are those acting trivially on the structure homomorphism of the torus bundle
given with the elliptic fibration, prop. 8.21.

By prop. 8.22 and prop. 8.20 the corresponding group is conjugation equivalent to
E6,l. On the other hand so is the monodromy group by the main theorem. Moreover
for each braid of the monodromy group there is by prop. 8.17 a fibration preserving
diffeomorphism, so we get an inclusion and hence both groups coincide. 2

139



140



Chapter 9

braid monodromy and

fundamental groups

In this concluding chapter we want to address four topics. First we will deduce by the
method of van Kampen a presentation for the fundamental group of the discriminant
complement of a Brieskorn Pham polynomial. Second we want to relate the algebraic
monodromy and the braid monodromy of Brieskorn Pham polynomials by means of
Dynkin diagrams.

In a third section we give all corollaries for arbitrary singular functions which
can be deduced immediately from our results and we finish in a four section with
some conjectures and speculations.

9.1 fundamental groups

For convenience we restate our result on generators of the braid monodromy.

Theorem 9.1 The braid monodromy group of a Brieskorn-Pham polynomial
xl1+1

1 + · · · xln+1
n is generated by the following twist powers:

σ3
i,j : i < j correlated

σ2
i,j : i < j not correlated

σj,kσ
2
i,jσ

−1

j,k : i < j < k correlated

The most important corollary drawn from this theorem is a presentation of the
fundamental group of the discriminant complement which can be computed by the
Zariski van Kampen method.

Theorem 9.2 The fundamental group of the discriminant complement of a versal
unfolding of a Brieskorn-Pham polynomial xl1+1

1 + · · · xln+1
n has a presentation given

with respect to the multiindex set I = I(l1, ..., ln) of cardinality µ = l1 · · · ln:

〈ti, i ∈ I | titjti = tjtitj , i, j ∈ I, i < j correlated,
titj = tjti, i, j ∈ I, i < j not correlated,
titjtkti = tjtktitj, i, j, k ∈ I, i < j < k correlated 〉
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Proof: A presentation of the fundamental group can be obtained from generators
of the braid monodromy according to 2.25.

So we have generators ti, i ∈ In in bijection to the critical points. We obtain
the relations from the generators of the braid monodromy group, which are given
in theorem 9.1. In fact a generator of the first two rows can be factored as β0σ

2
1β

−1

0

and β0σ
3
1β

−1

0 respectively in such a way that

β0(t1) = ti, β0(t2) = tj.

and similarly generators of the last row can be conjugated such that

β0(t1) = ti, β0(t2) = tjtkt
−1

j .

We then compute a sufficient set of relators using lemma 2.27:

i) in case σ3
i,j, i < j correlated:

t
−1

i β(ti) = t
−1

i t
−1

j t
−1

i tjtitj, t
−1

j β(tj) = t
−1

j t
−1

j t
−1

i t
−1

j titjtitj.

ii) in case β = σ2
i,j , i < j not correlated:

t
−1

i β(ti) = t
−1

i t
−1

j titj, t
−1

j β(tj) = t
−1

j t
−1

i t
−1

i tjtitj .

iii) in case σj,kσ
2
i,jσ

−1

j,k, i < j < k correlated:

t
−1

i β(ti) = t
−1

i (tjtkt
−1

j )
−1

titjtkt
−1

j

= t
−1

i tjt
−1

k t
−1

j titjtkt
−1

j ,

(tjtkt
−1

j )
−1

β(tjtkt
−1

j ) = (tjtkt
−1

j )
−1

(tjtkt
−1

j )
−1

t
−1

i (tjtkt
−1

j )ti(tjtkt
−1

j )

= tjt
−1

k t
−1

j tjt
−1

k t
−1

j t
−1

i tjtkt
−1

j titjtkt
−1

j .

In all cases the relators are conjugate, so we can do with the following relations:

titjti = tjtitj for i, j correlated,

titj = tjti for i, j not correlated,

titjtkt
−1

j = tjtkt
−1

j ti for i, j, k correlated.

Any relation of the third kind we can multiply by tjti on the right. Using a relation
of the first kind and cancellation of inverse letters, we arrive at our claim:

titjtkt
−1

j = tjtkt
−1

j ti

⇐⇒ titjtkti = tjtkt
−1

j titjti

⇐⇒ titjtkti = tjtkt
−1

j tjtitj

⇐⇒ titjtkti = tjtktitj.

2
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9.2 Dynkin diagrams

We want to interpret the theorems of the first section in terms of the Dynkin dia-
grams which Pham associated to the functions under consideration.

r r r r
r r r r�� �� ��

�� �� ��

the Dynkin diagram of x3
1 + x5

2 according to Pham

So let us recall the situation for the simple singularities. There we have the
distinguished Dynkin diagram with no cycles and the corresponding generalised
Artin groups. To these Brieskorn Artin groups we can associate the braid stabilizer
subgroup, which in fact coincides with the braid subgroup generated by elements
associated to edges and pairs without edge.
We generalize this situation in the following way.

Definition 9.3: The braid subgroup associated to a Dynkin diagram obtained from
a distinguished system of paths is defined as follows:

• To each edge of weight ±1 associate the generator σ3
i,j,

• To each non-connected vertex pair associate the generator σ2
i,j,

• To each edge triangle of weight product −1 associate the generator
σj,kσ

2
i,jσj,k, i < j < k.

In each case the indices are those of the vertices involved.

One can check that we can describe the Dynkin digram obtained by Pham for
the function

xl1+1
1 + · · · xln+1

n

using the multiindex set I = I(l1, ..., ln). The pair of vertices of indices i = i1i2 . . . in
and j = j1j2 . . . jn are connected by an edge if i < j are correlated and we assign
the weight

(−1)1 +
∑

ν(jν − iν).

Then we can show the following relation.

Lemma 9.4 The braid monodromy group of a Brieskorn Pham polynomial in di-
mension n, f = xl1+1

1 + · · · xln+1
n , is given by the braid subgroup of Brl1···ln generated

by the elements associated to the Dynkin diagram of f .

σ3
i,j there is an edge between vertices i, j

σ2
i,j there is no edge between vertices i, j

σj,kσ
2
i,jσ

−1

j,k there is a triangle of weight product −1 on the vertices i, j, k
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Proof: The first two rows of generators in 9.1 are obviously associated to the
diagram. Now in case there is any triangle of edges the indices i < j < k are
correlated and the weight product is

(−1)3 +
∑

ν(jν − iν) +
∑

ν(kν − iν) +
∑

ν(kν − jν) = −1.

So there is a bijection between generators given in the theorem and the generators
associated to the Dynkin diagram. 2

In a similar way the presentation of the fundamental group of the discriminant
complement can be expressed in terms of the Dynkin diagram.

9.3 other functions

Any versal family of functions is induced from the versal family of a Brieskorn Pham
function, so we may draw some conclusions from this fact:

Lemma 9.5 Suppose a singular function f is adjacent to a Brieskorn Pham polyno-
mial f̃ , then its braid monodromy group is contained in the intersection of the braid
monodromy group of f̃ with some group in the conjugacy class of Brµ ⊂ Brµ̃.

The reverse adjacency relation implies:

Lemma 9.6 Suppose a Brieskorn Pham polynomial g is adjacent to a singular func-
tion f , then the braid monodromy group of f contains a subgroup isomorphic to the
braid monodromy group of g.

The corollary concerning the fundamental group of the discriminant complements
can be formulated as follows.

Lemma 9.7 Suppose a singular function f is adjacent to a Brieskorn Pham poly-
nomial f̃ with Milnor numbers µ and µ̃ respectively, then the fundamental group of
its discriminant complement fits into a commutative diagram

Fµ →֒ Fµ̃

↓ ↓↓ ↓
π1(C

µ \ Df ) −→ π1(C
µ̃ \ Df̃ ).

9.4 conjectures and speculations

Now that we have defined and computed the braid monodromy groups of Brieskorn
Pham polynomials we are in a position to make an educated guess what they are
in case of general functions. We formulate two approaches both based on the fact
that the braid monodromy determines the fundamental group of the discriminant
complement, which in turn is restricted by the algebraic or geometric monodromy.

Since the braid monodromy acts by the Artin representation on the algebraic
monodromy homomorphism, the immediate guess is:
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Conjecture 1 The braid monodromy group is the stabilizer subgroup of the algebraic
monodromy homomorphism.

The other is much more explicit and relies on the fact that the algebraic mono-
dromy is encoded into the Dynkin diagram. It presumes that the braid subgroups
associated to Dynkin diagrams in an orbit under the braid group action belong to a
single conjugacy class.

Conjecture 2 The braid monodromy group of a singular function coincides with
the braid subgroup associated to a Dynkin diagram up to conjugacy.

It leads immediately to a preferred finite presentation of the fundamental group
of the discriminant complement.

Conjecture 3 The fundamental group of the discriminant complement of a versal
unfolding of a singular function f has a presentation given with respect to a Dynkin
diagram of f of vertex cardinality µ:

〈ti, 1 ≤ i ≤ µ | titjti = tjtitj, i, j ∈ I, i < j joint by an edge of weight ±1,
titj = tjti, i, j ∈ I, i < j not joint by an edge,
titjtkti = tjtktitj, i, j, k ∈ I, i < j < k in a edge triangle

of weight product −1 〉
In any case the braid monodromy group and the fundamental group would be

shown to be topological invariants despite the observations by Brieskorn in [7] which
show a dependence of the braid monodromy homomorphism on analytic invariants.

But we are not only interested into the fundamental groups themselves but also
in their relations. Even if we knew that the fundamental groups are determined
from the Dynkin diagrams, which implies that the braid monodromy groups embed
for adjacent singular functions, it is by no means obvious what we speculate now:

Conjecture 4 Suppose f is adjacent to g, so a versal unfolding of g is a versal
unfolding for f , then the natural map of fundamental groups of discriminant com-
plements injects.

Fµ →֒ Fµ̃

↓ ↓↓ ↓
π1(C

µ \ Df ) −→ π1(C
µ̃ \ Df̃ ).

The final speculation seems even further off. We have speculated on the image
of the braid monodromy homomorphism. Now we consider the domain. It is the
fundamental group of the bifurcation complement. So the question might be, how
much of this fundamental group is captured by the braid monodromy group. Boldly
put:

Conjecture 5 The braid monodromy group is the fundamental group of the com-
plement of the bifurcation diagram.

Here again one should be cautious, since the observation allude to above, implies
that the generic plane section yields curves of different multiplicity in cases of equal
topological invariants.
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Appendix A

braid computations

This appendix is designed to serve several purposes. First the progress in the chap-
ters is eased if some of the computational obstacles are hidden in this appendix.
Second the arguments are often similar and it is easier to get used to them, if they
are used in one place instead of being scattered throughout.

We distinguish the cases that the indices are just natural numbers, or pairs, or
multiindices, and we add a final section, which contains a very helpful criterion to
show, when two set of elements generate the same group.

We have to introduce some notation, which partly applies only for a single sec-
tion. Since all index sets we use are ordered, we can always denote by i+ the
immediate successor of i in some index set. The same notation applies also to single
components of multiindices.

As before our most general index set is defined in terms of possible exponents of
Brieskorn Pham polynomials.

Notation A.1: Given a finite sequence l1, ..., ln of positive integers, define the mul-
tiindex set In = In(l1, ..., ln) to be

In := {i1...in | 1 ≤ iν ≤ lν , 1 ≤ ν ≤ n}

equipped with the natural lexicographical order.

Since we mostly deal with conjugates we underline a conjugated element to make
the structure more obvious.

simple indices

In this section i′, j′ etc. are used just to denote additional natural numbers.

Remark A.2: The twist σ̌i,k := (
∏

i<j<k σ
2
i,j)σi,k(

∏

i<j<k σ
2
i,j)

−1

is the twist on

the horizontal arc from i to k passing behind all intermediate punctures (as
opposed to the arc of σi,k which passes in front).
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Remark A.3: The half twist on the arc from i to k passing in front up to j and
behind from j + 1 onwards can be given as

(
∏

j<j′<k

σ2
i,j′)σi,k(

∏

j<j′<k

σ2
i,j′)

−1

.

c c c c c c

Lemma A.4 The braid subgroup Br(An) ⊂ Brn is generated by elements

σ3
i,i+1 1 ≤ i < n

σ−2
i,i+

σ̌2
i,jσ

2
i,i+ 1 < i, i+ < j ≤ n.

Proof: Consider the following two filtered sets of elements of Brn.

S1 := {σ3
i,i+1} Sk := S1 ∪ {σ2

i,j |1 < j − i ≤ k},
T1 := {σ3

i,i+1} Tk := T1 ∪ {σ−2
i,i+

σ̌2
i,jσ

2
i,i+|1 < j − i ≤ k}

By the first remark we get the relation

σ−2
i,i+

σ̌2
i,jσ

2
i,i+ = (

∏

i+<j′<j

σ2
i,j′)σi,j(

∏

i+<j′<j

σ2
i,j′)

−1

.

so S2 = T2 and the other hypotheses of lemma A.17 hold as well. Therefore the
assertion is proved, since Sn is known to generate Br(An). 2

Lemma A.5 The subgroup BrA(l) of Brl is generated by

i) σ3
i,i+1,

ii) σ2
i,i+2,

iii) (
k−1
∏

j=i+2
σ2
i,j)σ

2
i,k(

k−1
∏

j=i+2
σ2
i,j)

−1

, i+ 1 < k − 1.

Proof: This is the same result as A.4 just with different notation. 2

Lemma A.6 Suppose in a punctured disc two otherwise distinct arcs meet in the
punctures p, q thus defining a inner disc. If there is a system of arcs such that

i) each puncture in the inner disc is connected by an arc with either p or q,
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ii) apart from p, q all arcs have no points in common,

then the twist on the outer arcs are equal up to conjugation by full twists on the
inner arcs.

Proof: We may identify the mapping class group of neighbourhood of the inner
disc with the abstract braid group, such that the twists on inner arcs correspond to
σ2

1,j , 1 < j ≤ m and σ2
j,n,m < j < n and the twist on the outer arcs correspond to

σ1,n and σ̌1,n(1). The claim then follows from

(
m
∏

j=2

σ2
1,j)σ1,n(

m
∏

j=2

σ2
1,j)

−1

= (
n−1
∏

j=m+1

σ2
j,n)σ̌1,n(

n−1
∏

j=m+1

σ2
j,n)

−1

.

b b b b b b b b b b b b

2

Lemma A.7 For any j, i < j ≤ k the twist σ̌i,k(i) can be given as σi,k suitably
conjugated by braids σi′,j′, i ≤ i′ < j ≤ j′ ≤ k.

Proof: First note that σi,k and σ̌i,k are twists on arc which meet the initial
hypothesis of lemma A.6. By the second remark above, the full twists on arcs from
the puncture of index i′ passing in front up to j − 1 and behind from j onwards is
in the group generated by elements σ2

i′,k, σ
2
i′,j′ , i < i′ < j ≤ j′ < k.

c c c c c c

On the other hand these arcs and the arcs to which the σ2
i,j′, j ≤ j′ < k are

associated can be chosen simultaneously to meet the remaining hypotheses of lemma
A.6. So we get our claim. 2

pair indices

In this section we will not use primed integer variables except for i′2 which always is
only a shorthand for i2 − l2.
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Lemma A.8 The elements τi1i′2,j1i′2 and τi1i′2,j1i2 are equal up to conjugation by

twists τ2
i1i2,j1j2

, 1 ≤ j2 − i′2 < l2 for all 1 ≤ i1 < j1 ≤ l1, i′2 = i2 − l2.

Proof: In fact we have

(
∏

i′2<j2<i2

τ2
i1i′2,j1j2

)
−1

τi1i′2,j1i′2(
∏

i′2<j2<i2

τ2
i1i′2,j1j2

) = τi1i′2,j1i2 .

c c c c c c cc

Again the claim can also be proved by checking the hypotheses of lemma A.6.
2

Lemma A.9 Up to conjugation by twists τ2
i1i2,j1j2

, 1 ≤ i1 < j1 ≤ l1, 1 ≤ j2−i2 < l2,
elements (i′2 := i2 − l2)

τ
−1

i1i′2,i
+
1 i

′
2

τ2
i+1 i

′
2,j1i

′
2

τi1i′2,i
+
1 i

′
2

if j1 − i1 ≤ l1/2,

τ
−1

i1i′2,i
+
1 i

′
2

τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i

′
2

if j1 − i1 ≥ l1/2 + 1,

τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2

if j1 − i1 = l1/2 + 1/2.

correspond bijectively to the elements

τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2

1 < i1 + 1 = i+1 < j1 ≤ l1, 1 ≤ i2 ≤ l2.

Proof: The elements of the third row already have the claimed factorisation. In
the other cases we have to conjugate in such a way that central twist and conjugating
twist are conjugated simultaneously to the claimed twists.
For elements of the second row, it is only the conjugating twist which has not the
claimed form.

b b b b b b b b b b bb

The proof of A.8 shows, that we can get

(
∏

i′2<j2<i2

τ2
i1i′2,j1j2

)
−1

τi1i′2,i
+
1 i

′
2
(
∏

i′2<j2<i2

τ2
i1i′2,j1j2

) = τi1i′2,i
+
1 i2
.
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Moreover we check at once, that the conjugating factor commutes with τi+1 i′2,j1i2
,

hence an overall conjugation of τ
−1

i1i′2,i
+
1 i

′
2

τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i

′
2

with (
∏

i′2<j2<i2
τ2
i1i′2,j1j2

)

yields τ
−1

i1i′2,i
+
1 i2
τ2
i+1 i

′
2,j1i2

τi1i′2,i
+
1 i2

.

In case of elements of the first row, neither twist is in the right shape:

b b b b b b b b b b bb

We first take care of the middle factor τi+1 i′2,j1i′2
, as before just by conjugation

with (
∏

i′2<j2<i2
τ2
i+1 i

′
2,j1j2

).

b b b b b b b b b b bb

But since we have to conjugate overall, also the conjugating factors are conju-
gated, and they are not unaffected:

b b b b b b b b b b bb

But we can now conjugate by (
∏

i′2<j2<i2
τ2
i2+i′1,j1j2

) and (
∏

i′2<j2<i2
τ2
i1i′2,i

+
1 j2

),

which are twists on arcs disjoint to that of τi+1 i′2,j1i2
, hence commutating with it. 2

Lemma A.10 Given 1 ≤ i1 < k1 ≤ l1, 1 ≤ k2 < l2 the elements

τ2
i10,k1k2 and σ2

i1l2,k1k2

coincide up to conjugation by elements

i) σ2
1l2,j1j2

, i1 < j1 < k1, 1 ≤ j2 < l2,

ii) τ2
j10,k1k2

, i1 < j1 < k1.

Proof: It suffices to check that arcs to which the given twists are associated can
be chosen simultaneously in such a way that
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i) they are confined to the disc with boundary given by the arcs corresponding
to τi10,k1k2 and σi1l2,k1k2,

ii) they are distinct outside the punctures of indices i1l2 and k1k2,

iii) all punctures in the disc are joint by some arc with either the puncture of
index i1l2 or that of index k1k2.

b b b b b b b b b bb b

So by lemma A.6 we may conclude that the assertion holds. 2

multiindices

In this section we reserve the notation i′ etc. for the multiindex i′ := i1...in−1 in
In(l1, ..., ln−1) naturally associated to i = i1...in.

Lemma A.11 Suppose the indices i, j, k form a correlated triple, then

σ3
i,k = (σ3

j,kσ
2
i,jσ

2
i,kσ

−2
i,j )σ3

i,j(σ
3
j,kσ

2
i,jσ

2
i,kσ

−2
i,j )

−1

.

Proof: Since we claim a conjugation relation it suffices to show that

σi,k = σj,kσi,kσj,kσ
−1

i,kσ
−1

j,k

= σj,kσ
2
i,kσj,kσi,kσ

−1

j,kσ
−2
i,k σ

−1

j,k

= σ3
j,kσ

−2
j,kσ

2
i,kσ

2
j,kσi,jσ

−2
j,kσ

−2
i,k σ

2
j,kσ

−3
j,k

= σ3
j,k(σ

2
i,jσ

2
i,kσ

−2
i,j )σi,j(σ

2
i,jσ

−2
i,k σ

−2
i,j )σ−3

j,k

2

Lemma A.12 Suppose the indices i, j,m, k form a correlated quadruple, then

σ2
i,mσ

2
i,kσ

−2
i,m = (σ2

j,mσ
2
j,kσ

−2
j,mσ

2
i,jσ

2
i,mσ

−2
i,j )σ2

i,jσ
2
i,kσ

−2
i,j (σ2

j,mσ
2
j,kσ

−2
j,mσ

2
i,jσ

2
i,mσ

−2
i,j )

−1

.

Proof: It remains to prove that conjugation by σ2
j,mσ

2
j,kσ

−2
j,mσ

2
i,j acts trivially on

σ2
i,mσ

2
i,kσ

−2
i,m.

Since the twists σ2
j,mσ

2
j,kσ

−2
j,m, σ2

i,j and σ2
i,mσ

2
i,kσ

−2
i,m correspond to three arcs which

form a triangle with no punctures in its interior, our claim is the homomorphic image
of the following claim in Br3:

σ2
1,3 = σ2

2,3σ
2
1,2σ

2
1,3σ

−2
1,2σ

−2
2,3 ,

which is immediately seen to be true, because σ2
1,2σ1,3σ

−2
1,2 = σ−2

2,3σ1,3σ
2
2,3. 2
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Lemma A.13 Given multiindices i < k and j′ such that i′ < j′ < k′, then

η(σ2
i′,j′)σi,k η(σ

−2
i′,j′) =

(

∏

1≤jn≤ln

σ2
i,j′jn

)

σi,k
(

∏

1≤jn≤ln

σ2
i,j′jn

)−1

=
(

in
∏

jn=in−ln+1

σ2
i,j′jn

)

σi,k
(

in
∏

jn=in−ln+1

σ2
i,j′jn

)−1

=
(

kn+ln−1
∏

jn=kn

σ2
i,j′jn

)−1

σi,k
(

kn+ln−1
∏

jn=kn

σ2
i,j′jn

)

.

Proof: We start with the observation that the arcs corresponding to the twists
σi,k and η(σ2

i′,j′)σi,k η(σ
−2
i′,j′) bound a disc which contains the punctures with indices

j′jn, 1 ≤ jn ≤ ln and only these.
The claim can now be deduced from A.6, since the conjugating braids correspond

to arc systems which meet the hypotheses of A.6, cf. the following illustrations.

b b b b bb b b bbb b

b b b b bb b b bbb b

b b b b bb b b bbb b

2

Lemma A.14 Suppose i < k are multiindices in In = In(l1, ..., ln) with i′ < k′

correlated and assume j′ = i+1 i2...in−1. Then up to conjugation by elements σ2
i′in,j′jn

,
1 ≤ in − jn < ln,

η(σ2
i′,j′)σi,k η(σ

−2
i′,j′)

is equal to σ2
i,j′in

σi,kσ
−2
i,j′in

= σ−2
j′in,k

σi,kσ
2
j′in,k

.
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Proof: By A.13 the given elements are equal to

(

in
∏

jn=in−ln+1

σ2
i,j′jn

)

σi,k
(

in
∏

jn=in−ln+1

σ2
i,j′jn

)−1

,

hence they are equal to σ2
i,j′in

σi,kσ
−2
i,j′in

up to conjugation by elements σ2
i′in,j′jn

,

1 ≤ in − jn < ln. The claim σ2
i,j′in

σi,kσ
−2
i,j′in

= σ−2
j′in,k

σi,kσ
2
j′in,k

is immediate. 2

Lemma A.15 Suppose i < k are multiindices in In = In(l1, ..., ln) with i′ < k′ cor-
related and assume j′ = i1k2...kn−1. Then up to conjugation by elements σ2

j′jn,k′kn
,

1 ≤ jn − kn < ln,

η(σ2
i′,j′)σi,k η(σ

−2
i′,j′)

is equal to σ2
i,j′kn

σi,kσ
−2
i,j′kn

= σ−2
j′kn,k

σi,kσ
2
j′kn,k

.

Proof: This result is obtained using the last equation of A.13 along the lines of
the proof above, A.14. 2

Lemma A.16 If 1 ≤ in < ln and jn = 0 then

(
i−n
∏

kn=1

σ2
i′in,j′kn

)
−1

(
−1
∏

kn=i+n −ln

σ2
i′in,j′kn

)σi′in,j′jn(
−1
∏

kn=i+n−ln

σ2
i′in,j′kn

)
−1

(
i−n
∏

kn=1

σ2
i′in,j′kn

),

(δln−in+1

j′i+n ,j′ln
)
−1

σ2
i′in,j′in

σi′in,j′i+n σ
−2
i′in,j′in

δln−in+1

j′i+n ,j′ln
,

are equal up to conjugation by twists σi′in,j′kn
with kn 6= jn, in − ln < kn < in, and

the sub-cable twist δln−in+1

j′i+n ,j′ln
.

If in = ln + 1 and 1 < jn ≤ ln then

(
ln
∏

kn=j+n

σ2
i′kn,j′jn

)(
j−n +ln
∏

kn=i+n

σ2
i′in,j′kn

)
−1

σi′in,j′jn(
j−n +ln
∏

kn=i+n

σ2
i′in,j′kn

)(
ln
∏

kn=j+n

σ2
i′kn,j′jn

)
−1

,

δjn
i′1,i′j−n

σ2
i′j−n ,i′jn

σi′j−n ,j′jnσ
−2
i′j−n ,i′jn

δ−jn
i′1,i′j−n

,

are equal up to conjugation by twists σi′kn,j′jn with kn 6= in, jn < kn < jn + ln, and

the sub-cable twist δjn
i′1,i′j−n

.

Proof: The claims are symmetric to each other under the symmetry induced by
the exchange of indices i′ ↔ j′, in → ln + 1− jn, jn → ln + 1− in.

The claim is illustrated in the case of σi′2,j′0 being conjugated to σ2
i′2,j′2σi′2,j′3σ

−2
i′2,j′2.
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d d d dd dd d d d

d d d dd dd d d d

d d d dd dd d d d

The important point to note is the fact, that conjugation by (
−1
∏

kn=i+n −ln

σ2
i′in,j′kn

)

equals conjugation by (δln−in
j′i+n ,j′ln

) and commutes with conjugation by (
i−n
∏

kn=1

σ2
i′in,j′kn

)

on the twists under consideration. Hence we are left to show that

(

i−n
∏

kn=1

σ2
i′in,j′kn

)
−1

(δj′i+n ,j′ln)σi′in,j′jn(δj′i+n ,j′ln)
−1

(

i−n
∏

kn=1

σ2
i′in,j′kn

)

= σ2
i′in,j′inσi′in,j′i+n σ

−2
i′in,j′in

Since the arcs of (δj′i+n ,j′ln)σi′in,j′jn(δj′i+n ,j′ln)
−1

and σi′in,j′i+n can be chosen to bound

a disc which contains the puncture of indices j′1 to j′in we can conclude that

(δj′i+n ,j′ln)σi′in,j′jn(δj′i+n ,j′ln)
−1

= (
in
∏

kn=1

σ2
i′in,j′kn

)σi′in,j′i+n (
in
∏

kn=1

σ2
i′in,j′kn

)
−1

from which we deduce the claim. 2

criterion for change of generators

Lemma A.17 Given two finitely filtered sets of elements of a group

S = Sn ⊃ Sn−1... ⊃ S1, Tn ⊃ Tn−1... ⊃ T1
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Then S and T generate the same subgroup if

i) T1 = S1,

ii) given t ∈ Tk − Tk−1 there is s ∈ Sk, such that t is equal to s up to conjugation
by elements in 〈Sk−1〉,

iii) given s ∈ Sk −Sk−1 there is t ∈ Tk, such that s is equal to t up to conjugation
by elements in 〈Sk−1〉.

The last hypothesis may be replaced by

iii’) given s ∈ Sk − Sk−1 there is t ∈ Tk such that s is equal to t up to conjugation
by elements in 〈Tk−1, Sk−1〉.

Proof: We show 〈Tk〉 = 〈Sk〉. So i) starts the induction. Then 〈Tk〉 ⊂ 〈Sk〉 since
by induction 〈Tk−1〉 ⊂ 〈Sk−1〉 ⊂ 〈Sk〉 and by ii) t ∈ Tk − Tk−1 implies t ∈ 〈Sk〉.

On the other hand by induction 〈Sk−1〉 ⊂ 〈Tk−1〉, therefore s ∈ Sk − Sk−1

implies s ∈ 〈Tk, Sk−1〉 ⊂ 〈Tk〉 if iii) holds resp. if iii′) holds. In either case we get
〈Sk〉 ⊂ 〈Tk〉. 2
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